//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains functions to parse Mach-O object files. In this comment, // we describe the Mach-O file structure and how we parse it. // // Mach-O is not very different from ELF or COFF. The notion of symbols, // sections and relocations exists in Mach-O as it does in ELF and COFF. // // Perhaps the notion that is new to those who know ELF/COFF is "subsections". // In ELF/COFF, sections are an atomic unit of data copied from input files to // output files. When we merge or garbage-collect sections, we treat each // section as an atomic unit. In Mach-O, that's not the case. Sections can // consist of multiple subsections, and subsections are a unit of merging and // garbage-collecting. Therefore, Mach-O's subsections are more similar to // ELF/COFF's sections than Mach-O's sections are. // // A section can have multiple symbols. A symbol that does not have the // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by // definition, a symbol is always present at the beginning of each subsection. A // symbol with N_ALT_ENTRY attribute does not start a new subsection and can // point to a middle of a subsection. // // The notion of subsections also affects how relocations are represented in // Mach-O. All references within a section need to be explicitly represented as // relocations if they refer to different subsections, because we obviously need // to fix up addresses if subsections are laid out in an output file differently // than they were in object files. To represent that, Mach-O relocations can // refer to an unnamed location via its address. Scattered relocations (those // with the R_SCATTERED bit set) always refer to unnamed locations. // Non-scattered relocations refer to an unnamed location if r_extern is not set // and r_symbolnum is zero. // // Without the above differences, I think you can use your knowledge about ELF // and COFF for Mach-O. // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Config.h" #include "Driver.h" #include "Dwarf.h" #include "ExportTrie.h" #include "InputSection.h" #include "MachOStructs.h" #include "ObjC.h" #include "OutputSection.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "Symbols.h" #include "Target.h" #include "lld/Common/DWARF.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "lld/Common/Reproduce.h" #include "llvm/ADT/iterator.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/LTO/LTO.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/TarWriter.h" using namespace llvm; using namespace llvm::MachO; using namespace llvm::support::endian; using namespace llvm::sys; using namespace lld; using namespace lld::macho; // Returns "", "foo.a(bar.o)", or "baz.o". std::string lld::toString(const InputFile *f) { if (!f) return ""; if (f->archiveName.empty()) return std::string(f->getName()); return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + ")") .str(); } SetVector macho::inputFiles; std::unique_ptr macho::tar; int InputFile::idCount = 0; // Open a given file path and return it as a memory-mapped file. Optional macho::readFile(StringRef path) { // Open a file. auto mbOrErr = MemoryBuffer::getFile(path); if (auto ec = mbOrErr.getError()) { error("cannot open " + path + ": " + ec.message()); return None; } std::unique_ptr &mb = *mbOrErr; MemoryBufferRef mbref = mb->getMemBufferRef(); make>(std::move(mb)); // take mb ownership // If this is a regular non-fat file, return it. const char *buf = mbref.getBufferStart(); auto *hdr = reinterpret_cast(buf); if (read32be(&hdr->magic) != MachO::FAT_MAGIC) { if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return mbref; } // Object files and archive files may be fat files, which contains // multiple real files for different CPU ISAs. Here, we search for a // file that matches with the current link target and returns it as // a MemoryBufferRef. auto *arch = reinterpret_cast(buf + sizeof(*hdr)); for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { if (reinterpret_cast(arch + i + 1) > buf + mbref.getBufferSize()) { error(path + ": fat_arch struct extends beyond end of file"); return None; } if (read32be(&arch[i].cputype) != target->cpuType || read32be(&arch[i].cpusubtype) != target->cpuSubtype) continue; uint32_t offset = read32be(&arch[i].offset); uint32_t size = read32be(&arch[i].size); if (offset + size > mbref.getBufferSize()) error(path + ": slice extends beyond end of file"); if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); } error("unable to find matching architecture in " + path); return None; } const load_command *macho::findCommand(const mach_header_64 *hdr, uint32_t type) { const uint8_t *p = reinterpret_cast(hdr) + sizeof(mach_header_64); for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { auto *cmd = reinterpret_cast(p); if (cmd->cmd == type) return cmd; p += cmd->cmdsize; } return nullptr; } void ObjFile::parseSections(ArrayRef sections) { subsections.reserve(sections.size()); auto *buf = reinterpret_cast(mb.getBufferStart()); for (const section_64 &sec : sections) { InputSection *isec = make(); isec->file = this; isec->name = StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); isec->segname = StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, static_cast(sec.size)}; if (sec.align >= 32) error("alignment " + std::to_string(sec.align) + " of section " + isec->name + " is too large"); else isec->align = 1 << sec.align; isec->flags = sec.flags; if (!(isDebugSection(isec->flags) && isec->segname == segment_names::dwarf)) { subsections.push_back({{0, isec}}); } else { // Instead of emitting DWARF sections, we emit STABS symbols to the // object files that contain them. We filter them out early to avoid // parsing their relocations unnecessarily. But we must still push an // empty map to ensure the indices line up for the remaining sections. subsections.push_back({}); debugSections.push_back(isec); } } } // Find the subsection corresponding to the greatest section offset that is <= // that of the given offset. // // offset: an offset relative to the start of the original InputSection (before // any subsection splitting has occurred). It will be updated to represent the // same location as an offset relative to the start of the containing // subsection. static InputSection *findContainingSubsection(SubsectionMap &map, uint32_t *offset) { auto it = std::prev(map.upper_bound(*offset)); *offset -= it->first; return it->second; } void ObjFile::parseRelocations(const section_64 &sec, SubsectionMap &subsecMap) { auto *buf = reinterpret_cast(mb.getBufferStart()); ArrayRef relInfos( reinterpret_cast(buf + sec.reloff), sec.nreloc); for (size_t i = 0; i < relInfos.size(); i++) { // Paired relocations serve as Mach-O's method for attaching a // supplemental datum to a primary relocation record. ELF does not // need them because the *_RELOC_RELA records contain the extra // addend field, vs. *_RELOC_REL which omit the addend. // // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, // and the paired *_RELOC_UNSIGNED record holds the minuend. The // datum for each is a symbolic address. The result is the runtime // offset between two addresses. // // The ARM64_RELOC_ADDEND record holds the addend, and the paired // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the // base symbolic address. // // Note: X86 does not use *_RELOC_ADDEND because it can embed an // addend into the instruction stream. On X86, a relocatable address // field always occupies an entire contiguous sequence of byte(s), // so there is no need to merge opcode bits with address // bits. Therefore, it's easy and convenient to store addends in the // instruction-stream bytes that would otherwise contain zeroes. By // contrast, RISC ISAs such as ARM64 mix opcode bits with with // address bits so that bitwise arithmetic is necessary to extract // and insert them. Storing addends in the instruction stream is // possible, but inconvenient and more costly at link time. relocation_info pairedInfo = relInfos[i]; relocation_info relInfo = target->isPairedReloc(pairedInfo) ? relInfos[++i] : pairedInfo; assert(i < relInfos.size()); if (relInfo.r_address & R_SCATTERED) fatal("TODO: Scattered relocations not supported"); Reloc r; r.type = relInfo.r_type; r.pcrel = relInfo.r_pcrel; r.length = relInfo.r_length; r.offset = relInfo.r_address; // For unpaired relocs, pairdInfo (just a copy of relInfo) is ignored uint64_t rawAddend = target->getAddend(mb, sec, relInfo, pairedInfo); if (relInfo.r_extern) { r.referent = symbols[relInfo.r_symbolnum]; r.addend = rawAddend; } else { SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; uint32_t referentOffset; if (relInfo.r_pcrel) { // The implicit addend for pcrel section relocations is the pcrel offset // in terms of the addresses in the input file. Here we adjust it so // that it describes the offset from the start of the referent section. // TODO: The offset of 4 is probably not right for ARM64, nor for // relocations with r_length != 2. referentOffset = sec.addr + relInfo.r_address + 4 + rawAddend - referentSec.addr; } else { // The addend for a non-pcrel relocation is its absolute address. referentOffset = rawAddend - referentSec.addr; } r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); r.addend = referentOffset; } InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); subsec->relocs.push_back(r); } } static macho::Symbol *createDefined(const structs::nlist_64 &sym, StringRef name, InputSection *isec, uint32_t value) { // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): // N_EXT: Global symbols // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped // N_PEXT: Does not occur in input files in practice, // a private extern must be external. // 0: Translation-unit scoped. These are not in the symbol table. if (sym.n_type & (N_EXT | N_PEXT)) { assert((sym.n_type & N_EXT) && "invalid input"); return symtab->addDefined(name, isec, value, sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); } return make(name, isec, value, sym.n_desc & N_WEAK_DEF, /*isExternal=*/false, /*isPrivateExtern=*/false); } // Absolute symbols are defined symbols that do not have an associated // InputSection. They cannot be weak. static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, StringRef name) { if (sym.n_type & (N_EXT | N_PEXT)) { assert((sym.n_type & N_EXT) && "invalid input"); return symtab->addDefined(name, nullptr, sym.n_value, /*isWeakDef=*/false, sym.n_type & N_PEXT); } return make(name, nullptr, sym.n_value, /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false); } macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym, StringRef name) { uint8_t type = sym.n_type & N_TYPE; switch (type) { case N_UNDF: return sym.n_value == 0 ? symtab->addUndefined(name, sym.n_desc & N_WEAK_REF) : symtab->addCommon(name, this, sym.n_value, 1 << GET_COMM_ALIGN(sym.n_desc), sym.n_type & N_PEXT); case N_ABS: return createAbsolute(sym, name); case N_PBUD: case N_INDR: error("TODO: support symbols of type " + std::to_string(type)); return nullptr; case N_SECT: llvm_unreachable( "N_SECT symbols should not be passed to parseNonSectionSymbol"); default: llvm_unreachable("invalid symbol type"); } } void ObjFile::parseSymbols(ArrayRef nList, const char *strtab, bool subsectionsViaSymbols) { // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols // out-of-sequence. symbols.resize(nList.size()); std::vector altEntrySymIdxs; for (size_t i = 0, n = nList.size(); i < n; ++i) { const structs::nlist_64 &sym = nList[i]; StringRef name = strtab + sym.n_strx; if ((sym.n_type & N_TYPE) != N_SECT) { symbols[i] = parseNonSectionSymbol(sym, name); continue; } const section_64 &sec = sectionHeaders[sym.n_sect - 1]; SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; assert(!subsecMap.empty()); uint64_t offset = sym.n_value - sec.addr; // If the input file does not use subsections-via-symbols, all symbols can // use the same subsection. Otherwise, we must split the sections along // symbol boundaries. if (!subsectionsViaSymbols) { symbols[i] = createDefined(sym, name, subsecMap[0], offset); continue; } // nList entries aren't necessarily arranged in address order. Therefore, // we can't create alt-entry symbols at this point because a later symbol // may split its section, which may affect which subsection the alt-entry // symbol is assigned to. So we need to handle them in a second pass below. if (sym.n_desc & N_ALT_ENTRY) { altEntrySymIdxs.push_back(i); continue; } // Find the subsection corresponding to the greatest section offset that is // <= that of the current symbol. The subsection that we find either needs // to be used directly or split in two. uint32_t firstSize = offset; InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); if (firstSize == 0) { // Alias of an existing symbol, or the first symbol in the section. These // are handled by reusing the existing section. symbols[i] = createDefined(sym, name, firstIsec, 0); continue; } // We saw a symbol definition at a new offset. Split the section into two // subsections. The new symbol uses the second subsection. auto *secondIsec = make(*firstIsec); secondIsec->data = firstIsec->data.slice(firstSize); firstIsec->data = firstIsec->data.slice(0, firstSize); // TODO: ld64 appears to preserve the original alignment as well as each // subsection's offset from the last aligned address. We should consider // emulating that behavior. secondIsec->align = MinAlign(firstIsec->align, offset); subsecMap[offset] = secondIsec; // By construction, the symbol will be at offset zero in the new section. symbols[i] = createDefined(sym, name, secondIsec, 0); } for (size_t idx : altEntrySymIdxs) { const structs::nlist_64 &sym = nList[idx]; StringRef name = strtab + sym.n_strx; SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; InputSection *subsec = findContainingSubsection(subsecMap, &off); symbols[idx] = createDefined(sym, name, subsec, off); } } OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, StringRef sectName) : InputFile(OpaqueKind, mb) { InputSection *isec = make(); isec->file = this; isec->name = sectName.take_front(16); isec->segname = segName.take_front(16); const auto *buf = reinterpret_cast(mb.getBufferStart()); isec->data = {buf, mb.getBufferSize()}; subsections.push_back({{0, isec}}); } ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) : InputFile(ObjKind, mb), modTime(modTime) { this->archiveName = std::string(archiveName); auto *buf = reinterpret_cast(mb.getBufferStart()); auto *hdr = reinterpret_cast(mb.getBufferStart()); if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { auto *c = reinterpret_cast(cmd); StringRef data{reinterpret_cast(c + 1), c->cmdsize - sizeof(linker_option_command)}; parseLCLinkerOption(this, c->count, data); } if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { auto *c = reinterpret_cast(cmd); sectionHeaders = ArrayRef{ reinterpret_cast(c + 1), c->nsects}; parseSections(sectionHeaders); } // TODO: Error on missing LC_SYMTAB? if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { auto *c = reinterpret_cast(cmd); ArrayRef nList( reinterpret_cast(buf + c->symoff), c->nsyms); const char *strtab = reinterpret_cast(buf) + c->stroff; bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; parseSymbols(nList, strtab, subsectionsViaSymbols); } // The relocations may refer to the symbols, so we parse them after we have // parsed all the symbols. for (size_t i = 0, n = subsections.size(); i < n; ++i) if (!subsections[i].empty()) parseRelocations(sectionHeaders[i], subsections[i]); parseDebugInfo(); } void ObjFile::parseDebugInfo() { std::unique_ptr dObj = DwarfObject::create(this); if (!dObj) return; auto *ctx = make( std::move(dObj), "", [&](Error err) { warn(toString(this) + ": " + toString(std::move(err))); }, [&](Error warning) { warn(toString(this) + ": " + toString(std::move(warning))); }); // TODO: Since object files can contain a lot of DWARF info, we should verify // that we are parsing just the info we need const DWARFContext::compile_unit_range &units = ctx->compile_units(); auto it = units.begin(); compileUnit = it->get(); assert(std::next(it) == units.end()); } // The path can point to either a dylib or a .tbd file. static Optional loadDylib(StringRef path, DylibFile *umbrella) { Optional mbref = readFile(path); if (!mbref) { error("could not read dylib file at " + path); return {}; } return loadDylib(*mbref, umbrella); } // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with // the first document storing child pointers to the rest of them. When we are // processing a given TBD file, we store that top-level document here. When // processing re-exports, we search its children for potentially matching // documents in the same TBD file. Note that the children themselves don't // point to further documents, i.e. this is a two-level tree. // // ld64 allows a TAPI re-export to reference documents nested within other TBD // files, but that seems like a strange design, so this is an intentional // deviation. const InterfaceFile *currentTopLevelTapi = nullptr; // Re-exports can either refer to on-disk files, or to documents within .tbd // files. static Optional loadReexportHelper(StringRef path, DylibFile *umbrella) { if (path::is_absolute(path, path::Style::posix)) for (StringRef root : config->systemLibraryRoots) if (Optional dylibPath = resolveDylibPath((root + path).str())) return loadDylib(*dylibPath, umbrella); // TODO: Expand @loader_path, @executable_path etc if (currentTopLevelTapi) { for (InterfaceFile &child : make_pointee_range(currentTopLevelTapi->documents())) { if (path == child.getInstallName()) return make(child, umbrella); assert(child.documents().empty()); } } if (Optional dylibPath = resolveDylibPath(path)) return loadDylib(*dylibPath, umbrella); error("unable to locate re-export with install name " + path); return {}; } // If a re-exported dylib is public (lives in /usr/lib or // /System/Library/Frameworks), then it is considered implicitly linked: we // should bind to its symbols directly instead of via the re-exporting umbrella // library. static bool isImplicitlyLinked(StringRef path) { if (!config->implicitDylibs) return false; if (path::parent_path(path) == "/usr/lib") return true; // Match /System/Library/Frameworks/$FOO.framework/**/$FOO if (path.consume_front("/System/Library/Frameworks/")) { StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); return path::filename(path) == frameworkName; } return false; } void loadReexport(StringRef path, DylibFile *umbrella) { Optional reexport = loadReexportHelper(path, umbrella); if (reexport && isImplicitlyLinked(path)) inputFiles.insert(*reexport); } DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella) : InputFile(DylibKind, mb), refState(RefState::Unreferenced) { if (umbrella == nullptr) umbrella = this; auto *buf = reinterpret_cast(mb.getBufferStart()); auto *hdr = reinterpret_cast(mb.getBufferStart()); // Initialize dylibName. if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { auto *c = reinterpret_cast(cmd); currentVersion = read32le(&c->dylib.current_version); compatibilityVersion = read32le(&c->dylib.compatibility_version); dylibName = reinterpret_cast(cmd) + read32le(&c->dylib.name); } else { error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); return; } // Initialize symbols. DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { auto *c = reinterpret_cast(cmd); parseTrie(buf + c->export_off, c->export_size, [&](const Twine &name, uint64_t flags) { bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; symbols.push_back(symtab->addDylib( saver.save(name), exportingFile, isWeakDef, isTlv)); }); } else { error("LC_DYLD_INFO_ONLY not found in " + toString(this)); return; } if (hdr->flags & MH_NO_REEXPORTED_DYLIBS) return; const uint8_t *p = reinterpret_cast(hdr) + sizeof(mach_header_64); for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { auto *cmd = reinterpret_cast(p); p += cmd->cmdsize; if (cmd->cmd != LC_REEXPORT_DYLIB) continue; auto *c = reinterpret_cast(cmd); StringRef reexportPath = reinterpret_cast(c) + read32le(&c->dylib.name); loadReexport(reexportPath, umbrella); } } DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella) : InputFile(DylibKind, interface), refState(RefState::Unreferenced) { if (umbrella == nullptr) umbrella = this; dylibName = saver.save(interface.getInstallName()); compatibilityVersion = interface.getCompatibilityVersion().rawValue(); currentVersion = interface.getCurrentVersion().rawValue(); DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; auto addSymbol = [&](const Twine &name) -> void { symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, /*isWeakDef=*/false, /*isTlv=*/false)); }; // TODO(compnerd) filter out symbols based on the target platform // TODO: handle weak defs, thread locals for (const auto symbol : interface.symbols()) { if (!symbol->getArchitectures().has(config->arch)) continue; switch (symbol->getKind()) { case SymbolKind::GlobalSymbol: addSymbol(symbol->getName()); break; case SymbolKind::ObjectiveCClass: // XXX ld64 only creates these symbols when -ObjC is passed in. We may // want to emulate that. addSymbol(objc::klass + symbol->getName()); addSymbol(objc::metaclass + symbol->getName()); break; case SymbolKind::ObjectiveCClassEHType: addSymbol(objc::ehtype + symbol->getName()); break; case SymbolKind::ObjectiveCInstanceVariable: addSymbol(objc::ivar + symbol->getName()); break; } } bool isTopLevelTapi = false; if (currentTopLevelTapi == nullptr) { currentTopLevelTapi = &interface; isTopLevelTapi = true; } for (InterfaceFileRef intfRef : interface.reexportedLibraries()) loadReexport(intfRef.getInstallName(), umbrella); if (isTopLevelTapi) currentTopLevelTapi = nullptr; } ArchiveFile::ArchiveFile(std::unique_ptr &&f) : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { for (const object::Archive::Symbol &sym : file->symbols()) symtab->addLazy(sym.getName(), this, sym); } void ArchiveFile::fetch(const object::Archive::Symbol &sym) { object::Archive::Child c = CHECK(sym.getMember(), toString(this) + ": could not get the member for symbol " + toMachOString(sym)); if (!seen.insert(c.getChildOffset()).second) return; MemoryBufferRef mb = CHECK(c.getMemoryBufferRef(), toString(this) + ": could not get the buffer for the member defining symbol " + toMachOString(sym)); if (tar && c.getParent()->isThin()) tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); uint32_t modTime = toTimeT( CHECK(c.getLastModified(), toString(this) + ": could not get the modification time " "for the member defining symbol " + toMachOString(sym))); // `sym` is owned by a LazySym, which will be replace<>() by make // and become invalid after that call. Copy it to the stack so we can refer // to it later. const object::Archive::Symbol sym_copy = sym; InputFile *file; switch (identify_magic(mb.getBuffer())) { case file_magic::macho_object: file = make(mb, modTime, getName()); break; case file_magic::bitcode: file = make(mb); break; default: StringRef bufname = CHECK(c.getName(), toString(this) + ": could not get buffer name"); error(toString(this) + ": archive member " + bufname + " has unhandled file type"); return; } inputFiles.insert(file); // ld64 doesn't demangle sym here even with -demangle. Match that, so // intentionally no call to toMachOString() here. printArchiveMemberLoad(sym_copy.getName(), file); } BitcodeFile::BitcodeFile(MemoryBufferRef mbref) : InputFile(BitcodeKind, mbref) { obj = check(lto::InputFile::create(mbref)); }