//===- InputSection.cpp ---------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputSection.h" #include "Config.h" #include "InputFiles.h" #include "OutputSections.h" #include "Relocations.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/CommonLinkerContext.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Compression.h" #include "llvm/Support/Endian.h" #include "llvm/Support/xxhash.h" #include #include #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace llvm::sys; using namespace lld; using namespace lld::elf; DenseSet> elf::ppc64noTocRelax; // Returns a string to construct an error message. std::string lld::toString(const InputSectionBase *sec) { return (toString(sec->file) + ":(" + sec->name + ")").str(); } template static ArrayRef getSectionContents(ObjFile &file, const typename ELFT::Shdr &hdr) { if (hdr.sh_type == SHT_NOBITS) return ArrayRef(nullptr, hdr.sh_size); return check(file.getObj().getSectionContents(hdr)); } InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, uint32_t type, uint64_t entsize, uint32_t link, uint32_t info, uint32_t addralign, ArrayRef data, StringRef name, Kind sectionKind) : SectionBase(sectionKind, name, flags, entsize, addralign, type, info, link), file(file), content_(data.data()), size(data.size()) { // In order to reduce memory allocation, we assume that mergeable // sections are smaller than 4 GiB, which is not an unreasonable // assumption as of 2017. if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) error(toString(this) + ": section too large"); // The ELF spec states that a value of 0 means the section has // no alignment constraints. uint32_t v = std::max(addralign, 1); if (!isPowerOf2_64(v)) fatal(toString(this) + ": sh_addralign is not a power of 2"); this->addralign = v; // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no // longer supported. if (flags & SHF_COMPRESSED) invokeELFT(parseCompressedHeader,); } // Drop SHF_GROUP bit unless we are producing a re-linkable object file. // SHF_GROUP is a marker that a section belongs to some comdat group. // That flag doesn't make sense in an executable. static uint64_t getFlags(uint64_t flags) { flags &= ~(uint64_t)SHF_INFO_LINK; if (!config->relocatable) flags &= ~(uint64_t)SHF_GROUP; return flags; } template InputSectionBase::InputSectionBase(ObjFile &file, const typename ELFT::Shdr &hdr, StringRef name, Kind sectionKind) : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, hdr.sh_entsize, hdr.sh_link, hdr.sh_info, hdr.sh_addralign, getSectionContents(file, hdr), name, sectionKind) { // We reject object files having insanely large alignments even though // they are allowed by the spec. I think 4GB is a reasonable limitation. // We might want to relax this in the future. if (hdr.sh_addralign > UINT32_MAX) fatal(toString(&file) + ": section sh_addralign is too large"); } size_t InputSectionBase::getSize() const { if (auto *s = dyn_cast(this)) return s->getSize(); return size - bytesDropped; } template static void decompressAux(const InputSectionBase &sec, uint8_t *out, size_t size) { auto *hdr = reinterpret_cast(sec.content_); auto compressed = ArrayRef(sec.content_, sec.compressedSize) .slice(sizeof(typename ELFT::Chdr)); if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB ? compression::zlib::decompress(compressed, out, size) : compression::zstd::decompress(compressed, out, size)) fatal(toString(&sec) + ": decompress failed: " + llvm::toString(std::move(e))); } void InputSectionBase::decompress() const { uint8_t *uncompressedBuf; { static std::mutex mu; std::lock_guard lock(mu); uncompressedBuf = bAlloc().Allocate(size); } invokeELFT(decompressAux, *this, uncompressedBuf, size); content_ = uncompressedBuf; compressed = false; } template RelsOrRelas InputSectionBase::relsOrRelas() const { if (relSecIdx == 0) return {}; RelsOrRelas ret; typename ELFT::Shdr shdr = cast(file)->getELFShdrs()[relSecIdx]; if (shdr.sh_type == SHT_REL) { ret.rels = ArrayRef(reinterpret_cast( file->mb.getBufferStart() + shdr.sh_offset), shdr.sh_size / sizeof(typename ELFT::Rel)); } else { assert(shdr.sh_type == SHT_RELA); ret.relas = ArrayRef(reinterpret_cast( file->mb.getBufferStart() + shdr.sh_offset), shdr.sh_size / sizeof(typename ELFT::Rela)); } return ret; } uint64_t SectionBase::getOffset(uint64_t offset) const { switch (kind()) { case Output: { auto *os = cast(this); // For output sections we treat offset -1 as the end of the section. return offset == uint64_t(-1) ? os->size : offset; } case Regular: case Synthetic: return cast(this)->outSecOff + offset; case EHFrame: { // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC // crtbeginT.o may reference the start of an empty .eh_frame to identify the // start of the output .eh_frame. Just return offset. // // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be // discarded due to GC/ICF. We should compute the output section offset. const EhInputSection *es = cast(this); if (!es->content().empty()) if (InputSection *isec = es->getParent()) return isec->outSecOff + es->getParentOffset(offset); return offset; } case Merge: const MergeInputSection *ms = cast(this); if (InputSection *isec = ms->getParent()) return isec->outSecOff + ms->getParentOffset(offset); return ms->getParentOffset(offset); } llvm_unreachable("invalid section kind"); } uint64_t SectionBase::getVA(uint64_t offset) const { const OutputSection *out = getOutputSection(); return (out ? out->addr : 0) + getOffset(offset); } OutputSection *SectionBase::getOutputSection() { InputSection *sec; if (auto *isec = dyn_cast(this)) sec = isec; else if (auto *ms = dyn_cast(this)) sec = ms->getParent(); else if (auto *eh = dyn_cast(this)) sec = eh->getParent(); else return cast(this); return sec ? sec->getParent() : nullptr; } // When a section is compressed, `rawData` consists with a header followed // by zlib-compressed data. This function parses a header to initialize // `uncompressedSize` member and remove the header from `rawData`. template void InputSectionBase::parseCompressedHeader() { flags &= ~(uint64_t)SHF_COMPRESSED; // New-style header if (content().size() < sizeof(typename ELFT::Chdr)) { error(toString(this) + ": corrupted compressed section"); return; } auto *hdr = reinterpret_cast(content().data()); if (hdr->ch_type == ELFCOMPRESS_ZLIB) { if (!compression::zlib::isAvailable()) error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is " "not built with zlib support"); } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { if (!compression::zstd::isAvailable()) error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is " "not built with zstd support"); } else { error(toString(this) + ": unsupported compression type (" + Twine(hdr->ch_type) + ")"); return; } compressed = true; compressedSize = size; size = hdr->ch_size; addralign = std::max(hdr->ch_addralign, 1); } InputSection *InputSectionBase::getLinkOrderDep() const { assert(flags & SHF_LINK_ORDER); if (!link) return nullptr; return cast(file->getSections()[link]); } // Find a function symbol that encloses a given location. Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { for (Symbol *b : file->getSymbols()) if (Defined *d = dyn_cast(b)) if (d->section == this && d->type == STT_FUNC && d->value <= offset && offset < d->value + d->size) return d; return nullptr; } // Returns an object file location string. Used to construct an error message. std::string InputSectionBase::getLocation(uint64_t offset) { std::string secAndOffset = (name + "+0x" + Twine::utohexstr(offset) + ")").str(); // We don't have file for synthetic sections. if (file == nullptr) return (config->outputFile + ":(" + secAndOffset).str(); std::string filename = toString(file); if (Defined *d = getEnclosingFunction(offset)) return filename + ":(function " + toString(*d) + ": " + secAndOffset; return filename + ":(" + secAndOffset; } // This function is intended to be used for constructing an error message. // The returned message looks like this: // // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) // // Returns an empty string if there's no way to get line info. std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { return file->getSrcMsg(sym, *this, offset); } // Returns a filename string along with an optional section name. This // function is intended to be used for constructing an error // message. The returned message looks like this: // // path/to/foo.o:(function bar) // // or // // path/to/foo.o:(function bar) in archive path/to/bar.a std::string InputSectionBase::getObjMsg(uint64_t off) { std::string filename = std::string(file->getName()); std::string archive; if (!file->archiveName.empty()) archive = (" in archive " + file->archiveName).str(); // Find a symbol that encloses a given location. getObjMsg may be called // before ObjFile::initSectionsAndLocalSyms where local symbols are // initialized. for (Symbol *b : file->getSymbols()) if (auto *d = dyn_cast_or_null(b)) if (d->section == this && d->value <= off && off < d->value + d->size) return filename + ":(" + toString(*d) + ")" + archive; // If there's no symbol, print out the offset in the section. return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) .str(); } InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef(), ""); InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t addralign, ArrayRef data, StringRef name, Kind k) : InputSectionBase(f, flags, type, /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data, name, k) {} template InputSection::InputSection(ObjFile &f, const typename ELFT::Shdr &header, StringRef name) : InputSectionBase(f, header, name, InputSectionBase::Regular) {} // Copy SHT_GROUP section contents. Used only for the -r option. template void InputSection::copyShtGroup(uint8_t *buf) { // ELFT::Word is the 32-bit integral type in the target endianness. using u32 = typename ELFT::Word; ArrayRef from = getDataAs(); auto *to = reinterpret_cast(buf); // The first entry is not a section number but a flag. *to++ = from[0]; // Adjust section numbers because section numbers in an input object files are // different in the output. We also need to handle combined or discarded // members. ArrayRef sections = file->getSections(); DenseSet seen; for (uint32_t idx : from.slice(1)) { OutputSection *osec = sections[idx]->getOutputSection(); if (osec && seen.insert(osec->sectionIndex).second) *to++ = osec->sectionIndex; } } InputSectionBase *InputSection::getRelocatedSection() const { if (!file || (type != SHT_RELA && type != SHT_REL)) return nullptr; ArrayRef sections = file->getSections(); return sections[info]; } // This is used for -r and --emit-relocs. We can't use memcpy to copy // relocations because we need to update symbol table offset and section index // for each relocation. So we copy relocations one by one. template void InputSection::copyRelocations(uint8_t *buf, ArrayRef rels) { const TargetInfo &target = *elf::target; InputSectionBase *sec = getRelocatedSection(); (void)sec->contentMaybeDecompress(); // uncompress if needed for (const RelTy &rel : rels) { RelType type = rel.getType(config->isMips64EL); const ObjFile *file = getFile(); Symbol &sym = file->getRelocTargetSym(rel); auto *p = reinterpret_cast(buf); buf += sizeof(RelTy); if (RelTy::IsRela) p->r_addend = getAddend(rel); // Output section VA is zero for -r, so r_offset is an offset within the // section, but for --emit-relocs it is a virtual address. p->r_offset = sec->getVA(rel.r_offset); p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, config->isMips64EL); if (sym.type == STT_SECTION) { // We combine multiple section symbols into only one per // section. This means we have to update the addend. That is // trivial for Elf_Rela, but for Elf_Rel we have to write to the // section data. We do that by adding to the Relocation vector. // .eh_frame is horribly special and can reference discarded sections. To // avoid having to parse and recreate .eh_frame, we just replace any // relocation in it pointing to discarded sections with R_*_NONE, which // hopefully creates a frame that is ignored at runtime. Also, don't warn // on .gcc_except_table and debug sections. // // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc auto *d = dyn_cast(&sym); if (!d) { if (!isDebugSection(*sec) && sec->name != ".eh_frame" && sec->name != ".gcc_except_table" && sec->name != ".got2" && sec->name != ".toc") { uint32_t secIdx = cast(sym).discardedSecIdx; Elf_Shdr_Impl sec = file->template getELFShdrs()[secIdx]; warn("relocation refers to a discarded section: " + CHECK(file->getObj().getSectionName(sec), file) + "\n>>> referenced by " + getObjMsg(p->r_offset)); } p->setSymbolAndType(0, 0, false); continue; } SectionBase *section = d->section; if (!section->isLive()) { p->setSymbolAndType(0, 0, false); continue; } int64_t addend = getAddend(rel); const uint8_t *bufLoc = sec->content().begin() + rel.r_offset; if (!RelTy::IsRela) addend = target.getImplicitAddend(bufLoc, type); if (config->emachine == EM_MIPS && target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { // Some MIPS relocations depend on "gp" value. By default, // this value has 0x7ff0 offset from a .got section. But // relocatable files produced by a compiler or a linker // might redefine this default value and we must use it // for a calculation of the relocation result. When we // generate EXE or DSO it's trivial. Generating a relocatable // output is more difficult case because the linker does // not calculate relocations in this mode and loses // individual "gp" values used by each input object file. // As a workaround we add the "gp" value to the relocation // addend and save it back to the file. addend += sec->getFile()->mipsGp0; } if (RelTy::IsRela) p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; else if (config->relocatable && type != target.noneRel) sec->addReloc({R_ABS, type, rel.r_offset, addend, &sym}); } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && p->r_addend >= 0x8000 && sec->file->ppc32Got2) { // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 // indicates that r30 is relative to the input section .got2 // (r_addend>=0x8000), after linking, r30 should be relative to the output // section .got2 . To compensate for the shift, adjust r_addend by // ppc32Got->outSecOff. p->r_addend += sec->file->ppc32Got2->outSecOff; } } } // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak // references specially. The general rule is that the value of the symbol in // this context is the address of the place P. A further special case is that // branch relocations to an undefined weak reference resolve to the next // instruction. static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, uint32_t p) { switch (type) { // Unresolved branch relocations to weak references resolve to next // instruction, this will be either 2 or 4 bytes on from P. case R_ARM_THM_JUMP8: case R_ARM_THM_JUMP11: return p + 2 + a; case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_PREL31: case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: return p + 4 + a; case R_ARM_THM_CALL: // We don't want an interworking BLX to ARM return p + 5 + a; // Unresolved non branch pc-relative relocations // R_ARM_TARGET2 which can be resolved relatively is not present as it never // targets a weak-reference. case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_REL32: case R_ARM_THM_ALU_PREL_11_0: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: case R_ARM_THM_PC12: return p + a; // p + a is unrepresentable as negative immediates can't be encoded. case R_ARM_THM_PC8: return p; } llvm_unreachable("ARM pc-relative relocation expected\n"); } // The comment above getARMUndefinedRelativeWeakVA applies to this function. static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { switch (type) { // Unresolved branch relocations to weak references resolve to next // instruction, this is 4 bytes on from P. case R_AARCH64_CALL26: case R_AARCH64_CONDBR19: case R_AARCH64_JUMP26: case R_AARCH64_TSTBR14: return p + 4; // Unresolved non branch pc-relative relocations case R_AARCH64_PREL16: case R_AARCH64_PREL32: case R_AARCH64_PREL64: case R_AARCH64_ADR_PREL_LO21: case R_AARCH64_LD_PREL_LO19: case R_AARCH64_PLT32: return p; } llvm_unreachable("AArch64 pc-relative relocation expected\n"); } static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { switch (type) { case R_RISCV_BRANCH: case R_RISCV_JAL: case R_RISCV_CALL: case R_RISCV_CALL_PLT: case R_RISCV_RVC_BRANCH: case R_RISCV_RVC_JUMP: case R_RISCV_PLT32: return p; default: return 0; } } // ARM SBREL relocations are of the form S + A - B where B is the static base // The ARM ABI defines base to be "addressing origin of the output segment // defining the symbol S". We defined the "addressing origin"/static base to be // the base of the PT_LOAD segment containing the Sym. // The procedure call standard only defines a Read Write Position Independent // RWPI variant so in practice we should expect the static base to be the base // of the RW segment. static uint64_t getARMStaticBase(const Symbol &sym) { OutputSection *os = sym.getOutputSection(); if (!os || !os->ptLoad || !os->ptLoad->firstSec) fatal("SBREL relocation to " + sym.getName() + " without static base"); return os->ptLoad->firstSec->addr; } // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA // is calculated using PCREL_HI20's symbol. // // This function returns the R_RISCV_PCREL_HI20 relocation from // R_RISCV_PCREL_LO12's symbol and addend. static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { const Defined *d = cast(sym); if (!d->section) { errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + sym->getName()); return nullptr; } InputSection *isec = cast(d->section); if (addend != 0) warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + isec->getObjMsg(d->value) + " is ignored"); // Relocations are sorted by offset, so we can use std::equal_range to do // binary search. Relocation r; r.offset = d->value; auto range = std::equal_range(isec->relocs().begin(), isec->relocs().end(), r, [](const Relocation &lhs, const Relocation &rhs) { return lhs.offset < rhs.offset; }); for (auto it = range.first; it != range.second; ++it) if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) return &*it; errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + " without an associated R_RISCV_PCREL_HI20 relocation"); return nullptr; } // A TLS symbol's virtual address is relative to the TLS segment. Add a // target-specific adjustment to produce a thread-pointer-relative offset. static int64_t getTlsTpOffset(const Symbol &s) { // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. if (&s == ElfSym::tlsModuleBase) return 0; // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 // while most others use Variant 1. At run time TP will be aligned to p_align. // Variant 1. TP will be followed by an optional gap (which is the size of 2 // pointers on ARM/AArch64, 0 on other targets), followed by alignment // padding, then the static TLS blocks. The alignment padding is added so that // (TP + gap + padding) is congruent to p_vaddr modulo p_align. // // Variant 2. Static TLS blocks, followed by alignment padding are placed // before TP. The alignment padding is added so that (TP - padding - // p_memsz) is congruent to p_vaddr modulo p_align. PhdrEntry *tls = Out::tlsPhdr; switch (config->emachine) { // Variant 1. case EM_ARM: case EM_AARCH64: return s.getVA(0) + config->wordsize * 2 + ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); case EM_MIPS: case EM_PPC: case EM_PPC64: // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library // data and 0xf000 of the program's TLS segment. return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; case EM_LOONGARCH: case EM_RISCV: return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); // Variant 2. case EM_HEXAGON: case EM_SPARCV9: case EM_386: case EM_X86_64: return s.getVA(0) - tls->p_memsz - ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); default: llvm_unreachable("unhandled Config->EMachine"); } } uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, int64_t a, uint64_t p, const Symbol &sym, RelExpr expr) { switch (expr) { case R_ABS: case R_DTPREL: case R_RELAX_TLS_LD_TO_LE_ABS: case R_RELAX_GOT_PC_NOPIC: case R_RISCV_ADD: return sym.getVA(a); case R_ADDEND: return a; case R_RELAX_HINT: return 0; case R_ARM_SBREL: return sym.getVA(a) - getARMStaticBase(sym); case R_GOT: case R_RELAX_TLS_GD_TO_IE_ABS: return sym.getGotVA() + a; case R_LOONGARCH_GOT: // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type // for their page offsets. The arithmetics are different in the TLS case // so we have to duplicate some logic here. if (sym.hasFlag(NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12) // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. return in.got->getGlobalDynAddr(sym) + a; return getRelocTargetVA(file, type, a, p, sym, R_GOT); case R_GOTONLY_PC: return in.got->getVA() + a - p; case R_GOTPLTONLY_PC: return in.gotPlt->getVA() + a - p; case R_GOTREL: case R_PPC64_RELAX_TOC: return sym.getVA(a) - in.got->getVA(); case R_GOTPLTREL: return sym.getVA(a) - in.gotPlt->getVA(); case R_GOTPLT: case R_RELAX_TLS_GD_TO_IE_GOTPLT: return sym.getGotVA() + a - in.gotPlt->getVA(); case R_TLSLD_GOT_OFF: case R_GOT_OFF: case R_RELAX_TLS_GD_TO_IE_GOT_OFF: return sym.getGotOffset() + a; case R_AARCH64_GOT_PAGE_PC: case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); case R_AARCH64_GOT_PAGE: return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); case R_GOT_PC: case R_RELAX_TLS_GD_TO_IE: return sym.getGotVA() + a - p; case R_LOONGARCH_GOT_PAGE_PC: if (sym.hasFlag(NEEDS_TLSGD)) return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p); return getLoongArchPageDelta(sym.getGotVA() + a, p); case R_MIPS_GOTREL: return sym.getVA(a) - in.mipsGot->getGp(file); case R_MIPS_GOT_GP: return in.mipsGot->getGp(file) + a; case R_MIPS_GOT_GP_PC: { // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target // is _gp_disp symbol. In that case we should use the following // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf // microMIPS variants of these relocations use slightly different // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() // to correctly handle less-significant bit of the microMIPS symbol. uint64_t v = in.mipsGot->getGp(file) + a - p; if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) v += 4; if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) v -= 1; return v; } case R_MIPS_GOT_LOCAL_PAGE: // If relocation against MIPS local symbol requires GOT entry, this entry // should be initialized by 'page address'. This address is high 16-bits // of sum the symbol's value and the addend. return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - in.mipsGot->getGp(file); case R_MIPS_GOT_OFF: case R_MIPS_GOT_OFF32: // In case of MIPS if a GOT relocation has non-zero addend this addend // should be applied to the GOT entry content not to the GOT entry offset. // That is why we use separate expression type. return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - in.mipsGot->getGp(file); case R_MIPS_TLSGD: return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - in.mipsGot->getGp(file); case R_MIPS_TLSLD: return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - in.mipsGot->getGp(file); case R_AARCH64_PAGE_PC: { uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); return getAArch64Page(val) - getAArch64Page(p); } case R_RISCV_PC_INDIRECT: { if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), *hiRel->sym, hiRel->expr); return 0; } case R_LOONGARCH_PAGE_PC: return getLoongArchPageDelta(sym.getVA(a), p); case R_PC: case R_ARM_PCA: { uint64_t dest; if (expr == R_ARM_PCA) // Some PC relative ARM (Thumb) relocations align down the place. p = p & 0xfffffffc; if (sym.isUndefined()) { // On ARM and AArch64 a branch to an undefined weak resolves to the next // instruction, otherwise the place. On RISC-V, resolve an undefined weak // to the same instruction to cause an infinite loop (making the user // aware of the issue) while ensuring no overflow. // Note: if the symbol is hidden, its binding has been converted to local, // so we just check isUndefined() here. if (config->emachine == EM_ARM) dest = getARMUndefinedRelativeWeakVA(type, a, p); else if (config->emachine == EM_AARCH64) dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; else if (config->emachine == EM_PPC) dest = p; else if (config->emachine == EM_RISCV) dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; else dest = sym.getVA(a); } else { dest = sym.getVA(a); } return dest - p; } case R_PLT: return sym.getPltVA() + a; case R_PLT_PC: case R_PPC64_CALL_PLT: return sym.getPltVA() + a - p; case R_LOONGARCH_PLT_PAGE_PC: return getLoongArchPageDelta(sym.getPltVA() + a, p); case R_PLT_GOTPLT: return sym.getPltVA() + a - in.gotPlt->getVA(); case R_PPC32_PLTREL: // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for // target VA computation. return sym.getPltVA() - p; case R_PPC64_CALL: { uint64_t symVA = sym.getVA(a); // If we have an undefined weak symbol, we might get here with a symbol // address of zero. That could overflow, but the code must be unreachable, // so don't bother doing anything at all. if (!symVA) return 0; // PPC64 V2 ABI describes two entry points to a function. The global entry // point is used for calls where the caller and callee (may) have different // TOC base pointers and r2 needs to be modified to hold the TOC base for // the callee. For local calls the caller and callee share the same // TOC base and so the TOC pointer initialization code should be skipped by // branching to the local entry point. return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); } case R_PPC64_TOCBASE: return getPPC64TocBase() + a; case R_RELAX_GOT_PC: case R_PPC64_RELAX_GOT_PC: return sym.getVA(a) - p; case R_RELAX_TLS_GD_TO_LE: case R_RELAX_TLS_IE_TO_LE: case R_RELAX_TLS_LD_TO_LE: case R_TPREL: // It is not very clear what to return if the symbol is undefined. With // --noinhibit-exec, even a non-weak undefined reference may reach here. // Just return A, which matches R_ABS, and the behavior of some dynamic // loaders. if (sym.isUndefined()) return a; return getTlsTpOffset(sym) + a; case R_RELAX_TLS_GD_TO_LE_NEG: case R_TPREL_NEG: if (sym.isUndefined()) return a; return -getTlsTpOffset(sym) + a; case R_SIZE: return sym.getSize() + a; case R_TLSDESC: return in.got->getTlsDescAddr(sym) + a; case R_TLSDESC_PC: return in.got->getTlsDescAddr(sym) + a - p; case R_TLSDESC_GOTPLT: return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); case R_AARCH64_TLSDESC_PAGE: return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); case R_TLSGD_GOT: return in.got->getGlobalDynOffset(sym) + a; case R_TLSGD_GOTPLT: return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); case R_TLSGD_PC: return in.got->getGlobalDynAddr(sym) + a - p; case R_LOONGARCH_TLSGD_PAGE_PC: return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p); case R_TLSLD_GOTPLT: return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); case R_TLSLD_GOT: return in.got->getTlsIndexOff() + a; case R_TLSLD_PC: return in.got->getTlsIndexVA() + a - p; default: llvm_unreachable("invalid expression"); } } // This function applies relocations to sections without SHF_ALLOC bit. // Such sections are never mapped to memory at runtime. Debug sections are // an example. Relocations in non-alloc sections are much easier to // handle than in allocated sections because it will never need complex // treatment such as GOT or PLT (because at runtime no one refers them). // So, we handle relocations for non-alloc sections directly in this // function as a performance optimization. template void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef rels) { const unsigned bits = sizeof(typename ELFT::uint) * 8; const TargetInfo &target = *elf::target; const bool isDebug = isDebugSection(*this); const bool isDebugLocOrRanges = isDebug && (name == ".debug_loc" || name == ".debug_ranges"); const bool isDebugLine = isDebug && name == ".debug_line"; std::optional tombstone; for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) if (patAndValue.first.match(this->name)) { tombstone = patAndValue.second; break; } for (const RelTy &rel : rels) { RelType type = rel.getType(config->isMips64EL); // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we // need to keep this bug-compatible code for a while. if (config->emachine == EM_386 && type == R_386_GOTPC) continue; uint64_t offset = rel.r_offset; uint8_t *bufLoc = buf + offset; int64_t addend = getAddend(rel); if (!RelTy::IsRela) addend += target.getImplicitAddend(bufLoc, type); Symbol &sym = getFile()->getRelocTargetSym(rel); RelExpr expr = target.getRelExpr(type, sym, bufLoc); if (expr == R_NONE) continue; if (tombstone || (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { // Resolve relocations in .debug_* referencing (discarded symbols or ICF // folded section symbols) to a tombstone value. Resolving to addend is // unsatisfactory because the result address range may collide with a // valid range of low address, or leave multiple CUs claiming ownership of // the same range of code, which may confuse consumers. // // To address the problems, we use -1 as a tombstone value for most // .debug_* sections. We have to ignore the addend because we don't want // to resolve an address attribute (which may have a non-zero addend) to // -1+addend (wrap around to a low address). // // R_DTPREL type relocations represent an offset into the dynamic thread // vector. The computed value is st_value plus a non-negative offset. // Negative values are invalid, so -1 can be used as the tombstone value. // // If the referenced symbol is discarded (made Undefined), or the // section defining the referenced symbol is garbage collected, // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded // case. However, resolving a relocation in .debug_line to -1 would stop // debugger users from setting breakpoints on the folded-in function, so // exclude .debug_line. // // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value // (base address selection entry), use 1 (which is used by GNU ld for // .debug_ranges). // // TODO To reduce disruption, we use 0 instead of -1 as the tombstone // value. Enable -1 in a future release. auto *ds = dyn_cast(&sym); if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { // If -z dead-reloc-in-nonalloc= is specified, respect it. const uint64_t value = tombstone ? SignExtend64(*tombstone) : (isDebugLocOrRanges ? 1 : 0); target.relocateNoSym(bufLoc, type, value); continue; } } // For a relocatable link, only tombstone values are applied. if (config->relocatable) continue; if (expr == R_SIZE) { target.relocateNoSym(bufLoc, type, SignExtend64(sym.getSize() + addend)); continue; } // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC // sections. if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || expr == R_RISCV_ADD) { target.relocateNoSym(bufLoc, type, SignExtend64(sym.getVA(addend))); continue; } std::string msg = getLocation(offset) + ": has non-ABS relocation " + toString(type) + " against symbol '" + toString(sym) + "'"; if (expr != R_PC && expr != R_ARM_PCA) { error(msg); return; } // If the control reaches here, we found a PC-relative relocation in a // non-ALLOC section. Since non-ALLOC section is not loaded into memory // at runtime, the notion of PC-relative doesn't make sense here. So, // this is a usage error. However, GNU linkers historically accept such // relocations without any errors and relocate them as if they were at // address 0. For bug-compatibility, we accept them with warnings. We // know Steel Bank Common Lisp as of 2018 have this bug. warn(msg); target.relocateNoSym( bufLoc, type, SignExtend64(sym.getVA(addend - offset - outSecOff))); } } // This is used when '-r' is given. // For REL targets, InputSection::copyRelocations() may store artificial // relocations aimed to update addends. They are handled in relocateAlloc() // for allocatable sections, and this function does the same for // non-allocatable sections, such as sections with debug information. static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { const unsigned bits = config->is64 ? 64 : 32; for (const Relocation &rel : sec->relocs()) { // InputSection::copyRelocations() adds only R_ABS relocations. assert(rel.expr == R_ABS); uint8_t *bufLoc = buf + rel.offset; uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); target->relocate(bufLoc, rel, targetVA); } } template void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile()->splitStack)) adjustSplitStackFunctionPrologues(buf, bufEnd); if (flags & SHF_ALLOC) { target->relocateAlloc(*this, buf); return; } auto *sec = cast(this); if (config->relocatable) relocateNonAllocForRelocatable(sec, buf); // For a relocatable link, also call relocateNonAlloc() to rewrite applicable // locations with tombstone values. const RelsOrRelas rels = sec->template relsOrRelas(); if (rels.areRelocsRel()) sec->relocateNonAlloc(buf, rels.rels); else sec->relocateNonAlloc(buf, rels.relas); } // For each function-defining prologue, find any calls to __morestack, // and replace them with calls to __morestack_non_split. static void switchMorestackCallsToMorestackNonSplit( DenseSet &prologues, SmallVector &morestackCalls) { // If the target adjusted a function's prologue, all calls to // __morestack inside that function should be switched to // __morestack_non_split. Symbol *moreStackNonSplit = symtab.find("__morestack_non_split"); if (!moreStackNonSplit) { error("mixing split-stack objects requires a definition of " "__morestack_non_split"); return; } // Sort both collections to compare addresses efficiently. llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { return l->offset < r->offset; }); std::vector functions(prologues.begin(), prologues.end()); llvm::sort(functions, [](const Defined *l, const Defined *r) { return l->value < r->value; }); auto it = morestackCalls.begin(); for (Defined *f : functions) { // Find the first call to __morestack within the function. while (it != morestackCalls.end() && (*it)->offset < f->value) ++it; // Adjust all calls inside the function. while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { (*it)->sym = moreStackNonSplit; ++it; } } } static bool enclosingPrologueAttempted(uint64_t offset, const DenseSet &prologues) { for (Defined *f : prologues) if (f->value <= offset && offset < f->value + f->size) return true; return false; } // If a function compiled for split stack calls a function not // compiled for split stack, then the caller needs its prologue // adjusted to ensure that the called function will have enough stack // available. Find those functions, and adjust their prologues. template void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end) { DenseSet prologues; SmallVector morestackCalls; for (Relocation &rel : relocs()) { // Ignore calls into the split-stack api. if (rel.sym->getName().starts_with("__morestack")) { if (rel.sym->getName().equals("__morestack")) morestackCalls.push_back(&rel); continue; } // A relocation to non-function isn't relevant. Sometimes // __morestack is not marked as a function, so this check comes // after the name check. if (rel.sym->type != STT_FUNC) continue; // If the callee's-file was compiled with split stack, nothing to do. In // this context, a "Defined" symbol is one "defined by the binary currently // being produced". So an "undefined" symbol might be provided by a shared // library. It is not possible to tell how such symbols were compiled, so be // conservative. if (Defined *d = dyn_cast(rel.sym)) if (InputSection *isec = cast_or_null(d->section)) if (!isec || !isec->getFile() || isec->getFile()->splitStack) continue; if (enclosingPrologueAttempted(rel.offset, prologues)) continue; if (Defined *f = getEnclosingFunction(rel.offset)) { prologues.insert(f); if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, f->stOther)) continue; if (!getFile()->someNoSplitStack) error(lld::toString(this) + ": " + f->getName() + " (with -fsplit-stack) calls " + rel.sym->getName() + " (without -fsplit-stack), but couldn't adjust its prologue"); } } if (target->needsMoreStackNonSplit) switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); } template void InputSection::writeTo(uint8_t *buf) { if (LLVM_UNLIKELY(type == SHT_NOBITS)) return; // If -r or --emit-relocs is given, then an InputSection // may be a relocation section. if (LLVM_UNLIKELY(type == SHT_RELA)) { copyRelocations(buf, getDataAs()); return; } if (LLVM_UNLIKELY(type == SHT_REL)) { copyRelocations(buf, getDataAs()); return; } // If -r is given, we may have a SHT_GROUP section. if (LLVM_UNLIKELY(type == SHT_GROUP)) { copyShtGroup(buf); return; } // If this is a compressed section, uncompress section contents directly // to the buffer. if (compressed) { auto *hdr = reinterpret_cast(content_); auto compressed = ArrayRef(content_, compressedSize) .slice(sizeof(typename ELFT::Chdr)); size_t size = this->size; if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB ? compression::zlib::decompress(compressed, buf, size) : compression::zstd::decompress(compressed, buf, size)) fatal(toString(this) + ": decompress failed: " + llvm::toString(std::move(e))); uint8_t *bufEnd = buf + size; relocate(buf, bufEnd); return; } // Copy section contents from source object file to output file // and then apply relocations. memcpy(buf, content().data(), content().size()); relocate(buf, buf + content().size()); } void InputSection::replace(InputSection *other) { addralign = std::max(addralign, other->addralign); // When a section is replaced with another section that was allocated to // another partition, the replacement section (and its associated sections) // need to be placed in the main partition so that both partitions will be // able to access it. if (partition != other->partition) { partition = 1; for (InputSection *isec : dependentSections) isec->partition = 1; } other->repl = repl; other->markDead(); } template EhInputSection::EhInputSection(ObjFile &f, const typename ELFT::Shdr &header, StringRef name) : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} SyntheticSection *EhInputSection::getParent() const { return cast_or_null(parent); } // .eh_frame is a sequence of CIE or FDE records. // This function splits an input section into records and returns them. template void EhInputSection::split() { const RelsOrRelas rels = relsOrRelas(); // getReloc expects the relocations to be sorted by r_offset. See the comment // in scanRelocs. if (rels.areRelocsRel()) { SmallVector storage; split(sortRels(rels.rels, storage)); } else { SmallVector storage; split(sortRels(rels.relas, storage)); } } template void EhInputSection::split(ArrayRef rels) { ArrayRef d = content(); const char *msg = nullptr; unsigned relI = 0; while (!d.empty()) { if (d.size() < 4) { msg = "CIE/FDE too small"; break; } uint64_t size = endian::read32(d.data()); if (size == 0) // ZERO terminator break; uint32_t id = endian::read32(d.data() + 4); size += 4; if (LLVM_UNLIKELY(size > d.size())) { // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, // but we do not support that format yet. msg = size == UINT32_MAX + uint64_t(4) ? "CIE/FDE too large" : "CIE/FDE ends past the end of the section"; break; } // Find the first relocation that points to [off,off+size). Relocations // have been sorted by r_offset. const uint64_t off = d.data() - content().data(); while (relI != rels.size() && rels[relI].r_offset < off) ++relI; unsigned firstRel = -1; if (relI != rels.size() && rels[relI].r_offset < off + size) firstRel = relI; (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel); d = d.slice(size); } if (msg) errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + getObjMsg(d.data() - content().data())); } // Return the offset in an output section for a given input offset. uint64_t EhInputSection::getParentOffset(uint64_t offset) const { auto it = partition_point( fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; }); if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { it = partition_point( cies, [=](EhSectionPiece p) { return p.inputOff <= offset; }); if (it == cies.begin()) // invalid piece return offset; } if (it[-1].outputOff == -1) // invalid piece return offset - it[-1].inputOff; return it[-1].outputOff + (offset - it[-1].inputOff); } static size_t findNull(StringRef s, size_t entSize) { for (unsigned i = 0, n = s.size(); i != n; i += entSize) { const char *b = s.begin() + i; if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) return i; } llvm_unreachable(""); } // Split SHF_STRINGS section. Such section is a sequence of // null-terminated strings. void MergeInputSection::splitStrings(StringRef s, size_t entSize) { const bool live = !(flags & SHF_ALLOC) || !config->gcSections; const char *p = s.data(), *end = s.data() + s.size(); if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) fatal(toString(this) + ": string is not null terminated"); if (entSize == 1) { // Optimize the common case. do { size_t size = strlen(p); pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); p += size + 1; } while (p != end); } else { do { size_t size = findNull(StringRef(p, end - p), entSize); pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); p += size + entSize; } while (p != end); } } // Split non-SHF_STRINGS section. Such section is a sequence of // fixed size records. void MergeInputSection::splitNonStrings(ArrayRef data, size_t entSize) { size_t size = data.size(); assert((size % entSize) == 0); const bool live = !(flags & SHF_ALLOC) || !config->gcSections; pieces.resize_for_overwrite(size / entSize); for (size_t i = 0, j = 0; i != size; i += entSize, j++) pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live}; } template MergeInputSection::MergeInputSection(ObjFile &f, const typename ELFT::Shdr &header, StringRef name) : InputSectionBase(f, header, name, InputSectionBase::Merge) {} MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize, ArrayRef data, StringRef name) : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, /*Alignment*/ entsize, data, name, SectionBase::Merge) {} // This function is called after we obtain a complete list of input sections // that need to be linked. This is responsible to split section contents // into small chunks for further processing. // // Note that this function is called from parallelForEach. This must be // thread-safe (i.e. no memory allocation from the pools). void MergeInputSection::splitIntoPieces() { assert(pieces.empty()); if (flags & SHF_STRINGS) splitStrings(toStringRef(contentMaybeDecompress()), entsize); else splitNonStrings(contentMaybeDecompress(), entsize); } SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { if (content().size() <= offset) fatal(toString(this) + ": offset is outside the section"); return partition_point( pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; } // Return the offset in an output section for a given input offset. uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { const SectionPiece &piece = getSectionPiece(offset); return piece.outputOff + (offset - piece.inputOff); } template InputSection::InputSection(ObjFile &, const ELF32LE::Shdr &, StringRef); template InputSection::InputSection(ObjFile &, const ELF32BE::Shdr &, StringRef); template InputSection::InputSection(ObjFile &, const ELF64LE::Shdr &, StringRef); template InputSection::InputSection(ObjFile &, const ELF64BE::Shdr &, StringRef); template void InputSection::writeTo(uint8_t *); template void InputSection::writeTo(uint8_t *); template void InputSection::writeTo(uint8_t *); template void InputSection::writeTo(uint8_t *); template RelsOrRelas InputSectionBase::relsOrRelas() const; template RelsOrRelas InputSectionBase::relsOrRelas() const; template RelsOrRelas InputSectionBase::relsOrRelas() const; template RelsOrRelas InputSectionBase::relsOrRelas() const; template MergeInputSection::MergeInputSection(ObjFile &, const ELF32LE::Shdr &, StringRef); template MergeInputSection::MergeInputSection(ObjFile &, const ELF32BE::Shdr &, StringRef); template MergeInputSection::MergeInputSection(ObjFile &, const ELF64LE::Shdr &, StringRef); template MergeInputSection::MergeInputSection(ObjFile &, const ELF64BE::Shdr &, StringRef); template EhInputSection::EhInputSection(ObjFile &, const ELF32LE::Shdr &, StringRef); template EhInputSection::EhInputSection(ObjFile &, const ELF32BE::Shdr &, StringRef); template EhInputSection::EhInputSection(ObjFile &, const ELF64LE::Shdr &, StringRef); template EhInputSection::EhInputSection(ObjFile &, const ELF64BE::Shdr &, StringRef); template void EhInputSection::split(); template void EhInputSection::split(); template void EhInputSection::split(); template void EhInputSection::split();