//===- llvm/BinaryFormat/ELF.h - ELF constants and structures ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This header contains common, non-processor-specific data structures and // constants for the ELF file format. // // The details of the ELF32 bits in this file are largely based on the Tool // Interface Standard (TIS) Executable and Linking Format (ELF) Specification // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. // //===----------------------------------------------------------------------===// #ifndef LLVM_BINARYFORMAT_ELF_H #define LLVM_BINARYFORMAT_ELF_H #include "llvm/ADT/StringRef.h" #include #include namespace llvm { namespace ELF { using Elf32_Addr = uint32_t; // Program address using Elf32_Off = uint32_t; // File offset using Elf32_Half = uint16_t; using Elf32_Word = uint32_t; using Elf32_Sword = int32_t; using Elf64_Addr = uint64_t; using Elf64_Off = uint64_t; using Elf64_Half = uint16_t; using Elf64_Word = uint32_t; using Elf64_Sword = int32_t; using Elf64_Xword = uint64_t; using Elf64_Sxword = int64_t; // Object file magic string. static const char ElfMagic[] = {0x7f, 'E', 'L', 'F', '\0'}; // e_ident size and indices. enum { EI_MAG0 = 0, // File identification index. EI_MAG1 = 1, // File identification index. EI_MAG2 = 2, // File identification index. EI_MAG3 = 3, // File identification index. EI_CLASS = 4, // File class. EI_DATA = 5, // Data encoding. EI_VERSION = 6, // File version. EI_OSABI = 7, // OS/ABI identification. EI_ABIVERSION = 8, // ABI version. EI_PAD = 9, // Start of padding bytes. EI_NIDENT = 16 // Number of bytes in e_ident. }; struct Elf32_Ehdr { unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes Elf32_Half e_type; // Type of file (see ET_* below) Elf32_Half e_machine; // Required architecture for this file (see EM_*) Elf32_Word e_version; // Must be equal to 1 Elf32_Addr e_entry; // Address to jump to in order to start program Elf32_Off e_phoff; // Program header table's file offset, in bytes Elf32_Off e_shoff; // Section header table's file offset, in bytes Elf32_Word e_flags; // Processor-specific flags Elf32_Half e_ehsize; // Size of ELF header, in bytes Elf32_Half e_phentsize; // Size of an entry in the program header table Elf32_Half e_phnum; // Number of entries in the program header table Elf32_Half e_shentsize; // Size of an entry in the section header table Elf32_Half e_shnum; // Number of entries in the section header table Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table bool checkMagic() const { return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; } unsigned char getFileClass() const { return e_ident[EI_CLASS]; } unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } }; // 64-bit ELF header. Fields are the same as for ELF32, but with different // types (see above). struct Elf64_Ehdr { unsigned char e_ident[EI_NIDENT]; Elf64_Half e_type; Elf64_Half e_machine; Elf64_Word e_version; Elf64_Addr e_entry; Elf64_Off e_phoff; Elf64_Off e_shoff; Elf64_Word e_flags; Elf64_Half e_ehsize; Elf64_Half e_phentsize; Elf64_Half e_phnum; Elf64_Half e_shentsize; Elf64_Half e_shnum; Elf64_Half e_shstrndx; bool checkMagic() const { return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; } unsigned char getFileClass() const { return e_ident[EI_CLASS]; } unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } }; // File types. // See current registered ELF types at: // http://www.sco.com/developers/gabi/latest/ch4.eheader.html enum { ET_NONE = 0, // No file type ET_REL = 1, // Relocatable file ET_EXEC = 2, // Executable file ET_DYN = 3, // Shared object file ET_CORE = 4, // Core file ET_LOOS = 0xfe00, // Beginning of operating system-specific codes ET_HIOS = 0xfeff, // Operating system-specific ET_LOPROC = 0xff00, // Beginning of processor-specific codes ET_HIPROC = 0xffff // Processor-specific }; // Versioning enum { EV_NONE = 0, EV_CURRENT = 1 }; // Machine architectures // See current registered ELF machine architectures at: // http://www.uxsglobal.com/developers/gabi/latest/ch4.eheader.html enum { EM_NONE = 0, // No machine EM_M32 = 1, // AT&T WE 32100 EM_SPARC = 2, // SPARC EM_386 = 3, // Intel 386 EM_68K = 4, // Motorola 68000 EM_88K = 5, // Motorola 88000 EM_IAMCU = 6, // Intel MCU EM_860 = 7, // Intel 80860 EM_MIPS = 8, // MIPS R3000 EM_S370 = 9, // IBM System/370 EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian EM_PARISC = 15, // Hewlett-Packard PA-RISC EM_VPP500 = 17, // Fujitsu VPP500 EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC EM_960 = 19, // Intel 80960 EM_PPC = 20, // PowerPC EM_PPC64 = 21, // PowerPC64 EM_S390 = 22, // IBM System/390 EM_SPU = 23, // IBM SPU/SPC EM_V800 = 36, // NEC V800 EM_FR20 = 37, // Fujitsu FR20 EM_RH32 = 38, // TRW RH-32 EM_RCE = 39, // Motorola RCE EM_ARM = 40, // ARM EM_ALPHA = 41, // DEC Alpha EM_SH = 42, // Hitachi SH EM_SPARCV9 = 43, // SPARC V9 EM_TRICORE = 44, // Siemens TriCore EM_ARC = 45, // Argonaut RISC Core EM_H8_300 = 46, // Hitachi H8/300 EM_H8_300H = 47, // Hitachi H8/300H EM_H8S = 48, // Hitachi H8S EM_H8_500 = 49, // Hitachi H8/500 EM_IA_64 = 50, // Intel IA-64 processor architecture EM_MIPS_X = 51, // Stanford MIPS-X EM_COLDFIRE = 52, // Motorola ColdFire EM_68HC12 = 53, // Motorola M68HC12 EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator EM_PCP = 55, // Siemens PCP EM_NCPU = 56, // Sony nCPU embedded RISC processor EM_NDR1 = 57, // Denso NDR1 microprocessor EM_STARCORE = 58, // Motorola Star*Core processor EM_ME16 = 59, // Toyota ME16 processor EM_ST100 = 60, // STMicroelectronics ST100 processor EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family EM_X86_64 = 62, // AMD x86-64 architecture EM_PDSP = 63, // Sony DSP Processor EM_PDP10 = 64, // Digital Equipment Corp. PDP-10 EM_PDP11 = 65, // Digital Equipment Corp. PDP-11 EM_FX66 = 66, // Siemens FX66 microcontroller EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller EM_SVX = 73, // Silicon Graphics SVx EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller EM_VAX = 75, // Digital VAX EM_CRIS = 76, // Axis Communications 32-bit embedded processor EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor EM_FIREPATH = 78, // Element 14 64-bit DSP Processor EM_ZSP = 79, // LSI Logic 16-bit DSP Processor EM_MMIX = 80, // Donald Knuth's educational 64-bit processor EM_HUANY = 81, // Harvard University machine-independent object files EM_PRISM = 82, // SiTera Prism EM_AVR = 83, // Atmel AVR 8-bit microcontroller EM_FR30 = 84, // Fujitsu FR30 EM_D10V = 85, // Mitsubishi D10V EM_D30V = 86, // Mitsubishi D30V EM_V850 = 87, // NEC v850 EM_M32R = 88, // Mitsubishi M32R EM_MN10300 = 89, // Matsushita MN10300 EM_MN10200 = 90, // Matsushita MN10200 EM_PJ = 91, // picoJava EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old // spelling/synonym: EM_ARC_A5) EM_XTENSA = 94, // Tensilica Xtensa Architecture EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor EM_NS32K = 97, // National Semiconductor 32000 series EM_TPC = 98, // Tenor Network TPC processor EM_SNP1K = 99, // Trebia SNP 1000 processor EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200 EM_IP2K = 101, // Ubicom IP2xxx microcontroller family EM_MAX = 102, // MAX Processor EM_CR = 103, // National Semiconductor CompactRISC microprocessor EM_F2MC16 = 104, // Fujitsu F2MC16 EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430 EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors EM_SEP = 108, // Sharp embedded microprocessor EM_ARCA = 109, // Arca RISC Microprocessor EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC // of Peking University EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor EM_CRX = 114, // National Semiconductor CompactRISC CRX EM_XGATE = 115, // Motorola XGATE embedded processor EM_C166 = 116, // Infineon C16x/XC16x processor EM_M16C = 117, // Renesas M16C series microprocessors EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal // Controller EM_CE = 119, // Freescale Communication Engine RISC core EM_M32C = 120, // Renesas M32C series microprocessors EM_TSK3000 = 131, // Altium TSK3000 core EM_RS08 = 132, // Freescale RS08 embedded processor EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP // processors EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor EM_SCORE7 = 135, // Sunplus S+core7 RISC processor EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture EM_SE_C17 = 139, // Seiko Epson C17 family EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor EM_R32C = 162, // Renesas R32C series microprocessors EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family EM_HEXAGON = 164, // Qualcomm Hexagon processor EM_8051 = 165, // Intel 8051 and variants EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable // and extensible RISC processors EM_NDS32 = 167, // Andes Technology compact code size embedded RISC // processor family EM_ECOG1 = 168, // Cyan Technology eCOG1X family EM_ECOG1X = 168, // Cyan Technology eCOG1X family EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture EM_RX = 173, // Renesas RX family EM_METAG = 174, // Imagination Technologies META processor // architecture EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture EM_ECOG16 = 176, // Cyan Technology eCOG16 family EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit // microprocessor EM_ETPU = 178, // Freescale Extended Time Processing Unit EM_SLE9X = 179, // Infineon Technologies SLE9X core EM_L10M = 180, // Intel L10M EM_K10M = 181, // Intel K10M EM_AARCH64 = 183, // ARM AArch64 EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller EM_TILE64 = 187, // Tilera TILE64 multicore architecture family EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core EM_CUDA = 190, // NVIDIA CUDA architecture EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family EM_CLOUDSHIELD = 192, // CloudShield architecture family EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2 EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core EM_RL78 = 197, // Renesas RL78 family EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor EM_78KOR = 199, // Renesas 78KOR family EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC) EM_BA1 = 201, // Beyond BA1 CPU architecture EM_BA2 = 202, // Beyond BA2 CPU architecture EM_XCORE = 203, // XMOS xCORE processor family EM_MCHP_PIC = 204, // Microchip 8-bit PIC(r) family EM_INTEL205 = 205, // Reserved by Intel EM_INTEL206 = 206, // Reserved by Intel EM_INTEL207 = 207, // Reserved by Intel EM_INTEL208 = 208, // Reserved by Intel EM_INTEL209 = 209, // Reserved by Intel EM_KM32 = 210, // KM211 KM32 32-bit processor EM_KMX32 = 211, // KM211 KMX32 32-bit processor EM_KMX16 = 212, // KM211 KMX16 16-bit processor EM_KMX8 = 213, // KM211 KMX8 8-bit processor EM_KVARC = 214, // KM211 KVARC processor EM_CDP = 215, // Paneve CDP architecture family EM_COGE = 216, // Cognitive Smart Memory Processor EM_COOL = 217, // iCelero CoolEngine EM_NORC = 218, // Nanoradio Optimized RISC EM_CSR_KALIMBA = 219, // CSR Kalimba architecture family EM_AMDGPU = 224, // AMD GPU architecture EM_RISCV = 243, // RISC-V EM_LANAI = 244, // Lanai 32-bit processor EM_BPF = 247, // Linux kernel bpf virtual machine EM_VE = 251, // NEC SX-Aurora VE EM_CSKY = 252, // C-SKY 32-bit processor EM_LOONGARCH = 258, // LoongArch }; // Object file classes. enum { ELFCLASSNONE = 0, ELFCLASS32 = 1, // 32-bit object file ELFCLASS64 = 2 // 64-bit object file }; // Object file byte orderings. enum { ELFDATANONE = 0, // Invalid data encoding. ELFDATA2LSB = 1, // Little-endian object file ELFDATA2MSB = 2 // Big-endian object file }; // OS ABI identification. enum { ELFOSABI_NONE = 0, // UNIX System V ABI ELFOSABI_HPUX = 1, // HP-UX operating system ELFOSABI_NETBSD = 2, // NetBSD ELFOSABI_GNU = 3, // GNU/Linux ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU. ELFOSABI_HURD = 4, // GNU/Hurd ELFOSABI_SOLARIS = 6, // Solaris ELFOSABI_AIX = 7, // AIX ELFOSABI_IRIX = 8, // IRIX ELFOSABI_FREEBSD = 9, // FreeBSD ELFOSABI_TRU64 = 10, // TRU64 UNIX ELFOSABI_MODESTO = 11, // Novell Modesto ELFOSABI_OPENBSD = 12, // OpenBSD ELFOSABI_OPENVMS = 13, // OpenVMS ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel ELFOSABI_AROS = 15, // AROS ELFOSABI_FENIXOS = 16, // FenixOS ELFOSABI_CLOUDABI = 17, // Nuxi CloudABI ELFOSABI_FIRST_ARCH = 64, // First architecture-specific OS ABI ELFOSABI_AMDGPU_HSA = 64, // AMD HSA runtime ELFOSABI_AMDGPU_PAL = 65, // AMD PAL runtime ELFOSABI_AMDGPU_MESA3D = 66, // AMD GCN GPUs (GFX6+) for MESA runtime ELFOSABI_ARM = 97, // ARM ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000 ELFOSABI_STANDALONE = 255, // Standalone (embedded) application ELFOSABI_LAST_ARCH = 255 // Last Architecture-specific OS ABI }; // AMDGPU OS ABI Version identification. enum { // ELFABIVERSION_AMDGPU_HSA_V1 does not exist because OS ABI identification // was never defined for V1. ELFABIVERSION_AMDGPU_HSA_V2 = 0, ELFABIVERSION_AMDGPU_HSA_V3 = 1, ELFABIVERSION_AMDGPU_HSA_V4 = 2, ELFABIVERSION_AMDGPU_HSA_V5 = 3 }; #define ELF_RELOC(name, value) name = value, // X86_64 relocations. enum { #include "ELFRelocs/x86_64.def" }; // i386 relocations. enum { #include "ELFRelocs/i386.def" }; // ELF Relocation types for PPC32 enum { #include "ELFRelocs/PowerPC.def" }; // Specific e_flags for PPC64 enum { // e_flags bits specifying ABI: // 1 for original ABI using function descriptors, // 2 for revised ABI without function descriptors, // 0 for unspecified or not using any features affected by the differences. EF_PPC64_ABI = 3 }; // Special values for the st_other field in the symbol table entry for PPC64. enum { STO_PPC64_LOCAL_BIT = 5, STO_PPC64_LOCAL_MASK = (7 << STO_PPC64_LOCAL_BIT) }; static inline int64_t decodePPC64LocalEntryOffset(unsigned Other) { unsigned Val = (Other & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT; return ((1 << Val) >> 2) << 2; } // ELF Relocation types for PPC64 enum { #include "ELFRelocs/PowerPC64.def" }; // ELF Relocation types for AArch64 enum { #include "ELFRelocs/AArch64.def" }; // Special values for the st_other field in the symbol table entry for AArch64. enum { // Symbol may follow different calling convention than base PCS. STO_AARCH64_VARIANT_PCS = 0x80 }; // ARM Specific e_flags enum : unsigned { EF_ARM_SOFT_FLOAT = 0x00000200U, // Legacy pre EABI_VER5 EF_ARM_ABI_FLOAT_SOFT = 0x00000200U, // EABI_VER5 EF_ARM_VFP_FLOAT = 0x00000400U, // Legacy pre EABI_VER5 EF_ARM_ABI_FLOAT_HARD = 0x00000400U, // EABI_VER5 EF_ARM_BE8 = 0x00800000U, EF_ARM_EABI_UNKNOWN = 0x00000000U, EF_ARM_EABI_VER1 = 0x01000000U, EF_ARM_EABI_VER2 = 0x02000000U, EF_ARM_EABI_VER3 = 0x03000000U, EF_ARM_EABI_VER4 = 0x04000000U, EF_ARM_EABI_VER5 = 0x05000000U, EF_ARM_EABIMASK = 0xFF000000U }; // ELF Relocation types for ARM enum { #include "ELFRelocs/ARM.def" }; // ARC Specific e_flags enum : unsigned { EF_ARC_MACH_MSK = 0x000000ff, EF_ARC_OSABI_MSK = 0x00000f00, E_ARC_MACH_ARC600 = 0x00000002, E_ARC_MACH_ARC601 = 0x00000004, E_ARC_MACH_ARC700 = 0x00000003, EF_ARC_CPU_ARCV2EM = 0x00000005, EF_ARC_CPU_ARCV2HS = 0x00000006, E_ARC_OSABI_ORIG = 0x00000000, E_ARC_OSABI_V2 = 0x00000200, E_ARC_OSABI_V3 = 0x00000300, E_ARC_OSABI_V4 = 0x00000400, EF_ARC_PIC = 0x00000100 }; // ELF Relocation types for ARC enum { #include "ELFRelocs/ARC.def" }; // AVR specific e_flags enum : unsigned { EF_AVR_ARCH_AVR1 = 1, EF_AVR_ARCH_AVR2 = 2, EF_AVR_ARCH_AVR25 = 25, EF_AVR_ARCH_AVR3 = 3, EF_AVR_ARCH_AVR31 = 31, EF_AVR_ARCH_AVR35 = 35, EF_AVR_ARCH_AVR4 = 4, EF_AVR_ARCH_AVR5 = 5, EF_AVR_ARCH_AVR51 = 51, EF_AVR_ARCH_AVR6 = 6, EF_AVR_ARCH_AVRTINY = 100, EF_AVR_ARCH_XMEGA1 = 101, EF_AVR_ARCH_XMEGA2 = 102, EF_AVR_ARCH_XMEGA3 = 103, EF_AVR_ARCH_XMEGA4 = 104, EF_AVR_ARCH_XMEGA5 = 105, EF_AVR_ARCH_XMEGA6 = 106, EF_AVR_ARCH_XMEGA7 = 107, EF_AVR_ARCH_MASK = 0x7f, // EF_AVR_ARCH_xxx selection mask EF_AVR_LINKRELAX_PREPARED = 0x80, // The file is prepared for linker // relaxation to be applied }; // ELF Relocation types for AVR enum { #include "ELFRelocs/AVR.def" }; // Mips Specific e_flags enum : unsigned { EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions EF_MIPS_PIC = 0x00000002, // Position independent code EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code EF_MIPS_ABI2 = 0x00000020, // File uses N32 ABI EF_MIPS_32BITMODE = 0x00000100, // Code compiled for a 64-bit machine // in 32-bit mode EF_MIPS_FP64 = 0x00000200, // Code compiled for a 32-bit machine // but uses 64-bit FP registers EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding // ABI flags EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI EF_MIPS_ABI_O64 = 0x00002000, // O32 ABI extended for 64-bit architecture. EF_MIPS_ABI_EABI32 = 0x00003000, // EABI in 32 bit mode. EF_MIPS_ABI_EABI64 = 0x00004000, // EABI in 64 bit mode. EF_MIPS_ABI = 0x0000f000, // Mask for selecting EF_MIPS_ABI_ variant. // MIPS machine variant EF_MIPS_MACH_NONE = 0x00000000, // A standard MIPS implementation. EF_MIPS_MACH_3900 = 0x00810000, // Toshiba R3900 EF_MIPS_MACH_4010 = 0x00820000, // LSI R4010 EF_MIPS_MACH_4100 = 0x00830000, // NEC VR4100 EF_MIPS_MACH_4650 = 0x00850000, // MIPS R4650 EF_MIPS_MACH_4120 = 0x00870000, // NEC VR4120 EF_MIPS_MACH_4111 = 0x00880000, // NEC VR4111/VR4181 EF_MIPS_MACH_SB1 = 0x008a0000, // Broadcom SB-1 EF_MIPS_MACH_OCTEON = 0x008b0000, // Cavium Networks Octeon EF_MIPS_MACH_XLR = 0x008c0000, // RMI Xlr EF_MIPS_MACH_OCTEON2 = 0x008d0000, // Cavium Networks Octeon2 EF_MIPS_MACH_OCTEON3 = 0x008e0000, // Cavium Networks Octeon3 EF_MIPS_MACH_5400 = 0x00910000, // NEC VR5400 EF_MIPS_MACH_5900 = 0x00920000, // MIPS R5900 EF_MIPS_MACH_5500 = 0x00980000, // NEC VR5500 EF_MIPS_MACH_9000 = 0x00990000, // Unknown EF_MIPS_MACH_LS2E = 0x00a00000, // ST Microelectronics Loongson 2E EF_MIPS_MACH_LS2F = 0x00a10000, // ST Microelectronics Loongson 2F EF_MIPS_MACH_LS3A = 0x00a20000, // Loongson 3A EF_MIPS_MACH = 0x00ff0000, // EF_MIPS_MACH_xxx selection mask // ARCH_ASE EF_MIPS_MICROMIPS = 0x02000000, // microMIPS EF_MIPS_ARCH_ASE_M16 = 0x04000000, // Has Mips-16 ISA extensions EF_MIPS_ARCH_ASE_MDMX = 0x08000000, // Has MDMX multimedia extensions EF_MIPS_ARCH_ASE = 0x0f000000, // Mask for EF_MIPS_ARCH_ASE_xxx flags // ARCH EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2, mips32r3, mips32r5 EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2, mips64r3, mips64r5 EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6 EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6 EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant }; // MIPS-specific section indexes enum { SHN_MIPS_ACOMMON = 0xff00, // Common symbols which are defined and allocated SHN_MIPS_TEXT = 0xff01, // Not ABI compliant SHN_MIPS_DATA = 0xff02, // Not ABI compliant SHN_MIPS_SCOMMON = 0xff03, // Common symbols for global data area SHN_MIPS_SUNDEFINED = 0xff04 // Undefined symbols for global data area }; // ELF Relocation types for Mips enum { #include "ELFRelocs/Mips.def" }; // Special values for the st_other field in the symbol table entry for MIPS. enum { STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16 }; // .MIPS.options section descriptor kinds enum { ODK_NULL = 0, // Undefined ODK_REGINFO = 1, // Register usage information ODK_EXCEPTIONS = 2, // Exception processing options ODK_PAD = 3, // Section padding options ODK_HWPATCH = 4, // Hardware patches applied ODK_FILL = 5, // Linker fill value ODK_TAGS = 6, // Space for tool identification ODK_HWAND = 7, // Hardware AND patches applied ODK_HWOR = 8, // Hardware OR patches applied ODK_GP_GROUP = 9, // GP group to use for text/data sections ODK_IDENT = 10, // ID information ODK_PAGESIZE = 11 // Page size information }; // Hexagon-specific e_flags enum { // Object processor version flags, bits[11:0] EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2 EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3 EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4 EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5 EF_HEXAGON_MACH_V55 = 0x00000005, // Hexagon V55 EF_HEXAGON_MACH_V60 = 0x00000060, // Hexagon V60 EF_HEXAGON_MACH_V62 = 0x00000062, // Hexagon V62 EF_HEXAGON_MACH_V65 = 0x00000065, // Hexagon V65 EF_HEXAGON_MACH_V66 = 0x00000066, // Hexagon V66 EF_HEXAGON_MACH_V67 = 0x00000067, // Hexagon V67 EF_HEXAGON_MACH_V67T = 0x00008067, // Hexagon V67T EF_HEXAGON_MACH_V68 = 0x00000068, // Hexagon V68 EF_HEXAGON_MACH_V69 = 0x00000069, // Hexagon V69 EF_HEXAGON_MACH_V71 = 0x00000071, // Hexagon V71 EF_HEXAGON_MACH_V71T = 0x00008071, // Hexagon V71T EF_HEXAGON_MACH_V73 = 0x00000073, // Hexagon V73 EF_HEXAGON_MACH = 0x000003ff, // Hexagon V.. // Highest ISA version flags EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[11:0] // of e_flags EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA EF_HEXAGON_ISA_V5 = 0x00000040, // Hexagon V5 ISA EF_HEXAGON_ISA_V55 = 0x00000050, // Hexagon V55 ISA EF_HEXAGON_ISA_V60 = 0x00000060, // Hexagon V60 ISA EF_HEXAGON_ISA_V62 = 0x00000062, // Hexagon V62 ISA EF_HEXAGON_ISA_V65 = 0x00000065, // Hexagon V65 ISA EF_HEXAGON_ISA_V66 = 0x00000066, // Hexagon V66 ISA EF_HEXAGON_ISA_V67 = 0x00000067, // Hexagon V67 ISA EF_HEXAGON_ISA_V68 = 0x00000068, // Hexagon V68 ISA EF_HEXAGON_ISA_V69 = 0x00000069, // Hexagon V69 ISA EF_HEXAGON_ISA_V71 = 0x00000071, // Hexagon V71 ISA EF_HEXAGON_ISA_V73 = 0x00000073, // Hexagon V73 ISA EF_HEXAGON_ISA_V75 = 0x00000075, // Hexagon V75 ISA EF_HEXAGON_ISA = 0x000003ff, // Hexagon V.. ISA }; // Hexagon-specific section indexes for common small data enum { SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access }; // ELF Relocation types for Hexagon enum { #include "ELFRelocs/Hexagon.def" }; // ELF Relocation type for Lanai. enum { #include "ELFRelocs/Lanai.def" }; // RISCV Specific e_flags enum : unsigned { EF_RISCV_RVC = 0x0001, EF_RISCV_FLOAT_ABI = 0x0006, EF_RISCV_FLOAT_ABI_SOFT = 0x0000, EF_RISCV_FLOAT_ABI_SINGLE = 0x0002, EF_RISCV_FLOAT_ABI_DOUBLE = 0x0004, EF_RISCV_FLOAT_ABI_QUAD = 0x0006, EF_RISCV_RVE = 0x0008, EF_RISCV_TSO = 0x0010, }; // ELF Relocation types for RISC-V enum { #include "ELFRelocs/RISCV.def" }; enum { // Symbol may follow different calling convention than the standard calling // convention. STO_RISCV_VARIANT_CC = 0x80 }; // ELF Relocation types for S390/zSeries enum { #include "ELFRelocs/SystemZ.def" }; // ELF Relocation type for Sparc. enum { #include "ELFRelocs/Sparc.def" }; // AMDGPU specific e_flags. enum : unsigned { // Processor selection mask for EF_AMDGPU_MACH_* values. EF_AMDGPU_MACH = 0x0ff, // Not specified processor. EF_AMDGPU_MACH_NONE = 0x000, // R600-based processors. // Radeon HD 2000/3000 Series (R600). EF_AMDGPU_MACH_R600_R600 = 0x001, EF_AMDGPU_MACH_R600_R630 = 0x002, EF_AMDGPU_MACH_R600_RS880 = 0x003, EF_AMDGPU_MACH_R600_RV670 = 0x004, // Radeon HD 4000 Series (R700). EF_AMDGPU_MACH_R600_RV710 = 0x005, EF_AMDGPU_MACH_R600_RV730 = 0x006, EF_AMDGPU_MACH_R600_RV770 = 0x007, // Radeon HD 5000 Series (Evergreen). EF_AMDGPU_MACH_R600_CEDAR = 0x008, EF_AMDGPU_MACH_R600_CYPRESS = 0x009, EF_AMDGPU_MACH_R600_JUNIPER = 0x00a, EF_AMDGPU_MACH_R600_REDWOOD = 0x00b, EF_AMDGPU_MACH_R600_SUMO = 0x00c, // Radeon HD 6000 Series (Northern Islands). EF_AMDGPU_MACH_R600_BARTS = 0x00d, EF_AMDGPU_MACH_R600_CAICOS = 0x00e, EF_AMDGPU_MACH_R600_CAYMAN = 0x00f, EF_AMDGPU_MACH_R600_TURKS = 0x010, // Reserved for R600-based processors. EF_AMDGPU_MACH_R600_RESERVED_FIRST = 0x011, EF_AMDGPU_MACH_R600_RESERVED_LAST = 0x01f, // First/last R600-based processors. EF_AMDGPU_MACH_R600_FIRST = EF_AMDGPU_MACH_R600_R600, EF_AMDGPU_MACH_R600_LAST = EF_AMDGPU_MACH_R600_TURKS, // AMDGCN-based processors. EF_AMDGPU_MACH_AMDGCN_GFX600 = 0x020, EF_AMDGPU_MACH_AMDGCN_GFX601 = 0x021, EF_AMDGPU_MACH_AMDGCN_GFX700 = 0x022, EF_AMDGPU_MACH_AMDGCN_GFX701 = 0x023, EF_AMDGPU_MACH_AMDGCN_GFX702 = 0x024, EF_AMDGPU_MACH_AMDGCN_GFX703 = 0x025, EF_AMDGPU_MACH_AMDGCN_GFX704 = 0x026, EF_AMDGPU_MACH_AMDGCN_RESERVED_0X27 = 0x027, EF_AMDGPU_MACH_AMDGCN_GFX801 = 0x028, EF_AMDGPU_MACH_AMDGCN_GFX802 = 0x029, EF_AMDGPU_MACH_AMDGCN_GFX803 = 0x02a, EF_AMDGPU_MACH_AMDGCN_GFX810 = 0x02b, EF_AMDGPU_MACH_AMDGCN_GFX900 = 0x02c, EF_AMDGPU_MACH_AMDGCN_GFX902 = 0x02d, EF_AMDGPU_MACH_AMDGCN_GFX904 = 0x02e, EF_AMDGPU_MACH_AMDGCN_GFX906 = 0x02f, EF_AMDGPU_MACH_AMDGCN_GFX908 = 0x030, EF_AMDGPU_MACH_AMDGCN_GFX909 = 0x031, EF_AMDGPU_MACH_AMDGCN_GFX90C = 0x032, EF_AMDGPU_MACH_AMDGCN_GFX1010 = 0x033, EF_AMDGPU_MACH_AMDGCN_GFX1011 = 0x034, EF_AMDGPU_MACH_AMDGCN_GFX1012 = 0x035, EF_AMDGPU_MACH_AMDGCN_GFX1030 = 0x036, EF_AMDGPU_MACH_AMDGCN_GFX1031 = 0x037, EF_AMDGPU_MACH_AMDGCN_GFX1032 = 0x038, EF_AMDGPU_MACH_AMDGCN_GFX1033 = 0x039, EF_AMDGPU_MACH_AMDGCN_GFX602 = 0x03a, EF_AMDGPU_MACH_AMDGCN_GFX705 = 0x03b, EF_AMDGPU_MACH_AMDGCN_GFX805 = 0x03c, EF_AMDGPU_MACH_AMDGCN_GFX1035 = 0x03d, EF_AMDGPU_MACH_AMDGCN_GFX1034 = 0x03e, EF_AMDGPU_MACH_AMDGCN_GFX90A = 0x03f, EF_AMDGPU_MACH_AMDGCN_GFX940 = 0x040, EF_AMDGPU_MACH_AMDGCN_GFX1100 = 0x041, EF_AMDGPU_MACH_AMDGCN_GFX1013 = 0x042, EF_AMDGPU_MACH_AMDGCN_RESERVED_0X43 = 0x043, EF_AMDGPU_MACH_AMDGCN_GFX1103 = 0x044, EF_AMDGPU_MACH_AMDGCN_GFX1036 = 0x045, EF_AMDGPU_MACH_AMDGCN_GFX1101 = 0x046, EF_AMDGPU_MACH_AMDGCN_GFX1102 = 0x047, // First/last AMDGCN-based processors. EF_AMDGPU_MACH_AMDGCN_FIRST = EF_AMDGPU_MACH_AMDGCN_GFX600, EF_AMDGPU_MACH_AMDGCN_LAST = EF_AMDGPU_MACH_AMDGCN_GFX1102, // Indicates if the "xnack" target feature is enabled for all code contained // in the object. // // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V2. EF_AMDGPU_FEATURE_XNACK_V2 = 0x01, // Indicates if the trap handler is enabled for all code contained // in the object. // // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V2. EF_AMDGPU_FEATURE_TRAP_HANDLER_V2 = 0x02, // Indicates if the "xnack" target feature is enabled for all code contained // in the object. // // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V3. EF_AMDGPU_FEATURE_XNACK_V3 = 0x100, // Indicates if the "sramecc" target feature is enabled for all code // contained in the object. // // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V3. EF_AMDGPU_FEATURE_SRAMECC_V3 = 0x200, // XNACK selection mask for EF_AMDGPU_FEATURE_XNACK_* values. // // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V4. EF_AMDGPU_FEATURE_XNACK_V4 = 0x300, // XNACK is not supported. EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4 = 0x000, // XNACK is any/default/unspecified. EF_AMDGPU_FEATURE_XNACK_ANY_V4 = 0x100, // XNACK is off. EF_AMDGPU_FEATURE_XNACK_OFF_V4 = 0x200, // XNACK is on. EF_AMDGPU_FEATURE_XNACK_ON_V4 = 0x300, // SRAMECC selection mask for EF_AMDGPU_FEATURE_SRAMECC_* values. // // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V4. EF_AMDGPU_FEATURE_SRAMECC_V4 = 0xc00, // SRAMECC is not supported. EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4 = 0x000, // SRAMECC is any/default/unspecified. EF_AMDGPU_FEATURE_SRAMECC_ANY_V4 = 0x400, // SRAMECC is off. EF_AMDGPU_FEATURE_SRAMECC_OFF_V4 = 0x800, // SRAMECC is on. EF_AMDGPU_FEATURE_SRAMECC_ON_V4 = 0xc00, }; // ELF Relocation types for AMDGPU enum { #include "ELFRelocs/AMDGPU.def" }; // ELF Relocation types for BPF enum { #include "ELFRelocs/BPF.def" }; // ELF Relocation types for M68k enum { #include "ELFRelocs/M68k.def" }; // MSP430 specific e_flags enum : unsigned { EF_MSP430_MACH_MSP430x11 = 11, EF_MSP430_MACH_MSP430x11x1 = 110, EF_MSP430_MACH_MSP430x12 = 12, EF_MSP430_MACH_MSP430x13 = 13, EF_MSP430_MACH_MSP430x14 = 14, EF_MSP430_MACH_MSP430x15 = 15, EF_MSP430_MACH_MSP430x16 = 16, EF_MSP430_MACH_MSP430x20 = 20, EF_MSP430_MACH_MSP430x22 = 22, EF_MSP430_MACH_MSP430x23 = 23, EF_MSP430_MACH_MSP430x24 = 24, EF_MSP430_MACH_MSP430x26 = 26, EF_MSP430_MACH_MSP430x31 = 31, EF_MSP430_MACH_MSP430x32 = 32, EF_MSP430_MACH_MSP430x33 = 33, EF_MSP430_MACH_MSP430x41 = 41, EF_MSP430_MACH_MSP430x42 = 42, EF_MSP430_MACH_MSP430x43 = 43, EF_MSP430_MACH_MSP430x44 = 44, EF_MSP430_MACH_MSP430X = 45, EF_MSP430_MACH_MSP430x46 = 46, EF_MSP430_MACH_MSP430x47 = 47, EF_MSP430_MACH_MSP430x54 = 54, }; // ELF Relocation types for MSP430 enum { #include "ELFRelocs/MSP430.def" }; // ELF Relocation type for VE. enum { #include "ELFRelocs/VE.def" }; // CSKY Specific e_flags enum : unsigned { EF_CSKY_801 = 0xa, EF_CSKY_802 = 0x10, EF_CSKY_803 = 0x9, EF_CSKY_805 = 0x11, EF_CSKY_807 = 0x6, EF_CSKY_810 = 0x8, EF_CSKY_860 = 0xb, EF_CSKY_800 = 0x1f, EF_CSKY_FLOAT = 0x2000, EF_CSKY_DSP = 0x4000, EF_CSKY_ABIV2 = 0x20000000, EF_CSKY_EFV1 = 0x1000000, EF_CSKY_EFV2 = 0x2000000, EF_CSKY_EFV3 = 0x3000000 }; // ELF Relocation types for CSKY enum { #include "ELFRelocs/CSKY.def" }; // LoongArch Specific e_flags enum : unsigned { // Definitions from LoongArch ELF psABI v2.01. // Reference: https://github.com/loongson/LoongArch-Documentation // (commit hash 296de4def055c871809068e0816325a4ac04eb12) // Base ABI Modifiers EF_LOONGARCH_ABI_SOFT_FLOAT = 0x1, EF_LOONGARCH_ABI_SINGLE_FLOAT = 0x2, EF_LOONGARCH_ABI_DOUBLE_FLOAT = 0x3, EF_LOONGARCH_ABI_MODIFIER_MASK = 0x7, // Object file ABI versions EF_LOONGARCH_OBJABI_V0 = 0x0, EF_LOONGARCH_OBJABI_V1 = 0x40, EF_LOONGARCH_OBJABI_MASK = 0xC0, }; // ELF Relocation types for LoongArch enum { #include "ELFRelocs/LoongArch.def" }; // Xtensa specific e_flags enum : unsigned { // Four-bit Xtensa machine type mask. EF_XTENSA_MACH = 0x0000000f, // Various CPU types. EF_XTENSA_MACH_NONE = 0x00000000, // A base Xtensa implementation EF_XTENSA_XT_INSN = 0x00000100, EF_XTENSA_XT_LIT = 0x00000200, }; // ELF Relocation types for Xtensa enum { #include "ELFRelocs/Xtensa.def" }; #undef ELF_RELOC // Section header. struct Elf32_Shdr { Elf32_Word sh_name; // Section name (index into string table) Elf32_Word sh_type; // Section type (SHT_*) Elf32_Word sh_flags; // Section flags (SHF_*) Elf32_Addr sh_addr; // Address where section is to be loaded Elf32_Off sh_offset; // File offset of section data, in bytes Elf32_Word sh_size; // Size of section, in bytes Elf32_Word sh_link; // Section type-specific header table index link Elf32_Word sh_info; // Section type-specific extra information Elf32_Word sh_addralign; // Section address alignment Elf32_Word sh_entsize; // Size of records contained within the section }; // Section header for ELF64 - same fields as ELF32, different types. struct Elf64_Shdr { Elf64_Word sh_name; Elf64_Word sh_type; Elf64_Xword sh_flags; Elf64_Addr sh_addr; Elf64_Off sh_offset; Elf64_Xword sh_size; Elf64_Word sh_link; Elf64_Word sh_info; Elf64_Xword sh_addralign; Elf64_Xword sh_entsize; }; // Special section indices. enum { SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless SHN_LORESERVE = 0xff00, // Lowest reserved index SHN_LOPROC = 0xff00, // Lowest processor-specific index SHN_HIPROC = 0xff1f, // Highest processor-specific index SHN_LOOS = 0xff20, // Lowest operating system-specific index SHN_HIOS = 0xff3f, // Highest operating system-specific index SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE SHN_HIRESERVE = 0xffff // Highest reserved index }; // Section types. enum : unsigned { SHT_NULL = 0, // No associated section (inactive entry). SHT_PROGBITS = 1, // Program-defined contents. SHT_SYMTAB = 2, // Symbol table. SHT_STRTAB = 3, // String table. SHT_RELA = 4, // Relocation entries; explicit addends. SHT_HASH = 5, // Symbol hash table. SHT_DYNAMIC = 6, // Information for dynamic linking. SHT_NOTE = 7, // Information about the file. SHT_NOBITS = 8, // Data occupies no space in the file. SHT_REL = 9, // Relocation entries; no explicit addends. SHT_SHLIB = 10, // Reserved. SHT_DYNSYM = 11, // Symbol table. SHT_INIT_ARRAY = 14, // Pointers to initialization functions. SHT_FINI_ARRAY = 15, // Pointers to termination functions. SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. SHT_GROUP = 17, // Section group. SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries. // Experimental support for SHT_RELR sections. For details, see proposal // at https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg SHT_RELR = 19, // Relocation entries; only offsets. SHT_LOOS = 0x60000000, // Lowest operating system-specific type. // Android packed relocation section types. // https://android.googlesource.com/platform/bionic/+/6f12bfece5dcc01325e0abba56a46b1bcf991c69/tools/relocation_packer/src/elf_file.cc#37 SHT_ANDROID_REL = 0x60000001, SHT_ANDROID_RELA = 0x60000002, SHT_LLVM_ODRTAB = 0x6fff4c00, // LLVM ODR table. SHT_LLVM_LINKER_OPTIONS = 0x6fff4c01, // LLVM Linker Options. SHT_LLVM_ADDRSIG = 0x6fff4c03, // List of address-significant symbols // for safe ICF. SHT_LLVM_DEPENDENT_LIBRARIES = 0x6fff4c04, // LLVM Dependent Library Specifiers. SHT_LLVM_SYMPART = 0x6fff4c05, // Symbol partition specification. SHT_LLVM_PART_EHDR = 0x6fff4c06, // ELF header for loadable partition. SHT_LLVM_PART_PHDR = 0x6fff4c07, // Phdrs for loadable partition. SHT_LLVM_BB_ADDR_MAP_V0 = 0x6fff4c08, // LLVM Basic Block Address Map (old version kept for // backward-compatibility). SHT_LLVM_CALL_GRAPH_PROFILE = 0x6fff4c09, // LLVM Call Graph Profile. SHT_LLVM_BB_ADDR_MAP = 0x6fff4c0a, // LLVM Basic Block Address Map. SHT_LLVM_OFFLOADING = 0x6fff4c0b, // LLVM device offloading data. // Android's experimental support for SHT_RELR sections. // https://android.googlesource.com/platform/bionic/+/b7feec74547f84559a1467aca02708ff61346d2a/libc/include/elf.h#512 SHT_ANDROID_RELR = 0x6fffff00, // Relocation entries; only offsets. SHT_GNU_ATTRIBUTES = 0x6ffffff5, // Object attributes. SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table. SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions. SHT_GNU_verneed = 0x6ffffffe, // GNU version references. SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table. SHT_HIOS = 0x6fffffff, // Highest operating system-specific type. SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type. // Fixme: All this is duplicated in MCSectionELF. Why?? // Exception Index table SHT_ARM_EXIDX = 0x70000001U, // BPABI DLL dynamic linking pre-emption map SHT_ARM_PREEMPTMAP = 0x70000002U, // Object file compatibility attributes SHT_ARM_ATTRIBUTES = 0x70000003U, SHT_ARM_DEBUGOVERLAY = 0x70000004U, SHT_ARM_OVERLAYSECTION = 0x70000005U, // Special aarch64-specific sections for MTE support, as described in: // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#7section-types SHT_AARCH64_MEMTAG_GLOBALS_STATIC = 0x70000007U, SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC = 0x70000008U, SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in // this section based on their sizes SHT_X86_64_UNWIND = 0x70000001, // Unwind information SHT_MIPS_REGINFO = 0x70000006, // Register usage information SHT_MIPS_OPTIONS = 0x7000000d, // General options SHT_MIPS_DWARF = 0x7000001e, // DWARF debugging section. SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information. SHT_MSP430_ATTRIBUTES = 0x70000003U, SHT_RISCV_ATTRIBUTES = 0x70000003U, SHT_CSKY_ATTRIBUTES = 0x70000001U, SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type. SHT_LOUSER = 0x80000000, // Lowest type reserved for applications. SHT_HIUSER = 0xffffffff // Highest type reserved for applications. }; // Section flags. enum : unsigned { // Section data should be writable during execution. SHF_WRITE = 0x1, // Section occupies memory during program execution. SHF_ALLOC = 0x2, // Section contains executable machine instructions. SHF_EXECINSTR = 0x4, // The data in this section may be merged. SHF_MERGE = 0x10, // The data in this section is null-terminated strings. SHF_STRINGS = 0x20, // A field in this section holds a section header table index. SHF_INFO_LINK = 0x40U, // Adds special ordering requirements for link editors. SHF_LINK_ORDER = 0x80U, // This section requires special OS-specific processing to avoid incorrect // behavior. SHF_OS_NONCONFORMING = 0x100U, // This section is a member of a section group. SHF_GROUP = 0x200U, // This section holds Thread-Local Storage. SHF_TLS = 0x400U, // Identifies a section containing compressed data. SHF_COMPRESSED = 0x800U, // This section should not be garbage collected by the linker. SHF_GNU_RETAIN = 0x200000, // This section is excluded from the final executable or shared library. SHF_EXCLUDE = 0x80000000U, // Start of target-specific flags. SHF_MASKOS = 0x0ff00000, // Solaris equivalent of SHF_GNU_RETAIN. SHF_SUNW_NODISCARD = 0x00100000, // Bits indicating processor-specific flags. SHF_MASKPROC = 0xf0000000, /// All sections with the "d" flag are grouped together by the linker to form /// the data section and the dp register is set to the start of the section by /// the boot code. XCORE_SHF_DP_SECTION = 0x10000000, /// All sections with the "c" flag are grouped together by the linker to form /// the constant pool and the cp register is set to the start of the constant /// pool by the boot code. XCORE_SHF_CP_SECTION = 0x20000000, // If an object file section does not have this flag set, then it may not hold // more than 2GB and can be freely referred to in objects using smaller code // models. Otherwise, only objects using larger code models can refer to them. // For example, a medium code model object can refer to data in a section that // sets this flag besides being able to refer to data in a section that does // not set it; likewise, a small code model object can refer only to code in a // section that does not set this flag. SHF_X86_64_LARGE = 0x10000000, // All sections with the GPREL flag are grouped into a global data area // for faster accesses SHF_HEX_GPREL = 0x10000000, // Section contains text/data which may be replicated in other sections. // Linker must retain only one copy. SHF_MIPS_NODUPES = 0x01000000, // Linker must generate implicit hidden weak names. SHF_MIPS_NAMES = 0x02000000, // Section data local to process. SHF_MIPS_LOCAL = 0x04000000, // Do not strip this section. SHF_MIPS_NOSTRIP = 0x08000000, // Section must be part of global data area. SHF_MIPS_GPREL = 0x10000000, // This section should be merged. SHF_MIPS_MERGE = 0x20000000, // Address size to be inferred from section entry size. SHF_MIPS_ADDR = 0x40000000, // Section data is string data by default. SHF_MIPS_STRING = 0x80000000, // Make code section unreadable when in execute-only mode SHF_ARM_PURECODE = 0x20000000 }; // Section Group Flags enum : unsigned { GRP_COMDAT = 0x1, GRP_MASKOS = 0x0ff00000, GRP_MASKPROC = 0xf0000000 }; // Symbol table entries for ELF32. struct Elf32_Sym { Elf32_Word st_name; // Symbol name (index into string table) Elf32_Addr st_value; // Value or address associated with the symbol Elf32_Word st_size; // Size of the symbol unsigned char st_info; // Symbol's type and binding attributes unsigned char st_other; // Must be zero; reserved Elf32_Half st_shndx; // Which section (header table index) it's defined in // These accessors and mutators correspond to the ELF32_ST_BIND, // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: unsigned char getBinding() const { return st_info >> 4; } unsigned char getType() const { return st_info & 0x0f; } void setBinding(unsigned char b) { setBindingAndType(b, getType()); } void setType(unsigned char t) { setBindingAndType(getBinding(), t); } void setBindingAndType(unsigned char b, unsigned char t) { st_info = (b << 4) + (t & 0x0f); } }; // Symbol table entries for ELF64. struct Elf64_Sym { Elf64_Word st_name; // Symbol name (index into string table) unsigned char st_info; // Symbol's type and binding attributes unsigned char st_other; // Must be zero; reserved Elf64_Half st_shndx; // Which section (header tbl index) it's defined in Elf64_Addr st_value; // Value or address associated with the symbol Elf64_Xword st_size; // Size of the symbol // These accessors and mutators are identical to those defined for ELF32 // symbol table entries. unsigned char getBinding() const { return st_info >> 4; } unsigned char getType() const { return st_info & 0x0f; } void setBinding(unsigned char b) { setBindingAndType(b, getType()); } void setType(unsigned char t) { setBindingAndType(getBinding(), t); } void setBindingAndType(unsigned char b, unsigned char t) { st_info = (b << 4) + (t & 0x0f); } }; // The size (in bytes) of symbol table entries. enum { SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size. }; // Symbol bindings. enum { STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def STB_GLOBAL = 1, // Global symbol, visible to all object files being combined STB_WEAK = 2, // Weak symbol, like global but lower-precedence STB_GNU_UNIQUE = 10, STB_LOOS = 10, // Lowest operating system-specific binding type STB_HIOS = 12, // Highest operating system-specific binding type STB_LOPROC = 13, // Lowest processor-specific binding type STB_HIPROC = 15 // Highest processor-specific binding type }; // Symbol types. enum { STT_NOTYPE = 0, // Symbol's type is not specified STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.) STT_FUNC = 2, // Symbol is executable code (function, etc.) STT_SECTION = 3, // Symbol refers to a section STT_FILE = 4, // Local, absolute symbol that refers to a file STT_COMMON = 5, // An uninitialized common block STT_TLS = 6, // Thread local data object STT_GNU_IFUNC = 10, // GNU indirect function STT_LOOS = 10, // Lowest operating system-specific symbol type STT_HIOS = 12, // Highest operating system-specific symbol type STT_LOPROC = 13, // Lowest processor-specific symbol type STT_HIPROC = 15, // Highest processor-specific symbol type // AMDGPU symbol types STT_AMDGPU_HSA_KERNEL = 10 }; enum { STV_DEFAULT = 0, // Visibility is specified by binding type STV_INTERNAL = 1, // Defined by processor supplements STV_HIDDEN = 2, // Not visible to other components STV_PROTECTED = 3 // Visible in other components but not preemptable }; // Symbol number. enum { STN_UNDEF = 0 }; // Special relocation symbols used in the MIPS64 ELF relocation entries enum { RSS_UNDEF = 0, // None RSS_GP = 1, // Value of gp RSS_GP0 = 2, // Value of gp used to create object being relocated RSS_LOC = 3 // Address of location being relocated }; // Relocation entry, without explicit addend. struct Elf32_Rel { Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) Elf32_Word r_info; // Symbol table index and type of relocation to apply // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, // and ELF32_R_INFO macros defined in the ELF specification: Elf32_Word getSymbol() const { return (r_info >> 8); } unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); } void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(Elf32_Word s, unsigned char t) { r_info = (s << 8) + t; } }; // Relocation entry with explicit addend. struct Elf32_Rela { Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) Elf32_Word r_info; // Symbol table index and type of relocation to apply Elf32_Sword r_addend; // Compute value for relocatable field by adding this // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, // and ELF32_R_INFO macros defined in the ELF specification: Elf32_Word getSymbol() const { return (r_info >> 8); } unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); } void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(Elf32_Word s, unsigned char t) { r_info = (s << 8) + t; } }; // Relocation entry without explicit addend or info (relative relocations only). typedef Elf32_Word Elf32_Relr; // offset/bitmap for relative relocations // Relocation entry, without explicit addend. struct Elf64_Rel { Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). Elf64_Xword r_info; // Symbol table index and type of relocation to apply. // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, // and ELF64_R_INFO macros defined in the ELF specification: Elf64_Word getSymbol() const { return (r_info >> 32); } Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); } void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(Elf64_Word s, Elf64_Word t) { r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL); } }; // Relocation entry with explicit addend. struct Elf64_Rela { Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). Elf64_Xword r_info; // Symbol table index and type of relocation to apply. Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, // and ELF64_R_INFO macros defined in the ELF specification: Elf64_Word getSymbol() const { return (r_info >> 32); } Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); } void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(Elf64_Word s, Elf64_Word t) { r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL); } }; // Relocation entry without explicit addend or info (relative relocations only). typedef Elf64_Xword Elf64_Relr; // offset/bitmap for relative relocations // Program header for ELF32. struct Elf32_Phdr { Elf32_Word p_type; // Type of segment Elf32_Off p_offset; // File offset where segment is located, in bytes Elf32_Addr p_vaddr; // Virtual address of beginning of segment Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific) Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) Elf32_Word p_flags; // Segment flags Elf32_Word p_align; // Segment alignment constraint }; // Program header for ELF64. struct Elf64_Phdr { Elf64_Word p_type; // Type of segment Elf64_Word p_flags; // Segment flags Elf64_Off p_offset; // File offset where segment is located, in bytes Elf64_Addr p_vaddr; // Virtual address of beginning of segment Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific) Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) Elf64_Xword p_align; // Segment alignment constraint }; // Segment types. enum { PT_NULL = 0, // Unused segment. PT_LOAD = 1, // Loadable segment. PT_DYNAMIC = 2, // Dynamic linking information. PT_INTERP = 3, // Interpreter pathname. PT_NOTE = 4, // Auxiliary information. PT_SHLIB = 5, // Reserved. PT_PHDR = 6, // The program header table itself. PT_TLS = 7, // The thread-local storage template. PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type. PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type. PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type. PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type. // x86-64 program header types. // These all contain stack unwind tables. PT_GNU_EH_FRAME = 0x6474e550, PT_SUNW_EH_FRAME = 0x6474e550, PT_SUNW_UNWIND = 0x6464e550, PT_GNU_STACK = 0x6474e551, // Indicates stack executability. PT_GNU_RELRO = 0x6474e552, // Read-only after relocation. PT_GNU_PROPERTY = 0x6474e553, // .note.gnu.property notes sections. PT_OPENBSD_MUTABLE = 0x65a3dbe5, // Like bss, but not immutable. PT_OPENBSD_RANDOMIZE = 0x65a3dbe6, // Fill with random data. PT_OPENBSD_WXNEEDED = 0x65a3dbe7, // Program does W^X violations. PT_OPENBSD_BOOTDATA = 0x65a41be6, // Section for boot arguments. // ARM program header types. PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info // These all contain stack unwind tables. PT_ARM_EXIDX = 0x70000001, PT_ARM_UNWIND = 0x70000001, // MTE memory tag segment type PT_AARCH64_MEMTAG_MTE = 0x70000002, // MIPS program header types. PT_MIPS_REGINFO = 0x70000000, // Register usage information. PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table. PT_MIPS_OPTIONS = 0x70000002, // Options segment. PT_MIPS_ABIFLAGS = 0x70000003, // Abiflags segment. // RISCV program header types. PT_RISCV_ATTRIBUTES = 0x70000003, }; // Segment flag bits. enum : unsigned { PF_X = 1, // Execute PF_W = 2, // Write PF_R = 4, // Read PF_MASKOS = 0x0ff00000, // Bits for operating system-specific semantics. PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics. }; // Dynamic table entry for ELF32. struct Elf32_Dyn { Elf32_Sword d_tag; // Type of dynamic table entry. union { Elf32_Word d_val; // Integer value of entry. Elf32_Addr d_ptr; // Pointer value of entry. } d_un; }; // Dynamic table entry for ELF64. struct Elf64_Dyn { Elf64_Sxword d_tag; // Type of dynamic table entry. union { Elf64_Xword d_val; // Integer value of entry. Elf64_Addr d_ptr; // Pointer value of entry. } d_un; }; // Dynamic table entry tags. enum { #define DYNAMIC_TAG(name, value) DT_##name = value, #include "DynamicTags.def" #undef DYNAMIC_TAG }; // DT_FLAGS values. enum { DF_ORIGIN = 0x01, // The object may reference $ORIGIN. DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe. DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment. DF_BIND_NOW = 0x08, // Process all relocations on load. DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically. }; // State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry. enum { DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object. DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object. DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object. DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object. DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime. DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object. DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object. DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled. DF_1_DIRECT = 0x00000100, // Direct binding enabled. DF_1_TRANS = 0x00000200, DF_1_INTERPOSE = 0x00000400, // Object is used to interpose. DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path. DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed. DF_1_CONFALT = 0x00002000, // Configuration alternative created. DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search. DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time. DF_1_DISPRELPND = 0x00010000, // Disp reloc applied at run-time. DF_1_NODIRECT = 0x00020000, // Object has no-direct binding. DF_1_IGNMULDEF = 0x00040000, DF_1_NOKSYMS = 0x00080000, DF_1_NOHDR = 0x00100000, DF_1_EDITED = 0x00200000, // Object is modified after built. DF_1_NORELOC = 0x00400000, DF_1_SYMINTPOSE = 0x00800000, // Object has individual interposers. DF_1_GLOBAUDIT = 0x01000000, // Global auditing required. DF_1_SINGLETON = 0x02000000, // Singleton symbols are used. DF_1_PIE = 0x08000000, // Object is a position-independent executable. }; // DT_MIPS_FLAGS values. enum { RHF_NONE = 0x00000000, // No flags. RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers. RHF_NOTPOT = 0x00000002, // Hash size is not a power of two. RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH. RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated. RHF_SGI_ONLY = 0x00000010, // SGI specific features. RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish // executing before any non-init // code in DSO is called. RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code. RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start // executing before any non-init // code in DSO is called. RHF_PIXIE = 0x00000100, // Generated by pixie. RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default. RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted RHF_CORD = 0x00001000, // Generated by cord. RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved // undef symbols. RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order. }; // ElfXX_VerDef structure version (GNU versioning) enum { VER_DEF_NONE = 0, VER_DEF_CURRENT = 1 }; // VerDef Flags (ElfXX_VerDef::vd_flags) enum { VER_FLG_BASE = 0x1, VER_FLG_WEAK = 0x2, VER_FLG_INFO = 0x4 }; // Special constants for the version table. (SHT_GNU_versym/.gnu.version) enum { VER_NDX_LOCAL = 0, // Unversioned local symbol VER_NDX_GLOBAL = 1, // Unversioned global symbol VERSYM_VERSION = 0x7fff, // Version Index mask VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version) }; // ElfXX_VerNeed structure version (GNU versioning) enum { VER_NEED_NONE = 0, VER_NEED_CURRENT = 1 }; // SHT_NOTE section types. // Generic note types. enum : unsigned { NT_VERSION = 1, NT_ARCH = 2, NT_GNU_BUILD_ATTRIBUTE_OPEN = 0x100, NT_GNU_BUILD_ATTRIBUTE_FUNC = 0x101, }; // Core note types. enum : unsigned { NT_PRSTATUS = 1, NT_FPREGSET = 2, NT_PRPSINFO = 3, NT_TASKSTRUCT = 4, NT_AUXV = 6, NT_PSTATUS = 10, NT_FPREGS = 12, NT_PSINFO = 13, NT_LWPSTATUS = 16, NT_LWPSINFO = 17, NT_WIN32PSTATUS = 18, NT_PPC_VMX = 0x100, NT_PPC_VSX = 0x102, NT_PPC_TAR = 0x103, NT_PPC_PPR = 0x104, NT_PPC_DSCR = 0x105, NT_PPC_EBB = 0x106, NT_PPC_PMU = 0x107, NT_PPC_TM_CGPR = 0x108, NT_PPC_TM_CFPR = 0x109, NT_PPC_TM_CVMX = 0x10a, NT_PPC_TM_CVSX = 0x10b, NT_PPC_TM_SPR = 0x10c, NT_PPC_TM_CTAR = 0x10d, NT_PPC_TM_CPPR = 0x10e, NT_PPC_TM_CDSCR = 0x10f, NT_386_TLS = 0x200, NT_386_IOPERM = 0x201, NT_X86_XSTATE = 0x202, NT_S390_HIGH_GPRS = 0x300, NT_S390_TIMER = 0x301, NT_S390_TODCMP = 0x302, NT_S390_TODPREG = 0x303, NT_S390_CTRS = 0x304, NT_S390_PREFIX = 0x305, NT_S390_LAST_BREAK = 0x306, NT_S390_SYSTEM_CALL = 0x307, NT_S390_TDB = 0x308, NT_S390_VXRS_LOW = 0x309, NT_S390_VXRS_HIGH = 0x30a, NT_S390_GS_CB = 0x30b, NT_S390_GS_BC = 0x30c, NT_ARM_VFP = 0x400, NT_ARM_TLS = 0x401, NT_ARM_HW_BREAK = 0x402, NT_ARM_HW_WATCH = 0x403, NT_ARM_SVE = 0x405, NT_ARM_PAC_MASK = 0x406, NT_FILE = 0x46494c45, NT_PRXFPREG = 0x46e62b7f, NT_SIGINFO = 0x53494749, }; // LLVM-specific notes. enum { NT_LLVM_HWASAN_GLOBALS = 3, }; // GNU note types. enum { NT_GNU_ABI_TAG = 1, NT_GNU_HWCAP = 2, NT_GNU_BUILD_ID = 3, NT_GNU_GOLD_VERSION = 4, NT_GNU_PROPERTY_TYPE_0 = 5, FDO_PACKAGING_METADATA = 0xcafe1a7e, }; // Android note types. enum { NT_ANDROID_TYPE_IDENT = 1, NT_ANDROID_TYPE_KUSER = 3, NT_ANDROID_TYPE_MEMTAG = 4, }; // Memory tagging values used in NT_ANDROID_TYPE_MEMTAG notes. enum { // Enumeration to determine the tagging mode. In Android-land, 'SYNC' means // running all threads in MTE Synchronous mode, and 'ASYNC' means to use the // kernels auto-upgrade feature to allow for either MTE Asynchronous, // Asymmetric, or Synchronous mode. This allows silicon vendors to specify, on // a per-cpu basis what 'ASYNC' should mean. Generally, the expectation is // "pick the most precise mode that's very fast". NT_MEMTAG_LEVEL_NONE = 0, NT_MEMTAG_LEVEL_ASYNC = 1, NT_MEMTAG_LEVEL_SYNC = 2, NT_MEMTAG_LEVEL_MASK = 3, // Bits indicating whether the loader should prepare for MTE to be enabled on // the heap and/or stack. NT_MEMTAG_HEAP = 4, NT_MEMTAG_STACK = 8, }; // Property types used in GNU_PROPERTY_TYPE_0 notes. enum : unsigned { GNU_PROPERTY_STACK_SIZE = 1, GNU_PROPERTY_NO_COPY_ON_PROTECTED = 2, GNU_PROPERTY_AARCH64_FEATURE_1_AND = 0xc0000000, GNU_PROPERTY_X86_FEATURE_1_AND = 0xc0000002, GNU_PROPERTY_X86_UINT32_OR_LO = 0xc0008000, GNU_PROPERTY_X86_FEATURE_2_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 1, GNU_PROPERTY_X86_ISA_1_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 2, GNU_PROPERTY_X86_UINT32_OR_AND_LO = 0xc0010000, GNU_PROPERTY_X86_FEATURE_2_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 1, GNU_PROPERTY_X86_ISA_1_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 2, }; // aarch64 processor feature bits. enum : unsigned { GNU_PROPERTY_AARCH64_FEATURE_1_BTI = 1 << 0, GNU_PROPERTY_AARCH64_FEATURE_1_PAC = 1 << 1, }; // x86 processor feature bits. enum : unsigned { GNU_PROPERTY_X86_FEATURE_1_IBT = 1 << 0, GNU_PROPERTY_X86_FEATURE_1_SHSTK = 1 << 1, GNU_PROPERTY_X86_FEATURE_2_X86 = 1 << 0, GNU_PROPERTY_X86_FEATURE_2_X87 = 1 << 1, GNU_PROPERTY_X86_FEATURE_2_MMX = 1 << 2, GNU_PROPERTY_X86_FEATURE_2_XMM = 1 << 3, GNU_PROPERTY_X86_FEATURE_2_YMM = 1 << 4, GNU_PROPERTY_X86_FEATURE_2_ZMM = 1 << 5, GNU_PROPERTY_X86_FEATURE_2_FXSR = 1 << 6, GNU_PROPERTY_X86_FEATURE_2_XSAVE = 1 << 7, GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT = 1 << 8, GNU_PROPERTY_X86_FEATURE_2_XSAVEC = 1 << 9, GNU_PROPERTY_X86_ISA_1_BASELINE = 1 << 0, GNU_PROPERTY_X86_ISA_1_V2 = 1 << 1, GNU_PROPERTY_X86_ISA_1_V3 = 1 << 2, GNU_PROPERTY_X86_ISA_1_V4 = 1 << 3, }; // FreeBSD note types. enum { NT_FREEBSD_ABI_TAG = 1, NT_FREEBSD_NOINIT_TAG = 2, NT_FREEBSD_ARCH_TAG = 3, NT_FREEBSD_FEATURE_CTL = 4, }; // NT_FREEBSD_FEATURE_CTL values (see FreeBSD's sys/sys/elf_common.h). enum { NT_FREEBSD_FCTL_ASLR_DISABLE = 0x00000001, NT_FREEBSD_FCTL_PROTMAX_DISABLE = 0x00000002, NT_FREEBSD_FCTL_STKGAP_DISABLE = 0x00000004, NT_FREEBSD_FCTL_WXNEEDED = 0x00000008, NT_FREEBSD_FCTL_LA48 = 0x00000010, NT_FREEBSD_FCTL_ASG_DISABLE = 0x00000020, }; // FreeBSD core note types. enum { NT_FREEBSD_THRMISC = 7, NT_FREEBSD_PROCSTAT_PROC = 8, NT_FREEBSD_PROCSTAT_FILES = 9, NT_FREEBSD_PROCSTAT_VMMAP = 10, NT_FREEBSD_PROCSTAT_GROUPS = 11, NT_FREEBSD_PROCSTAT_UMASK = 12, NT_FREEBSD_PROCSTAT_RLIMIT = 13, NT_FREEBSD_PROCSTAT_OSREL = 14, NT_FREEBSD_PROCSTAT_PSSTRINGS = 15, NT_FREEBSD_PROCSTAT_AUXV = 16, }; // NetBSD core note types. enum { NT_NETBSDCORE_PROCINFO = 1, NT_NETBSDCORE_AUXV = 2, NT_NETBSDCORE_LWPSTATUS = 24, }; // OpenBSD core note types. enum { NT_OPENBSD_PROCINFO = 10, NT_OPENBSD_AUXV = 11, NT_OPENBSD_REGS = 20, NT_OPENBSD_FPREGS = 21, NT_OPENBSD_XFPREGS = 22, NT_OPENBSD_WCOOKIE = 23, }; // AMDGPU-specific section indices. enum { SHN_AMDGPU_LDS = 0xff00, // Variable in LDS; symbol encoded like SHN_COMMON }; // AMD vendor specific notes. (Code Object V2) enum { NT_AMD_HSA_CODE_OBJECT_VERSION = 1, NT_AMD_HSA_HSAIL = 2, NT_AMD_HSA_ISA_VERSION = 3, // Note types with values between 4 and 9 (inclusive) are reserved. NT_AMD_HSA_METADATA = 10, NT_AMD_HSA_ISA_NAME = 11, NT_AMD_PAL_METADATA = 12 }; // AMDGPU vendor specific notes. (Code Object V3) enum { // Note types with values between 0 and 31 (inclusive) are reserved. NT_AMDGPU_METADATA = 32 }; // LLVMOMPOFFLOAD specific notes. enum : unsigned { NT_LLVM_OPENMP_OFFLOAD_VERSION = 1, NT_LLVM_OPENMP_OFFLOAD_PRODUCER = 2, NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION = 3 }; enum { GNU_ABI_TAG_LINUX = 0, GNU_ABI_TAG_HURD = 1, GNU_ABI_TAG_SOLARIS = 2, GNU_ABI_TAG_FREEBSD = 3, GNU_ABI_TAG_NETBSD = 4, GNU_ABI_TAG_SYLLABLE = 5, GNU_ABI_TAG_NACL = 6, }; constexpr const char *ELF_NOTE_GNU = "GNU"; // Android packed relocation group flags. enum { RELOCATION_GROUPED_BY_INFO_FLAG = 1, RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG = 2, RELOCATION_GROUPED_BY_ADDEND_FLAG = 4, RELOCATION_GROUP_HAS_ADDEND_FLAG = 8, }; // Compressed section header for ELF32. struct Elf32_Chdr { Elf32_Word ch_type; Elf32_Word ch_size; Elf32_Word ch_addralign; }; // Compressed section header for ELF64. struct Elf64_Chdr { Elf64_Word ch_type; Elf64_Word ch_reserved; Elf64_Xword ch_size; Elf64_Xword ch_addralign; }; // Note header for ELF32. struct Elf32_Nhdr { Elf32_Word n_namesz; Elf32_Word n_descsz; Elf32_Word n_type; }; // Note header for ELF64. struct Elf64_Nhdr { Elf64_Word n_namesz; Elf64_Word n_descsz; Elf64_Word n_type; }; // Legal values for ch_type field of compressed section header. enum { ELFCOMPRESS_ZLIB = 1, // ZLIB/DEFLATE algorithm. ELFCOMPRESS_ZSTD = 2, // Zstandard algorithm ELFCOMPRESS_LOOS = 0x60000000, // Start of OS-specific. ELFCOMPRESS_HIOS = 0x6fffffff, // End of OS-specific. ELFCOMPRESS_LOPROC = 0x70000000, // Start of processor-specific. ELFCOMPRESS_HIPROC = 0x7fffffff // End of processor-specific. }; /// Convert an architecture name into ELF's e_machine value. uint16_t convertArchNameToEMachine(StringRef Arch); /// Convert an ELF's e_machine value into an architecture name. StringRef convertEMachineToArchName(uint16_t EMachine); } // end namespace ELF } // end namespace llvm #endif // LLVM_BINARYFORMAT_ELF_H