//===- PPC.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "lld/Common/ErrorHandler.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; namespace { class PPC final : public TargetInfo { public: PPC(); RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const override; RelType getDynRel(RelType type) const override; int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; void writeGotHeader(uint8_t *buf) const override; void writePltHeader(uint8_t *buf) const override { llvm_unreachable("should call writePPC32GlinkSection() instead"); } void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override { llvm_unreachable("should call writePPC32GlinkSection() instead"); } void writeIplt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; void writeGotPlt(uint8_t *buf, const Symbol &s) const override; bool needsThunk(RelExpr expr, RelType relocType, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const override; uint32_t getThunkSectionSpacing() const override; bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; void relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const override; RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; int getTlsGdRelaxSkip(RelType type) const override; void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const override; void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const override; void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const override; void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const override; }; } // namespace static uint16_t lo(uint32_t v) { return v; } static uint16_t ha(uint32_t v) { return (v + 0x8000) >> 16; } static uint32_t readFromHalf16(const uint8_t *loc) { return read32(config->isLE ? loc : loc - 2); } static void writeFromHalf16(uint8_t *loc, uint32_t insn) { write32(config->isLE ? loc : loc - 2, insn); } void elf::writePPC32GlinkSection(uint8_t *buf, size_t numEntries) { // Create canonical PLT entries for non-PIE code. Compilers don't generate // non-GOT-non-PLT relocations referencing external functions for -fpie/-fPIE. uint32_t glink = in.plt->getVA(); // VA of .glink if (!config->isPic) { for (const Symbol *sym : cast(in.plt)->canonical_plts) { writePPC32PltCallStub(buf, sym->getGotPltVA(), nullptr, 0); buf += 16; glink += 16; } } // On PPC Secure PLT ABI, bl foo@plt jumps to a call stub, which loads an // absolute address from a specific .plt slot (usually called .got.plt on // other targets) and jumps there. // // a) With immediate binding (BIND_NOW), the .plt entry is resolved at load // time. The .glink section is not used. // b) With lazy binding, the .plt entry points to a `b PLTresolve` // instruction in .glink, filled in by PPC::writeGotPlt(). // Write N `b PLTresolve` first. for (size_t i = 0; i != numEntries; ++i) write32(buf + 4 * i, 0x48000000 | 4 * (numEntries - i)); buf += 4 * numEntries; // Then write PLTresolve(), which has two forms: PIC and non-PIC. PLTresolve() // computes the PLT index (by computing the distance from the landing b to // itself) and calls _dl_runtime_resolve() (in glibc). uint32_t got = in.got->getVA(); const uint8_t *end = buf + 64; if (config->isPic) { uint32_t afterBcl = 4 * in.plt->getNumEntries() + 12; uint32_t gotBcl = got + 4 - (glink + afterBcl); write32(buf + 0, 0x3d6b0000 | ha(afterBcl)); // addis r11,r11,1f-glink@ha write32(buf + 4, 0x7c0802a6); // mflr r0 write32(buf + 8, 0x429f0005); // bcl 20,30,.+4 write32(buf + 12, 0x396b0000 | lo(afterBcl)); // 1: addi r11,r11,1b-glink@l write32(buf + 16, 0x7d8802a6); // mflr r12 write32(buf + 20, 0x7c0803a6); // mtlr r0 write32(buf + 24, 0x7d6c5850); // sub r11,r11,r12 write32(buf + 28, 0x3d8c0000 | ha(gotBcl)); // addis 12,12,GOT+4-1b@ha if (ha(gotBcl) == ha(gotBcl + 4)) { write32(buf + 32, 0x800c0000 | lo(gotBcl)); // lwz r0,r12,GOT+4-1b@l(r12) write32(buf + 36, 0x818c0000 | lo(gotBcl + 4)); // lwz r12,r12,GOT+8-1b@l(r12) } else { write32(buf + 32, 0x840c0000 | lo(gotBcl)); // lwzu r0,r12,GOT+4-1b@l(r12) write32(buf + 36, 0x818c0000 | 4); // lwz r12,r12,4(r12) } write32(buf + 40, 0x7c0903a6); // mtctr 0 write32(buf + 44, 0x7c0b5a14); // add r0,11,11 write32(buf + 48, 0x7d605a14); // add r11,0,11 write32(buf + 52, 0x4e800420); // bctr buf += 56; } else { write32(buf + 0, 0x3d800000 | ha(got + 4)); // lis r12,GOT+4@ha write32(buf + 4, 0x3d6b0000 | ha(-glink)); // addis r11,r11,-glink@ha if (ha(got + 4) == ha(got + 8)) write32(buf + 8, 0x800c0000 | lo(got + 4)); // lwz r0,GOT+4@l(r12) else write32(buf + 8, 0x840c0000 | lo(got + 4)); // lwzu r0,GOT+4@l(r12) write32(buf + 12, 0x396b0000 | lo(-glink)); // addi r11,r11,-glink@l write32(buf + 16, 0x7c0903a6); // mtctr r0 write32(buf + 20, 0x7c0b5a14); // add r0,r11,r11 if (ha(got + 4) == ha(got + 8)) write32(buf + 24, 0x818c0000 | lo(got + 8)); // lwz r12,GOT+8@l(r12) else write32(buf + 24, 0x818c0000 | 4); // lwz r12,4(r12) write32(buf + 28, 0x7d605a14); // add r11,r0,r11 write32(buf + 32, 0x4e800420); // bctr buf += 36; } // Pad with nop. They should not be executed. for (; buf < end; buf += 4) write32(buf, 0x60000000); } PPC::PPC() { copyRel = R_PPC_COPY; gotRel = R_PPC_GLOB_DAT; noneRel = R_PPC_NONE; pltRel = R_PPC_JMP_SLOT; relativeRel = R_PPC_RELATIVE; iRelativeRel = R_PPC_IRELATIVE; symbolicRel = R_PPC_ADDR32; gotBaseSymInGotPlt = false; gotHeaderEntriesNum = 3; gotPltHeaderEntriesNum = 0; pltHeaderSize = 0; pltEntrySize = 4; ipltEntrySize = 16; needsThunks = true; tlsModuleIndexRel = R_PPC_DTPMOD32; tlsOffsetRel = R_PPC_DTPREL32; tlsGotRel = R_PPC_TPREL32; defaultMaxPageSize = 65536; defaultImageBase = 0x10000000; write32(trapInstr.data(), 0x7fe00008); } void PPC::writeIplt(uint8_t *buf, const Symbol &sym, uint64_t /*pltEntryAddr*/) const { // In -pie or -shared mode, assume r30 points to .got2+0x8000, and use a // .got2.plt_pic32. thunk. writePPC32PltCallStub(buf, sym.getGotPltVA(), sym.file, 0x8000); } void PPC::writeGotHeader(uint8_t *buf) const { // _GLOBAL_OFFSET_TABLE_[0] = _DYNAMIC // glibc stores _dl_runtime_resolve in _GLOBAL_OFFSET_TABLE_[1], // link_map in _GLOBAL_OFFSET_TABLE_[2]. write32(buf, mainPart->dynamic->getVA()); } void PPC::writeGotPlt(uint8_t *buf, const Symbol &s) const { // Address of the symbol resolver stub in .glink . write32(buf, in.plt->getVA() + in.plt->headerSize + 4 * s.pltIndex); } bool PPC::needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const { if (type != R_PPC_LOCAL24PC && type != R_PPC_REL24 && type != R_PPC_PLTREL24) return false; if (s.isInPlt()) return true; if (s.isUndefWeak()) return false; return !PPC::inBranchRange(type, branchAddr, s.getVA(a)); } uint32_t PPC::getThunkSectionSpacing() const { return 0x2000000; } bool PPC::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { uint64_t offset = dst - src; if (type == R_PPC_LOCAL24PC || type == R_PPC_REL24 || type == R_PPC_PLTREL24) return isInt<26>(offset); llvm_unreachable("unsupported relocation type used in branch"); } RelExpr PPC::getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const { switch (type) { case R_PPC_NONE: return R_NONE; case R_PPC_ADDR16_HA: case R_PPC_ADDR16_HI: case R_PPC_ADDR16_LO: case R_PPC_ADDR24: case R_PPC_ADDR32: return R_ABS; case R_PPC_DTPREL16: case R_PPC_DTPREL16_HA: case R_PPC_DTPREL16_HI: case R_PPC_DTPREL16_LO: case R_PPC_DTPREL32: return R_DTPREL; case R_PPC_REL14: case R_PPC_REL32: case R_PPC_REL16_LO: case R_PPC_REL16_HI: case R_PPC_REL16_HA: return R_PC; case R_PPC_GOT16: return R_GOT_OFF; case R_PPC_LOCAL24PC: case R_PPC_REL24: return R_PLT_PC; case R_PPC_PLTREL24: return R_PPC32_PLTREL; case R_PPC_GOT_TLSGD16: return R_TLSGD_GOT; case R_PPC_GOT_TLSLD16: return R_TLSLD_GOT; case R_PPC_GOT_TPREL16: return R_GOT_OFF; case R_PPC_TLS: return R_TLSIE_HINT; case R_PPC_TLSGD: return R_TLSDESC_CALL; case R_PPC_TLSLD: return R_TLSLD_HINT; case R_PPC_TPREL16: case R_PPC_TPREL16_HA: case R_PPC_TPREL16_LO: case R_PPC_TPREL16_HI: return R_TPREL; default: error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + ") against symbol " + toString(s)); return R_NONE; } } RelType PPC::getDynRel(RelType type) const { if (type == R_PPC_ADDR32) return type; return R_PPC_NONE; } int64_t PPC::getImplicitAddend(const uint8_t *buf, RelType type) const { switch (type) { case R_PPC_NONE: return 0; case R_PPC_ADDR32: case R_PPC_REL32: return SignExtend64<32>(read32(buf)); default: internalLinkerError(getErrorLocation(buf), "cannot read addend for relocation " + toString(type)); return 0; } } static std::pair fromDTPREL(RelType type, uint64_t val) { uint64_t dtpBiasedVal = val - 0x8000; switch (type) { case R_PPC_DTPREL16: return {R_PPC64_ADDR16, dtpBiasedVal}; case R_PPC_DTPREL16_HA: return {R_PPC_ADDR16_HA, dtpBiasedVal}; case R_PPC_DTPREL16_HI: return {R_PPC_ADDR16_HI, dtpBiasedVal}; case R_PPC_DTPREL16_LO: return {R_PPC_ADDR16_LO, dtpBiasedVal}; case R_PPC_DTPREL32: return {R_PPC_ADDR32, dtpBiasedVal}; default: return {type, val}; } } void PPC::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { RelType newType; std::tie(newType, val) = fromDTPREL(rel.type, val); switch (newType) { case R_PPC_ADDR16: checkIntUInt(loc, val, 16, rel); write16(loc, val); break; case R_PPC_GOT16: case R_PPC_GOT_TLSGD16: case R_PPC_GOT_TLSLD16: case R_PPC_GOT_TPREL16: case R_PPC_TPREL16: checkInt(loc, val, 16, rel); write16(loc, val); break; case R_PPC_ADDR16_HA: case R_PPC_DTPREL16_HA: case R_PPC_GOT_TLSGD16_HA: case R_PPC_GOT_TLSLD16_HA: case R_PPC_GOT_TPREL16_HA: case R_PPC_REL16_HA: case R_PPC_TPREL16_HA: write16(loc, ha(val)); break; case R_PPC_ADDR16_HI: case R_PPC_DTPREL16_HI: case R_PPC_GOT_TLSGD16_HI: case R_PPC_GOT_TLSLD16_HI: case R_PPC_GOT_TPREL16_HI: case R_PPC_REL16_HI: case R_PPC_TPREL16_HI: write16(loc, val >> 16); break; case R_PPC_ADDR16_LO: case R_PPC_DTPREL16_LO: case R_PPC_GOT_TLSGD16_LO: case R_PPC_GOT_TLSLD16_LO: case R_PPC_GOT_TPREL16_LO: case R_PPC_REL16_LO: case R_PPC_TPREL16_LO: write16(loc, val); break; case R_PPC_ADDR32: case R_PPC_REL32: write32(loc, val); break; case R_PPC_REL14: { uint32_t mask = 0x0000FFFC; checkInt(loc, val, 16, rel); checkAlignment(loc, val, 4, rel); write32(loc, (read32(loc) & ~mask) | (val & mask)); break; } case R_PPC_ADDR24: case R_PPC_REL24: case R_PPC_LOCAL24PC: case R_PPC_PLTREL24: { uint32_t mask = 0x03FFFFFC; checkInt(loc, val, 26, rel); checkAlignment(loc, val, 4, rel); write32(loc, (read32(loc) & ~mask) | (val & mask)); break; } default: llvm_unreachable("unknown relocation"); } } RelExpr PPC::adjustTlsExpr(RelType type, RelExpr expr) const { if (expr == R_RELAX_TLS_GD_TO_IE) return R_RELAX_TLS_GD_TO_IE_GOT_OFF; if (expr == R_RELAX_TLS_LD_TO_LE) return R_RELAX_TLS_LD_TO_LE_ABS; return expr; } int PPC::getTlsGdRelaxSkip(RelType type) const { // A __tls_get_addr call instruction is marked with 2 relocations: // // R_PPC_TLSGD / R_PPC_TLSLD: marker relocation // R_PPC_REL24: __tls_get_addr // // After the relaxation we no longer call __tls_get_addr and should skip both // relocations to not create a false dependence on __tls_get_addr being // defined. if (type == R_PPC_TLSGD || type == R_PPC_TLSLD) return 2; return 1; } void PPC::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_PPC_GOT_TLSGD16: { // addi rT, rA, x@got@tlsgd --> lwz rT, x@got@tprel(rA) uint32_t insn = readFromHalf16(loc); writeFromHalf16(loc, 0x80000000 | (insn & 0x03ff0000)); relocateNoSym(loc, R_PPC_GOT_TPREL16, val); break; } case R_PPC_TLSGD: // bl __tls_get_addr(x@tldgd) --> add r3, r3, r2 write32(loc, 0x7c631214); break; default: llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); } } void PPC::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_PPC_GOT_TLSGD16: // addi r3, r31, x@got@tlsgd --> addis r3, r2, x@tprel@ha writeFromHalf16(loc, 0x3c620000 | ha(val)); break; case R_PPC_TLSGD: // bl __tls_get_addr(x@tldgd) --> add r3, r3, x@tprel@l write32(loc, 0x38630000 | lo(val)); break; default: llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); } } void PPC::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_PPC_GOT_TLSLD16: // addi r3, rA, x@got@tlsgd --> addis r3, r2, 0 writeFromHalf16(loc, 0x3c620000); break; case R_PPC_TLSLD: // r3+x@dtprel computes r3+x-0x8000, while we want it to compute r3+x@tprel // = r3+x-0x7000, so add 4096 to r3. // bl __tls_get_addr(x@tlsld) --> addi r3, r3, 4096 write32(loc, 0x38631000); break; case R_PPC_DTPREL16: case R_PPC_DTPREL16_HA: case R_PPC_DTPREL16_HI: case R_PPC_DTPREL16_LO: relocate(loc, rel, val); break; default: llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); } } void PPC::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_PPC_GOT_TPREL16: { // lwz rT, x@got@tprel(rA) --> addis rT, r2, x@tprel@ha uint32_t rt = readFromHalf16(loc) & 0x03e00000; writeFromHalf16(loc, 0x3c020000 | rt | ha(val)); break; } case R_PPC_TLS: { uint32_t insn = read32(loc); if (insn >> 26 != 31) error("unrecognized instruction for IE to LE R_PPC_TLS"); // addi rT, rT, x@tls --> addi rT, rT, x@tprel@l uint32_t dFormOp = getPPCDFormOp((read32(loc) & 0x000007fe) >> 1); if (dFormOp == 0) error("unrecognized instruction for IE to LE R_PPC_TLS"); write32(loc, (dFormOp << 26) | (insn & 0x03ff0000) | lo(val)); break; } default: llvm_unreachable("unsupported relocation for TLS IE to LE relaxation"); } } TargetInfo *elf::getPPCTargetInfo() { static PPC target; return ⌖ }