//===- Target.h -------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLD_ELF_TARGET_H #define LLD_ELF_TARGET_H #include "Config.h" #include "InputSection.h" #include "lld/Common/ErrorHandler.h" #include "llvm/Object/ELF.h" #include "llvm/Support/MathExtras.h" #include namespace lld { std::string toString(elf::RelType type); namespace elf { class Defined; class InputFile; class Symbol; class TargetInfo { public: virtual uint32_t calcEFlags() const { return 0; } virtual RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const = 0; virtual RelType getDynRel(RelType type) const { return 0; } virtual void writeGotPltHeader(uint8_t *buf) const {} virtual void writeGotHeader(uint8_t *buf) const {} virtual void writeGotPlt(uint8_t *buf, const Symbol &s) const {}; virtual void writeIgotPlt(uint8_t *buf, const Symbol &s) const {} virtual int64_t getImplicitAddend(const uint8_t *buf, RelType type) const; virtual int getTlsGdRelaxSkip(RelType type) const { return 1; } // If lazy binding is supported, the first entry of the PLT has code // to call the dynamic linker to resolve PLT entries the first time // they are called. This function writes that code. virtual void writePltHeader(uint8_t *buf) const {} virtual void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const {} virtual void writeIplt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { // All but PPC32 and PPC64 use the same format for .plt and .iplt entries. writePlt(buf, sym, pltEntryAddr); } virtual void writeIBTPlt(uint8_t *buf, size_t numEntries) const {} virtual void addPltHeaderSymbols(InputSection &isec) const {} virtual void addPltSymbols(InputSection &isec, uint64_t off) const {} // Returns true if a relocation only uses the low bits of a value such that // all those bits are in the same page. For example, if the relocation // only uses the low 12 bits in a system with 4k pages. If this is true, the // bits will always have the same value at runtime and we don't have to emit // a dynamic relocation. virtual bool usesOnlyLowPageBits(RelType type) const; // Decide whether a Thunk is needed for the relocation from File // targeting S. virtual bool needsThunk(RelExpr expr, RelType relocType, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const; // On systems with range extensions we place collections of Thunks at // regular spacings that enable the majority of branches reach the Thunks. // a value of 0 means range extension thunks are not supported. virtual uint32_t getThunkSectionSpacing() const { return 0; } // The function with a prologue starting at Loc was compiled with // -fsplit-stack and it calls a function compiled without. Adjust the prologue // to do the right thing. See https://gcc.gnu.org/wiki/SplitStacks. // The symbols st_other flags are needed on PowerPC64 for determining the // offset to the split-stack prologue. virtual bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, uint8_t stOther) const; // Return true if we can reach dst from src with RelType type. virtual bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const; virtual void relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const = 0; void relocateNoSym(uint8_t *loc, RelType type, uint64_t val) const { relocate(loc, Relocation{R_NONE, type, 0, 0, nullptr}, val); } // Do a linker relaxation pass and return true if we changed something. virtual bool relaxOnce(int pass) const { return false; } virtual void applyJumpInstrMod(uint8_t *loc, JumpModType type, JumpModType val) const {} virtual ~TargetInfo(); // This deletes a jump insn at the end of the section if it is a fall thru to // the next section. Further, if there is a conditional jump and a direct // jump consecutively, it tries to flip the conditional jump to convert the // direct jump into a fall thru and delete it. Returns true if a jump // instruction can be deleted. virtual bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, InputSection *nextIS) const { return false; } unsigned defaultCommonPageSize = 4096; unsigned defaultMaxPageSize = 4096; uint64_t getImageBase() const; // True if _GLOBAL_OFFSET_TABLE_ is relative to .got.plt, false if .got. bool gotBaseSymInGotPlt = false; static constexpr RelType noneRel = 0; RelType copyRel; RelType gotRel; RelType pltRel; RelType relativeRel; RelType iRelativeRel; RelType symbolicRel; RelType tlsDescRel; RelType tlsGotRel; RelType tlsModuleIndexRel; RelType tlsOffsetRel; unsigned gotEntrySize = config->wordsize; unsigned pltEntrySize; unsigned pltHeaderSize; unsigned ipltEntrySize; // At least on x86_64 positions 1 and 2 are used by the first plt entry // to support lazy loading. unsigned gotPltHeaderEntriesNum = 3; // On PPC ELF V2 abi, the first entry in the .got is the .TOC. unsigned gotHeaderEntriesNum = 0; bool needsThunks = false; // A 4-byte field corresponding to one or more trap instructions, used to pad // executable OutputSections. std::array trapInstr; // Stores the NOP instructions of different sizes for the target and is used // to pad sections that are relaxed. llvm::Optional>> nopInstrs; // If a target needs to rewrite calls to __morestack to instead call // __morestack_non_split when a split-stack enabled caller calls a // non-split-stack callee this will return true. Otherwise returns false. bool needsMoreStackNonSplit = true; virtual RelExpr adjustTlsExpr(RelType type, RelExpr expr) const; virtual RelExpr adjustGotPcExpr(RelType type, int64_t addend, const uint8_t *loc) const; virtual void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const; virtual void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; virtual void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; virtual void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; virtual void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; protected: // On FreeBSD x86_64 the first page cannot be mmaped. // On Linux this is controlled by vm.mmap_min_addr. At least on some x86_64 // installs this is set to 65536, so the first 15 pages cannot be used. // Given that, the smallest value that can be used in here is 0x10000. uint64_t defaultImageBase = 0x10000; }; TargetInfo *getAArch64TargetInfo(); TargetInfo *getAMDGPUTargetInfo(); TargetInfo *getARMTargetInfo(); TargetInfo *getAVRTargetInfo(); TargetInfo *getHexagonTargetInfo(); TargetInfo *getMSP430TargetInfo(); TargetInfo *getPPC64TargetInfo(); TargetInfo *getPPCTargetInfo(); TargetInfo *getRISCVTargetInfo(); TargetInfo *getSPARCV9TargetInfo(); TargetInfo *getX86TargetInfo(); TargetInfo *getX86_64TargetInfo(); template TargetInfo *getMipsTargetInfo(); struct ErrorPlace { InputSectionBase *isec; std::string loc; std::string srcLoc; }; // Returns input section and corresponding source string for the given location. ErrorPlace getErrorPlace(const uint8_t *loc); static inline std::string getErrorLocation(const uint8_t *loc) { return getErrorPlace(loc).loc; } void writePPC32GlinkSection(uint8_t *buf, size_t numEntries); bool tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc); unsigned getPPCDFormOp(unsigned secondaryOp); // In the PowerPC64 Elf V2 abi a function can have 2 entry points. The first // is a global entry point (GEP) which typically is used to initialize the TOC // pointer in general purpose register 2. The second is a local entry // point (LEP) which bypasses the TOC pointer initialization code. The // offset between GEP and LEP is encoded in a function's st_other flags. // This function will return the offset (in bytes) from the global entry-point // to the local entry-point. unsigned getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther); // Write a prefixed instruction, which is a 4-byte prefix followed by a 4-byte // instruction (regardless of endianness). Therefore, the prefix is always in // lower memory than the instruction. void writePrefixedInstruction(uint8_t *loc, uint64_t insn); void addPPC64SaveRestore(); uint64_t getPPC64TocBase(); uint64_t getAArch64Page(uint64_t expr); void riscvFinalizeRelax(int passes); class AArch64Relaxer { bool safeToRelaxAdrpLdr = true; public: explicit AArch64Relaxer(ArrayRef relocs); bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel, uint64_t secAddr, uint8_t *buf) const; bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel, uint64_t secAddr, uint8_t *buf) const; }; extern const TargetInfo *target; TargetInfo *getTarget(); template bool isMipsPIC(const Defined *sym); void reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, int64_t min, uint64_t max); void reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, const Twine &msg); // Make sure that V can be represented as an N bit signed integer. inline void checkInt(uint8_t *loc, int64_t v, int n, const Relocation &rel) { if (v != llvm::SignExtend64(v, n)) reportRangeError(loc, rel, Twine(v), llvm::minIntN(n), llvm::maxIntN(n)); } // Make sure that V can be represented as an N bit unsigned integer. inline void checkUInt(uint8_t *loc, uint64_t v, int n, const Relocation &rel) { if ((v >> n) != 0) reportRangeError(loc, rel, Twine(v), 0, llvm::maxUIntN(n)); } // Make sure that V can be represented as an N bit signed or unsigned integer. inline void checkIntUInt(uint8_t *loc, uint64_t v, int n, const Relocation &rel) { // For the error message we should cast V to a signed integer so that error // messages show a small negative value rather than an extremely large one if (v != (uint64_t)llvm::SignExtend64(v, n) && (v >> n) != 0) reportRangeError(loc, rel, Twine((int64_t)v), llvm::minIntN(n), llvm::maxUIntN(n)); } inline void checkAlignment(uint8_t *loc, uint64_t v, int n, const Relocation &rel) { if ((v & (n - 1)) != 0) error(getErrorLocation(loc) + "improper alignment for relocation " + lld::toString(rel.type) + ": 0x" + llvm::utohexstr(v) + " is not aligned to " + Twine(n) + " bytes"); } // Endianness-aware read/write. inline uint16_t read16(const void *p) { return llvm::support::endian::read16(p, config->endianness); } inline uint32_t read32(const void *p) { return llvm::support::endian::read32(p, config->endianness); } inline uint64_t read64(const void *p) { return llvm::support::endian::read64(p, config->endianness); } inline void write16(void *p, uint16_t v) { llvm::support::endian::write16(p, v, config->endianness); } inline void write32(void *p, uint32_t v) { llvm::support::endian::write32(p, v, config->endianness); } inline void write64(void *p, uint64_t v) { llvm::support::endian::write64(p, v, config->endianness); } } // namespace elf } // namespace lld #ifdef __clang__ #pragma clang diagnostic ignored "-Wgnu-zero-variadic-macro-arguments" #endif #define invokeELFT(f, ...) \ switch (config->ekind) { \ case ELF32LEKind: \ f(__VA_ARGS__); \ break; \ case ELF32BEKind: \ f(__VA_ARGS__); \ break; \ case ELF64LEKind: \ f(__VA_ARGS__); \ break; \ case ELF64BEKind: \ f(__VA_ARGS__); \ break; \ default: \ llvm_unreachable("unknown config->ekind"); \ } #endif