//===- Relocations.cpp ----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains platform-independent functions to process relocations. // I'll describe the overview of this file here. // // Simple relocations are easy to handle for the linker. For example, // for R_X86_64_PC64 relocs, the linker just has to fix up locations // with the relative offsets to the target symbols. It would just be // reading records from relocation sections and applying them to output. // // But not all relocations are that easy to handle. For example, for // R_386_GOTOFF relocs, the linker has to create new GOT entries for // symbols if they don't exist, and fix up locations with GOT entry // offsets from the beginning of GOT section. So there is more than // fixing addresses in relocation processing. // // ELF defines a large number of complex relocations. // // The functions in this file analyze relocations and do whatever needs // to be done. It includes, but not limited to, the following. // // - create GOT/PLT entries // - create new relocations in .dynsym to let the dynamic linker resolve // them at runtime (since ELF supports dynamic linking, not all // relocations can be resolved at link-time) // - create COPY relocs and reserve space in .bss // - replace expensive relocs (in terms of runtime cost) with cheap ones // - error out infeasible combinations such as PIC and non-relative relocs // // Note that the functions in this file don't actually apply relocations // because it doesn't know about the output file nor the output file buffer. // It instead stores Relocation objects to InputSection's Relocations // vector to let it apply later in InputSection::writeTo. // //===----------------------------------------------------------------------===// #include "Relocations.h" #include "Config.h" #include "LinkerScript.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "lld/Common/Strings.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Demangle/Demangle.h" #include "llvm/Support/Endian.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; static Optional getLinkerScriptLocation(const Symbol &sym) { for (SectionCommand *cmd : script->sectionCommands) if (auto *assign = dyn_cast(cmd)) if (assign->sym == &sym) return assign->location; return None; } static std::string getDefinedLocation(const Symbol &sym) { const char msg[] = "\n>>> defined in "; if (sym.file) return msg + toString(sym.file); if (Optional loc = getLinkerScriptLocation(sym)) return msg + *loc; return ""; } // Construct a message in the following format. // // >>> defined in /home/alice/src/foo.o // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) // >>> /home/alice/src/bar.o:(.text+0x1) static std::string getLocation(InputSectionBase &s, const Symbol &sym, uint64_t off) { std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; std::string src = s.getSrcMsg(sym, off); if (!src.empty()) msg += src + "\n>>> "; return msg + s.getObjMsg(off); } void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, int64_t min, uint64_t max) { ErrorPlace errPlace = getErrorPlace(loc); std::string hint; if (rel.sym && !rel.sym->isSection()) hint = "; references " + lld::toString(*rel.sym); if (!errPlace.srcLoc.empty()) hint += "\n>>> referenced by " + errPlace.srcLoc; if (rel.sym && !rel.sym->isSection()) hint += getDefinedLocation(*rel.sym); if (errPlace.isec && errPlace.isec->name.startswith(".debug")) hint += "; consider recompiling with -fdebug-types-section to reduce size " "of debug sections"; errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + " out of range: " + v.str() + " is not in [" + Twine(min).str() + ", " + Twine(max).str() + "]" + hint); } void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, const Twine &msg) { ErrorPlace errPlace = getErrorPlace(loc); std::string hint; if (!sym.getName().empty()) hint = "; references " + lld::toString(sym) + getDefinedLocation(sym); errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + " is not in [" + Twine(llvm::minIntN(n)) + ", " + Twine(llvm::maxIntN(n)) + "]" + hint); } // Build a bitmask with one bit set for each 64 subset of RelExpr. static constexpr uint64_t buildMask() { return 0; } template static constexpr uint64_t buildMask(int head, Tails... tails) { return (0 <= head && head < 64 ? uint64_t(1) << head : 0) | buildMask(tails...); } // Return true if `Expr` is one of `Exprs`. // There are more than 64 but less than 128 RelExprs, so we divide the set of // exprs into [0, 64) and [64, 128) and represent each range as a constant // 64-bit mask. Then we decide which mask to test depending on the value of // expr and use a simple shift and bitwise-and to test for membership. template static bool oneof(RelExpr expr) { assert(0 <= expr && (int)expr < 128 && "RelExpr is too large for 128-bit mask!"); if (expr >= 64) return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...); return (uint64_t(1) << expr) & buildMask(Exprs...); } static RelType getMipsPairType(RelType type, bool isLocal) { switch (type) { case R_MIPS_HI16: return R_MIPS_LO16; case R_MIPS_GOT16: // In case of global symbol, the R_MIPS_GOT16 relocation does not // have a pair. Each global symbol has a unique entry in the GOT // and a corresponding instruction with help of the R_MIPS_GOT16 // relocation loads an address of the symbol. In case of local // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 // relocations handle low 16 bits of the address. That allows // to allocate only one GOT entry for every 64 KBytes of local data. return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; case R_MICROMIPS_GOT16: return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; case R_MIPS_PCHI16: return R_MIPS_PCLO16; case R_MICROMIPS_HI16: return R_MICROMIPS_LO16; default: return R_MIPS_NONE; } } // True if non-preemptable symbol always has the same value regardless of where // the DSO is loaded. static bool isAbsolute(const Symbol &sym) { if (sym.isUndefWeak()) return true; if (const auto *dr = dyn_cast(&sym)) return dr->section == nullptr; // Absolute symbol. return false; } static bool isAbsoluteValue(const Symbol &sym) { return isAbsolute(sym) || sym.isTls(); } // Returns true if Expr refers a PLT entry. static bool needsPlt(RelExpr expr) { return oneof( expr); } // Returns true if Expr refers a GOT entry. Note that this function // returns false for TLS variables even though they need GOT, because // TLS variables uses GOT differently than the regular variables. static bool needsGot(RelExpr expr) { return oneof(expr); } // True if this expression is of the form Sym - X, where X is a position in the // file (PC, or GOT for example). static bool isRelExpr(RelExpr expr) { return oneof(expr); } static RelExpr toPlt(RelExpr expr) { switch (expr) { case R_PPC64_CALL: return R_PPC64_CALL_PLT; case R_PC: return R_PLT_PC; case R_ABS: return R_PLT; default: return expr; } } static RelExpr fromPlt(RelExpr expr) { // We decided not to use a plt. Optimize a reference to the plt to a // reference to the symbol itself. switch (expr) { case R_PLT_PC: case R_PPC32_PLTREL: return R_PC; case R_PPC64_CALL_PLT: return R_PPC64_CALL; case R_PLT: return R_ABS; case R_PLT_GOTPLT: return R_GOTPLTREL; default: return expr; } } // Returns true if a given shared symbol is in a read-only segment in a DSO. template static bool isReadOnly(SharedSymbol &ss) { using Elf_Phdr = typename ELFT::Phdr; // Determine if the symbol is read-only by scanning the DSO's program headers. const SharedFile &file = ss.getFile(); for (const Elf_Phdr &phdr : check(file.template getObj().program_headers())) if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && ss.value < phdr.p_vaddr + phdr.p_memsz) return true; return false; } // Returns symbols at the same offset as a given symbol, including SS itself. // // If two or more symbols are at the same offset, and at least one of // them are copied by a copy relocation, all of them need to be copied. // Otherwise, they would refer to different places at runtime. template static SmallSet getSymbolsAt(SharedSymbol &ss) { using Elf_Sym = typename ELFT::Sym; SharedFile &file = ss.getFile(); SmallSet ret; for (const Elf_Sym &s : file.template getGlobalELFSyms()) { if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || s.getType() == STT_TLS || s.st_value != ss.value) continue; StringRef name = check(s.getName(file.getStringTable())); Symbol *sym = symtab->find(name); if (auto *alias = dyn_cast_or_null(sym)) ret.insert(alias); } // The loop does not check SHT_GNU_verneed, so ret does not contain // non-default version symbols. If ss has a non-default version, ret won't // contain ss. Just add ss unconditionally. If a non-default version alias is // separately copy relocated, it and ss will have different addresses. // Fortunately this case is impractical and fails with GNU ld as well. ret.insert(&ss); return ret; } // When a symbol is copy relocated or we create a canonical plt entry, it is // effectively a defined symbol. In the case of copy relocation the symbol is // in .bss and in the case of a canonical plt entry it is in .plt. This function // replaces the existing symbol with a Defined pointing to the appropriate // location. static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value, uint64_t size) { Symbol old = sym; sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, sym.type, value, size, &sec}); sym.auxIdx = old.auxIdx; sym.verdefIndex = old.verdefIndex; sym.exportDynamic = true; sym.isUsedInRegularObj = true; // A copy relocated alias may need a GOT entry. sym.needsGot = old.needsGot; } // Reserve space in .bss or .bss.rel.ro for copy relocation. // // The copy relocation is pretty much a hack. If you use a copy relocation // in your program, not only the symbol name but the symbol's size, RW/RO // bit and alignment become part of the ABI. In addition to that, if the // symbol has aliases, the aliases become part of the ABI. That's subtle, // but if you violate that implicit ABI, that can cause very counter- // intuitive consequences. // // So, what is the copy relocation? It's for linking non-position // independent code to DSOs. In an ideal world, all references to data // exported by DSOs should go indirectly through GOT. But if object files // are compiled as non-PIC, all data references are direct. There is no // way for the linker to transform the code to use GOT, as machine // instructions are already set in stone in object files. This is where // the copy relocation takes a role. // // A copy relocation instructs the dynamic linker to copy data from a DSO // to a specified address (which is usually in .bss) at load-time. If the // static linker (that's us) finds a direct data reference to a DSO // symbol, it creates a copy relocation, so that the symbol can be // resolved as if it were in .bss rather than in a DSO. // // As you can see in this function, we create a copy relocation for the // dynamic linker, and the relocation contains not only symbol name but // various other information about the symbol. So, such attributes become a // part of the ABI. // // Note for application developers: I can give you a piece of advice if // you are writing a shared library. You probably should export only // functions from your library. You shouldn't export variables. // // As an example what can happen when you export variables without knowing // the semantics of copy relocations, assume that you have an exported // variable of type T. It is an ABI-breaking change to add new members at // end of T even though doing that doesn't change the layout of the // existing members. That's because the space for the new members are not // reserved in .bss unless you recompile the main program. That means they // are likely to overlap with other data that happens to be laid out next // to the variable in .bss. This kind of issue is sometimes very hard to // debug. What's a solution? Instead of exporting a variable V from a DSO, // define an accessor getV(). template static void addCopyRelSymbolImpl(SharedSymbol &ss) { // Copy relocation against zero-sized symbol doesn't make sense. uint64_t symSize = ss.getSize(); if (symSize == 0 || ss.alignment == 0) fatal("cannot create a copy relocation for symbol " + toString(ss)); // See if this symbol is in a read-only segment. If so, preserve the symbol's // memory protection by reserving space in the .bss.rel.ro section. bool isRO = isReadOnly(ss); BssSection *sec = make(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); // At this point, sectionBases has been migrated to sections. Append sec to // sections. if (osec->commands.empty() || !isa(osec->commands.back())) osec->commands.push_back(make("")); auto *isd = cast(osec->commands.back()); isd->sections.push_back(sec); osec->commitSection(sec); // Look through the DSO's dynamic symbol table for aliases and create a // dynamic symbol for each one. This causes the copy relocation to correctly // interpose any aliases. for (SharedSymbol *sym : getSymbolsAt(ss)) replaceWithDefined(*sym, *sec, 0, sym->size); mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss); } static void addCopyRelSymbol(SharedSymbol &ss) { const SharedFile &file = ss.getFile(); switch (file.ekind) { case ELF32LEKind: addCopyRelSymbolImpl(ss); break; case ELF32BEKind: addCopyRelSymbolImpl(ss); break; case ELF64LEKind: addCopyRelSymbolImpl(ss); break; case ELF64BEKind: addCopyRelSymbolImpl(ss); break; default: llvm_unreachable(""); } } // .eh_frame sections are mergeable input sections, so their input // offsets are not linearly mapped to output section. For each input // offset, we need to find a section piece containing the offset and // add the piece's base address to the input offset to compute the // output offset. That isn't cheap. // // This class is to speed up the offset computation. When we process // relocations, we access offsets in the monotonically increasing // order. So we can optimize for that access pattern. // // For sections other than .eh_frame, this class doesn't do anything. namespace { class OffsetGetter { public: explicit OffsetGetter(InputSectionBase &sec) { if (auto *eh = dyn_cast(&sec)) pieces = eh->pieces; } // Translates offsets in input sections to offsets in output sections. // Given offset must increase monotonically. We assume that Piece is // sorted by inputOff. uint64_t get(uint64_t off) { if (pieces.empty()) return off; while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) ++i; if (i == pieces.size()) fatal(".eh_frame: relocation is not in any piece"); // Pieces must be contiguous, so there must be no holes in between. assert(pieces[i].inputOff <= off && "Relocation not in any piece"); // Offset -1 means that the piece is dead (i.e. garbage collected). if (pieces[i].outputOff == -1) return -1; return pieces[i].outputOff + off - pieces[i].inputOff; } private: ArrayRef pieces; size_t i = 0; }; // This class encapsulates states needed to scan relocations for one // InputSectionBase. class RelocationScanner { public: explicit RelocationScanner(InputSectionBase &sec) : sec(sec), getter(sec), config(elf::config.get()), target(*elf::target) { } template void scan(ArrayRef rels); private: InputSectionBase &sec; OffsetGetter getter; const Configuration *const config; const TargetInfo ⌖ // End of relocations, used by Mips/PPC64. const void *end = nullptr; template RelType getMipsN32RelType(RelTy *&rel) const; template int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const; template int64_t computeAddend(const RelTy &rel, RelExpr expr, bool isLocal) const; bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, uint64_t relOff) const; void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym, int64_t addend) const; template void scanOne(RelTy *&i); }; } // namespace // MIPS has an odd notion of "paired" relocations to calculate addends. // For example, if a relocation is of R_MIPS_HI16, there must be a // R_MIPS_LO16 relocation after that, and an addend is calculated using // the two relocations. template int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const { if (expr == R_MIPS_GOTREL && isLocal) return sec.getFile()->mipsGp0; // The ABI says that the paired relocation is used only for REL. // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (RelTy::IsRela) return 0; RelType type = rel.getType(config->isMips64EL); uint32_t pairTy = getMipsPairType(type, isLocal); if (pairTy == R_MIPS_NONE) return 0; const uint8_t *buf = sec.data().data(); uint32_t symIndex = rel.getSymbol(config->isMips64EL); // To make things worse, paired relocations might not be contiguous in // the relocation table, so we need to do linear search. *sigh* for (const RelTy *ri = &rel; ri != static_cast(end); ++ri) if (ri->getType(config->isMips64EL) == pairTy && ri->getSymbol(config->isMips64EL) == symIndex) return target.getImplicitAddend(buf + ri->r_offset, pairTy); warn("can't find matching " + toString(pairTy) + " relocation for " + toString(type)); return 0; } // Returns an addend of a given relocation. If it is RELA, an addend // is in a relocation itself. If it is REL, we need to read it from an // input section. template int64_t RelocationScanner::computeAddend(const RelTy &rel, RelExpr expr, bool isLocal) const { int64_t addend; RelType type = rel.getType(config->isMips64EL); if (RelTy::IsRela) { addend = getAddend(rel); } else { const uint8_t *buf = sec.data().data(); addend = target.getImplicitAddend(buf + rel.r_offset, type); } if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) addend += getPPC64TocBase(); if (config->emachine == EM_MIPS) addend += computeMipsAddend(rel, expr, isLocal); return addend; } // Custom error message if Sym is defined in a discarded section. template static std::string maybeReportDiscarded(Undefined &sym) { auto *file = dyn_cast_or_null>(sym.file); if (!file || !sym.discardedSecIdx || file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) return ""; ArrayRef objSections = file->template getELFShdrs(); std::string msg; if (sym.type == ELF::STT_SECTION) { msg = "relocation refers to a discarded section: "; msg += CHECK( file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); } else { msg = "relocation refers to a symbol in a discarded section: " + toString(sym); } msg += "\n>>> defined in " + toString(file); Elf_Shdr_Impl elfSec = objSections[sym.discardedSecIdx - 1]; if (elfSec.sh_type != SHT_GROUP) return msg; // If the discarded section is a COMDAT. StringRef signature = file->getShtGroupSignature(objSections, elfSec); if (const InputFile *prevailing = symtab->comdatGroups.lookup(CachedHashStringRef(signature))) msg += "\n>>> section group signature: " + signature.str() + "\n>>> prevailing definition is in " + toString(prevailing); return msg; } // Undefined diagnostics are collected in a vector and emitted once all of // them are known, so that some postprocessing on the list of undefined symbols // can happen before lld emits diagnostics. struct UndefinedDiag { Undefined *sym; struct Loc { InputSectionBase *sec; uint64_t offset; }; std::vector locs; bool isWarning; }; static std::vector undefs; // Check whether the definition name def is a mangled function name that matches // the reference name ref. static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { llvm::ItaniumPartialDemangler d; std::string name = def.str(); if (d.partialDemangle(name.c_str())) return false; char *buf = d.getFunctionName(nullptr, nullptr); if (!buf) return false; bool ret = ref == buf; free(buf); return ret; } // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns // the suggested symbol, which is either in the symbol table, or in the same // file of sym. static const Symbol *getAlternativeSpelling(const Undefined &sym, std::string &pre_hint, std::string &post_hint) { DenseMap map; if (sym.file && sym.file->kind() == InputFile::ObjKind) { auto *file = cast(sym.file); // If sym is a symbol defined in a discarded section, maybeReportDiscarded() // will give an error. Don't suggest an alternative spelling. if (file && sym.discardedSecIdx != 0 && file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) return nullptr; // Build a map of local defined symbols. for (const Symbol *s : sym.file->getSymbols()) if (s->isLocal() && s->isDefined() && !s->getName().empty()) map.try_emplace(s->getName(), s); } auto suggest = [&](StringRef newName) -> const Symbol * { // If defined locally. if (const Symbol *s = map.lookup(newName)) return s; // If in the symbol table and not undefined. if (const Symbol *s = symtab->find(newName)) if (!s->isUndefined()) return s; return nullptr; }; // This loop enumerates all strings of Levenshtein distance 1 as typo // correction candidates and suggests the one that exists as a non-undefined // symbol. StringRef name = sym.getName(); for (size_t i = 0, e = name.size(); i != e + 1; ++i) { // Insert a character before name[i]. std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); for (char c = '0'; c <= 'z'; ++c) { newName[i] = c; if (const Symbol *s = suggest(newName)) return s; } if (i == e) break; // Substitute name[i]. newName = std::string(name); for (char c = '0'; c <= 'z'; ++c) { newName[i] = c; if (const Symbol *s = suggest(newName)) return s; } // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is // common. if (i + 1 < e) { newName[i] = name[i + 1]; newName[i + 1] = name[i]; if (const Symbol *s = suggest(newName)) return s; } // Delete name[i]. newName = (name.substr(0, i) + name.substr(i + 1)).str(); if (const Symbol *s = suggest(newName)) return s; } // Case mismatch, e.g. Foo vs FOO. for (auto &it : map) if (name.equals_insensitive(it.first)) return it.second; for (Symbol *sym : symtab->symbols()) if (!sym->isUndefined() && name.equals_insensitive(sym->getName())) return sym; // The reference may be a mangled name while the definition is not. Suggest a // missing extern "C". if (name.startswith("_Z")) { std::string buf = name.str(); llvm::ItaniumPartialDemangler d; if (!d.partialDemangle(buf.c_str())) if (char *buf = d.getFunctionName(nullptr, nullptr)) { const Symbol *s = suggest(buf); free(buf); if (s) { pre_hint = ": extern \"C\" "; return s; } } } else { const Symbol *s = nullptr; for (auto &it : map) if (canSuggestExternCForCXX(name, it.first)) { s = it.second; break; } if (!s) for (Symbol *sym : symtab->symbols()) if (canSuggestExternCForCXX(name, sym->getName())) { s = sym; break; } if (s) { pre_hint = " to declare "; post_hint = " as extern \"C\"?"; return s; } } return nullptr; } template static void reportUndefinedSymbol(const UndefinedDiag &undef, bool correctSpelling) { Undefined &sym = *undef.sym; auto visibility = [&]() -> std::string { switch (sym.visibility) { case STV_INTERNAL: return "internal "; case STV_HIDDEN: return "hidden "; case STV_PROTECTED: return "protected "; default: return ""; } }; std::string msg = maybeReportDiscarded(sym); if (msg.empty()) msg = "undefined " + visibility() + "symbol: " + toString(sym); const size_t maxUndefReferences = 3; size_t i = 0; for (UndefinedDiag::Loc l : undef.locs) { if (i >= maxUndefReferences) break; InputSectionBase &sec = *l.sec; uint64_t offset = l.offset; msg += "\n>>> referenced by "; std::string src = sec.getSrcMsg(sym, offset); if (!src.empty()) msg += src + "\n>>> "; msg += sec.getObjMsg(offset); i++; } if (i < undef.locs.size()) msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") .str(); if (correctSpelling) { std::string pre_hint = ": ", post_hint; if (const Symbol *corrected = getAlternativeSpelling(sym, pre_hint, post_hint)) { msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; if (corrected->file) msg += "\n>>> defined in: " + toString(corrected->file); } } if (sym.getName().startswith("_ZTV")) msg += "\n>>> the vtable symbol may be undefined because the class is missing " "its key function (see https://lld.llvm.org/missingkeyfunction)"; if (config->gcSections && config->zStartStopGC && sym.getName().startswith("__start_")) { msg += "\n>>> the encapsulation symbol needs to be retained under " "--gc-sections properly; consider -z nostart-stop-gc " "(see https://lld.llvm.org/ELF/start-stop-gc)"; } if (undef.isWarning) warn(msg); else error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); } template void elf::reportUndefinedSymbols() { // Find the first "undefined symbol" diagnostic for each diagnostic, and // collect all "referenced from" lines at the first diagnostic. DenseMap firstRef; for (UndefinedDiag &undef : undefs) { assert(undef.locs.size() == 1); if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { canon->locs.push_back(undef.locs[0]); undef.locs.clear(); } else firstRef[undef.sym] = &undef; } // Enable spell corrector for the first 2 diagnostics. for (auto it : enumerate(undefs)) if (!it.value().locs.empty()) reportUndefinedSymbol(it.value(), it.index() < 2); undefs.clear(); } // Report an undefined symbol if necessary. // Returns true if the undefined symbol will produce an error message. static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec, uint64_t offset) { // If versioned, issue an error (even if the symbol is weak) because we don't // know the defining filename which is required to construct a Verneed entry. if (sym.hasVersionSuffix) { undefs.push_back({&sym, {{&sec, offset}}, false}); return true; } if (sym.isWeak()) return false; bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) return false; // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc // which references a switch table in a discarded .rodata/.text section. The // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF // spec says references from outside the group to a STB_LOCAL symbol are not // allowed. Work around the bug. // // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible // because .LC0-.LTOC is not representable if the two labels are in different // .got2 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc")) return false; bool isWarning = (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || config->noinhibitExec; undefs.push_back({&sym, {{&sec, offset}}, isWarning}); return !isWarning; } // MIPS N32 ABI treats series of successive relocations with the same offset // as a single relocation. The similar approach used by N64 ABI, but this ABI // packs all relocations into the single relocation record. Here we emulate // this for the N32 ABI. Iterate over relocation with the same offset and put // theirs types into the single bit-set. template RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const { RelType type = 0; uint64_t offset = rel->r_offset; int n = 0; while (rel != static_cast(end) && rel->r_offset == offset) type |= (rel++)->getType(config->isMips64EL) << (8 * n++); return type; } static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, int64_t addend, RelExpr expr, RelType type) { Partition &part = isec.getPartition(); // Add a relative relocation. If relrDyn section is enabled, and the // relocation offset is guaranteed to be even, add the relocation to // the relrDyn section, otherwise add it to the relaDyn section. // relrDyn sections don't support odd offsets. Also, relrDyn sections // don't store the addend values, so we must write it to the relocated // address. if (part.relrDyn && isec.alignment >= 2 && offsetInSec % 2 == 0) { isec.relocations.push_back({expr, type, offsetInSec, addend, &sym}); part.relrDyn->relocs.push_back({&isec, offsetInSec}); return; } part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym, addend, type, expr); } template static void addPltEntry(PltSection &plt, GotPltSection &gotPlt, RelocationBaseSection &rel, RelType type, Symbol &sym) { plt.addEntry(sym); gotPlt.addEntry(sym); rel.addReloc({type, &gotPlt, sym.getGotPltOffset(), sym.isPreemptible ? DynamicReloc::AgainstSymbol : DynamicReloc::AddendOnlyWithTargetVA, sym, 0, R_ABS}); } static void addGotEntry(Symbol &sym) { in.got->addEntry(sym); uint64_t off = sym.getGotOffset(); // If preemptible, emit a GLOB_DAT relocation. if (sym.isPreemptible) { mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off, DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); return; } // Otherwise, the value is either a link-time constant or the load base // plus a constant. if (!config->isPic || isAbsolute(sym)) in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym}); else addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel); } static void addTpOffsetGotEntry(Symbol &sym) { in.got->addEntry(sym); uint64_t off = sym.getGotOffset(); if (!sym.isPreemptible && !config->isPic) { in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym}); return; } mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( target->tlsGotRel, *in.got, off, sym, target->symbolicRel); } // Return true if we can define a symbol in the executable that // contains the value/function of a symbol defined in a shared // library. static bool canDefineSymbolInExecutable(Symbol &sym) { // If the symbol has default visibility the symbol defined in the // executable will preempt it. // Note that we want the visibility of the shared symbol itself, not // the visibility of the symbol in the output file we are producing. That is // why we use Sym.stOther. if ((sym.stOther & 0x3) == STV_DEFAULT) return true; // If we are allowed to break address equality of functions, defining // a plt entry will allow the program to call the function in the // .so, but the .so and the executable will no agree on the address // of the function. Similar logic for objects. return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || (sym.isObject() && config->ignoreDataAddressEquality)); } // Returns true if a given relocation can be computed at link-time. // This only handles relocation types expected in processRelocAux. // // For instance, we know the offset from a relocation to its target at // link-time if the relocation is PC-relative and refers a // non-interposable function in the same executable. This function // will return true for such relocation. // // If this function returns false, that means we need to emit a // dynamic relocation so that the relocation will be fixed at load-time. bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, uint64_t relOff) const { // These expressions always compute a constant if (oneof(e)) return true; // These never do, except if the entire file is position dependent or if // only the low bits are used. if (e == R_GOT || e == R_PLT) return target.usesOnlyLowPageBits(type) || !config->isPic; if (sym.isPreemptible) return false; if (!config->isPic) return true; // The size of a non preemptible symbol is a constant. if (e == R_SIZE) return true; // For the target and the relocation, we want to know if they are // absolute or relative. bool absVal = isAbsoluteValue(sym); bool relE = isRelExpr(e); if (absVal && !relE) return true; if (!absVal && relE) return true; if (!absVal && !relE) return target.usesOnlyLowPageBits(type); assert(absVal && relE); // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol // in PIC mode. This is a little strange, but it allows us to link function // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). // Normally such a call will be guarded with a comparison, which will load a // zero from the GOT. if (sym.isUndefWeak()) return true; // We set the final symbols values for linker script defined symbols later. // They always can be computed as a link time constant. if (sym.scriptDefined) return true; error("relocation " + toString(type) + " cannot refer to absolute symbol: " + toString(sym) + getLocation(sec, sym, relOff)); return true; } // The reason we have to do this early scan is as follows // * To mmap the output file, we need to know the size // * For that, we need to know how many dynamic relocs we will have. // It might be possible to avoid this by outputting the file with write: // * Write the allocated output sections, computing addresses. // * Apply relocations, recording which ones require a dynamic reloc. // * Write the dynamic relocations. // * Write the rest of the file. // This would have some drawbacks. For example, we would only know if .rela.dyn // is needed after applying relocations. If it is, it will go after rw and rx // sections. Given that it is ro, we will need an extra PT_LOAD. This // complicates things for the dynamic linker and means we would have to reserve // space for the extra PT_LOAD even if we end up not using it. void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym, int64_t addend) const { // If the relocation is known to be a link-time constant, we know no dynamic // relocation will be created, pass the control to relocateAlloc() or // relocateNonAlloc() to resolve it. // // The behavior of an undefined weak reference is implementation defined. For // non-link-time constants, we resolve relocations statically (let // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic // relocations for -pie and -shared. // // The general expectation of -no-pie static linking is that there is no // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for // -shared matches the spirit of its -z undefs default. -pie has freedom on // choices, and we choose dynamic relocations to be consistent with the // handling of GOT-generating relocations. if (isStaticLinkTimeConstant(expr, type, sym, offset) || (!config->isPic && sym.isUndefWeak())) { sec.relocations.push_back({expr, type, offset, addend, &sym}); return; } bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; if (canWrite) { RelType rel = target.getDynRel(type); if (expr == R_GOT || (rel == target.symbolicRel && !sym.isPreemptible)) { addRelativeReloc(sec, offset, sym, addend, expr, type); return; } else if (rel != 0) { if (config->emachine == EM_MIPS && rel == target.symbolicRel) rel = target.relativeRel; sec.getPartition().relaDyn->addSymbolReloc(rel, sec, offset, sym, addend, type); // MIPS ABI turns using of GOT and dynamic relocations inside out. // While regular ABI uses dynamic relocations to fill up GOT entries // MIPS ABI requires dynamic linker to fills up GOT entries using // specially sorted dynamic symbol table. This affects even dynamic // relocations against symbols which do not require GOT entries // creation explicitly, i.e. do not have any GOT-relocations. So if // a preemptible symbol has a dynamic relocation we anyway have // to create a GOT entry for it. // If a non-preemptible symbol has a dynamic relocation against it, // dynamic linker takes it st_value, adds offset and writes down // result of the dynamic relocation. In case of preemptible symbol // dynamic linker performs symbol resolution, writes the symbol value // to the GOT entry and reads the GOT entry when it needs to perform // a dynamic relocation. // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 if (config->emachine == EM_MIPS) in.mipsGot->addEntry(*sec.file, sym, addend, expr); return; } } // When producing an executable, we can perform copy relocations (for // STT_OBJECT) and canonical PLT (for STT_FUNC). if (!config->shared) { if (!canDefineSymbolInExecutable(sym)) { errorOrWarn("cannot preempt symbol: " + toString(sym) + getLocation(sec, sym, offset)); return; } if (sym.isObject()) { // Produce a copy relocation. if (auto *ss = dyn_cast(&sym)) { if (!config->zCopyreloc) error("unresolvable relocation " + toString(type) + " against symbol '" + toString(*ss) + "'; recompile with -fPIC or remove '-z nocopyreloc'" + getLocation(sec, sym, offset)); sym.needsCopy = true; } sec.relocations.push_back({expr, type, offset, addend, &sym}); return; } // This handles a non PIC program call to function in a shared library. In // an ideal world, we could just report an error saying the relocation can // overflow at runtime. In the real world with glibc, crt1.o has a // R_X86_64_PC32 pointing to libc.so. // // The general idea on how to handle such cases is to create a PLT entry and // use that as the function value. // // For the static linking part, we just return a plt expr and everything // else will use the PLT entry as the address. // // The remaining problem is making sure pointer equality still works. We // need the help of the dynamic linker for that. We let it know that we have // a direct reference to a so symbol by creating an undefined symbol with a // non zero st_value. Seeing that, the dynamic linker resolves the symbol to // the value of the symbol we created. This is true even for got entries, so // pointer equality is maintained. To avoid an infinite loop, the only entry // that points to the real function is a dedicated got entry used by the // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, // R_386_JMP_SLOT, etc). // For position independent executable on i386, the plt entry requires ebx // to be set. This causes two problems: // * If some code has a direct reference to a function, it was probably // compiled without -fPIE/-fPIC and doesn't maintain ebx. // * If a library definition gets preempted to the executable, it will have // the wrong ebx value. if (sym.isFunc()) { if (config->pie && config->emachine == EM_386) errorOrWarn("symbol '" + toString(sym) + "' cannot be preempted; recompile with -fPIE" + getLocation(sec, sym, offset)); sym.needsCopy = true; sym.needsPlt = true; sec.relocations.push_back({expr, type, offset, addend, &sym}); return; } } errorOrWarn("relocation " + toString(type) + " cannot be used against " + (sym.getName().empty() ? "local symbol" : "symbol '" + toString(sym) + "'") + "; recompile with -fPIC" + getLocation(sec, sym, offset)); } // This function is similar to the `handleTlsRelocation`. MIPS does not // support any relaxations for TLS relocations so by factoring out MIPS // handling in to the separate function we can simplify the code and do not // pollute other `handleTlsRelocation` by MIPS `ifs` statements. // Mips has a custom MipsGotSection that handles the writing of GOT entries // without dynamic relocations. static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, uint64_t offset, int64_t addend, RelExpr expr) { if (expr == R_MIPS_TLSLD) { in.mipsGot->addTlsIndex(*c.file); c.relocations.push_back({expr, type, offset, addend, &sym}); return 1; } if (expr == R_MIPS_TLSGD) { in.mipsGot->addDynTlsEntry(*c.file, sym); c.relocations.push_back({expr, type, offset, addend, &sym}); return 1; } return 0; } // Notes about General Dynamic and Local Dynamic TLS models below. They may // require the generation of a pair of GOT entries that have associated dynamic // relocations. The pair of GOT entries created are of the form GOT[e0] Module // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of // symbol in TLS block. // // Returns the number of relocations processed. static unsigned handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, uint64_t offset, int64_t addend, RelExpr expr) { if (!sym.isTls()) return 0; if (config->emachine == EM_MIPS) return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); if (oneof(expr) && config->shared) { if (expr != R_TLSDESC_CALL) { sym.needsTlsDesc = true; c.relocations.push_back({expr, type, offset, addend, &sym}); } return 1; } // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable // relaxation as well. bool toExecRelax = !config->shared && config->emachine != EM_ARM && config->emachine != EM_HEXAGON && config->emachine != EM_RISCV && !c.file->ppc64DisableTLSRelax; // If we are producing an executable and the symbol is non-preemptable, it // must be defined and the code sequence can be relaxed to use Local-Exec. // // ARM and RISC-V do not support any relaxations for TLS relocations, however, // we can omit the DTPMOD dynamic relocations and resolve them at link time // because them are always 1. This may be necessary for static linking as // DTPMOD may not be expected at load time. bool isLocalInExecutable = !sym.isPreemptible && !config->shared; // Local Dynamic is for access to module local TLS variables, while still // being suitable for being dynamically loaded via dlopen. GOT[e0] is the // module index, with a special value of 0 for the current module. GOT[e1] is // unused. There only needs to be one module index entry. if (oneof( expr)) { // Local-Dynamic relocs can be relaxed to Local-Exec. if (toExecRelax) { c.relocations.push_back( {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset, addend, &sym}); return target->getTlsGdRelaxSkip(type); } if (expr == R_TLSLD_HINT) return 1; sym.needsTlsLd = true; c.relocations.push_back({expr, type, offset, addend, &sym}); return 1; } // Local-Dynamic relocs can be relaxed to Local-Exec. if (expr == R_DTPREL) { if (toExecRelax) expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE); c.relocations.push_back({expr, type, offset, addend, &sym}); return 1; } // Local-Dynamic sequence where offset of tls variable relative to dynamic // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. if (expr == R_TLSLD_GOT_OFF) { sym.needsGotDtprel = true; c.relocations.push_back({expr, type, offset, addend, &sym}); return 1; } if (oneof(expr)) { if (!toExecRelax) { sym.needsTlsGd = true; c.relocations.push_back({expr, type, offset, addend, &sym}); return 1; } // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec // depending on the symbol being locally defined or not. if (sym.isPreemptible) { sym.needsTlsGdToIe = true; c.relocations.push_back( {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset, addend, &sym}); } else { c.relocations.push_back( {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset, addend, &sym}); } return target->getTlsGdRelaxSkip(type); } if (oneof(expr)) { // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally // defined. if (toExecRelax && isLocalInExecutable) { c.relocations.push_back( {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); } else if (expr != R_TLSIE_HINT) { sym.needsTlsIe = true; // R_GOT needs a relative relocation for PIC on i386 and Hexagon. if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type)) addRelativeReloc(c, offset, sym, addend, expr, type); else c.relocations.push_back({expr, type, offset, addend, &sym}); } return 1; } return 0; } template void RelocationScanner::scanOne(RelTy *&i) { const RelTy &rel = *i; uint32_t symIndex = rel.getSymbol(config->isMips64EL); Symbol &sym = sec.getFile()->getSymbol(symIndex); RelType type; // Deal with MIPS oddity. if (config->mipsN32Abi) { type = getMipsN32RelType(i); } else { type = rel.getType(config->isMips64EL); ++i; } // Get an offset in an output section this relocation is applied to. uint64_t offset = getter.get(rel.r_offset); if (offset == uint64_t(-1)) return; // Error if the target symbol is undefined. Symbol index 0 may be used by // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. if (sym.isUndefined() && symIndex != 0 && maybeReportUndefined(cast(sym), sec, offset)) return; const uint8_t *relocatedAddr = sec.data().begin() + offset; RelExpr expr = target.getRelExpr(type, sym, relocatedAddr); // Ignore R_*_NONE and other marker relocations. if (expr == R_NONE) return; // Read an addend. int64_t addend = computeAddend(rel, expr, sym.isLocal()); if (config->emachine == EM_PPC64) { // We can separate the small code model relocations into 2 categories: // 1) Those that access the compiler generated .toc sections. // 2) Those that access the linker allocated got entries. // lld allocates got entries to symbols on demand. Since we don't try to // sort the got entries in any way, we don't have to track which objects // have got-based small code model relocs. The .toc sections get placed // after the end of the linker allocated .got section and we do sort those // so sections addressed with small code model relocations come first. if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS) sec.file->ppc64SmallCodeModelTocRelocs = true; // Record the TOC entry (.toc + addend) as not relaxable. See the comment in // InputSectionBase::relocateAlloc(). if (type == R_PPC64_TOC16_LO && sym.isSection() && isa(sym) && cast(sym).section->name == ".toc") ppc64noTocRelax.insert({&sym, addend}); if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { if (i == end) { errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " "relocation" + getLocation(sec, sym, offset)); return; } // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, // so we can discern it later from the toc-case. if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) ++offset; } } // If the relocation does not emit a GOT or GOTPLT entry but its computation // uses their addresses, we need GOT or GOTPLT to be created. // // The 5 types that relative GOTPLT are all x86 and x86-64 specific. if (oneof(expr)) { in.gotPlt->hasGotPltOffRel = true; } else if (oneof(expr)) { in.got->hasGotOffRel = true; } // Process TLS relocations, including relaxing TLS relocations. Note that // R_TPREL and R_TPREL_NEG relocations are resolved in processAux. if (expr == R_TPREL || expr == R_TPREL_NEG) { if (config->shared) { errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + " cannot be used with -shared" + getLocation(sec, sym, offset)); return; } } else if (unsigned processed = handleTlsRelocation(type, sym, sec, offset, addend, expr)) { i += (processed - 1); return; } // Relax relocations. // // If we know that a PLT entry will be resolved within the same ELF module, we // can skip PLT access and directly jump to the destination function. For // example, if we are linking a main executable, all dynamic symbols that can // be resolved within the executable will actually be resolved that way at // runtime, because the main executable is always at the beginning of a search // list. We can leverage that fact. if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { if (expr != R_GOT_PC) { // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call // stub type. It should be ignored if optimized to R_PC. if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) addend &= ~0x8000; // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into // call __tls_get_addr even if the symbol is non-preemptible. if (!(config->emachine == EM_HEXAGON && (type == R_HEX_GD_PLT_B22_PCREL || type == R_HEX_GD_PLT_B22_PCREL_X || type == R_HEX_GD_PLT_B32_PCREL_X))) expr = fromPlt(expr); } else if (!isAbsoluteValue(sym)) { expr = target.adjustGotPcExpr(type, addend, relocatedAddr); } } // We were asked not to generate PLT entries for ifuncs. Instead, pass the // direct relocation on through. if (sym.isGnuIFunc() && config->zIfuncNoplt) { sym.exportDynamic = true; mainPart->relaDyn->addSymbolReloc(type, sec, offset, sym, addend, type); return; } if (needsGot(expr)) { if (config->emachine == EM_MIPS) { // MIPS ABI has special rules to process GOT entries and doesn't // require relocation entries for them. A special case is TLS // relocations. In that case dynamic loader applies dynamic // relocations to initialize TLS GOT entries. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf in.mipsGot->addEntry(*sec.file, sym, addend, expr); } else { sym.needsGot = true; } } else if (needsPlt(expr)) { sym.needsPlt = true; } else { sym.hasDirectReloc = true; } processAux(expr, type, offset, sym, addend); } // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the // instructions are generated by very old IBM XL compilers. Work around the // issue by disabling GD/LD to IE/LE relaxation. template static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef rels) { // Skip if sec is synthetic (sec.file is null) or if sec has been marked. if (!sec.file || sec.file->ppc64DisableTLSRelax) return; bool hasGDLD = false; for (const RelTy &rel : rels) { RelType type = rel.getType(false); switch (type) { case R_PPC64_TLSGD: case R_PPC64_TLSLD: return; // Found a marker case R_PPC64_GOT_TLSGD16: case R_PPC64_GOT_TLSGD16_HA: case R_PPC64_GOT_TLSGD16_HI: case R_PPC64_GOT_TLSGD16_LO: case R_PPC64_GOT_TLSLD16: case R_PPC64_GOT_TLSLD16_HA: case R_PPC64_GOT_TLSLD16_HI: case R_PPC64_GOT_TLSLD16_LO: hasGDLD = true; break; } } if (hasGDLD) { sec.file->ppc64DisableTLSRelax = true; warn(toString(sec.file) + ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); } } template void RelocationScanner::scan(ArrayRef rels) { // Not all relocations end up in Sec.Relocations, but a lot do. sec.relocations.reserve(rels.size()); if (config->emachine == EM_PPC64) checkPPC64TLSRelax(sec, rels); // For EhInputSection, OffsetGetter expects the relocations to be sorted by // r_offset. In rare cases (.eh_frame pieces are reordered by a linker // script), the relocations may be unordered. SmallVector storage; if (isa(sec)) rels = sortRels(rels, storage); end = static_cast(rels.end()); for (auto i = rels.begin(); i != end;) scanOne(i); // Sort relocations by offset for more efficient searching for // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. if (config->emachine == EM_RISCV || (config->emachine == EM_PPC64 && sec.name == ".toc")) llvm::stable_sort(sec.relocations, [](const Relocation &lhs, const Relocation &rhs) { return lhs.offset < rhs.offset; }); } template void elf::scanRelocations(InputSectionBase &s) { RelocationScanner scanner(s); const RelsOrRelas rels = s.template relsOrRelas(); if (rels.areRelocsRel()) scanner.template scan(rels.rels); else scanner.template scan(rels.relas); } static bool handleNonPreemptibleIfunc(Symbol &sym) { // Handle a reference to a non-preemptible ifunc. These are special in a // few ways: // // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have // a fixed value. But assuming that all references to the ifunc are // GOT-generating or PLT-generating, the handling of an ifunc is // relatively straightforward. We create a PLT entry in Iplt, which is // usually at the end of .plt, which makes an indirect call using a // matching GOT entry in igotPlt, which is usually at the end of .got.plt. // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, // which is usually at the end of .rela.plt. Unlike most relocations in // .rela.plt, which may be evaluated lazily without -z now, dynamic // loaders evaluate IRELATIVE relocs eagerly, which means that for // IRELATIVE relocs only, GOT-generating relocations can point directly to // .got.plt without requiring a separate GOT entry. // // - Despite the fact that an ifunc does not have a fixed value, compilers // that are not passed -fPIC will assume that they do, and will emit // direct (non-GOT-generating, non-PLT-generating) relocations to the // symbol. This means that if a direct relocation to the symbol is // seen, the linker must set a value for the symbol, and this value must // be consistent no matter what type of reference is made to the symbol. // This can be done by creating a PLT entry for the symbol in the way // described above and making it canonical, that is, making all references // point to the PLT entry instead of the resolver. In lld we also store // the address of the PLT entry in the dynamic symbol table, which means // that the symbol will also have the same value in other modules. // Because the value loaded from the GOT needs to be consistent with // the value computed using a direct relocation, a non-preemptible ifunc // may end up with two GOT entries, one in .got.plt that points to the // address returned by the resolver and is used only by the PLT entry, // and another in .got that points to the PLT entry and is used by // GOT-generating relocations. // // - The fact that these symbols do not have a fixed value makes them an // exception to the general rule that a statically linked executable does // not require any form of dynamic relocation. To handle these relocations // correctly, the IRELATIVE relocations are stored in an array which a // statically linked executable's startup code must enumerate using the // linker-defined symbols __rela?_iplt_{start,end}. if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt) return false; // Skip unreferenced non-preemptible ifunc. if (!(sym.needsGot || sym.needsPlt || sym.hasDirectReloc)) return true; sym.isInIplt = true; // Create an Iplt and the associated IRELATIVE relocation pointing to the // original section/value pairs. For non-GOT non-PLT relocation case below, we // may alter section/value, so create a copy of the symbol to make // section/value fixed. auto *directSym = makeDefined(cast(sym)); directSym->allocateAux(); addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel, *directSym); sym.allocateAux(); symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx; if (sym.hasDirectReloc) { // Change the value to the IPLT and redirect all references to it. auto &d = cast(sym); d.section = in.iplt.get(); d.value = d.getPltIdx() * target->ipltEntrySize; d.size = 0; // It's important to set the symbol type here so that dynamic loaders // don't try to call the PLT as if it were an ifunc resolver. d.type = STT_FUNC; if (sym.needsGot) addGotEntry(sym); } else if (sym.needsGot) { // Redirect GOT accesses to point to the Igot. sym.gotInIgot = true; } return true; } void elf::postScanRelocations() { auto fn = [](Symbol &sym) { if (handleNonPreemptibleIfunc(sym)) return; if (!sym.needsDynReloc()) return; sym.allocateAux(); if (sym.needsGot) addGotEntry(sym); if (sym.needsPlt) addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym); if (sym.needsCopy) { if (sym.isObject()) { addCopyRelSymbol(cast(sym)); // needsCopy is cleared for sym and its aliases so that in later // iterations aliases won't cause redundant copies. assert(!sym.needsCopy); } else { assert(sym.isFunc() && sym.needsPlt); if (!sym.isDefined()) { replaceWithDefined(sym, *in.plt, target->pltHeaderSize + target->pltEntrySize * sym.getPltIdx(), 0); sym.needsCopy = true; if (config->emachine == EM_PPC) { // PPC32 canonical PLT entries are at the beginning of .glink cast(sym).value = in.plt->headerSize; in.plt->headerSize += 16; cast(*in.plt).canonical_plts.push_back(&sym); } } } } if (!sym.isTls()) return; bool isLocalInExecutable = !sym.isPreemptible && !config->shared; if (sym.needsTlsDesc) { in.got->addTlsDescEntry(sym); mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( target->tlsDescRel, *in.got, in.got->getTlsDescOffset(sym), sym, target->tlsDescRel); } if (sym.needsTlsGd) { in.got->addDynTlsEntry(sym); uint64_t off = in.got->getGlobalDynOffset(sym); if (isLocalInExecutable) // Write one to the GOT slot. in.got->relocations.push_back( {R_ADDEND, target->symbolicRel, off, 1, &sym}); else mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *in.got, off, sym); // If the symbol is preemptible we need the dynamic linker to write // the offset too. uint64_t offsetOff = off + config->wordsize; if (sym.isPreemptible) mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *in.got, offsetOff, sym); else in.got->relocations.push_back( {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); } if (sym.needsTlsGdToIe) { in.got->addEntry(sym); mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *in.got, sym.getGotOffset(), sym); } if (sym.needsTlsLd && in.got->addTlsIndex()) { if (isLocalInExecutable) in.got->relocations.push_back( {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); else mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, in.got.get(), in.got->getTlsIndexOff()}); } if (sym.needsGotDtprel) { in.got->addEntry(sym); in.got->relocations.push_back( {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym}); } if (sym.needsTlsIe && !sym.needsTlsGdToIe) addTpOffsetGotEntry(sym); }; assert(symAux.empty()); for (Symbol *sym : symtab->symbols()) fn(*sym); // Local symbols may need the aforementioned non-preemptible ifunc and GOT // handling. They don't need regular PLT. for (ELFFileBase *file : objectFiles) for (Symbol *sym : file->getLocalSymbols()) fn(*sym); } static bool mergeCmp(const InputSection *a, const InputSection *b) { // std::merge requires a strict weak ordering. if (a->outSecOff < b->outSecOff) return true; if (a->outSecOff == b->outSecOff) { auto *ta = dyn_cast(a); auto *tb = dyn_cast(b); // Check if Thunk is immediately before any specific Target // InputSection for example Mips LA25 Thunks. if (ta && ta->getTargetInputSection() == b) return true; // Place Thunk Sections without specific targets before // non-Thunk Sections. if (ta && !tb && !ta->getTargetInputSection()) return true; } return false; } // Call Fn on every executable InputSection accessed via the linker script // InputSectionDescription::Sections. static void forEachInputSectionDescription( ArrayRef outputSections, llvm::function_ref fn) { for (OutputSection *os : outputSections) { if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) continue; for (SectionCommand *bc : os->commands) if (auto *isd = dyn_cast(bc)) fn(os, isd); } } // Thunk Implementation // // Thunks (sometimes called stubs, veneers or branch islands) are small pieces // of code that the linker inserts inbetween a caller and a callee. The thunks // are added at link time rather than compile time as the decision on whether // a thunk is needed, such as the caller and callee being out of range, can only // be made at link time. // // It is straightforward to tell given the current state of the program when a // thunk is needed for a particular call. The more difficult part is that // the thunk needs to be placed in the program such that the caller can reach // the thunk and the thunk can reach the callee; furthermore, adding thunks to // the program alters addresses, which can mean more thunks etc. // // In lld we have a synthetic ThunkSection that can hold many Thunks. // The decision to have a ThunkSection act as a container means that we can // more easily handle the most common case of a single block of contiguous // Thunks by inserting just a single ThunkSection. // // The implementation of Thunks in lld is split across these areas // Relocations.cpp : Framework for creating and placing thunks // Thunks.cpp : The code generated for each supported thunk // Target.cpp : Target specific hooks that the framework uses to decide when // a thunk is used // Synthetic.cpp : Implementation of ThunkSection // Writer.cpp : Iteratively call framework until no more Thunks added // // Thunk placement requirements: // Mips LA25 thunks. These must be placed immediately before the callee section // We can assume that the caller is in range of the Thunk. These are modelled // by Thunks that return the section they must precede with // getTargetInputSection(). // // ARM interworking and range extension thunks. These thunks must be placed // within range of the caller. All implemented ARM thunks can always reach the // callee as they use an indirect jump via a register that has no range // restrictions. // // Thunk placement algorithm: // For Mips LA25 ThunkSections; the placement is explicit, it has to be before // getTargetInputSection(). // // For thunks that must be placed within range of the caller there are many // possible choices given that the maximum range from the caller is usually // much larger than the average InputSection size. Desirable properties include: // - Maximize reuse of thunks by multiple callers // - Minimize number of ThunkSections to simplify insertion // - Handle impact of already added Thunks on addresses // - Simple to understand and implement // // In lld for the first pass, we pre-create one or more ThunkSections per // InputSectionDescription at Target specific intervals. A ThunkSection is // placed so that the estimated end of the ThunkSection is within range of the // start of the InputSectionDescription or the previous ThunkSection. For // example: // InputSectionDescription // Section 0 // ... // Section N // ThunkSection 0 // Section N + 1 // ... // Section N + K // Thunk Section 1 // // The intention is that we can add a Thunk to a ThunkSection that is well // spaced enough to service a number of callers without having to do a lot // of work. An important principle is that it is not an error if a Thunk cannot // be placed in a pre-created ThunkSection; when this happens we create a new // ThunkSection placed next to the caller. This allows us to handle the vast // majority of thunks simply, but also handle rare cases where the branch range // is smaller than the target specific spacing. // // The algorithm is expected to create all the thunks that are needed in a // single pass, with a small number of programs needing a second pass due to // the insertion of thunks in the first pass increasing the offset between // callers and callees that were only just in range. // // A consequence of allowing new ThunkSections to be created outside of the // pre-created ThunkSections is that in rare cases calls to Thunks that were in // range in pass K, are out of range in some pass > K due to the insertion of // more Thunks in between the caller and callee. When this happens we retarget // the relocation back to the original target and create another Thunk. // Remove ThunkSections that are empty, this should only be the initial set // precreated on pass 0. // Insert the Thunks for OutputSection OS into their designated place // in the Sections vector, and recalculate the InputSection output section // offsets. // This may invalidate any output section offsets stored outside of InputSection void ThunkCreator::mergeThunks(ArrayRef outputSections) { forEachInputSectionDescription( outputSections, [&](OutputSection *os, InputSectionDescription *isd) { if (isd->thunkSections.empty()) return; // Remove any zero sized precreated Thunks. llvm::erase_if(isd->thunkSections, [](const std::pair &ts) { return ts.first->getSize() == 0; }); // ISD->ThunkSections contains all created ThunkSections, including // those inserted in previous passes. Extract the Thunks created this // pass and order them in ascending outSecOff. std::vector newThunks; for (std::pair ts : isd->thunkSections) if (ts.second == pass) newThunks.push_back(ts.first); llvm::stable_sort(newThunks, [](const ThunkSection *a, const ThunkSection *b) { return a->outSecOff < b->outSecOff; }); // Merge sorted vectors of Thunks and InputSections by outSecOff SmallVector tmp; tmp.reserve(isd->sections.size() + newThunks.size()); std::merge(isd->sections.begin(), isd->sections.end(), newThunks.begin(), newThunks.end(), std::back_inserter(tmp), mergeCmp); isd->sections = std::move(tmp); }); } // Find or create a ThunkSection within the InputSectionDescription (ISD) that // is in range of Src. An ISD maps to a range of InputSections described by a // linker script section pattern such as { .text .text.* }. ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec, InputSectionDescription *isd, const Relocation &rel, uint64_t src) { for (std::pair tp : isd->thunkSections) { ThunkSection *ts = tp.first; uint64_t tsBase = os->addr + ts->outSecOff + rel.addend; uint64_t tsLimit = tsBase + ts->getSize() + rel.addend; if (target->inBranchRange(rel.type, src, (src > tsLimit) ? tsBase : tsLimit)) return ts; } // No suitable ThunkSection exists. This can happen when there is a branch // with lower range than the ThunkSection spacing or when there are too // many Thunks. Create a new ThunkSection as close to the InputSection as // possible. Error if InputSection is so large we cannot place ThunkSection // anywhere in Range. uint64_t thunkSecOff = isec->outSecOff; if (!target->inBranchRange(rel.type, src, os->addr + thunkSecOff + rel.addend)) { thunkSecOff = isec->outSecOff + isec->getSize(); if (!target->inBranchRange(rel.type, src, os->addr + thunkSecOff + rel.addend)) fatal("InputSection too large for range extension thunk " + isec->getObjMsg(src - (os->addr + isec->outSecOff))); } return addThunkSection(os, isd, thunkSecOff); } // Add a Thunk that needs to be placed in a ThunkSection that immediately // precedes its Target. ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { ThunkSection *ts = thunkedSections.lookup(isec); if (ts) return ts; // Find InputSectionRange within Target Output Section (TOS) that the // InputSection (IS) that we need to precede is in. OutputSection *tos = isec->getParent(); for (SectionCommand *bc : tos->commands) { auto *isd = dyn_cast(bc); if (!isd || isd->sections.empty()) continue; InputSection *first = isd->sections.front(); InputSection *last = isd->sections.back(); if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) continue; ts = addThunkSection(tos, isd, isec->outSecOff); thunkedSections[isec] = ts; return ts; } return nullptr; } // Create one or more ThunkSections per OS that can be used to place Thunks. // We attempt to place the ThunkSections using the following desirable // properties: // - Within range of the maximum number of callers // - Minimise the number of ThunkSections // // We follow a simple but conservative heuristic to place ThunkSections at // offsets that are multiples of a Target specific branch range. // For an InputSectionDescription that is smaller than the range, a single // ThunkSection at the end of the range will do. // // For an InputSectionDescription that is more than twice the size of the range, // we place the last ThunkSection at range bytes from the end of the // InputSectionDescription in order to increase the likelihood that the // distance from a thunk to its target will be sufficiently small to // allow for the creation of a short thunk. void ThunkCreator::createInitialThunkSections( ArrayRef outputSections) { uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); forEachInputSectionDescription( outputSections, [&](OutputSection *os, InputSectionDescription *isd) { if (isd->sections.empty()) return; uint32_t isdBegin = isd->sections.front()->outSecOff; uint32_t isdEnd = isd->sections.back()->outSecOff + isd->sections.back()->getSize(); uint32_t lastThunkLowerBound = -1; if (isdEnd - isdBegin > thunkSectionSpacing * 2) lastThunkLowerBound = isdEnd - thunkSectionSpacing; uint32_t isecLimit; uint32_t prevIsecLimit = isdBegin; uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; for (const InputSection *isec : isd->sections) { isecLimit = isec->outSecOff + isec->getSize(); if (isecLimit > thunkUpperBound) { addThunkSection(os, isd, prevIsecLimit); thunkUpperBound = prevIsecLimit + thunkSectionSpacing; } if (isecLimit > lastThunkLowerBound) break; prevIsecLimit = isecLimit; } addThunkSection(os, isd, isecLimit); }); } ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, InputSectionDescription *isd, uint64_t off) { auto *ts = make(os, off); ts->partition = os->partition; if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && !isd->sections.empty()) { // The errata fixes are sensitive to addresses modulo 4 KiB. When we add // thunks we disturb the base addresses of sections placed after the thunks // this makes patches we have generated redundant, and may cause us to // generate more patches as different instructions are now in sensitive // locations. When we generate more patches we may force more branches to // go out of range, causing more thunks to be generated. In pathological // cases this can cause the address dependent content pass not to converge. // We fix this by rounding up the size of the ThunkSection to 4KiB, this // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, // which means that adding Thunks to the section does not invalidate // errata patches for following code. // Rounding up the size to 4KiB has consequences for code-size and can // trip up linker script defined assertions. For example the linux kernel // has an assertion that what LLD represents as an InputSectionDescription // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. // We use the heuristic of rounding up the size when both of the following // conditions are true: // 1.) The OutputSection is larger than the ThunkSectionSpacing. This // accounts for the case where no single InputSectionDescription is // larger than the OutputSection size. This is conservative but simple. // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent // any assertion failures that an InputSectionDescription is < 4 KiB // in size. uint64_t isdSize = isd->sections.back()->outSecOff + isd->sections.back()->getSize() - isd->sections.front()->outSecOff; if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) ts->roundUpSizeForErrata = true; } isd->thunkSections.push_back({ts, pass}); return ts; } static bool isThunkSectionCompatible(InputSection *source, SectionBase *target) { // We can't reuse thunks in different loadable partitions because they might // not be loaded. But partition 1 (the main partition) will always be loaded. if (source->partition != target->partition) return target->partition == 1; return true; } static int64_t getPCBias(RelType type) { if (config->emachine != EM_ARM) return 0; switch (type) { case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: return 4; default: return 8; } } std::pair ThunkCreator::getThunk(InputSection *isec, Relocation &rel, uint64_t src) { std::vector *thunkVec = nullptr; // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled // out in the relocation addend. We compensate for the PC bias so that // an Arm and Thumb relocation to the same destination get the same keyAddend, // which is usually 0. const int64_t pcBias = getPCBias(rel.type); const int64_t keyAddend = rel.addend + pcBias; // We use a ((section, offset), addend) pair to find the thunk position if // possible so that we create only one thunk for aliased symbols or ICFed // sections. There may be multiple relocations sharing the same (section, // offset + addend) pair. We may revert the relocation back to its original // non-Thunk target, so we cannot fold offset + addend. if (auto *d = dyn_cast(rel.sym)) if (!d->isInPlt() && d->section) thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value}, keyAddend}]; if (!thunkVec) thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; // Check existing Thunks for Sym to see if they can be reused for (Thunk *t : *thunkVec) if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && t->isCompatibleWith(*isec, rel) && target->inBranchRange(rel.type, src, t->getThunkTargetSym()->getVA(-pcBias))) return std::make_pair(t, false); // No existing compatible Thunk in range, create a new one Thunk *t = addThunk(*isec, rel); thunkVec->push_back(t); return std::make_pair(t, true); } // Return true if the relocation target is an in range Thunk. // Return false if the relocation is not to a Thunk. If the relocation target // was originally to a Thunk, but is no longer in range we revert the // relocation back to its original non-Thunk target. bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { if (Thunk *t = thunks.lookup(rel.sym)) { if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))) return true; rel.sym = &t->destination; rel.addend = t->addend; if (rel.sym->isInPlt()) rel.expr = toPlt(rel.expr); } return false; } // Process all relocations from the InputSections that have been assigned // to InputSectionDescriptions and redirect through Thunks if needed. The // function should be called iteratively until it returns false. // // PreConditions: // All InputSections that may need a Thunk are reachable from // OutputSectionCommands. // // All OutputSections have an address and all InputSections have an offset // within the OutputSection. // // The offsets between caller (relocation place) and callee // (relocation target) will not be modified outside of createThunks(). // // PostConditions: // If return value is true then ThunkSections have been inserted into // OutputSections. All relocations that needed a Thunk based on the information // available to createThunks() on entry have been redirected to a Thunk. Note // that adding Thunks changes offsets between caller and callee so more Thunks // may be required. // // If return value is false then no more Thunks are needed, and createThunks has // made no changes. If the target requires range extension thunks, currently // ARM, then any future change in offset between caller and callee risks a // relocation out of range error. bool ThunkCreator::createThunks(ArrayRef outputSections) { bool addressesChanged = false; if (pass == 0 && target->getThunkSectionSpacing()) createInitialThunkSections(outputSections); // Create all the Thunks and insert them into synthetic ThunkSections. The // ThunkSections are later inserted back into InputSectionDescriptions. // We separate the creation of ThunkSections from the insertion of the // ThunkSections as ThunkSections are not always inserted into the same // InputSectionDescription as the caller. forEachInputSectionDescription( outputSections, [&](OutputSection *os, InputSectionDescription *isd) { for (InputSection *isec : isd->sections) for (Relocation &rel : isec->relocations) { uint64_t src = isec->getVA(rel.offset); // If we are a relocation to an existing Thunk, check if it is // still in range. If not then Rel will be altered to point to its // original target so another Thunk can be generated. if (pass > 0 && normalizeExistingThunk(rel, src)) continue; if (!target->needsThunk(rel.expr, rel.type, isec->file, src, *rel.sym, rel.addend)) continue; Thunk *t; bool isNew; std::tie(t, isNew) = getThunk(isec, rel, src); if (isNew) { // Find or create a ThunkSection for the new Thunk ThunkSection *ts; if (auto *tis = t->getTargetInputSection()) ts = getISThunkSec(tis); else ts = getISDThunkSec(os, isec, isd, rel, src); ts->addThunk(t); thunks[t->getThunkTargetSym()] = t; } // Redirect relocation to Thunk, we never go via the PLT to a Thunk rel.sym = t->getThunkTargetSym(); rel.expr = fromPlt(rel.expr); // On AArch64 and PPC, a jump/call relocation may be encoded as // STT_SECTION + non-zero addend, clear the addend after // redirection. if (config->emachine != EM_MIPS) rel.addend = -getPCBias(rel.type); } for (auto &p : isd->thunkSections) addressesChanged |= p.first->assignOffsets(); }); for (auto &p : thunkedSections) addressesChanged |= p.second->assignOffsets(); // Merge all created synthetic ThunkSections back into OutputSection mergeThunks(outputSections); ++pass; return addressesChanged; } // The following aid in the conversion of call x@GDPLT to call __tls_get_addr // hexagonNeedsTLSSymbol scans for relocations would require a call to // __tls_get_addr. // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. bool elf::hexagonNeedsTLSSymbol(ArrayRef outputSections) { bool needTlsSymbol = false; forEachInputSectionDescription( outputSections, [&](OutputSection *os, InputSectionDescription *isd) { for (InputSection *isec : isd->sections) for (Relocation &rel : isec->relocations) if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { needTlsSymbol = true; return; } }); return needTlsSymbol; } void elf::hexagonTLSSymbolUpdate(ArrayRef outputSections) { Symbol *sym = symtab->find("__tls_get_addr"); if (!sym) return; bool needEntry = true; forEachInputSectionDescription( outputSections, [&](OutputSection *os, InputSectionDescription *isd) { for (InputSection *isec : isd->sections) for (Relocation &rel : isec->relocations) if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { if (needEntry) { sym->allocateAux(); addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, *sym); needEntry = false; } rel.sym = sym; } }); } template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &); template void elf::reportUndefinedSymbols(); template void elf::reportUndefinedSymbols(); template void elf::reportUndefinedSymbols(); template void elf::reportUndefinedSymbols();