//===- OutputSections.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "InputFiles.h" #include "LinkerScript.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/Arrays.h" #include "lld/Common/Memory.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB #include "llvm/Support/Parallel.h" #include "llvm/Support/Path.h" #include "llvm/Support/TimeProfiler.h" #if LLVM_ENABLE_ZLIB #include #endif using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; uint8_t *Out::bufferStart; PhdrEntry *Out::tlsPhdr; OutputSection *Out::elfHeader; OutputSection *Out::programHeaders; OutputSection *Out::preinitArray; OutputSection *Out::initArray; OutputSection *Out::finiArray; SmallVector elf::outputSections; uint32_t OutputSection::getPhdrFlags() const { uint32_t ret = 0; if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) ret |= PF_R; if (flags & SHF_WRITE) ret |= PF_W; if (flags & SHF_EXECINSTR) ret |= PF_X; return ret; } template void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { shdr->sh_entsize = entsize; shdr->sh_addralign = alignment; shdr->sh_type = type; shdr->sh_offset = offset; shdr->sh_flags = flags; shdr->sh_info = info; shdr->sh_link = link; shdr->sh_addr = addr; shdr->sh_size = size; shdr->sh_name = shName; } OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags) : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type, /*Info*/ 0, /*Link*/ 0) {} // We allow sections of types listed below to merged into a // single progbits section. This is typically done by linker // scripts. Merging nobits and progbits will force disk space // to be allocated for nobits sections. Other ones don't require // any special treatment on top of progbits, so there doesn't // seem to be a harm in merging them. // // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). static bool canMergeToProgbits(unsigned type) { return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || type == SHT_NOTE || (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64); } // Record that isec will be placed in the OutputSection. isec does not become // permanent until finalizeInputSections() is called. The function should not be // used after finalizeInputSections() is called. If you need to add an // InputSection post finalizeInputSections(), then you must do the following: // // 1. Find or create an InputSectionDescription to hold InputSection. // 2. Add the InputSection to the InputSectionDescription::sections. // 3. Call commitSection(isec). void OutputSection::recordSection(InputSectionBase *isec) { partition = isec->partition; isec->parent = this; if (commands.empty() || !isa(commands.back())) commands.push_back(make("")); auto *isd = cast(commands.back()); isd->sectionBases.push_back(isec); } // Update fields (type, flags, alignment, etc) according to the InputSection // isec. Also check whether the InputSection flags and type are consistent with // other InputSections. void OutputSection::commitSection(InputSection *isec) { if (LLVM_UNLIKELY(type != isec->type)) { if (hasInputSections || typeIsSet) { if (typeIsSet || !canMergeToProgbits(type) || !canMergeToProgbits(isec->type)) { // Changing the type of a (NOLOAD) section is fishy, but some projects // (e.g. https://github.com/ClangBuiltLinux/linux/issues/1597) // traditionally rely on the behavior. Issue a warning to not break // them. Other types get an error. auto diagnose = type == SHT_NOBITS ? warn : errorOrWarn; diagnose("section type mismatch for " + isec->name + "\n>>> " + toString(isec) + ": " + getELFSectionTypeName(config->emachine, isec->type) + "\n>>> output section " + name + ": " + getELFSectionTypeName(config->emachine, type)); } if (!typeIsSet) type = SHT_PROGBITS; } else { type = isec->type; } } if (!hasInputSections) { // If IS is the first section to be added to this section, // initialize type, entsize and flags from isec. hasInputSections = true; entsize = isec->entsize; flags = isec->flags; } else { // Otherwise, check if new type or flags are compatible with existing ones. if ((flags ^ isec->flags) & SHF_TLS) error("incompatible section flags for " + name + "\n>>> " + toString(isec) + ": 0x" + utohexstr(isec->flags) + "\n>>> output section " + name + ": 0x" + utohexstr(flags)); } isec->parent = this; uint64_t andMask = config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; uint64_t orMask = ~andMask; uint64_t andFlags = (flags & isec->flags) & andMask; uint64_t orFlags = (flags | isec->flags) & orMask; flags = andFlags | orFlags; if (nonAlloc) flags &= ~(uint64_t)SHF_ALLOC; alignment = std::max(alignment, isec->alignment); // If this section contains a table of fixed-size entries, sh_entsize // holds the element size. If it contains elements of different size we // set sh_entsize to 0. if (entsize != isec->entsize) entsize = 0; } static MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type, uint64_t flags, uint32_t alignment) { if ((flags & SHF_STRINGS) && config->optimize >= 2) return make(name, type, flags, alignment); return make(name, type, flags, alignment); } // This function scans over the InputSectionBase list sectionBases to create // InputSectionDescription::sections. // // It removes MergeInputSections from the input section array and adds // new synthetic sections at the location of the first input section // that it replaces. It then finalizes each synthetic section in order // to compute an output offset for each piece of each input section. void OutputSection::finalizeInputSections() { std::vector mergeSections; for (SectionCommand *cmd : commands) { auto *isd = dyn_cast(cmd); if (!isd) continue; isd->sections.reserve(isd->sectionBases.size()); for (InputSectionBase *s : isd->sectionBases) { MergeInputSection *ms = dyn_cast(s); if (!ms) { isd->sections.push_back(cast(s)); continue; } // We do not want to handle sections that are not alive, so just remove // them instead of trying to merge. if (!ms->isLive()) continue; auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { // While we could create a single synthetic section for two different // values of Entsize, it is better to take Entsize into consideration. // // With a single synthetic section no two pieces with different Entsize // could be equal, so we may as well have two sections. // // Using Entsize in here also allows us to propagate it to the synthetic // section. // // SHF_STRINGS section with different alignments should not be merged. return sec->flags == ms->flags && sec->entsize == ms->entsize && (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS)); }); if (i == mergeSections.end()) { MergeSyntheticSection *syn = createMergeSynthetic(name, ms->type, ms->flags, ms->alignment); mergeSections.push_back(syn); i = std::prev(mergeSections.end()); syn->entsize = ms->entsize; isd->sections.push_back(syn); } (*i)->addSection(ms); } // sectionBases should not be used from this point onwards. Clear it to // catch misuses. isd->sectionBases.clear(); // Some input sections may be removed from the list after ICF. for (InputSection *s : isd->sections) commitSection(s); } for (auto *ms : mergeSections) ms->finalizeContents(); } static void sortByOrder(MutableArrayRef in, llvm::function_ref order) { std::vector> v; for (InputSection *s : in) v.push_back({order(s), s}); llvm::stable_sort(v, less_first()); for (size_t i = 0; i < v.size(); ++i) in[i] = v[i].second; } uint64_t elf::getHeaderSize() { if (config->oFormatBinary) return 0; return Out::elfHeader->size + Out::programHeaders->size; } void OutputSection::sort(llvm::function_ref order) { assert(isLive()); for (SectionCommand *b : commands) if (auto *isd = dyn_cast(b)) sortByOrder(isd->sections, order); } static void nopInstrFill(uint8_t *buf, size_t size) { if (size == 0) return; unsigned i = 0; if (size == 0) return; std::vector> nopFiller = *target->nopInstrs; unsigned num = size / nopFiller.back().size(); for (unsigned c = 0; c < num; ++c) { memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size()); i += nopFiller.back().size(); } unsigned remaining = size - i; if (!remaining) return; assert(nopFiller[remaining - 1].size() == remaining); memcpy(buf + i, nopFiller[remaining - 1].data(), remaining); } // Fill [Buf, Buf + Size) with Filler. // This is used for linker script "=fillexp" command. static void fill(uint8_t *buf, size_t size, const std::array &filler) { size_t i = 0; for (; i + 4 < size; i += 4) memcpy(buf + i, filler.data(), 4); memcpy(buf + i, filler.data(), size - i); } #if LLVM_ENABLE_ZLIB static SmallVector deflateShard(ArrayRef in, int level, int flush) { // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate // data with no zlib header or trailer. z_stream s = {}; deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); s.next_in = const_cast(in.data()); s.avail_in = in.size(); // Allocate a buffer of half of the input size, and grow it by 1.5x if // insufficient. SmallVector out; size_t pos = 0; out.resize_for_overwrite(std::max(in.size() / 2, 64)); do { if (pos == out.size()) out.resize_for_overwrite(out.size() * 3 / 2); s.next_out = out.data() + pos; s.avail_out = out.size() - pos; (void)deflate(&s, flush); pos = s.next_out - out.data(); } while (s.avail_out == 0); assert(s.avail_in == 0); out.truncate(pos); deflateEnd(&s); return out; } #endif // Compress section contents if this section contains debug info. template void OutputSection::maybeCompress() { #if LLVM_ENABLE_ZLIB using Elf_Chdr = typename ELFT::Chdr; // Compress only DWARF debug sections. if (!config->compressDebugSections || (flags & SHF_ALLOC) || !name.startswith(".debug_") || size == 0) return; llvm::TimeTraceScope timeScope("Compress debug sections"); // Write uncompressed data to a temporary zero-initialized buffer. auto buf = std::make_unique(size); writeTo(buf.get()); // We chose 1 (Z_BEST_SPEED) as the default compression level because it is // the fastest. If -O2 is given, we use level 6 to compress debug info more by // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more // compression) while they take significant amount of time (~2x), so level 6 // seems enough. const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED; // Split input into 1-MiB shards. constexpr size_t shardSize = 1 << 20; auto shardsIn = split(makeArrayRef(buf.get(), size), shardSize); const size_t numShards = shardsIn.size(); // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all // shards but the last to flush the output to a byte boundary to be // concatenated with the next shard. auto shardsOut = std::make_unique[]>(numShards); auto shardsAdler = std::make_unique(numShards); parallelFor(0, numShards, [&](size_t i) { shardsOut[i] = deflateShard(shardsIn[i], level, i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size()); }); // Update section size and combine Alder-32 checksums. uint32_t checksum = 1; // Initial Adler-32 value compressed.uncompressedSize = size; size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header for (size_t i = 0; i != numShards; ++i) { size += shardsOut[i].size(); checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); } size += 4; // checksum compressed.shards = std::move(shardsOut); compressed.numShards = numShards; compressed.checksum = checksum; flags |= SHF_COMPRESSED; #endif } static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) { if (size == 1) *buf = data; else if (size == 2) write16(buf, data); else if (size == 4) write32(buf, data); else if (size == 8) write64(buf, data); else llvm_unreachable("unsupported Size argument"); } template void OutputSection::writeTo(uint8_t *buf) { llvm::TimeTraceScope timeScope("Write sections", name); if (type == SHT_NOBITS) return; // If --compress-debug-section is specified and if this is a debug section, // we've already compressed section contents. If that's the case, // just write it down. if (compressed.shards) { auto *chdr = reinterpret_cast(buf); chdr->ch_type = ELFCOMPRESS_ZLIB; chdr->ch_size = compressed.uncompressedSize; chdr->ch_addralign = alignment; buf += sizeof(*chdr); // Compute shard offsets. auto offsets = std::make_unique(compressed.numShards); offsets[0] = 2; // zlib header for (size_t i = 1; i != compressed.numShards; ++i) offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); buf[0] = 0x78; // CMF buf[1] = 0x01; // FLG: best speed parallelFor(0, compressed.numShards, [&](size_t i) { memcpy(buf + offsets[i], compressed.shards[i].data(), compressed.shards[i].size()); }); write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum); return; } // Write leading padding. SmallVector storage; ArrayRef sections = getInputSections(*this, storage); std::array filler = getFiller(); bool nonZeroFiller = read32(filler.data()) != 0; if (nonZeroFiller) fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); parallelFor(0, sections.size(), [&](size_t i) { InputSection *isec = sections[i]; if (auto *s = dyn_cast(isec)) s->writeTo(buf + isec->outSecOff); else isec->writeTo(buf + isec->outSecOff); // Fill gaps between sections. if (nonZeroFiller) { uint8_t *start = buf + isec->outSecOff + isec->getSize(); uint8_t *end; if (i + 1 == sections.size()) end = buf + size; else end = buf + sections[i + 1]->outSecOff; if (isec->nopFiller) { assert(target->nopInstrs); nopInstrFill(start, end - start); } else fill(start, end - start, filler); } }); // Linker scripts may have BYTE()-family commands with which you // can write arbitrary bytes to the output. Process them if any. for (SectionCommand *cmd : commands) if (auto *data = dyn_cast(cmd)) writeInt(buf + data->offset, data->expression().getValue(), data->size); } static void finalizeShtGroup(OutputSection *os, InputSection *section) { // sh_link field for SHT_GROUP sections should contain the section index of // the symbol table. os->link = in.symTab->getParent()->sectionIndex; if (!section) return; // sh_info then contain index of an entry in symbol table section which // provides signature of the section group. ArrayRef symbols = section->file->getSymbols(); os->info = in.symTab->getSymbolIndex(symbols[section->info]); // Some group members may be combined or discarded, so we need to compute the // new size. The content will be rewritten in InputSection::copyShtGroup. DenseSet seen; ArrayRef sections = section->file->getSections(); for (const uint32_t &idx : section->getDataAs().slice(1)) if (OutputSection *osec = sections[read32(&idx)]->getOutputSection()) seen.insert(osec->sectionIndex); os->size = (1 + seen.size()) * sizeof(uint32_t); } void OutputSection::finalize() { InputSection *first = getFirstInputSection(this); if (flags & SHF_LINK_ORDER) { // We must preserve the link order dependency of sections with the // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We // need to translate the InputSection sh_link to the OutputSection sh_link, // all InputSections in the OutputSection have the same dependency. if (auto *ex = dyn_cast(first)) link = ex->getLinkOrderDep()->getParent()->sectionIndex; else if (first->flags & SHF_LINK_ORDER) if (auto *d = first->getLinkOrderDep()) link = d->getParent()->sectionIndex; } if (type == SHT_GROUP) { finalizeShtGroup(this, first); return; } if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL)) return; // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. // Normally 'type' was changed by 'first' so 'first' should be non-null. // However, if the output section is .rela.dyn, 'type' can be set by the empty // synthetic .rela.plt and first can be null. if (!first || isa(first)) return; link = in.symTab->getParent()->sectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *s = first->getRelocatedSection(); info = s->getOutputSection()->sectionIndex; flags |= SHF_INFO_LINK; } // Returns true if S is in one of the many forms the compiler driver may pass // crtbegin files. // // Gcc uses any of crtbegin[|S|T].o. // Clang uses Gcc's plus clang_rt.crtbegin[-|].o. static bool isCrt(StringRef s, StringRef beginEnd) { s = sys::path::filename(s); if (!s.consume_back(".o")) return false; if (s.consume_front("clang_rt.")) return s.consume_front(beginEnd); return s.consume_front(beginEnd) && s.size() <= 1; } // .ctors and .dtors are sorted by this order: // // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). // 2. The section is named ".ctors" or ".dtors" (priority: 65536). // 3. The section has an optional priority value in the form of ".ctors.N" or // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). // // For 2 and 3, the sections are sorted by priority from high to low, e.g. // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's // internal linker scripts, the sorting is by string comparison which can // achieve the same goal given the optional priority values are of the same // length. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. static bool compCtors(const InputSection *a, const InputSection *b) { bool beginA = isCrt(a->file->getName(), "crtbegin"); bool beginB = isCrt(b->file->getName(), "crtbegin"); if (beginA != beginB) return beginA; bool endA = isCrt(a->file->getName(), "crtend"); bool endB = isCrt(b->file->getName(), "crtend"); if (endA != endB) return endB; return getPriority(a->name) > getPriority(b->name); } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. void OutputSection::sortCtorsDtors() { assert(commands.size() == 1); auto *isd = cast(commands[0]); llvm::stable_sort(isd->sections, compCtors); } // If an input string is in the form of "foo.N" where N is a number, return N // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one // greater than the lowest priority. int elf::getPriority(StringRef s) { size_t pos = s.rfind('.'); if (pos == StringRef::npos) return 65536; int v = 65536; if (to_integer(s.substr(pos + 1), v, 10) && (pos == 6 && (s.startswith(".ctors") || s.startswith(".dtors")))) v = 65535 - v; return v; } InputSection *elf::getFirstInputSection(const OutputSection *os) { for (SectionCommand *cmd : os->commands) if (auto *isd = dyn_cast(cmd)) if (!isd->sections.empty()) return isd->sections[0]; return nullptr; } ArrayRef elf::getInputSections(const OutputSection &os, SmallVector &storage) { ArrayRef ret; storage.clear(); for (SectionCommand *cmd : os.commands) { auto *isd = dyn_cast(cmd); if (!isd) continue; if (ret.empty()) { ret = isd->sections; } else { if (storage.empty()) storage.assign(ret.begin(), ret.end()); storage.insert(storage.end(), isd->sections.begin(), isd->sections.end()); } } return storage.empty() ? ret : makeArrayRef(storage); } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. void OutputSection::sortInitFini() { // Sort sections by priority. sort([](InputSectionBase *s) { return getPriority(s->name); }); } std::array OutputSection::getFiller() { if (filler) return *filler; if (flags & SHF_EXECINSTR) return target->trapInstr; return {0, 0, 0, 0}; } void OutputSection::checkDynRelAddends(const uint8_t *bufStart) { assert(config->writeAddends && config->checkDynamicRelocs); assert(type == SHT_REL || type == SHT_RELA); SmallVector storage; ArrayRef sections = getInputSections(*this, storage); parallelFor(0, sections.size(), [&](size_t i) { // When linking with -r or --emit-relocs we might also call this function // for input .rel[a]. sections which we simply pass through to the // output. We skip over those and only look at the synthetic relocation // sections created during linking. const auto *sec = dyn_cast(sections[i]); if (!sec) return; for (const DynamicReloc &rel : sec->relocs) { int64_t addend = rel.addend; const OutputSection *relOsec = rel.inputSec->getOutputSection(); assert(relOsec != nullptr && "missing output section for relocation"); const uint8_t *relocTarget = bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec); // For SHT_NOBITS the written addend is always zero. int64_t writtenAddend = relOsec->type == SHT_NOBITS ? 0 : target->getImplicitAddend(relocTarget, rel.type); if (addend != writtenAddend) internalLinkerError( getErrorLocation(relocTarget), "wrote incorrect addend value 0x" + utohexstr(writtenAddend) + " instead of 0x" + utohexstr(addend) + " for dynamic relocation " + toString(rel.type) + " at offset 0x" + utohexstr(rel.getOffset()) + (rel.sym ? " against symbol " + toString(*rel.sym) : "")); } }); } template void OutputSection::writeHeaderTo(ELF32LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF32BE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64BE::Shdr *Shdr); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress();