//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Driver.h" #include "InputSection.h" #include "LinkerScript.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "lld/Common/DWARF.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/LTO/LTO.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/ARMAttributeParser.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Path.h" #include "llvm/Support/RISCVAttributeParser.h" #include "llvm/Support/TarWriter.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::sys; using namespace llvm::sys::fs; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; bool InputFile::isInGroup; uint32_t InputFile::nextGroupId; std::vector elf::archiveFiles; std::vector elf::binaryFiles; std::vector elf::bitcodeFiles; std::vector elf::lazyObjFiles; std::vector elf::objectFiles; std::vector elf::sharedFiles; std::unique_ptr elf::tar; // Returns "", "foo.a(bar.o)" or "baz.o". std::string lld::toString(const InputFile *f) { if (!f) return ""; if (f->toStringCache.empty()) { if (f->archiveName.empty()) f->toStringCache = std::string(f->getName()); else f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); } return f->toStringCache; } static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { unsigned char size; unsigned char endian; std::tie(size, endian) = getElfArchType(mb.getBuffer()); auto report = [&](StringRef msg) { StringRef filename = mb.getBufferIdentifier(); if (archiveName.empty()) fatal(filename + ": " + msg); else fatal(archiveName + "(" + filename + "): " + msg); }; if (!mb.getBuffer().startswith(ElfMagic)) report("not an ELF file"); if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) report("corrupted ELF file: invalid data encoding"); if (size != ELFCLASS32 && size != ELFCLASS64) report("corrupted ELF file: invalid file class"); size_t bufSize = mb.getBuffer().size(); if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) report("corrupted ELF file: file is too short"); if (size == ELFCLASS32) return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; } InputFile::InputFile(Kind k, MemoryBufferRef m) : mb(m), groupId(nextGroupId), fileKind(k) { // All files within the same --{start,end}-group get the same group ID. // Otherwise, a new file will get a new group ID. if (!isInGroup) ++nextGroupId; } Optional elf::readFile(StringRef path) { llvm::TimeTraceScope timeScope("Load input files", path); // The --chroot option changes our virtual root directory. // This is useful when you are dealing with files created by --reproduce. if (!config->chroot.empty() && path.startswith("/")) path = saver.save(config->chroot + path); log(path); config->dependencyFiles.insert(llvm::CachedHashString(path)); auto mbOrErr = MemoryBuffer::getFile(path, -1, false); if (auto ec = mbOrErr.getError()) { error("cannot open " + path + ": " + ec.message()); return None; } std::unique_ptr &mb = *mbOrErr; MemoryBufferRef mbref = mb->getMemBufferRef(); make>(std::move(mb)); // take MB ownership if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return mbref; } // All input object files must be for the same architecture // (e.g. it does not make sense to link x86 object files with // MIPS object files.) This function checks for that error. static bool isCompatible(InputFile *file) { if (!file->isElf() && !isa(file)) return true; if (file->ekind == config->ekind && file->emachine == config->emachine) { if (config->emachine != EM_MIPS) return true; if (isMipsN32Abi(file) == config->mipsN32Abi) return true; } StringRef target = !config->bfdname.empty() ? config->bfdname : config->emulation; if (!target.empty()) { error(toString(file) + " is incompatible with " + target); return false; } InputFile *existing; if (!objectFiles.empty()) existing = objectFiles[0]; else if (!sharedFiles.empty()) existing = sharedFiles[0]; else if (!bitcodeFiles.empty()) existing = bitcodeFiles[0]; else llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " "determine target emulation"); error(toString(file) + " is incompatible with " + toString(existing)); return false; } template static void doParseFile(InputFile *file) { if (!isCompatible(file)) return; // Binary file if (auto *f = dyn_cast(file)) { binaryFiles.push_back(f); f->parse(); return; } // .a file if (auto *f = dyn_cast(file)) { archiveFiles.push_back(f); f->parse(); return; } // Lazy object file if (auto *f = dyn_cast(file)) { lazyObjFiles.push_back(f); f->parse(); return; } if (config->trace) message(toString(file)); // .so file if (auto *f = dyn_cast(file)) { f->parse(); return; } // LLVM bitcode file if (auto *f = dyn_cast(file)) { bitcodeFiles.push_back(f); f->parse(); return; } // Regular object file objectFiles.push_back(file); cast>(file)->parse(); } // Add symbols in File to the symbol table. void elf::parseFile(InputFile *file) { switch (config->ekind) { case ELF32LEKind: doParseFile(file); return; case ELF32BEKind: doParseFile(file); return; case ELF64LEKind: doParseFile(file); return; case ELF64BEKind: doParseFile(file); return; default: llvm_unreachable("unknown ELFT"); } } // Concatenates arguments to construct a string representing an error location. static std::string createFileLineMsg(StringRef path, unsigned line) { std::string filename = std::string(path::filename(path)); std::string lineno = ":" + std::to_string(line); if (filename == path) return filename + lineno; return filename + lineno + " (" + path.str() + lineno + ")"; } template static std::string getSrcMsgAux(ObjFile &file, const Symbol &sym, InputSectionBase &sec, uint64_t offset) { // In DWARF, functions and variables are stored to different places. // First, lookup a function for a given offset. if (Optional info = file.getDILineInfo(&sec, offset)) return createFileLineMsg(info->FileName, info->Line); // If it failed, lookup again as a variable. if (Optional> fileLine = file.getVariableLoc(sym.getName())) return createFileLineMsg(fileLine->first, fileLine->second); // File.sourceFile contains STT_FILE symbol, and that is a last resort. return std::string(file.sourceFile); } std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, uint64_t offset) { if (kind() != ObjKind) return ""; switch (config->ekind) { default: llvm_unreachable("Invalid kind"); case ELF32LEKind: return getSrcMsgAux(cast>(*this), sym, sec, offset); case ELF32BEKind: return getSrcMsgAux(cast>(*this), sym, sec, offset); case ELF64LEKind: return getSrcMsgAux(cast>(*this), sym, sec, offset); case ELF64BEKind: return getSrcMsgAux(cast>(*this), sym, sec, offset); } } StringRef InputFile::getNameForScript() const { if (archiveName.empty()) return getName(); if (nameForScriptCache.empty()) nameForScriptCache = (archiveName + Twine(':') + getName()).str(); return nameForScriptCache; } template DWARFCache *ObjFile::getDwarf() { llvm::call_once(initDwarf, [this]() { dwarf = std::make_unique(std::make_unique( std::make_unique>(this), "", [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, [&](Error warning) { warn(getName() + ": " + toString(std::move(warning))); })); }); return dwarf.get(); } // Returns the pair of file name and line number describing location of data // object (variable, array, etc) definition. template Optional> ObjFile::getVariableLoc(StringRef name) { return getDwarf()->getVariableLoc(name); } // Returns source line information for a given offset // using DWARF debug info. template Optional ObjFile::getDILineInfo(InputSectionBase *s, uint64_t offset) { // Detect SectionIndex for specified section. uint64_t sectionIndex = object::SectionedAddress::UndefSection; ArrayRef sections = s->file->getSections(); for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { if (s == sections[curIndex]) { sectionIndex = curIndex; break; } } return getDwarf()->getDILineInfo(offset, sectionIndex); } ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { ekind = getELFKind(mb, ""); switch (ekind) { case ELF32LEKind: init(); break; case ELF32BEKind: init(); break; case ELF64LEKind: init(); break; case ELF64BEKind: init(); break; default: llvm_unreachable("getELFKind"); } } template static const Elf_Shdr *findSection(ArrayRef sections, uint32_t type) { for (const Elf_Shdr &sec : sections) if (sec.sh_type == type) return &sec; return nullptr; } template void ELFFileBase::init() { using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; // Initialize trivial attributes. const ELFFile &obj = getObj(); emachine = obj.getHeader().e_machine; osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; ArrayRef sections = CHECK(obj.sections(), this); // Find a symbol table. bool isDSO = (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); const Elf_Shdr *symtabSec = findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); if (!symtabSec) return; // Initialize members corresponding to a symbol table. firstGlobal = symtabSec->sh_info; ArrayRef eSyms = CHECK(obj.symbols(symtabSec), this); if (firstGlobal == 0 || firstGlobal > eSyms.size()) fatal(toString(this) + ": invalid sh_info in symbol table"); elfSyms = reinterpret_cast(eSyms.data()); numELFSyms = eSyms.size(); stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); } template uint32_t ObjFile::getSectionIndex(const Elf_Sym &sym) const { return CHECK( this->getObj().getSectionIndex(sym, getELFSyms(), shndxTable), this); } template ArrayRef ObjFile::getLocalSymbols() { if (this->symbols.empty()) return {}; return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); } template ArrayRef ObjFile::getGlobalSymbols() { return makeArrayRef(this->symbols).slice(this->firstGlobal); } template void ObjFile::parse(bool ignoreComdats) { // Read a section table. justSymbols is usually false. if (this->justSymbols) initializeJustSymbols(); else initializeSections(ignoreComdats); // Read a symbol table. initializeSymbols(); } // Sections with SHT_GROUP and comdat bits define comdat section groups. // They are identified and deduplicated by group name. This function // returns a group name. template StringRef ObjFile::getShtGroupSignature(ArrayRef sections, const Elf_Shdr &sec) { typename ELFT::SymRange symbols = this->getELFSyms(); if (sec.sh_info >= symbols.size()) fatal(toString(this) + ": invalid symbol index"); const typename ELFT::Sym &sym = symbols[sec.sh_info]; StringRef signature = CHECK(sym.getName(this->stringTable), this); // As a special case, if a symbol is a section symbol and has no name, // we use a section name as a signature. // // Such SHT_GROUP sections are invalid from the perspective of the ELF // standard, but GNU gold 1.14 (the newest version as of July 2017) or // older produce such sections as outputs for the -r option, so we need // a bug-compatibility. if (signature.empty() && sym.getType() == STT_SECTION) return getSectionName(sec); return signature; } template bool ObjFile::shouldMerge(const Elf_Shdr &sec, StringRef name) { if (!(sec.sh_flags & SHF_MERGE)) return false; // On a regular link we don't merge sections if -O0 (default is -O1). This // sometimes makes the linker significantly faster, although the output will // be bigger. // // Doing the same for -r would create a problem as it would combine sections // with different sh_entsize. One option would be to just copy every SHF_MERGE // section as is to the output. While this would produce a valid ELF file with // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when // they see two .debug_str. We could have separate logic for combining // SHF_MERGE sections based both on their name and sh_entsize, but that seems // to be more trouble than it is worth. Instead, we just use the regular (-O1) // logic for -r. if (config->optimize == 0 && !config->relocatable) return false; // A mergeable section with size 0 is useless because they don't have // any data to merge. A mergeable string section with size 0 can be // argued as invalid because it doesn't end with a null character. // We'll avoid a mess by handling them as if they were non-mergeable. if (sec.sh_size == 0) return false; // Check for sh_entsize. The ELF spec is not clear about the zero // sh_entsize. It says that "the member [sh_entsize] contains 0 if // the section does not hold a table of fixed-size entries". We know // that Rust 1.13 produces a string mergeable section with a zero // sh_entsize. Here we just accept it rather than being picky about it. uint64_t entSize = sec.sh_entsize; if (entSize == 0) return false; if (sec.sh_size % entSize) fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + Twine(entSize) + ")"); if (sec.sh_flags & SHF_WRITE) fatal(toString(this) + ":(" + name + "): writable SHF_MERGE section is not supported"); return true; } // This is for --just-symbols. // // --just-symbols is a very minor feature that allows you to link your // output against other existing program, so that if you load both your // program and the other program into memory, your output can refer the // other program's symbols. // // When the option is given, we link "just symbols". The section table is // initialized with null pointers. template void ObjFile::initializeJustSymbols() { ArrayRef sections = CHECK(this->getObj().sections(), this); this->sections.resize(sections.size()); } // An ELF object file may contain a `.deplibs` section. If it exists, the // section contains a list of library specifiers such as `m` for libm. This // function resolves a given name by finding the first matching library checking // the various ways that a library can be specified to LLD. This ELF extension // is a form of autolinking and is called `dependent libraries`. It is currently // unique to LLVM and lld. static void addDependentLibrary(StringRef specifier, const InputFile *f) { if (!config->dependentLibraries) return; if (fs::exists(specifier)) driver->addFile(specifier, /*withLOption=*/false); else if (Optional s = findFromSearchPaths(specifier)) driver->addFile(*s, /*withLOption=*/true); else if (Optional s = searchLibraryBaseName(specifier)) driver->addFile(*s, /*withLOption=*/true); else error(toString(f) + ": unable to find library from dependent library specifier: " + specifier); } // Record the membership of a section group so that in the garbage collection // pass, section group members are kept or discarded as a unit. template static void handleSectionGroup(ArrayRef sections, ArrayRef entries) { bool hasAlloc = false; for (uint32_t index : entries.slice(1)) { if (index >= sections.size()) return; if (InputSectionBase *s = sections[index]) if (s != &InputSection::discarded && s->flags & SHF_ALLOC) hasAlloc = true; } // If any member has the SHF_ALLOC flag, the whole group is subject to garbage // collection. See the comment in markLive(). This rule retains .debug_types // and .rela.debug_types. if (!hasAlloc) return; // Connect the members in a circular doubly-linked list via // nextInSectionGroup. InputSectionBase *head; InputSectionBase *prev = nullptr; for (uint32_t index : entries.slice(1)) { InputSectionBase *s = sections[index]; if (!s || s == &InputSection::discarded) continue; if (prev) prev->nextInSectionGroup = s; else head = s; prev = s; } if (prev) prev->nextInSectionGroup = head; } template void ObjFile::initializeSections(bool ignoreComdats) { const ELFFile &obj = this->getObj(); ArrayRef objSections = CHECK(obj.sections(), this); uint64_t size = objSections.size(); this->sections.resize(size); this->sectionStringTable = CHECK(obj.getSectionStringTable(objSections), this); std::vector> selectedGroups; for (size_t i = 0, e = objSections.size(); i < e; ++i) { if (this->sections[i] == &InputSection::discarded) continue; const Elf_Shdr &sec = objSections[i]; if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) cgProfile = check(obj.template getSectionContentsAsArray(sec)); // SHF_EXCLUDE'ed sections are discarded by the linker. However, // if -r is given, we'll let the final link discard such sections. // This is compatible with GNU. if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { if (sec.sh_type == SHT_LLVM_ADDRSIG) { // We ignore the address-significance table if we know that the object // file was created by objcopy or ld -r. This is because these tools // will reorder the symbols in the symbol table, invalidating the data // in the address-significance table, which refers to symbols by index. if (sec.sh_link != 0) this->addrsigSec = &sec; else if (config->icf == ICFLevel::Safe) warn(toString(this) + ": --icf=safe is incompatible with object " "files created using objcopy or ld -r"); } this->sections[i] = &InputSection::discarded; continue; } switch (sec.sh_type) { case SHT_GROUP: { // De-duplicate section groups by their signatures. StringRef signature = getShtGroupSignature(objSections, sec); this->sections[i] = &InputSection::discarded; ArrayRef entries = CHECK(obj.template getSectionContentsAsArray(sec), this); if (entries.empty()) fatal(toString(this) + ": empty SHT_GROUP"); // The first word of a SHT_GROUP section contains flags. Currently, // the standard defines only "GRP_COMDAT" flag for the COMDAT group. // An group with the empty flag doesn't define anything; such sections // are just skipped. if (entries[0] == 0) continue; if (entries[0] != GRP_COMDAT) fatal(toString(this) + ": unsupported SHT_GROUP format"); bool isNew = ignoreComdats || symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) .second; if (isNew) { if (config->relocatable) this->sections[i] = createInputSection(sec); selectedGroups.push_back(entries); continue; } // Otherwise, discard group members. for (uint32_t secIndex : entries.slice(1)) { if (secIndex >= size) fatal(toString(this) + ": invalid section index in group: " + Twine(secIndex)); this->sections[secIndex] = &InputSection::discarded; } break; } case SHT_SYMTAB_SHNDX: shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); break; case SHT_SYMTAB: case SHT_STRTAB: case SHT_REL: case SHT_RELA: case SHT_NULL: break; default: this->sections[i] = createInputSection(sec); } } // We have a second loop. It is used to: // 1) handle SHF_LINK_ORDER sections. // 2) create SHT_REL[A] sections. In some cases the section header index of a // relocation section may be smaller than that of the relocated section. In // such cases, the relocation section would attempt to reference a target // section that has not yet been created. For simplicity, delay creation of // relocation sections until now. for (size_t i = 0, e = objSections.size(); i < e; ++i) { if (this->sections[i] == &InputSection::discarded) continue; const Elf_Shdr &sec = objSections[i]; if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) this->sections[i] = createInputSection(sec); // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have // the flag. if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) continue; InputSectionBase *linkSec = nullptr; if (sec.sh_link < this->sections.size()) linkSec = this->sections[sec.sh_link]; if (!linkSec) fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); // A SHF_LINK_ORDER section is discarded if its linked-to section is // discarded. InputSection *isec = cast(this->sections[i]); linkSec->dependentSections.push_back(isec); if (!isa(linkSec)) error("a section " + isec->name + " with SHF_LINK_ORDER should not refer a non-regular section: " + toString(linkSec)); } for (ArrayRef entries : selectedGroups) handleSectionGroup(this->sections, entries); } // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how // the input objects have been compiled. static void updateARMVFPArgs(const ARMAttributeParser &attributes, const InputFile *f) { Optional attr = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); if (!attr.hasValue()) // If an ABI tag isn't present then it is implicitly given the value of 0 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, // including some in glibc that don't use FP args (and should have value 3) // don't have the attribute so we do not consider an implicit value of 0 // as a clash. return; unsigned vfpArgs = attr.getValue(); ARMVFPArgKind arg; switch (vfpArgs) { case ARMBuildAttrs::BaseAAPCS: arg = ARMVFPArgKind::Base; break; case ARMBuildAttrs::HardFPAAPCS: arg = ARMVFPArgKind::VFP; break; case ARMBuildAttrs::ToolChainFPPCS: // Tool chain specific convention that conforms to neither AAPCS variant. arg = ARMVFPArgKind::ToolChain; break; case ARMBuildAttrs::CompatibleFPAAPCS: // Object compatible with all conventions. return; default: error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); return; } // Follow ld.bfd and error if there is a mix of calling conventions. if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) error(toString(f) + ": incompatible Tag_ABI_VFP_args"); else config->armVFPArgs = arg; } // The ARM support in lld makes some use of instructions that are not available // on all ARM architectures. Namely: // - Use of BLX instruction for interworking between ARM and Thumb state. // - Use of the extended Thumb branch encoding in relocation. // - Use of the MOVT/MOVW instructions in Thumb Thunks. // The ARM Attributes section contains information about the architecture chosen // at compile time. We follow the convention that if at least one input object // is compiled with an architecture that supports these features then lld is // permitted to use them. static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { Optional attr = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); if (!attr.hasValue()) return; auto arch = attr.getValue(); switch (arch) { case ARMBuildAttrs::Pre_v4: case ARMBuildAttrs::v4: case ARMBuildAttrs::v4T: // Architectures prior to v5 do not support BLX instruction break; case ARMBuildAttrs::v5T: case ARMBuildAttrs::v5TE: case ARMBuildAttrs::v5TEJ: case ARMBuildAttrs::v6: case ARMBuildAttrs::v6KZ: case ARMBuildAttrs::v6K: config->armHasBlx = true; // Architectures used in pre-Cortex processors do not support // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. break; default: // All other Architectures have BLX and extended branch encoding config->armHasBlx = true; config->armJ1J2BranchEncoding = true; if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) // All Architectures used in Cortex processors with the exception // of v6-M and v6S-M have the MOVT and MOVW instructions. config->armHasMovtMovw = true; break; } } // If a source file is compiled with x86 hardware-assisted call flow control // enabled, the generated object file contains feature flags indicating that // fact. This function reads the feature flags and returns it. // // Essentially we want to read a single 32-bit value in this function, but this // function is rather complicated because the value is buried deep inside a // .note.gnu.property section. // // The section consists of one or more NOTE records. Each NOTE record consists // of zero or more type-length-value fields. We want to find a field of a // certain type. It seems a bit too much to just store a 32-bit value, perhaps // the ABI is unnecessarily complicated. template static uint32_t readAndFeatures(const InputSection &sec) { using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename ELFT::Note; uint32_t featuresSet = 0; ArrayRef data = sec.data(); auto reportFatal = [&](const uint8_t *place, const char *msg) { fatal(toString(sec.file) + ":(" + sec.name + "+0x" + Twine::utohexstr(place - sec.data().data()) + "): " + msg); }; while (!data.empty()) { // Read one NOTE record. auto *nhdr = reinterpret_cast(data.data()); if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) reportFatal(data.data(), "data is too short"); Elf_Note note(*nhdr); if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { data = data.slice(nhdr->getSize()); continue; } uint32_t featureAndType = config->emachine == EM_AARCH64 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND : GNU_PROPERTY_X86_FEATURE_1_AND; // Read a body of a NOTE record, which consists of type-length-value fields. ArrayRef desc = note.getDesc(); while (!desc.empty()) { const uint8_t *place = desc.data(); if (desc.size() < 8) reportFatal(place, "program property is too short"); uint32_t type = read32(desc.data()); uint32_t size = read32(desc.data() + 4); desc = desc.slice(8); if (desc.size() < size) reportFatal(place, "program property is too short"); if (type == featureAndType) { // We found a FEATURE_1_AND field. There may be more than one of these // in a .note.gnu.property section, for a relocatable object we // accumulate the bits set. if (size < 4) reportFatal(place, "FEATURE_1_AND entry is too short"); featuresSet |= read32(desc.data()); } // Padding is present in the note descriptor, if necessary. desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); } // Go to next NOTE record to look for more FEATURE_1_AND descriptions. data = data.slice(nhdr->getSize()); } return featuresSet; } template InputSectionBase *ObjFile::getRelocTarget(const Elf_Shdr &sec) { uint32_t idx = sec.sh_info; if (idx >= this->sections.size()) fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); InputSectionBase *target = this->sections[idx]; // Strictly speaking, a relocation section must be included in the // group of the section it relocates. However, LLVM 3.3 and earlier // would fail to do so, so we gracefully handle that case. if (target == &InputSection::discarded) return nullptr; if (!target) fatal(toString(this) + ": unsupported relocation reference"); return target; } // Create a regular InputSection class that has the same contents // as a given section. static InputSection *toRegularSection(MergeInputSection *sec) { return make(sec->file, sec->flags, sec->type, sec->alignment, sec->data(), sec->name); } template InputSectionBase *ObjFile::createInputSection(const Elf_Shdr &sec) { StringRef name = getSectionName(sec); if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { ARMAttributeParser attributes; ArrayRef contents = check(this->getObj().getSectionContents(sec)); if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind ? support::little : support::big)) { auto *isec = make(*this, sec, name); warn(toString(isec) + ": " + llvm::toString(std::move(e))); } else { updateSupportedARMFeatures(attributes); updateARMVFPArgs(attributes, this); // FIXME: Retain the first attribute section we see. The eglibc ARM // dynamic loaders require the presence of an attribute section for dlopen // to work. In a full implementation we would merge all attribute // sections. if (in.attributes == nullptr) { in.attributes = make(*this, sec, name); return in.attributes; } return &InputSection::discarded; } } if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { RISCVAttributeParser attributes; ArrayRef contents = check(this->getObj().getSectionContents(sec)); if (Error e = attributes.parse(contents, support::little)) { auto *isec = make(*this, sec, name); warn(toString(isec) + ": " + llvm::toString(std::move(e))); } else { // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is // present. // FIXME: Retain the first attribute section we see. Tools such as // llvm-objdump make use of the attribute section to determine which // standard extensions to enable. In a full implementation we would merge // all attribute sections. if (in.attributes == nullptr) { in.attributes = make(*this, sec, name); return in.attributes; } return &InputSection::discarded; } } switch (sec.sh_type) { case SHT_LLVM_DEPENDENT_LIBRARIES: { if (config->relocatable) break; ArrayRef data = CHECK(this->getObj().template getSectionContentsAsArray(sec), this); if (!data.empty() && data.back() != '\0') { error(toString(this) + ": corrupted dependent libraries section (unterminated string): " + name); return &InputSection::discarded; } for (const char *d = data.begin(), *e = data.end(); d < e;) { StringRef s(d); addDependentLibrary(s, this); d += s.size() + 1; } return &InputSection::discarded; } case SHT_RELA: case SHT_REL: { // Find a relocation target section and associate this section with that. // Target may have been discarded if it is in a different section group // and the group is discarded, even though it's a violation of the // spec. We handle that situation gracefully by discarding dangling // relocation sections. InputSectionBase *target = getRelocTarget(sec); if (!target) return nullptr; // ELF spec allows mergeable sections with relocations, but they are // rare, and it is in practice hard to merge such sections by contents, // because applying relocations at end of linking changes section // contents. So, we simply handle such sections as non-mergeable ones. // Degrading like this is acceptable because section merging is optional. if (auto *ms = dyn_cast(target)) { target = toRegularSection(ms); this->sections[sec.sh_info] = target; } if (target->firstRelocation) fatal(toString(this) + ": multiple relocation sections to one section are not supported"); if (sec.sh_type == SHT_RELA) { ArrayRef rels = CHECK(getObj().relas(sec), this); target->firstRelocation = rels.begin(); target->numRelocations = rels.size(); target->areRelocsRela = true; } else { ArrayRef rels = CHECK(getObj().rels(sec), this); target->firstRelocation = rels.begin(); target->numRelocations = rels.size(); target->areRelocsRela = false; } assert(isUInt<31>(target->numRelocations)); // Relocation sections are usually removed from the output, so return // `nullptr` for the normal case. However, if -r or --emit-relocs is // specified, we need to copy them to the output. (Some post link analysis // tools specify --emit-relocs to obtain the information.) if (!config->relocatable && !config->emitRelocs) return nullptr; InputSection *relocSec = make(*this, sec, name); // If the relocated section is discarded (due to /DISCARD/ or // --gc-sections), the relocation section should be discarded as well. target->dependentSections.push_back(relocSec); return relocSec; } } // The GNU linker uses .note.GNU-stack section as a marker indicating // that the code in the object file does not expect that the stack is // executable (in terms of NX bit). If all input files have the marker, // the GNU linker adds a PT_GNU_STACK segment to tells the loader to // make the stack non-executable. Most object files have this section as // of 2017. // // But making the stack non-executable is a norm today for security // reasons. Failure to do so may result in a serious security issue. // Therefore, we make LLD always add PT_GNU_STACK unless it is // explicitly told to do otherwise (by -z execstack). Because the stack // executable-ness is controlled solely by command line options, // .note.GNU-stack sections are simply ignored. if (name == ".note.GNU-stack") return &InputSection::discarded; // Object files that use processor features such as Intel Control-Flow // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a // .note.gnu.property section containing a bitfield of feature bits like the // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. // // Since we merge bitmaps from multiple object files to create a new // .note.gnu.property containing a single AND'ed bitmap, we discard an input // file's .note.gnu.property section. if (name == ".note.gnu.property") { this->andFeatures = readAndFeatures(InputSection(*this, sec, name)); return &InputSection::discarded; } // Split stacks is a feature to support a discontiguous stack, // commonly used in the programming language Go. For the details, // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled // for split stack will include a .note.GNU-split-stack section. if (name == ".note.GNU-split-stack") { if (config->relocatable) { error("cannot mix split-stack and non-split-stack in a relocatable link"); return &InputSection::discarded; } this->splitStack = true; return &InputSection::discarded; } // An object file cmpiled for split stack, but where some of the // functions were compiled with the no_split_stack_attribute will // include a .note.GNU-no-split-stack section. if (name == ".note.GNU-no-split-stack") { this->someNoSplitStack = true; return &InputSection::discarded; } // The linkonce feature is a sort of proto-comdat. Some glibc i386 object // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce // sections. Drop those sections to avoid duplicate symbol errors. // FIXME: This is glibc PR20543, we should remove this hack once that has been // fixed for a while. if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") return &InputSection::discarded; // If we are creating a new .build-id section, strip existing .build-id // sections so that the output won't have more than one .build-id. // This is not usually a problem because input object files normally don't // have .build-id sections, but you can create such files by // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) return &InputSection::discarded; // The linker merges EH (exception handling) frames and creates a // .eh_frame_hdr section for runtime. So we handle them with a special // class. For relocatable outputs, they are just passed through. if (name == ".eh_frame" && !config->relocatable) return make(*this, sec, name); if (shouldMerge(sec, name)) return make(*this, sec, name); return make(*this, sec, name); } template StringRef ObjFile::getSectionName(const Elf_Shdr &sec) { return CHECK(getObj().getSectionName(sec, sectionStringTable), this); } // Initialize this->Symbols. this->Symbols is a parallel array as // its corresponding ELF symbol table. template void ObjFile::initializeSymbols() { ArrayRef eSyms = this->getELFSyms(); this->symbols.resize(eSyms.size()); // Fill in InputFile::symbols. Some entries have been initialized // because of LazyObjFile. for (size_t i = 0, end = eSyms.size(); i != end; ++i) { if (this->symbols[i]) continue; const Elf_Sym &eSym = eSyms[i]; uint32_t secIdx = getSectionIndex(eSym); if (secIdx >= this->sections.size()) fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); if (eSym.getBinding() != STB_LOCAL) { if (i < firstGlobal) error(toString(this) + ": non-local symbol (" + Twine(i) + ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + ")"); this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); continue; } // Handle local symbols. Local symbols are not added to the symbol // table because they are not visible from other object files. We // allocate symbol instances and add their pointers to symbols. if (i >= firstGlobal) errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + ") found at index >= .symtab's sh_info (" + Twine(firstGlobal) + ")"); InputSectionBase *sec = this->sections[secIdx]; uint8_t type = eSym.getType(); if (type == STT_FILE) sourceFile = CHECK(eSym.getName(this->stringTable), this); if (this->stringTable.size() <= eSym.st_name) fatal(toString(this) + ": invalid symbol name offset"); StringRefZ name = this->stringTable.data() + eSym.st_name; if (eSym.st_shndx == SHN_UNDEF) this->symbols[i] = make(this, name, STB_LOCAL, eSym.st_other, type); else if (sec == &InputSection::discarded) this->symbols[i] = make(this, name, STB_LOCAL, eSym.st_other, type, /*discardedSecIdx=*/secIdx); else this->symbols[i] = make(this, name, STB_LOCAL, eSym.st_other, type, eSym.st_value, eSym.st_size, sec); } // Symbol resolution of non-local symbols. for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { const Elf_Sym &eSym = eSyms[i]; uint8_t binding = eSym.getBinding(); if (binding == STB_LOCAL) continue; // Errored above. uint32_t secIdx = getSectionIndex(eSym); InputSectionBase *sec = this->sections[secIdx]; uint8_t stOther = eSym.st_other; uint8_t type = eSym.getType(); uint64_t value = eSym.st_value; uint64_t size = eSym.st_size; StringRefZ name = this->stringTable.data() + eSym.st_name; // Handle global undefined symbols. if (eSym.st_shndx == SHN_UNDEF) { this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); this->symbols[i]->referenced = true; continue; } // Handle global common symbols. if (eSym.st_shndx == SHN_COMMON) { if (value == 0 || value >= UINT32_MAX) fatal(toString(this) + ": common symbol '" + StringRef(name.data) + "' has invalid alignment: " + Twine(value)); this->symbols[i]->resolve( CommonSymbol{this, name, binding, stOther, type, value, size}); continue; } // If a defined symbol is in a discarded section, handle it as if it // were an undefined symbol. Such symbol doesn't comply with the // standard, but in practice, a .eh_frame often directly refer // COMDAT member sections, and if a comdat group is discarded, some // defined symbol in a .eh_frame becomes dangling symbols. if (sec == &InputSection::discarded) { Undefined und{this, name, binding, stOther, type, secIdx}; Symbol *sym = this->symbols[i]; // !ArchiveFile::parsed or LazyObjFile::fetched means that the file // containing this object has not finished processing, i.e. this symbol is // a result of a lazy symbol fetch. We should demote the lazy symbol to an // Undefined so that any relocations outside of the group to it will // trigger a discarded section error. if ((sym->symbolKind == Symbol::LazyArchiveKind && !cast(sym->file)->parsed) || (sym->symbolKind == Symbol::LazyObjectKind && cast(sym->file)->fetched)) sym->replace(und); else sym->resolve(und); continue; } // Handle global defined symbols. if (binding == STB_GLOBAL || binding == STB_WEAK || binding == STB_GNU_UNIQUE) { this->symbols[i]->resolve( Defined{this, name, binding, stOther, type, value, size, sec}); continue; } fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); } } ArchiveFile::ArchiveFile(std::unique_ptr &&file) : InputFile(ArchiveKind, file->getMemoryBufferRef()), file(std::move(file)) {} void ArchiveFile::parse() { for (const Archive::Symbol &sym : file->symbols()) symtab->addSymbol(LazyArchive{*this, sym}); // Inform a future invocation of ObjFile::initializeSymbols() that this // archive has been processed. parsed = true; } // Returns a buffer pointing to a member file containing a given symbol. void ArchiveFile::fetch(const Archive::Symbol &sym) { Archive::Child c = CHECK(sym.getMember(), toString(this) + ": could not get the member for symbol " + toELFString(sym)); if (!seen.insert(c.getChildOffset()).second) return; MemoryBufferRef mb = CHECK(c.getMemoryBufferRef(), toString(this) + ": could not get the buffer for the member defining symbol " + toELFString(sym)); if (tar && c.getParent()->isThin()) tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); file->groupId = groupId; parseFile(file); } // The handling of tentative definitions (COMMON symbols) in archives is murky. // A tentative defintion will be promoted to a global definition if there are no // non-tentative definitions to dominate it. When we hold a tentative definition // to a symbol and are inspecting archive memebers for inclusion there are 2 // ways we can proceed: // // 1) Consider the tentative definition a 'real' definition (ie promotion from // tentative to real definition has already happened) and not inspect // archive members for Global/Weak definitions to replace the tentative // definition. An archive member would only be included if it satisfies some // other undefined symbol. This is the behavior Gold uses. // // 2) Consider the tentative definition as still undefined (ie the promotion to // a real definiton happens only after all symbol resolution is done). // The linker searches archive memebers for global or weak definitions to // replace the tentative definition with. This is the behavior used by // GNU ld. // // The second behavior is inherited from SysVR4, which based it on the FORTRAN // COMMON BLOCK model. This behavior is needed for proper initalizations in old // (pre F90) FORTRAN code that is packaged into an archive. // // The following functions search archive members for defintions to replace // tentative defintions (implementing behavior 2). static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, StringRef archiveName) { IRSymtabFile symtabFile = check(readIRSymtab(mb)); for (const irsymtab::Reader::SymbolRef &sym : symtabFile.TheReader.symbols()) { if (sym.isGlobal() && sym.getName() == symName) return !sym.isUndefined() && !sym.isCommon(); } return false; } template static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, StringRef archiveName) { ObjFile *obj = make>(mb, archiveName); StringRef stringtable = obj->getStringTable(); for (auto sym : obj->template getGlobalELFSyms()) { Expected name = sym.getName(stringtable); if (name && name.get() == symName) return sym.isDefined() && !sym.isCommon(); } return false; } static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, StringRef archiveName) { switch (getELFKind(mb, archiveName)) { case ELF32LEKind: return isNonCommonDef(mb, symName, archiveName); case ELF32BEKind: return isNonCommonDef(mb, symName, archiveName); case ELF64LEKind: return isNonCommonDef(mb, symName, archiveName); case ELF64BEKind: return isNonCommonDef(mb, symName, archiveName); default: llvm_unreachable("getELFKind"); } } bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) { Archive::Child c = CHECK(sym.getMember(), toString(this) + ": could not get the member for symbol " + toELFString(sym)); MemoryBufferRef mb = CHECK(c.getMemoryBufferRef(), toString(this) + ": could not get the buffer for the member defining symbol " + toELFString(sym)); if (isBitcode(mb)) return isBitcodeNonCommonDef(mb, sym.getName(), getName()); return isNonCommonDef(mb, sym.getName(), getName()); } size_t ArchiveFile::getMemberCount() const { size_t count = 0; Error err = Error::success(); for (const Archive::Child &c : file->children(err)) { (void)c; ++count; } // This function is used by --print-archive-stats=, where an error does not // really matter. consumeError(std::move(err)); return count; } unsigned SharedFile::vernauxNum; // Parse the version definitions in the object file if present, and return a // vector whose nth element contains a pointer to the Elf_Verdef for version // identifier n. Version identifiers that are not definitions map to nullptr. template static std::vector parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { if (!sec) return {}; // We cannot determine the largest verdef identifier without inspecting // every Elf_Verdef, but both bfd and gold assign verdef identifiers // sequentially starting from 1, so we predict that the largest identifier // will be verdefCount. unsigned verdefCount = sec->sh_info; std::vector verdefs(verdefCount + 1); // Build the Verdefs array by following the chain of Elf_Verdef objects // from the start of the .gnu.version_d section. const uint8_t *verdef = base + sec->sh_offset; for (unsigned i = 0; i != verdefCount; ++i) { auto *curVerdef = reinterpret_cast(verdef); verdef += curVerdef->vd_next; unsigned verdefIndex = curVerdef->vd_ndx; verdefs.resize(verdefIndex + 1); verdefs[verdefIndex] = curVerdef; } return verdefs; } // Parse SHT_GNU_verneed to properly set the name of a versioned undefined // symbol. We detect fatal issues which would cause vulnerabilities, but do not // implement sophisticated error checking like in llvm-readobj because the value // of such diagnostics is low. template std::vector SharedFile::parseVerneed(const ELFFile &obj, const typename ELFT::Shdr *sec) { if (!sec) return {}; std::vector verneeds; ArrayRef data = CHECK(obj.getSectionContents(*sec), this); const uint8_t *verneedBuf = data.begin(); for (unsigned i = 0; i != sec->sh_info; ++i) { if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) fatal(toString(this) + " has an invalid Verneed"); auto *vn = reinterpret_cast(verneedBuf); const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; for (unsigned j = 0; j != vn->vn_cnt; ++j) { if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) fatal(toString(this) + " has an invalid Vernaux"); auto *aux = reinterpret_cast(vernauxBuf); if (aux->vna_name >= this->stringTable.size()) fatal(toString(this) + " has a Vernaux with an invalid vna_name"); uint16_t version = aux->vna_other & VERSYM_VERSION; if (version >= verneeds.size()) verneeds.resize(version + 1); verneeds[version] = aux->vna_name; vernauxBuf += aux->vna_next; } verneedBuf += vn->vn_next; } return verneeds; } // We do not usually care about alignments of data in shared object // files because the loader takes care of it. However, if we promote a // DSO symbol to point to .bss due to copy relocation, we need to keep // the original alignment requirements. We infer it in this function. template static uint64_t getAlignment(ArrayRef sections, const typename ELFT::Sym &sym) { uint64_t ret = UINT64_MAX; if (sym.st_value) ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); if (0 < sym.st_shndx && sym.st_shndx < sections.size()) ret = std::min(ret, sections[sym.st_shndx].sh_addralign); return (ret > UINT32_MAX) ? 0 : ret; } // Fully parse the shared object file. // // This function parses symbol versions. If a DSO has version information, // the file has a ".gnu.version_d" section which contains symbol version // definitions. Each symbol is associated to one version through a table in // ".gnu.version" section. That table is a parallel array for the symbol // table, and each table entry contains an index in ".gnu.version_d". // // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for // VER_NDX_GLOBAL. There's no table entry for these special versions in // ".gnu.version_d". // // The file format for symbol versioning is perhaps a bit more complicated // than necessary, but you can easily understand the code if you wrap your // head around the data structure described above. template void SharedFile::parse() { using Elf_Dyn = typename ELFT::Dyn; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; using Elf_Verdef = typename ELFT::Verdef; using Elf_Versym = typename ELFT::Versym; ArrayRef dynamicTags; const ELFFile obj = this->getObj(); ArrayRef sections = CHECK(obj.sections(), this); const Elf_Shdr *versymSec = nullptr; const Elf_Shdr *verdefSec = nullptr; const Elf_Shdr *verneedSec = nullptr; // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. for (const Elf_Shdr &sec : sections) { switch (sec.sh_type) { default: continue; case SHT_DYNAMIC: dynamicTags = CHECK(obj.template getSectionContentsAsArray(sec), this); break; case SHT_GNU_versym: versymSec = &sec; break; case SHT_GNU_verdef: verdefSec = &sec; break; case SHT_GNU_verneed: verneedSec = &sec; break; } } if (versymSec && numELFSyms == 0) { error("SHT_GNU_versym should be associated with symbol table"); return; } // Search for a DT_SONAME tag to initialize this->soName. for (const Elf_Dyn &dyn : dynamicTags) { if (dyn.d_tag == DT_NEEDED) { uint64_t val = dyn.getVal(); if (val >= this->stringTable.size()) fatal(toString(this) + ": invalid DT_NEEDED entry"); dtNeeded.push_back(this->stringTable.data() + val); } else if (dyn.d_tag == DT_SONAME) { uint64_t val = dyn.getVal(); if (val >= this->stringTable.size()) fatal(toString(this) + ": invalid DT_SONAME entry"); soName = this->stringTable.data() + val; } } // DSOs are uniquified not by filename but by soname. DenseMap::iterator it; bool wasInserted; std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); // If a DSO appears more than once on the command line with and without // --as-needed, --no-as-needed takes precedence over --as-needed because a // user can add an extra DSO with --no-as-needed to force it to be added to // the dependency list. it->second->isNeeded |= isNeeded; if (!wasInserted) return; sharedFiles.push_back(this); verdefs = parseVerdefs(obj.base(), verdefSec); std::vector verneeds = parseVerneed(obj, verneedSec); // Parse ".gnu.version" section which is a parallel array for the symbol // table. If a given file doesn't have a ".gnu.version" section, we use // VER_NDX_GLOBAL. size_t size = numELFSyms - firstGlobal; std::vector versyms(size, VER_NDX_GLOBAL); if (versymSec) { ArrayRef versym = CHECK(obj.template getSectionContentsAsArray(*versymSec), this) .slice(firstGlobal); for (size_t i = 0; i < size; ++i) versyms[i] = versym[i].vs_index; } // System libraries can have a lot of symbols with versions. Using a // fixed buffer for computing the versions name (foo@ver) can save a // lot of allocations. SmallString<0> versionedNameBuffer; // Add symbols to the symbol table. ArrayRef syms = this->getGlobalELFSyms(); for (size_t i = 0; i < syms.size(); ++i) { const Elf_Sym &sym = syms[i]; // ELF spec requires that all local symbols precede weak or global // symbols in each symbol table, and the index of first non-local symbol // is stored to sh_info. If a local symbol appears after some non-local // symbol, that's a violation of the spec. StringRef name = CHECK(sym.getName(this->stringTable), this); if (sym.getBinding() == STB_LOCAL) { warn("found local symbol '" + name + "' in global part of symbol table in file " + toString(this)); continue; } uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; if (sym.isUndefined()) { // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { if (idx >= verneeds.size()) { error("corrupt input file: version need index " + Twine(idx) + " for symbol " + name + " is out of bounds\n>>> defined in " + toString(this)); continue; } StringRef verName = this->stringTable.data() + verneeds[idx]; versionedNameBuffer.clear(); name = saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); } Symbol *s = symtab->addSymbol( Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); s->exportDynamic = true; continue; } // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly // assigns VER_NDX_LOCAL to this section global symbol. Here is a // workaround for this bug. if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && name == "_gp_disp") continue; uint32_t alignment = getAlignment(sections, sym); if (!(versyms[i] & VERSYM_HIDDEN)) { symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), sym.st_other, sym.getType(), sym.st_value, sym.st_size, alignment, idx}); } // Also add the symbol with the versioned name to handle undefined symbols // with explicit versions. if (idx == VER_NDX_GLOBAL) continue; if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { error("corrupt input file: version definition index " + Twine(idx) + " for symbol " + name + " is out of bounds\n>>> defined in " + toString(this)); continue; } StringRef verName = this->stringTable.data() + reinterpret_cast(verdefs[idx])->getAux()->vda_name; versionedNameBuffer.clear(); name = (name + "@" + verName).toStringRef(versionedNameBuffer); symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), sym.st_other, sym.getType(), sym.st_value, sym.st_size, alignment, idx}); } } static ELFKind getBitcodeELFKind(const Triple &t) { if (t.isLittleEndian()) return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; } static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { switch (t.getArch()) { case Triple::aarch64: return EM_AARCH64; case Triple::amdgcn: case Triple::r600: return EM_AMDGPU; case Triple::arm: case Triple::thumb: return EM_ARM; case Triple::avr: return EM_AVR; case Triple::mips: case Triple::mipsel: case Triple::mips64: case Triple::mips64el: return EM_MIPS; case Triple::msp430: return EM_MSP430; case Triple::ppc: case Triple::ppcle: return EM_PPC; case Triple::ppc64: case Triple::ppc64le: return EM_PPC64; case Triple::riscv32: case Triple::riscv64: return EM_RISCV; case Triple::x86: return t.isOSIAMCU() ? EM_IAMCU : EM_386; case Triple::x86_64: return EM_X86_64; default: error(path + ": could not infer e_machine from bitcode target triple " + t.str()); return EM_NONE; } } static uint8_t getOsAbi(const Triple &t) { switch (t.getOS()) { case Triple::AMDHSA: return ELF::ELFOSABI_AMDGPU_HSA; case Triple::AMDPAL: return ELF::ELFOSABI_AMDGPU_PAL; case Triple::Mesa3D: return ELF::ELFOSABI_AMDGPU_MESA3D; default: return ELF::ELFOSABI_NONE; } } BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, uint64_t offsetInArchive) : InputFile(BitcodeKind, mb) { this->archiveName = std::string(archiveName); std::string path = mb.getBufferIdentifier().str(); if (config->thinLTOIndexOnly) path = replaceThinLTOSuffix(mb.getBufferIdentifier()); // ThinLTO assumes that all MemoryBufferRefs given to it have a unique // name. If two archives define two members with the same name, this // causes a collision which result in only one of the objects being taken // into consideration at LTO time (which very likely causes undefined // symbols later in the link stage). So we append file offset to make // filename unique. StringRef name = archiveName.empty() ? saver.save(path) : saver.save(archiveName + "(" + path::filename(path) + " at " + utostr(offsetInArchive) + ")"); MemoryBufferRef mbref(mb.getBuffer(), name); obj = CHECK(lto::InputFile::create(mbref), this); Triple t(obj->getTargetTriple()); ekind = getBitcodeELFKind(t); emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); osabi = getOsAbi(t); } static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { switch (gvVisibility) { case GlobalValue::DefaultVisibility: return STV_DEFAULT; case GlobalValue::HiddenVisibility: return STV_HIDDEN; case GlobalValue::ProtectedVisibility: return STV_PROTECTED; } llvm_unreachable("unknown visibility"); } template static Symbol *createBitcodeSymbol(const std::vector &keptComdats, const lto::InputFile::Symbol &objSym, BitcodeFile &f) { StringRef name = saver.save(objSym.getName()); uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; uint8_t visibility = mapVisibility(objSym.getVisibility()); bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); int c = objSym.getComdatIndex(); if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { Undefined newSym(&f, name, binding, visibility, type); if (canOmitFromDynSym) newSym.exportDynamic = false; Symbol *ret = symtab->addSymbol(newSym); ret->referenced = true; return ret; } if (objSym.isCommon()) return symtab->addSymbol( CommonSymbol{&f, name, binding, visibility, STT_OBJECT, objSym.getCommonAlignment(), objSym.getCommonSize()}); Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); if (canOmitFromDynSym) newSym.exportDynamic = false; return symtab->addSymbol(newSym); } template void BitcodeFile::parse() { std::vector keptComdats; for (StringRef s : obj->getComdatTable()) keptComdats.push_back( symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); for (const lto::InputFile::Symbol &objSym : obj->symbols()) symbols.push_back(createBitcodeSymbol(keptComdats, objSym, *this)); for (auto l : obj->getDependentLibraries()) addDependentLibrary(l, this); } void BinaryFile::parse() { ArrayRef data = arrayRefFromStringRef(mb.getBuffer()); auto *section = make(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, data, ".data"); sections.push_back(section); // For each input file foo that is embedded to a result as a binary // blob, we define _binary_foo_{start,end,size} symbols, so that // user programs can access blobs by name. Non-alphanumeric // characters in a filename are replaced with underscore. std::string s = "_binary_" + mb.getBufferIdentifier().str(); for (size_t i = 0; i < s.size(); ++i) if (!isAlnum(s[i])) s[i] = '_'; symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0, section}); symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); } InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, uint64_t offsetInArchive) { if (isBitcode(mb)) return make(mb, archiveName, offsetInArchive); switch (getELFKind(mb, archiveName)) { case ELF32LEKind: return make>(mb, archiveName); case ELF32BEKind: return make>(mb, archiveName); case ELF64LEKind: return make>(mb, archiveName); case ELF64BEKind: return make>(mb, archiveName); default: llvm_unreachable("getELFKind"); } } void LazyObjFile::fetch() { if (fetched) return; fetched = true; InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); file->groupId = groupId; // Copy symbol vector so that the new InputFile doesn't have to // insert the same defined symbols to the symbol table again. file->symbols = std::move(symbols); parseFile(file); } template void LazyObjFile::parse() { using Elf_Sym = typename ELFT::Sym; // A lazy object file wraps either a bitcode file or an ELF file. if (isBitcode(this->mb)) { std::unique_ptr obj = CHECK(lto::InputFile::create(this->mb), this); for (const lto::InputFile::Symbol &sym : obj->symbols()) { if (sym.isUndefined()) continue; symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); } return; } if (getELFKind(this->mb, archiveName) != config->ekind) { error("incompatible file: " + this->mb.getBufferIdentifier()); return; } // Find a symbol table. ELFFile obj = check(ELFFile::create(mb.getBuffer())); ArrayRef sections = CHECK(obj.sections(), this); for (const typename ELFT::Shdr &sec : sections) { if (sec.sh_type != SHT_SYMTAB) continue; // A symbol table is found. ArrayRef eSyms = CHECK(obj.symbols(&sec), this); uint32_t firstGlobal = sec.sh_info; StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); this->symbols.resize(eSyms.size()); // Get existing symbols or insert placeholder symbols. for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) if (eSyms[i].st_shndx != SHN_UNDEF) this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); // Replace existing symbols with LazyObject symbols. // // resolve() may trigger this->fetch() if an existing symbol is an // undefined symbol. If that happens, this LazyObjFile has served // its purpose, and we can exit from the loop early. for (Symbol *sym : this->symbols) { if (!sym) continue; sym->resolve(LazyObject{*this, sym->getName()}); // If fetched, stop iterating because this->symbols has been transferred // to the instantiated ObjFile. if (fetched) return; } return; } } bool LazyObjFile::shouldFetchForCommon(const StringRef &name) { if (isBitcode(mb)) return isBitcodeNonCommonDef(mb, name, archiveName); return isNonCommonDef(mb, name, archiveName); } std::string elf::replaceThinLTOSuffix(StringRef path) { StringRef suffix = config->thinLTOObjectSuffixReplace.first; StringRef repl = config->thinLTOObjectSuffixReplace.second; if (path.consume_back(suffix)) return (path + repl).str(); return std::string(path); } template void BitcodeFile::parse(); template void BitcodeFile::parse(); template void BitcodeFile::parse(); template void BitcodeFile::parse(); template void LazyObjFile::parse(); template void LazyObjFile::parse(); template void LazyObjFile::parse(); template void LazyObjFile::parse(); template class elf::ObjFile; template class elf::ObjFile; template class elf::ObjFile; template class elf::ObjFile; template void SharedFile::parse(); template void SharedFile::parse(); template void SharedFile::parse(); template void SharedFile::parse();