//===- MIPS.cpp -----------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "OutputSections.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "lld/Common/ErrorHandler.h" #include "llvm/Object/ELF.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; namespace { template class MIPS final : public TargetInfo { public: MIPS(); uint32_t calcEFlags() const override; RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const override; int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; RelType getDynRel(RelType type) const override; void writeGotPlt(uint8_t *buf, const Symbol &s) const override; void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr, int32_t index, unsigned relOff) const override; bool needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s) const override; void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override; bool usesOnlyLowPageBits(RelType type) const override; }; } // namespace template MIPS::MIPS() { gotPltHeaderEntriesNum = 2; defaultMaxPageSize = 65536; gotBaseSymInGotPlt = false; pltEntrySize = 16; pltHeaderSize = 32; copyRel = R_MIPS_COPY; noneRel = R_MIPS_NONE; pltRel = R_MIPS_JUMP_SLOT; needsThunks = true; // Set `sigrie 1` as a trap instruction. write32(trapInstr.data(), 0x04170001); if (ELFT::Is64Bits) { relativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32; symbolicRel = R_MIPS_64; tlsGotRel = R_MIPS_TLS_TPREL64; tlsModuleIndexRel = R_MIPS_TLS_DTPMOD64; tlsOffsetRel = R_MIPS_TLS_DTPREL64; } else { relativeRel = R_MIPS_REL32; symbolicRel = R_MIPS_32; tlsGotRel = R_MIPS_TLS_TPREL32; tlsModuleIndexRel = R_MIPS_TLS_DTPMOD32; tlsOffsetRel = R_MIPS_TLS_DTPREL32; } } template uint32_t MIPS::calcEFlags() const { return calcMipsEFlags(); } template RelExpr MIPS::getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const { // See comment in the calculateMipsRelChain. if (ELFT::Is64Bits || config->mipsN32Abi) type &= 0xff; switch (type) { case R_MIPS_JALR: case R_MICROMIPS_JALR: return R_HINT; case R_MIPS_GPREL16: case R_MIPS_GPREL32: case R_MICROMIPS_GPREL16: case R_MICROMIPS_GPREL7_S2: return R_MIPS_GOTREL; case R_MIPS_26: case R_MICROMIPS_26_S1: return R_PLT; case R_MICROMIPS_PC26_S1: return R_PLT_PC; case R_MIPS_HI16: case R_MIPS_LO16: case R_MIPS_HIGHER: case R_MIPS_HIGHEST: case R_MICROMIPS_HI16: case R_MICROMIPS_LO16: // R_MIPS_HI16/R_MIPS_LO16 relocations against _gp_disp calculate // offset between start of function and 'gp' value which by default // equal to the start of .got section. In that case we consider these // relocations as relative. if (&s == ElfSym::mipsGpDisp) return R_MIPS_GOT_GP_PC; if (&s == ElfSym::mipsLocalGp) return R_MIPS_GOT_GP; LLVM_FALLTHROUGH; case R_MIPS_32: case R_MIPS_64: case R_MIPS_GOT_OFST: case R_MIPS_SUB: case R_MIPS_TLS_DTPREL_HI16: case R_MIPS_TLS_DTPREL_LO16: case R_MIPS_TLS_DTPREL32: case R_MIPS_TLS_DTPREL64: case R_MIPS_TLS_TPREL_HI16: case R_MIPS_TLS_TPREL_LO16: case R_MIPS_TLS_TPREL32: case R_MIPS_TLS_TPREL64: case R_MICROMIPS_TLS_DTPREL_HI16: case R_MICROMIPS_TLS_DTPREL_LO16: case R_MICROMIPS_TLS_TPREL_HI16: case R_MICROMIPS_TLS_TPREL_LO16: return R_ABS; case R_MIPS_PC32: case R_MIPS_PC16: case R_MIPS_PC19_S2: case R_MIPS_PC21_S2: case R_MIPS_PC26_S2: case R_MIPS_PCHI16: case R_MIPS_PCLO16: case R_MICROMIPS_PC7_S1: case R_MICROMIPS_PC10_S1: case R_MICROMIPS_PC16_S1: case R_MICROMIPS_PC18_S3: case R_MICROMIPS_PC19_S2: case R_MICROMIPS_PC23_S2: case R_MICROMIPS_PC21_S1: return R_PC; case R_MIPS_GOT16: case R_MICROMIPS_GOT16: if (s.isLocal()) return R_MIPS_GOT_LOCAL_PAGE; LLVM_FALLTHROUGH; case R_MIPS_CALL16: case R_MIPS_GOT_DISP: case R_MIPS_TLS_GOTTPREL: case R_MICROMIPS_CALL16: case R_MICROMIPS_TLS_GOTTPREL: return R_MIPS_GOT_OFF; case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: case R_MICROMIPS_CALL_HI16: case R_MICROMIPS_CALL_LO16: case R_MICROMIPS_GOT_HI16: case R_MICROMIPS_GOT_LO16: return R_MIPS_GOT_OFF32; case R_MIPS_GOT_PAGE: return R_MIPS_GOT_LOCAL_PAGE; case R_MIPS_TLS_GD: case R_MICROMIPS_TLS_GD: return R_MIPS_TLSGD; case R_MIPS_TLS_LDM: case R_MICROMIPS_TLS_LDM: return R_MIPS_TLSLD; case R_MIPS_NONE: return R_NONE; default: error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + ") against symbol " + toString(s)); return R_NONE; } } template RelType MIPS::getDynRel(RelType type) const { if (type == symbolicRel) return type; return R_MIPS_NONE; } template void MIPS::writeGotPlt(uint8_t *buf, const Symbol &) const { uint64_t va = in.plt->getVA(); if (isMicroMips()) va |= 1; write32(buf, va); } template static uint32_t readShuffle(const uint8_t *loc) { // The major opcode of a microMIPS instruction needs to appear // in the first 16-bit word (lowest address) for efficient hardware // decode so that it knows if the instruction is 16-bit or 32-bit // as early as possible. To do so, little-endian binaries keep 16-bit // words in a big-endian order. That is why we have to swap these // words to get a correct value. uint32_t v = read32(loc); if (E == support::little) return (v << 16) | (v >> 16); return v; } template static void writeValue(uint8_t *loc, uint64_t v, uint8_t bitsSize, uint8_t shift) { uint32_t instr = read32(loc); uint32_t mask = 0xffffffff >> (32 - bitsSize); uint32_t data = (instr & ~mask) | ((v >> shift) & mask); write32(loc, data); } template static void writeShuffleValue(uint8_t *loc, uint64_t v, uint8_t bitsSize, uint8_t shift) { // See comments in readShuffle for purpose of this code. uint16_t *words = (uint16_t *)loc; if (E == support::little) std::swap(words[0], words[1]); writeValue(loc, v, bitsSize, shift); if (E == support::little) std::swap(words[0], words[1]); } template static void writeMicroRelocation16(uint8_t *loc, uint64_t v, uint8_t bitsSize, uint8_t shift) { uint16_t instr = read16(loc); uint16_t mask = 0xffff >> (16 - bitsSize); uint16_t data = (instr & ~mask) | ((v >> shift) & mask); write16(loc, data); } template void MIPS::writePltHeader(uint8_t *buf) const { const endianness e = ELFT::TargetEndianness; if (isMicroMips()) { uint64_t gotPlt = in.gotPlt->getVA(); uint64_t plt = in.plt->getVA(); // Overwrite trap instructions written by Writer::writeTrapInstr. memset(buf, 0, pltHeaderSize); write16(buf, isMipsR6() ? 0x7860 : 0x7980); // addiupc v1, (GOTPLT) - . write16(buf + 4, 0xff23); // lw $25, 0($3) write16(buf + 8, 0x0535); // subu16 $2, $2, $3 write16(buf + 10, 0x2525); // srl16 $2, $2, 2 write16(buf + 12, 0x3302); // addiu $24, $2, -2 write16(buf + 14, 0xfffe); write16(buf + 16, 0x0dff); // move $15, $31 if (isMipsR6()) { write16(buf + 18, 0x0f83); // move $28, $3 write16(buf + 20, 0x472b); // jalrc $25 write16(buf + 22, 0x0c00); // nop relocateOne(buf, R_MICROMIPS_PC19_S2, gotPlt - plt); } else { write16(buf + 18, 0x45f9); // jalrc $25 write16(buf + 20, 0x0f83); // move $28, $3 write16(buf + 22, 0x0c00); // nop relocateOne(buf, R_MICROMIPS_PC23_S2, gotPlt - plt); } return; } if (config->mipsN32Abi) { write32(buf, 0x3c0e0000); // lui $14, %hi(&GOTPLT[0]) write32(buf + 4, 0x8dd90000); // lw $25, %lo(&GOTPLT[0])($14) write32(buf + 8, 0x25ce0000); // addiu $14, $14, %lo(&GOTPLT[0]) write32(buf + 12, 0x030ec023); // subu $24, $24, $14 write32(buf + 16, 0x03e07825); // move $15, $31 write32(buf + 20, 0x0018c082); // srl $24, $24, 2 } else if (ELFT::Is64Bits) { write32(buf, 0x3c0e0000); // lui $14, %hi(&GOTPLT[0]) write32(buf + 4, 0xddd90000); // ld $25, %lo(&GOTPLT[0])($14) write32(buf + 8, 0x25ce0000); // addiu $14, $14, %lo(&GOTPLT[0]) write32(buf + 12, 0x030ec023); // subu $24, $24, $14 write32(buf + 16, 0x03e07825); // move $15, $31 write32(buf + 20, 0x0018c0c2); // srl $24, $24, 3 } else { write32(buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0]) write32(buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28) write32(buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0]) write32(buf + 12, 0x031cc023); // subu $24, $24, $28 write32(buf + 16, 0x03e07825); // move $15, $31 write32(buf + 20, 0x0018c082); // srl $24, $24, 2 } uint32_t jalrInst = config->zHazardplt ? 0x0320fc09 : 0x0320f809; write32(buf + 24, jalrInst); // jalr.hb $25 or jalr $25 write32(buf + 28, 0x2718fffe); // subu $24, $24, 2 uint64_t gotPlt = in.gotPlt->getVA(); writeValue(buf, gotPlt + 0x8000, 16, 16); writeValue(buf + 4, gotPlt, 16, 0); writeValue(buf + 8, gotPlt, 16, 0); } template void MIPS::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr, int32_t index, unsigned relOff) const { const endianness e = ELFT::TargetEndianness; if (isMicroMips()) { // Overwrite trap instructions written by Writer::writeTrapInstr. memset(buf, 0, pltEntrySize); if (isMipsR6()) { write16(buf, 0x7840); // addiupc $2, (GOTPLT) - . write16(buf + 4, 0xff22); // lw $25, 0($2) write16(buf + 8, 0x0f02); // move $24, $2 write16(buf + 10, 0x4723); // jrc $25 / jr16 $25 relocateOne(buf, R_MICROMIPS_PC19_S2, gotPltEntryAddr - pltEntryAddr); } else { write16(buf, 0x7900); // addiupc $2, (GOTPLT) - . write16(buf + 4, 0xff22); // lw $25, 0($2) write16(buf + 8, 0x4599); // jrc $25 / jr16 $25 write16(buf + 10, 0x0f02); // move $24, $2 relocateOne(buf, R_MICROMIPS_PC23_S2, gotPltEntryAddr - pltEntryAddr); } return; } uint32_t loadInst = ELFT::Is64Bits ? 0xddf90000 : 0x8df90000; uint32_t jrInst = isMipsR6() ? (config->zHazardplt ? 0x03200409 : 0x03200009) : (config->zHazardplt ? 0x03200408 : 0x03200008); uint32_t addInst = ELFT::Is64Bits ? 0x65f80000 : 0x25f80000; write32(buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry) write32(buf + 4, loadInst); // l[wd] $25, %lo(.got.plt entry)($15) write32(buf + 8, jrInst); // jr $25 / jr.hb $25 write32(buf + 12, addInst); // [d]addiu $24, $15, %lo(.got.plt entry) writeValue(buf, gotPltEntryAddr + 0x8000, 16, 16); writeValue(buf + 4, gotPltEntryAddr, 16, 0); writeValue(buf + 12, gotPltEntryAddr, 16, 0); } template bool MIPS::needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s) const { // Any MIPS PIC code function is invoked with its address in register $t9. // So if we have a branch instruction from non-PIC code to the PIC one // we cannot make the jump directly and need to create a small stubs // to save the target function address. // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (type != R_MIPS_26 && type != R_MIPS_PC26_S2 && type != R_MICROMIPS_26_S1 && type != R_MICROMIPS_PC26_S1) return false; auto *f = dyn_cast_or_null>(file); if (!f) return false; // If current file has PIC code, LA25 stub is not required. if (f->getObj().getHeader()->e_flags & EF_MIPS_PIC) return false; auto *d = dyn_cast(&s); // LA25 is required if target file has PIC code // or target symbol is a PIC symbol. return d && isMipsPIC(d); } template int64_t MIPS::getImplicitAddend(const uint8_t *buf, RelType type) const { const endianness e = ELFT::TargetEndianness; switch (type) { case R_MIPS_32: case R_MIPS_GPREL32: case R_MIPS_TLS_DTPREL32: case R_MIPS_TLS_TPREL32: return SignExtend64<32>(read32(buf)); case R_MIPS_26: // FIXME (simon): If the relocation target symbol is not a PLT entry // we should use another expression for calculation: // ((A << 2) | (P & 0xf0000000)) >> 2 return SignExtend64<28>(read32(buf) << 2); case R_MIPS_GOT16: case R_MIPS_HI16: case R_MIPS_PCHI16: return SignExtend64<16>(read32(buf)) << 16; case R_MIPS_GPREL16: case R_MIPS_LO16: case R_MIPS_PCLO16: case R_MIPS_TLS_DTPREL_HI16: case R_MIPS_TLS_DTPREL_LO16: case R_MIPS_TLS_TPREL_HI16: case R_MIPS_TLS_TPREL_LO16: return SignExtend64<16>(read32(buf)); case R_MICROMIPS_GOT16: case R_MICROMIPS_HI16: return SignExtend64<16>(readShuffle(buf)) << 16; case R_MICROMIPS_GPREL16: case R_MICROMIPS_LO16: case R_MICROMIPS_TLS_DTPREL_HI16: case R_MICROMIPS_TLS_DTPREL_LO16: case R_MICROMIPS_TLS_TPREL_HI16: case R_MICROMIPS_TLS_TPREL_LO16: return SignExtend64<16>(readShuffle(buf)); case R_MICROMIPS_GPREL7_S2: return SignExtend64<9>(readShuffle(buf) << 2); case R_MIPS_PC16: return SignExtend64<18>(read32(buf) << 2); case R_MIPS_PC19_S2: return SignExtend64<21>(read32(buf) << 2); case R_MIPS_PC21_S2: return SignExtend64<23>(read32(buf) << 2); case R_MIPS_PC26_S2: return SignExtend64<28>(read32(buf) << 2); case R_MIPS_PC32: return SignExtend64<32>(read32(buf)); case R_MICROMIPS_26_S1: return SignExtend64<27>(readShuffle(buf) << 1); case R_MICROMIPS_PC7_S1: return SignExtend64<8>(read16(buf) << 1); case R_MICROMIPS_PC10_S1: return SignExtend64<11>(read16(buf) << 1); case R_MICROMIPS_PC16_S1: return SignExtend64<17>(readShuffle(buf) << 1); case R_MICROMIPS_PC18_S3: return SignExtend64<21>(readShuffle(buf) << 3); case R_MICROMIPS_PC19_S2: return SignExtend64<21>(readShuffle(buf) << 2); case R_MICROMIPS_PC21_S1: return SignExtend64<22>(readShuffle(buf) << 1); case R_MICROMIPS_PC23_S2: return SignExtend64<25>(readShuffle(buf) << 2); case R_MICROMIPS_PC26_S1: return SignExtend64<27>(readShuffle(buf) << 1); default: return 0; } } static std::pair calculateMipsRelChain(uint8_t *loc, RelType type, uint64_t val) { // MIPS N64 ABI packs multiple relocations into the single relocation // record. In general, all up to three relocations can have arbitrary // types. In fact, Clang and GCC uses only a few combinations. For now, // we support two of them. That is allow to pass at least all LLVM // test suite cases. // / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16 // / R_MIPS_64 / R_MIPS_NONE // The first relocation is a 'real' relocation which is calculated // using the corresponding symbol's value. The second and the third // relocations used to modify result of the first one: extend it to // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf RelType type2 = (type >> 8) & 0xff; RelType type3 = (type >> 16) & 0xff; if (type2 == R_MIPS_NONE && type3 == R_MIPS_NONE) return std::make_pair(type, val); if (type2 == R_MIPS_64 && type3 == R_MIPS_NONE) return std::make_pair(type2, val); if (type2 == R_MIPS_SUB && (type3 == R_MIPS_HI16 || type3 == R_MIPS_LO16)) return std::make_pair(type3, -val); error(getErrorLocation(loc) + "unsupported relocations combination " + Twine(type)); return std::make_pair(type & 0xff, val); } static bool isBranchReloc(RelType type) { return type == R_MIPS_26 || type == R_MIPS_PC26_S2 || type == R_MIPS_PC21_S2 || type == R_MIPS_PC16; } static bool isMicroBranchReloc(RelType type) { return type == R_MICROMIPS_26_S1 || type == R_MICROMIPS_PC16_S1 || type == R_MICROMIPS_PC10_S1 || type == R_MICROMIPS_PC7_S1; } template static uint64_t fixupCrossModeJump(uint8_t *loc, RelType type, uint64_t val) { // Here we need to detect jump/branch from regular MIPS code // to a microMIPS target and vice versa. In that cases jump // instructions need to be replaced by their "cross-mode" // equivalents. const endianness e = ELFT::TargetEndianness; bool isMicroTgt = val & 0x1; bool isCrossJump = (isMicroTgt && isBranchReloc(type)) || (!isMicroTgt && isMicroBranchReloc(type)); if (!isCrossJump) return val; switch (type) { case R_MIPS_26: { uint32_t inst = read32(loc) >> 26; if (inst == 0x3 || inst == 0x1d) { // JAL or JALX writeValue(loc, 0x1d << 26, 32, 0); return val; } break; } case R_MICROMIPS_26_S1: { uint32_t inst = readShuffle(loc) >> 26; if (inst == 0x3d || inst == 0x3c) { // JAL32 or JALX32 val >>= 1; writeShuffleValue(loc, 0x3c << 26, 32, 0); return val; } break; } case R_MIPS_PC26_S2: case R_MIPS_PC21_S2: case R_MIPS_PC16: case R_MICROMIPS_PC16_S1: case R_MICROMIPS_PC10_S1: case R_MICROMIPS_PC7_S1: // FIXME (simon): Support valid branch relocations. break; default: llvm_unreachable("unexpected jump/branch relocation"); } error(getErrorLocation(loc) + "unsupported jump/branch instruction between ISA modes referenced by " + toString(type) + " relocation"); return val; } template void MIPS::relocateOne(uint8_t *loc, RelType type, uint64_t val) const { const endianness e = ELFT::TargetEndianness; if (ELFT::Is64Bits || config->mipsN32Abi) std::tie(type, val) = calculateMipsRelChain(loc, type, val); // Detect cross-mode jump/branch and fix instruction. val = fixupCrossModeJump(loc, type, val); // Thread pointer and DRP offsets from the start of TLS data area. // https://www.linux-mips.org/wiki/NPTL if (type == R_MIPS_TLS_DTPREL_HI16 || type == R_MIPS_TLS_DTPREL_LO16 || type == R_MIPS_TLS_DTPREL32 || type == R_MIPS_TLS_DTPREL64 || type == R_MICROMIPS_TLS_DTPREL_HI16 || type == R_MICROMIPS_TLS_DTPREL_LO16) { val -= 0x8000; } else if (type == R_MIPS_TLS_TPREL_HI16 || type == R_MIPS_TLS_TPREL_LO16 || type == R_MIPS_TLS_TPREL32 || type == R_MIPS_TLS_TPREL64 || type == R_MICROMIPS_TLS_TPREL_HI16 || type == R_MICROMIPS_TLS_TPREL_LO16) { val -= 0x7000; } switch (type) { case R_MIPS_32: case R_MIPS_GPREL32: case R_MIPS_TLS_DTPREL32: case R_MIPS_TLS_TPREL32: write32(loc, val); break; case R_MIPS_64: case R_MIPS_TLS_DTPREL64: case R_MIPS_TLS_TPREL64: write64(loc, val); break; case R_MIPS_26: writeValue(loc, val, 26, 2); break; case R_MIPS_GOT16: // The R_MIPS_GOT16 relocation's value in "relocatable" linking mode // is updated addend (not a GOT index). In that case write high 16 bits // to store a correct addend value. if (config->relocatable) { writeValue(loc, val + 0x8000, 16, 16); } else { checkInt(loc, val, 16, type); writeValue(loc, val, 16, 0); } break; case R_MICROMIPS_GOT16: if (config->relocatable) { writeShuffleValue(loc, val + 0x8000, 16, 16); } else { checkInt(loc, val, 16, type); writeShuffleValue(loc, val, 16, 0); } break; case R_MIPS_CALL16: case R_MIPS_GOT_DISP: case R_MIPS_GOT_PAGE: case R_MIPS_GPREL16: case R_MIPS_TLS_GD: case R_MIPS_TLS_GOTTPREL: case R_MIPS_TLS_LDM: checkInt(loc, val, 16, type); LLVM_FALLTHROUGH; case R_MIPS_CALL_LO16: case R_MIPS_GOT_LO16: case R_MIPS_GOT_OFST: case R_MIPS_LO16: case R_MIPS_PCLO16: case R_MIPS_TLS_DTPREL_LO16: case R_MIPS_TLS_TPREL_LO16: writeValue(loc, val, 16, 0); break; case R_MICROMIPS_GPREL16: case R_MICROMIPS_TLS_GD: case R_MICROMIPS_TLS_LDM: checkInt(loc, val, 16, type); writeShuffleValue(loc, val, 16, 0); break; case R_MICROMIPS_CALL16: case R_MICROMIPS_CALL_LO16: case R_MICROMIPS_LO16: case R_MICROMIPS_TLS_DTPREL_LO16: case R_MICROMIPS_TLS_GOTTPREL: case R_MICROMIPS_TLS_TPREL_LO16: writeShuffleValue(loc, val, 16, 0); break; case R_MICROMIPS_GPREL7_S2: checkInt(loc, val, 7, type); writeShuffleValue(loc, val, 7, 2); break; case R_MIPS_CALL_HI16: case R_MIPS_GOT_HI16: case R_MIPS_HI16: case R_MIPS_PCHI16: case R_MIPS_TLS_DTPREL_HI16: case R_MIPS_TLS_TPREL_HI16: writeValue(loc, val + 0x8000, 16, 16); break; case R_MICROMIPS_CALL_HI16: case R_MICROMIPS_GOT_HI16: case R_MICROMIPS_HI16: case R_MICROMIPS_TLS_DTPREL_HI16: case R_MICROMIPS_TLS_TPREL_HI16: writeShuffleValue(loc, val + 0x8000, 16, 16); break; case R_MIPS_HIGHER: writeValue(loc, val + 0x80008000, 16, 32); break; case R_MIPS_HIGHEST: writeValue(loc, val + 0x800080008000, 16, 48); break; case R_MIPS_JALR: case R_MICROMIPS_JALR: // Ignore this optimization relocation for now break; case R_MIPS_PC16: checkAlignment(loc, val, 4, type); checkInt(loc, val, 18, type); writeValue(loc, val, 16, 2); break; case R_MIPS_PC19_S2: checkAlignment(loc, val, 4, type); checkInt(loc, val, 21, type); writeValue(loc, val, 19, 2); break; case R_MIPS_PC21_S2: checkAlignment(loc, val, 4, type); checkInt(loc, val, 23, type); writeValue(loc, val, 21, 2); break; case R_MIPS_PC26_S2: checkAlignment(loc, val, 4, type); checkInt(loc, val, 28, type); writeValue(loc, val, 26, 2); break; case R_MIPS_PC32: writeValue(loc, val, 32, 0); break; case R_MICROMIPS_26_S1: case R_MICROMIPS_PC26_S1: checkInt(loc, val, 27, type); writeShuffleValue(loc, val, 26, 1); break; case R_MICROMIPS_PC7_S1: checkInt(loc, val, 8, type); writeMicroRelocation16(loc, val, 7, 1); break; case R_MICROMIPS_PC10_S1: checkInt(loc, val, 11, type); writeMicroRelocation16(loc, val, 10, 1); break; case R_MICROMIPS_PC16_S1: checkInt(loc, val, 17, type); writeShuffleValue(loc, val, 16, 1); break; case R_MICROMIPS_PC18_S3: checkInt(loc, val, 21, type); writeShuffleValue(loc, val, 18, 3); break; case R_MICROMIPS_PC19_S2: checkInt(loc, val, 21, type); writeShuffleValue(loc, val, 19, 2); break; case R_MICROMIPS_PC21_S1: checkInt(loc, val, 22, type); writeShuffleValue(loc, val, 21, 1); break; case R_MICROMIPS_PC23_S2: checkInt(loc, val, 25, type); writeShuffleValue(loc, val, 23, 2); break; default: llvm_unreachable("unknown relocation"); } } template bool MIPS::usesOnlyLowPageBits(RelType type) const { return type == R_MIPS_LO16 || type == R_MIPS_GOT_OFST || type == R_MICROMIPS_LO16; } // Return true if the symbol is a PIC function. template bool elf::isMipsPIC(const Defined *sym) { if (!sym->isFunc()) return false; if (sym->stOther & STO_MIPS_PIC) return true; if (!sym->section) return false; ObjFile *file = cast(sym->section)->template getFile(); if (!file) return false; return file->getObj().getHeader()->e_flags & EF_MIPS_PIC; } template TargetInfo *elf::getMipsTargetInfo() { static MIPS target; return ⌖ } template TargetInfo *elf::getMipsTargetInfo(); template TargetInfo *elf::getMipsTargetInfo(); template TargetInfo *elf::getMipsTargetInfo(); template TargetInfo *elf::getMipsTargetInfo(); template bool elf::isMipsPIC(const Defined *); template bool elf::isMipsPIC(const Defined *); template bool elf::isMipsPIC(const Defined *); template bool elf::isMipsPIC(const Defined *);