//===- SyntheticSections.h -------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H #define LLD_MACHO_SYNTHETIC_SECTIONS_H #include "Config.h" #include "ExportTrie.h" #include "InputSection.h" #include "OutputSection.h" #include "OutputSegment.h" #include "Target.h" #include "Writer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SetVector.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include namespace llvm { class DWARFUnit; } // namespace llvm namespace lld { namespace macho { class Defined; class DylibSymbol; class LoadCommand; class ObjFile; class UnwindInfoSection; class SyntheticSection : public OutputSection { public: SyntheticSection(const char *segname, const char *name); virtual ~SyntheticSection() = default; static bool classof(const OutputSection *sec) { return sec->kind() == SyntheticKind; } StringRef segname; // This fake InputSection makes it easier for us to write code that applies // generically to both user inputs and synthetics. InputSection *isec; }; // All sections in __LINKEDIT should inherit from this. class LinkEditSection : public SyntheticSection { public: LinkEditSection(const char *segname, const char *name) : SyntheticSection(segname, name) { align = target->wordSize; } // Implementations of this method can assume that the regular (non-__LINKEDIT) // sections already have their addresses assigned. virtual void finalizeContents() {} // Sections in __LINKEDIT are special: their offsets are recorded in the // load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section // headers. bool isHidden() const override final { return true; } virtual uint64_t getRawSize() const = 0; // codesign (or more specifically libstuff) checks that each section in // __LINKEDIT ends where the next one starts -- no gaps are permitted. We // therefore align every section's start and end points to WordSize. // // NOTE: This assumes that the extra bytes required for alignment can be // zero-valued bytes. uint64_t getSize() const override final { return llvm::alignTo(getRawSize(), align); } }; // The header of the Mach-O file, which must have a file offset of zero. class MachHeaderSection final : public SyntheticSection { public: MachHeaderSection(); bool isHidden() const override { return true; } uint64_t getSize() const override; void writeTo(uint8_t *buf) const override; void addLoadCommand(LoadCommand *); protected: std::vector loadCommands; uint32_t sizeOfCmds = 0; }; // A hidden section that exists solely for the purpose of creating the // __PAGEZERO segment, which is used to catch null pointer dereferences. class PageZeroSection final : public SyntheticSection { public: PageZeroSection(); bool isHidden() const override { return true; } uint64_t getSize() const override { return target->pageZeroSize; } uint64_t getFileSize() const override { return 0; } void writeTo(uint8_t *buf) const override {} }; // This is the base class for the GOT and TLVPointer sections, which are nearly // functionally identical -- they will both be populated by dyld with addresses // to non-lazily-loaded dylib symbols. The main difference is that the // TLVPointerSection stores references to thread-local variables. class NonLazyPointerSectionBase : public SyntheticSection { public: NonLazyPointerSectionBase(const char *segname, const char *name); const llvm::SetVector &getEntries() const { return entries; } bool isNeeded() const override { return !entries.empty(); } uint64_t getSize() const override { return entries.size() * target->wordSize; } void writeTo(uint8_t *buf) const override; void addEntry(Symbol *sym); uint64_t getVA(uint32_t gotIndex) const { return addr + gotIndex * target->wordSize; } private: llvm::SetVector entries; }; class GotSection final : public NonLazyPointerSectionBase { public: GotSection(); }; class TlvPointerSection final : public NonLazyPointerSectionBase { public: TlvPointerSection(); }; struct Location { const InputSection *isec; uint64_t offset; Location(const InputSection *isec, uint64_t offset) : isec(isec), offset(offset) {} uint64_t getVA() const { return isec->getVA(offset); } }; // Stores rebase opcodes, which tell dyld where absolute addresses have been // encoded in the binary. If the binary is not loaded at its preferred address, // dyld has to rebase these addresses by adding an offset to them. class RebaseSection final : public LinkEditSection { public: RebaseSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } bool isNeeded() const override { return !locations.empty(); } void writeTo(uint8_t *buf) const override; void addEntry(const InputSection *isec, uint64_t offset) { if (config->isPic) locations.push_back({isec, offset}); } private: std::vector locations; SmallVector contents; }; struct BindingEntry { int64_t addend; Location target; BindingEntry(int64_t addend, Location target) : addend(addend), target(std::move(target)) {} }; template using BindingsMap = llvm::DenseMap>; // Stores bind opcodes for telling dyld which symbols to load non-lazily. class BindingSection final : public LinkEditSection { public: BindingSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } bool isNeeded() const override { return !bindingsMap.empty(); } void writeTo(uint8_t *buf) const override; void addEntry(const DylibSymbol *dysym, const InputSection *isec, uint64_t offset, int64_t addend = 0) { bindingsMap[dysym].emplace_back(addend, Location(isec, offset)); } private: BindingsMap bindingsMap; SmallVector contents; }; // Stores bind opcodes for telling dyld which weak symbols need coalescing. // There are two types of entries in this section: // // 1) Non-weak definitions: This is a symbol definition that weak symbols in // other dylibs should coalesce to. // // 2) Weak bindings: These tell dyld that a given symbol reference should // coalesce to a non-weak definition if one is found. Note that unlike the // entries in the BindingSection, the bindings here only refer to these // symbols by name, but do not specify which dylib to load them from. class WeakBindingSection final : public LinkEditSection { public: WeakBindingSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } bool isNeeded() const override { return !bindingsMap.empty() || !definitions.empty(); } void writeTo(uint8_t *buf) const override; void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset, int64_t addend = 0) { bindingsMap[symbol].emplace_back(addend, Location(isec, offset)); } bool hasEntry() const { return !bindingsMap.empty(); } void addNonWeakDefinition(const Defined *defined) { definitions.emplace_back(defined); } bool hasNonWeakDefinition() const { return !definitions.empty(); } private: BindingsMap bindingsMap; std::vector definitions; SmallVector contents; }; // The following sections implement lazy symbol binding -- very similar to the // PLT mechanism in ELF. // // ELF's .plt section is broken up into two sections in Mach-O: StubsSection // and StubHelperSection. Calls to functions in dylibs will end up calling into // StubsSection, which contains indirect jumps to addresses stored in the // LazyPointerSection (the counterpart to ELF's .plt.got). // // We will first describe how non-weak symbols are handled. // // At program start, the LazyPointerSection contains addresses that point into // one of the entry points in the middle of the StubHelperSection. The code in // StubHelperSection will push on the stack an offset into the // LazyBindingSection. The push is followed by a jump to the beginning of the // StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder. // dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in // the GOT. // // The stub binder will look up the bind opcodes in the LazyBindingSection at // the given offset. The bind opcodes will tell the binder to update the // address in the LazyPointerSection to point to the symbol, so that subsequent // calls don't have to redo the symbol resolution. The binder will then jump to // the resolved symbol. // // With weak symbols, the situation is slightly different. Since there is no // "weak lazy" lookup, function calls to weak symbols are always non-lazily // bound. We emit both regular non-lazy bindings as well as weak bindings, in // order that the weak bindings may overwrite the non-lazy bindings if an // appropriate symbol is found at runtime. However, the bound addresses will // still be written (non-lazily) into the LazyPointerSection. class StubsSection final : public SyntheticSection { public: StubsSection(); uint64_t getSize() const override; bool isNeeded() const override { return !entries.empty(); } void finalize() override; void writeTo(uint8_t *buf) const override; const llvm::SetVector &getEntries() const { return entries; } // Returns whether the symbol was added. Note that every stubs entry will // have a corresponding entry in the LazyPointerSection. bool addEntry(Symbol *); uint64_t getVA(uint32_t stubsIndex) const { assert(isFinal || target->usesThunks()); // ConcatOutputSection::finalize() can seek the address of a // stub before its address is assigned. Before __stubs is // finalized, return a contrived out-of-range address. return isFinal ? addr + stubsIndex * target->stubSize : TargetInfo::outOfRangeVA; } bool isFinal = false; // is address assigned? private: llvm::SetVector entries; }; class StubHelperSection final : public SyntheticSection { public: StubHelperSection(); uint64_t getSize() const override; bool isNeeded() const override; void writeTo(uint8_t *buf) const override; void setup(); DylibSymbol *stubBinder = nullptr; Defined *dyldPrivate = nullptr; }; // Note that this section may also be targeted by non-lazy bindings. In // particular, this happens when branch relocations target weak symbols. class LazyPointerSection final : public SyntheticSection { public: LazyPointerSection(); uint64_t getSize() const override; bool isNeeded() const override; void writeTo(uint8_t *buf) const override; }; class LazyBindingSection final : public LinkEditSection { public: LazyBindingSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } bool isNeeded() const override { return !entries.empty(); } void writeTo(uint8_t *buf) const override; // Note that every entry here will by referenced by a corresponding entry in // the StubHelperSection. void addEntry(DylibSymbol *dysym); const llvm::SetVector &getEntries() const { return entries; } private: uint32_t encode(const DylibSymbol &); llvm::SetVector entries; SmallVector contents; llvm::raw_svector_ostream os{contents}; }; // Stores a trie that describes the set of exported symbols. class ExportSection final : public LinkEditSection { public: ExportSection(); void finalizeContents() override; uint64_t getRawSize() const override { return size; } bool isNeeded() const override { return size; } void writeTo(uint8_t *buf) const override; bool hasWeakSymbol = false; private: TrieBuilder trieBuilder; size_t size = 0; }; // Stores 'data in code' entries that describe the locations of // data regions inside code sections. class DataInCodeSection final : public LinkEditSection { public: DataInCodeSection(); void finalizeContents() override; uint64_t getRawSize() const override { return sizeof(llvm::MachO::data_in_code_entry) * entries.size(); } void writeTo(uint8_t *buf) const override; private: std::vector entries; }; // Stores ULEB128 delta encoded addresses of functions. class FunctionStartsSection final : public LinkEditSection { public: FunctionStartsSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } void writeTo(uint8_t *buf) const override; private: SmallVector contents; }; // Stores the strings referenced by the symbol table. class StringTableSection final : public LinkEditSection { public: StringTableSection(); // Returns the start offset of the added string. uint32_t addString(StringRef); uint64_t getRawSize() const override { return size; } void writeTo(uint8_t *buf) const override; static constexpr size_t emptyStringIndex = 1; private: // ld64 emits string tables which start with a space and a zero byte. We // match its behavior here since some tools depend on it. // Consequently, the empty string will be at index 1, not zero. std::vector strings{" "}; size_t size = 2; }; struct SymtabEntry { Symbol *sym; size_t strx; }; struct StabsEntry { uint8_t type = 0; uint32_t strx = StringTableSection::emptyStringIndex; uint8_t sect = 0; uint16_t desc = 0; uint64_t value = 0; StabsEntry() = default; explicit StabsEntry(uint8_t type) : type(type) {} }; // Symbols of the same type must be laid out contiguously: we choose to emit // all local symbols first, then external symbols, and finally undefined // symbols. For each symbol type, the LC_DYSYMTAB load command will record the // range (start index and total number) of those symbols in the symbol table. class SymtabSection : public LinkEditSection { public: void finalizeContents() override; uint32_t getNumSymbols() const; uint32_t getNumLocalSymbols() const { return stabs.size() + localSymbols.size(); } uint32_t getNumExternalSymbols() const { return externalSymbols.size(); } uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); } private: void emitBeginSourceStab(llvm::DWARFUnit *compileUnit); void emitEndSourceStab(); void emitObjectFileStab(ObjFile *); void emitEndFunStab(Defined *); void emitStabs(); protected: SymtabSection(StringTableSection &); StringTableSection &stringTableSection; // STABS symbols are always local symbols, but we represent them with special // entries because they may use fields like n_sect and n_desc differently. std::vector stabs; std::vector localSymbols; std::vector externalSymbols; std::vector undefinedSymbols; }; template SymtabSection *makeSymtabSection(StringTableSection &); // The indirect symbol table is a list of 32-bit integers that serve as indices // into the (actual) symbol table. The indirect symbol table is a // concatenation of several sub-arrays of indices, each sub-array belonging to // a separate section. The starting offset of each sub-array is stored in the // reserved1 header field of the respective section. // // These sub-arrays provide symbol information for sections that store // contiguous sequences of symbol references. These references can be pointers // (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g. // function stubs). class IndirectSymtabSection final : public LinkEditSection { public: IndirectSymtabSection(); void finalizeContents() override; uint32_t getNumSymbols() const; uint64_t getRawSize() const override { return getNumSymbols() * sizeof(uint32_t); } bool isNeeded() const override; void writeTo(uint8_t *buf) const override; }; // The code signature comes at the very end of the linked output file. class CodeSignatureSection final : public LinkEditSection { public: // NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file // and any changes here, should be repeated there. static constexpr uint8_t blockSizeShift = 12; static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB static constexpr size_t hashSize = 256 / 8; static constexpr size_t blobHeadersSize = llvm::alignTo<8>( sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex)); static constexpr uint32_t fixedHeadersSize = blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory); uint32_t fileNamePad = 0; uint32_t allHeadersSize = 0; StringRef fileName; CodeSignatureSection(); uint64_t getRawSize() const override; bool isNeeded() const override { return true; } void writeTo(uint8_t *buf) const override; uint32_t getBlockCount() const; void writeHashes(uint8_t *buf) const; }; class BitcodeBundleSection final : public SyntheticSection { public: BitcodeBundleSection(); uint64_t getSize() const override { return xarSize; } void finalize() override; void writeTo(uint8_t *buf) const override; private: llvm::SmallString<261> xarPath; uint64_t xarSize; }; class CStringSection : public SyntheticSection { public: CStringSection(); void addInput(CStringInputSection *); uint64_t getSize() const override { return size; } virtual void finalizeContents(); bool isNeeded() const override { return !inputs.empty(); } void writeTo(uint8_t *buf) const override; std::vector inputs; private: uint64_t size; }; class DeduplicatedCStringSection final : public CStringSection { public: DeduplicatedCStringSection(); uint64_t getSize() const override { return builder.getSize(); } void finalizeContents() override; void writeTo(uint8_t *buf) const override { builder.write(buf); } private: llvm::StringTableBuilder builder; }; /* * This section contains deduplicated literal values. The 16-byte values are * laid out first, followed by the 8- and then the 4-byte ones. */ class WordLiteralSection final : public SyntheticSection { public: using UInt128 = std::pair; // I don't think the standard guarantees the size of a pair, so let's make // sure it's exact -- that way we can construct it via `mmap`. static_assert(sizeof(UInt128) == 16, ""); WordLiteralSection(); void addInput(WordLiteralInputSection *); void finalizeContents(); void writeTo(uint8_t *buf) const override; uint64_t getSize() const override { return literal16Map.size() * 16 + literal8Map.size() * 8 + literal4Map.size() * 4; } bool isNeeded() const override { return !literal16Map.empty() || !literal4Map.empty() || !literal8Map.empty(); } uint64_t getLiteral16Offset(uintptr_t buf) const { return literal16Map.at(*reinterpret_cast(buf)) * 16; } uint64_t getLiteral8Offset(uintptr_t buf) const { return literal16Map.size() * 16 + literal8Map.at(*reinterpret_cast(buf)) * 8; } uint64_t getLiteral4Offset(uintptr_t buf) const { return literal16Map.size() * 16 + literal8Map.size() * 8 + literal4Map.at(*reinterpret_cast(buf)) * 4; } private: std::vector inputs; template struct Hasher { llvm::hash_code operator()(T v) const { return llvm::hash_value(v); } }; // We're using unordered_map instead of DenseMap here because we need to // support all possible integer values -- there are no suitable tombstone // values for DenseMap. std::unordered_map> literal16Map; std::unordered_map literal8Map; std::unordered_map literal4Map; }; struct InStruct { MachHeaderSection *header = nullptr; CStringSection *cStringSection = nullptr; WordLiteralSection *wordLiteralSection = nullptr; RebaseSection *rebase = nullptr; BindingSection *binding = nullptr; WeakBindingSection *weakBinding = nullptr; LazyBindingSection *lazyBinding = nullptr; ExportSection *exports = nullptr; GotSection *got = nullptr; TlvPointerSection *tlvPointers = nullptr; LazyPointerSection *lazyPointers = nullptr; StubsSection *stubs = nullptr; StubHelperSection *stubHelper = nullptr; UnwindInfoSection *unwindInfo = nullptr; ConcatInputSection *imageLoaderCache = nullptr; }; extern InStruct in; extern std::vector syntheticSections; void createSyntheticSymbols(); } // namespace macho } // namespace lld #endif