//===- AssumptionCache.cpp - Cache finding @llvm.assume calls -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a pass that keeps track of @llvm.assume intrinsics in // the functions of a module. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AssumptionCache.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AssumeBundleQueries.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; using namespace llvm::PatternMatch; static cl::opt VerifyAssumptionCache("verify-assumption-cache", cl::Hidden, cl::desc("Enable verification of assumption cache"), cl::init(false)); SmallVector & AssumptionCache::getOrInsertAffectedValues(Value *V) { // Try using find_as first to avoid creating extra value handles just for the // purpose of doing the lookup. auto AVI = AffectedValues.find_as(V); if (AVI != AffectedValues.end()) return AVI->second; auto AVIP = AffectedValues.insert( {AffectedValueCallbackVH(V, this), SmallVector()}); return AVIP.first->second; } static void findAffectedValues(CallBase *CI, TargetTransformInfo *TTI, SmallVectorImpl &Affected) { // Note: This code must be kept in-sync with the code in // computeKnownBitsFromAssume in ValueTracking. auto AddAffected = [&Affected](Value *V, unsigned Idx = AssumptionCache::ExprResultIdx) { if (isa(V)) { Affected.push_back({V, Idx}); } else if (auto *I = dyn_cast(V)) { Affected.push_back({I, Idx}); // Peek through unary operators to find the source of the condition. Value *Op; if (match(I, m_BitCast(m_Value(Op))) || match(I, m_PtrToInt(m_Value(Op))) || match(I, m_Not(m_Value(Op)))) { if (isa(Op) || isa(Op)) Affected.push_back({Op, Idx}); } } }; for (unsigned Idx = 0; Idx != CI->getNumOperandBundles(); Idx++) { if (CI->getOperandBundleAt(Idx).Inputs.size() > ABA_WasOn && CI->getOperandBundleAt(Idx).getTagName() != IgnoreBundleTag) AddAffected(CI->getOperandBundleAt(Idx).Inputs[ABA_WasOn], Idx); } Value *Cond = CI->getArgOperand(0), *A, *B; AddAffected(Cond); CmpInst::Predicate Pred; if (match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) { AddAffected(A); AddAffected(B); if (Pred == ICmpInst::ICMP_EQ) { // For equality comparisons, we handle the case of bit inversion. auto AddAffectedFromEq = [&AddAffected](Value *V) { Value *A; if (match(V, m_Not(m_Value(A)))) { AddAffected(A); V = A; } Value *B; // (A & B) or (A | B) or (A ^ B). if (match(V, m_BitwiseLogic(m_Value(A), m_Value(B)))) { AddAffected(A); AddAffected(B); // (A << C) or (A >>_s C) or (A >>_u C) where C is some constant. } else if (match(V, m_Shift(m_Value(A), m_ConstantInt()))) { AddAffected(A); } }; AddAffectedFromEq(A); AddAffectedFromEq(B); } else if (Pred == ICmpInst::ICMP_NE) { Value *X, *Y; // Handle (a & b != 0). If a/b is a power of 2 we can use this // information. if (match(A, m_And(m_Value(X), m_Value(Y))) && match(B, m_Zero())) { AddAffected(X); AddAffected(Y); } } else if (Pred == ICmpInst::ICMP_ULT) { Value *X; // Handle (A + C1) u< C2, which is the canonical form of A > C3 && A < C4, // and recognized by LVI at least. if (match(A, m_Add(m_Value(X), m_ConstantInt())) && match(B, m_ConstantInt())) AddAffected(X); } else if (CmpInst::isFPPredicate(Pred)) { // fcmp fneg(x), y // fcmp fabs(x), y // fcmp fneg(fabs(x)), y if (match(A, m_FNeg(m_Value(A)))) AddAffected(A); if (match(A, m_FAbs(m_Value(A)))) AddAffected(A); } } else if (match(Cond, m_Intrinsic(m_Value(A), m_Value(B)))) { AddAffected(A); } if (TTI) { const Value *Ptr; unsigned AS; std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(Cond); if (Ptr) AddAffected(const_cast(Ptr->stripInBoundsOffsets())); } } void AssumptionCache::updateAffectedValues(AssumeInst *CI) { SmallVector Affected; findAffectedValues(CI, TTI, Affected); for (auto &AV : Affected) { auto &AVV = getOrInsertAffectedValues(AV.Assume); if (llvm::none_of(AVV, [&](ResultElem &Elem) { return Elem.Assume == CI && Elem.Index == AV.Index; })) AVV.push_back({CI, AV.Index}); } } void AssumptionCache::unregisterAssumption(AssumeInst *CI) { SmallVector Affected; findAffectedValues(CI, TTI, Affected); for (auto &AV : Affected) { auto AVI = AffectedValues.find_as(AV.Assume); if (AVI == AffectedValues.end()) continue; bool Found = false; bool HasNonnull = false; for (ResultElem &Elem : AVI->second) { if (Elem.Assume == CI) { Found = true; Elem.Assume = nullptr; } HasNonnull |= !!Elem.Assume; if (HasNonnull && Found) break; } assert(Found && "already unregistered or incorrect cache state"); if (!HasNonnull) AffectedValues.erase(AVI); } erase_value(AssumeHandles, CI); } void AssumptionCache::AffectedValueCallbackVH::deleted() { AC->AffectedValues.erase(getValPtr()); // 'this' now dangles! } void AssumptionCache::transferAffectedValuesInCache(Value *OV, Value *NV) { auto &NAVV = getOrInsertAffectedValues(NV); auto AVI = AffectedValues.find(OV); if (AVI == AffectedValues.end()) return; for (auto &A : AVI->second) if (!llvm::is_contained(NAVV, A)) NAVV.push_back(A); AffectedValues.erase(OV); } void AssumptionCache::AffectedValueCallbackVH::allUsesReplacedWith(Value *NV) { if (!isa(NV) && !isa(NV)) return; // Any assumptions that affected this value now affect the new value. AC->transferAffectedValuesInCache(getValPtr(), NV); // 'this' now might dangle! If the AffectedValues map was resized to add an // entry for NV then this object might have been destroyed in favor of some // copy in the grown map. } void AssumptionCache::scanFunction() { assert(!Scanned && "Tried to scan the function twice!"); assert(AssumeHandles.empty() && "Already have assumes when scanning!"); // Go through all instructions in all blocks, add all calls to @llvm.assume // to this cache. for (BasicBlock &B : F) for (Instruction &I : B) if (isa(&I)) AssumeHandles.push_back({&I, ExprResultIdx}); // Mark the scan as complete. Scanned = true; // Update affected values. for (auto &A : AssumeHandles) updateAffectedValues(cast(A)); } void AssumptionCache::registerAssumption(AssumeInst *CI) { // If we haven't scanned the function yet, just drop this assumption. It will // be found when we scan later. if (!Scanned) return; AssumeHandles.push_back({CI, ExprResultIdx}); #ifndef NDEBUG assert(CI->getParent() && "Cannot register @llvm.assume call not in a basic block"); assert(&F == CI->getParent()->getParent() && "Cannot register @llvm.assume call not in this function"); // We expect the number of assumptions to be small, so in an asserts build // check that we don't accumulate duplicates and that all assumptions point // to the same function. SmallPtrSet AssumptionSet; for (auto &VH : AssumeHandles) { if (!VH) continue; assert(&F == cast(VH)->getParent()->getParent() && "Cached assumption not inside this function!"); assert(match(cast(VH), m_Intrinsic()) && "Cached something other than a call to @llvm.assume!"); assert(AssumptionSet.insert(VH).second && "Cache contains multiple copies of a call!"); } #endif updateAffectedValues(CI); } AssumptionCache AssumptionAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { auto &TTI = FAM.getResult(F); return AssumptionCache(F, &TTI); } AnalysisKey AssumptionAnalysis::Key; PreservedAnalyses AssumptionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { AssumptionCache &AC = AM.getResult(F); OS << "Cached assumptions for function: " << F.getName() << "\n"; for (auto &VH : AC.assumptions()) if (VH) OS << " " << *cast(VH)->getArgOperand(0) << "\n"; return PreservedAnalyses::all(); } void AssumptionCacheTracker::FunctionCallbackVH::deleted() { auto I = ACT->AssumptionCaches.find_as(cast(getValPtr())); if (I != ACT->AssumptionCaches.end()) ACT->AssumptionCaches.erase(I); // 'this' now dangles! } AssumptionCache &AssumptionCacheTracker::getAssumptionCache(Function &F) { // We probe the function map twice to try and avoid creating a value handle // around the function in common cases. This makes insertion a bit slower, // but if we have to insert we're going to scan the whole function so that // shouldn't matter. auto I = AssumptionCaches.find_as(&F); if (I != AssumptionCaches.end()) return *I->second; auto *TTIWP = getAnalysisIfAvailable(); auto *TTI = TTIWP ? &TTIWP->getTTI(F) : nullptr; // Ok, build a new cache by scanning the function, insert it and the value // handle into our map, and return the newly populated cache. auto IP = AssumptionCaches.insert(std::make_pair( FunctionCallbackVH(&F, this), std::make_unique(F, TTI))); assert(IP.second && "Scanning function already in the map?"); return *IP.first->second; } AssumptionCache *AssumptionCacheTracker::lookupAssumptionCache(Function &F) { auto I = AssumptionCaches.find_as(&F); if (I != AssumptionCaches.end()) return I->second.get(); return nullptr; } void AssumptionCacheTracker::verifyAnalysis() const { // FIXME: In the long term the verifier should not be controllable with a // flag. We should either fix all passes to correctly update the assumption // cache and enable the verifier unconditionally or somehow arrange for the // assumption list to be updated automatically by passes. if (!VerifyAssumptionCache) return; SmallPtrSet AssumptionSet; for (const auto &I : AssumptionCaches) { for (auto &VH : I.second->assumptions()) if (VH) AssumptionSet.insert(cast(VH)); for (const BasicBlock &B : cast(*I.first)) for (const Instruction &II : B) if (match(&II, m_Intrinsic()) && !AssumptionSet.count(cast(&II))) report_fatal_error("Assumption in scanned function not in cache"); } } AssumptionCacheTracker::AssumptionCacheTracker() : ImmutablePass(ID) { initializeAssumptionCacheTrackerPass(*PassRegistry::getPassRegistry()); } AssumptionCacheTracker::~AssumptionCacheTracker() = default; char AssumptionCacheTracker::ID = 0; INITIALIZE_PASS(AssumptionCacheTracker, "assumption-cache-tracker", "Assumption Cache Tracker", false, true)