//===- ICF.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // ICF is short for Identical Code Folding. This is a size optimization to // identify and merge two or more read-only sections (typically functions) // that happened to have the same contents. It usually reduces output size // by a few percent. // // In ICF, two sections are considered identical if they have the same // section flags, section data, and relocations. Relocations are tricky, // because two relocations are considered the same if they have the same // relocation types, values, and if they point to the same sections *in // terms of ICF*. // // Here is an example. If foo and bar defined below are compiled to the // same machine instructions, ICF can and should merge the two, although // their relocations point to each other. // // void foo() { bar(); } // void bar() { foo(); } // // If you merge the two, their relocations point to the same section and // thus you know they are mergeable, but how do you know they are // mergeable in the first place? This is not an easy problem to solve. // // What we are doing in LLD is to partition sections into equivalence // classes. Sections in the same equivalence class when the algorithm // terminates are considered identical. Here are details: // // 1. First, we partition sections using their hash values as keys. Hash // values contain section types, section contents and numbers of // relocations. During this step, relocation targets are not taken into // account. We just put sections that apparently differ into different // equivalence classes. // // 2. Next, for each equivalence class, we visit sections to compare // relocation targets. Relocation targets are considered equivalent if // their targets are in the same equivalence class. Sections with // different relocation targets are put into different equivalence // classes. // // 3. If we split an equivalence class in step 2, two relocations // previously target the same equivalence class may now target // different equivalence classes. Therefore, we repeat step 2 until a // convergence is obtained. // // 4. For each equivalence class C, pick an arbitrary section in C, and // merge all the other sections in C with it. // // For small programs, this algorithm needs 3-5 iterations. For large // programs such as Chromium, it takes more than 20 iterations. // // This algorithm was mentioned as an "optimistic algorithm" in [1], // though gold implements a different algorithm than this. // // We parallelize each step so that multiple threads can work on different // equivalence classes concurrently. That gave us a large performance // boost when applying ICF on large programs. For example, MSVC link.exe // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still // faster than MSVC or gold though. // // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding // in the Gold Linker // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf // //===----------------------------------------------------------------------===// #include "ICF.h" #include "Config.h" #include "EhFrame.h" #include "LinkerScript.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Writer.h" #include "llvm/ADT/StringExtras.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Object/ELF.h" #include "llvm/Support/Parallel.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/xxhash.h" #include #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace lld; using namespace lld::elf; namespace { template class ICF { public: void run(); private: void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant); template bool constantEq(const InputSection *a, ArrayRef relsA, const InputSection *b, ArrayRef relsB); template bool variableEq(const InputSection *a, ArrayRef relsA, const InputSection *b, ArrayRef relsB); bool equalsConstant(const InputSection *a, const InputSection *b); bool equalsVariable(const InputSection *a, const InputSection *b); size_t findBoundary(size_t begin, size_t end); void forEachClassRange(size_t begin, size_t end, llvm::function_ref fn); void forEachClass(llvm::function_ref fn); SmallVector sections; // We repeat the main loop while `Repeat` is true. std::atomic repeat; // The main loop counter. int cnt = 0; // We have two locations for equivalence classes. On the first iteration // of the main loop, Class[0] has a valid value, and Class[1] contains // garbage. We read equivalence classes from slot 0 and write to slot 1. // So, Class[0] represents the current class, and Class[1] represents // the next class. On each iteration, we switch their roles and use them // alternately. // // Why are we doing this? Recall that other threads may be working on // other equivalence classes in parallel. They may read sections that we // are updating. We cannot update equivalence classes in place because // it breaks the invariance that all possibly-identical sections must be // in the same equivalence class at any moment. In other words, the for // loop to update equivalence classes is not atomic, and that is // observable from other threads. By writing new classes to other // places, we can keep the invariance. // // Below, `Current` has the index of the current class, and `Next` has // the index of the next class. If threading is enabled, they are either // (0, 1) or (1, 0). // // Note on single-thread: if that's the case, they are always (0, 0) // because we can safely read the next class without worrying about race // conditions. Using the same location makes this algorithm converge // faster because it uses results of the same iteration earlier. int current = 0; int next = 0; }; } // Returns true if section S is subject of ICF. static bool isEligible(InputSection *s) { if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC)) return false; // Don't merge writable sections. .data.rel.ro sections are marked as writable // but are semantically read-only. if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" && !s->name.startswith(".data.rel.ro.")) return false; // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections, // so we don't consider them for ICF individually. if (s->flags & SHF_LINK_ORDER) return false; // Don't merge synthetic sections as their Data member is not valid and empty. // The Data member needs to be valid for ICF as it is used by ICF to determine // the equality of section contents. if (isa(s)) return false; // .init and .fini contains instructions that must be executed to initialize // and finalize the process. They cannot and should not be merged. if (s->name == ".init" || s->name == ".fini") return false; // A user program may enumerate sections named with a C identifier using // __start_* and __stop_* symbols. We cannot ICF any such sections because // that could change program semantics. if (isValidCIdentifier(s->name)) return false; return true; } // Split an equivalence class into smaller classes. template void ICF::segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant) { // This loop rearranges sections in [Begin, End) so that all sections // that are equal in terms of equals{Constant,Variable} are contiguous // in [Begin, End). // // The algorithm is quadratic in the worst case, but that is not an // issue in practice because the number of the distinct sections in // each range is usually very small. while (begin < end) { // Divide [Begin, End) into two. Let Mid be the start index of the // second group. auto bound = std::stable_partition(sections.begin() + begin + 1, sections.begin() + end, [&](InputSection *s) { if (constant) return equalsConstant(sections[begin], s); return equalsVariable(sections[begin], s); }); size_t mid = bound - sections.begin(); // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by // updating the sections in [Begin, Mid). We use Mid as the basis for // the equivalence class ID because every group ends with a unique index. // Add this to eqClassBase to avoid equality with unique IDs. for (size_t i = begin; i < mid; ++i) sections[i]->eqClass[next] = eqClassBase + mid; // If we created a group, we need to iterate the main loop again. if (mid != end) repeat = true; begin = mid; } } // Compare two lists of relocations. template template bool ICF::constantEq(const InputSection *secA, ArrayRef ra, const InputSection *secB, ArrayRef rb) { if (ra.size() != rb.size()) return false; for (size_t i = 0; i < ra.size(); ++i) { if (ra[i].r_offset != rb[i].r_offset || ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL)) return false; uint64_t addA = getAddend(ra[i]); uint64_t addB = getAddend(rb[i]); Symbol &sa = secA->template getFile()->getRelocTargetSym(ra[i]); Symbol &sb = secB->template getFile()->getRelocTargetSym(rb[i]); if (&sa == &sb) { if (addA == addB) continue; return false; } auto *da = dyn_cast(&sa); auto *db = dyn_cast(&sb); // Placeholder symbols generated by linker scripts look the same now but // may have different values later. if (!da || !db || da->scriptDefined || db->scriptDefined) return false; // When comparing a pair of relocations, if they refer to different symbols, // and either symbol is preemptible, the containing sections should be // considered different. This is because even if the sections are identical // in this DSO, they may not be after preemption. if (da->isPreemptible || db->isPreemptible) return false; // Relocations referring to absolute symbols are constant-equal if their // values are equal. if (!da->section && !db->section && da->value + addA == db->value + addB) continue; if (!da->section || !db->section) return false; if (da->section->kind() != db->section->kind()) return false; // Relocations referring to InputSections are constant-equal if their // section offsets are equal. if (isa(da->section)) { if (da->value + addA == db->value + addB) continue; return false; } // Relocations referring to MergeInputSections are constant-equal if their // offsets in the output section are equal. auto *x = dyn_cast(da->section); if (!x) return false; auto *y = cast(db->section); if (x->getParent() != y->getParent()) return false; uint64_t offsetA = sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA; uint64_t offsetB = sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB; if (offsetA != offsetB) return false; } return true; } // Compare "non-moving" part of two InputSections, namely everything // except relocation targets. template bool ICF::equalsConstant(const InputSection *a, const InputSection *b) { if (a->flags != b->flags || a->getSize() != b->getSize() || a->data() != b->data()) return false; // If two sections have different output sections, we cannot merge them. assert(a->getParent() && b->getParent()); if (a->getParent() != b->getParent()) return false; const RelsOrRelas ra = a->template relsOrRelas(); const RelsOrRelas rb = b->template relsOrRelas(); return ra.areRelocsRel() ? constantEq(a, ra.rels, b, rb.rels) : constantEq(a, ra.relas, b, rb.relas); } // Compare two lists of relocations. Returns true if all pairs of // relocations point to the same section in terms of ICF. template template bool ICF::variableEq(const InputSection *secA, ArrayRef ra, const InputSection *secB, ArrayRef rb) { assert(ra.size() == rb.size()); for (size_t i = 0; i < ra.size(); ++i) { // The two sections must be identical. Symbol &sa = secA->template getFile()->getRelocTargetSym(ra[i]); Symbol &sb = secB->template getFile()->getRelocTargetSym(rb[i]); if (&sa == &sb) continue; auto *da = cast(&sa); auto *db = cast(&sb); // We already dealt with absolute and non-InputSection symbols in // constantEq, and for InputSections we have already checked everything // except the equivalence class. if (!da->section) continue; auto *x = dyn_cast(da->section); if (!x) continue; auto *y = cast(db->section); // Sections that are in the special equivalence class 0, can never be the // same in terms of the equivalence class. if (x->eqClass[current] == 0) return false; if (x->eqClass[current] != y->eqClass[current]) return false; }; return true; } // Compare "moving" part of two InputSections, namely relocation targets. template bool ICF::equalsVariable(const InputSection *a, const InputSection *b) { const RelsOrRelas ra = a->template relsOrRelas(); const RelsOrRelas rb = b->template relsOrRelas(); return ra.areRelocsRel() ? variableEq(a, ra.rels, b, rb.rels) : variableEq(a, ra.relas, b, rb.relas); } template size_t ICF::findBoundary(size_t begin, size_t end) { uint32_t eqClass = sections[begin]->eqClass[current]; for (size_t i = begin + 1; i < end; ++i) if (eqClass != sections[i]->eqClass[current]) return i; return end; } // Sections in the same equivalence class are contiguous in Sections // vector. Therefore, Sections vector can be considered as contiguous // groups of sections, grouped by the class. // // This function calls Fn on every group within [Begin, End). template void ICF::forEachClassRange(size_t begin, size_t end, llvm::function_ref fn) { while (begin < end) { size_t mid = findBoundary(begin, end); fn(begin, mid); begin = mid; } } // Call Fn on each equivalence class. template void ICF::forEachClass(llvm::function_ref fn) { // If threading is disabled or the number of sections are // too small to use threading, call Fn sequentially. if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) { forEachClassRange(0, sections.size(), fn); ++cnt; return; } current = cnt % 2; next = (cnt + 1) % 2; // Shard into non-overlapping intervals, and call Fn in parallel. // The sharding must be completed before any calls to Fn are made // so that Fn can modify the Chunks in its shard without causing data // races. const size_t numShards = 256; size_t step = sections.size() / numShards; size_t boundaries[numShards + 1]; boundaries[0] = 0; boundaries[numShards] = sections.size(); parallelForEachN(1, numShards, [&](size_t i) { boundaries[i] = findBoundary((i - 1) * step, sections.size()); }); parallelForEachN(1, numShards + 1, [&](size_t i) { if (boundaries[i - 1] < boundaries[i]) forEachClassRange(boundaries[i - 1], boundaries[i], fn); }); ++cnt; } // Combine the hashes of the sections referenced by the given section into its // hash. template static void combineRelocHashes(unsigned cnt, InputSection *isec, ArrayRef rels) { uint32_t hash = isec->eqClass[cnt % 2]; for (RelTy rel : rels) { Symbol &s = isec->template getFile()->getRelocTargetSym(rel); if (auto *d = dyn_cast(&s)) if (auto *relSec = dyn_cast_or_null(d->section)) hash += relSec->eqClass[cnt % 2]; } // Set MSB to 1 to avoid collisions with unique IDs. isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31); } static void print(const Twine &s) { if (config->printIcfSections) message(s); } // The main function of ICF. template void ICF::run() { // Compute isPreemptible early. We may add more symbols later, so this loop // cannot be merged with the later computeIsPreemptible() pass which is used // by scanRelocations(). if (config->hasDynSymTab) for (Symbol *sym : symtab->symbols()) sym->isPreemptible = computeIsPreemptible(*sym); // Two text sections may have identical content and relocations but different // LSDA, e.g. the two functions may have catch blocks of different types. If a // text section is referenced by a .eh_frame FDE with LSDA, it is not // eligible. This is implemented by iterating over CIE/FDE and setting // eqClass[0] to the referenced text section from a live FDE. // // If two .gcc_except_table have identical semantics (usually identical // content with PC-relative encoding), we will lose folding opportunity. uint32_t uniqueId = 0; for (Partition &part : partitions) part.ehFrame->iterateFDEWithLSDA( [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; }); // Collect sections to merge. for (InputSectionBase *sec : inputSections) { auto *s = cast(sec); if (s->eqClass[0] == 0) { if (isEligible(s)) sections.push_back(s); else // Ineligible sections are assigned unique IDs, i.e. each section // belongs to an equivalence class of its own. s->eqClass[0] = s->eqClass[1] = ++uniqueId; } } // Initially, we use hash values to partition sections. parallelForEach(sections, [&](InputSection *s) { // Set MSB to 1 to avoid collisions with unique IDs. s->eqClass[0] = xxHash64(s->data()) | (1U << 31); }); // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to // reduce the average sizes of equivalence classes, i.e. segregate() which has // a large time complexity will have less work to do. for (unsigned cnt = 0; cnt != 2; ++cnt) { parallelForEach(sections, [&](InputSection *s) { const RelsOrRelas rels = s->template relsOrRelas(); if (rels.areRelocsRel()) combineRelocHashes(cnt, s, rels.rels); else combineRelocHashes(cnt, s, rels.relas); }); } // From now on, sections in Sections vector are ordered so that sections // in the same equivalence class are consecutive in the vector. llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) { return a->eqClass[0] < b->eqClass[0]; }); // Compare static contents and assign unique equivalence class IDs for each // static content. Use a base offset for these IDs to ensure no overlap with // the unique IDs already assigned. uint32_t eqClassBase = ++uniqueId; forEachClass([&](size_t begin, size_t end) { segregate(begin, end, eqClassBase, true); }); // Split groups by comparing relocations until convergence is obtained. do { repeat = false; forEachClass([&](size_t begin, size_t end) { segregate(begin, end, eqClassBase, false); }); } while (repeat); log("ICF needed " + Twine(cnt) + " iterations"); // Merge sections by the equivalence class. forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) { if (end - begin == 1) return; print("selected section " + toString(sections[begin])); for (size_t i = begin + 1; i < end; ++i) { print(" removing identical section " + toString(sections[i])); sections[begin]->replace(sections[i]); // At this point we know sections merged are fully identical and hence // we want to remove duplicate implicit dependencies such as link order // and relocation sections. for (InputSection *isec : sections[i]->dependentSections) isec->markDead(); } }); // Change Defined symbol's section field to the canonical one. auto fold = [](Symbol *sym) { if (auto *d = dyn_cast(sym)) if (auto *sec = dyn_cast_or_null(d->section)) if (sec->repl != d->section) { d->section = sec->repl; d->folded = true; } }; for (Symbol *sym : symtab->symbols()) fold(sym); parallelForEach(objectFiles, [&](ELFFileBase *file) { for (Symbol *sym : file->getLocalSymbols()) fold(sym); }); // InputSectionDescription::sections is populated by processSectionCommands(). // ICF may fold some input sections assigned to output sections. Remove them. for (SectionCommand *cmd : script->sectionCommands) if (auto *sec = dyn_cast(cmd)) for (SectionCommand *subCmd : sec->commands) if (auto *isd = dyn_cast(subCmd)) llvm::erase_if(isd->sections, [](InputSection *isec) { return !isec->isLive(); }); } // ICF entry point function. template void elf::doIcf() { llvm::TimeTraceScope timeScope("ICF"); ICF().run(); } template void elf::doIcf(); template void elf::doIcf(); template void elf::doIcf(); template void elf::doIcf();