//===-- Hexagon.cpp -------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Object/ELF.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; namespace lld { namespace elf { namespace { class Hexagon final : public TargetInfo { public: Hexagon(); uint32_t calcEFlags() const override; RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const override; RelType getDynRel(RelType type) const override; void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override; void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; }; } // namespace Hexagon::Hexagon() { pltRel = R_HEX_JMP_SLOT; relativeRel = R_HEX_RELATIVE; gotRel = R_HEX_GLOB_DAT; symbolicRel = R_HEX_32; // The zero'th GOT entry is reserved for the address of _DYNAMIC. The // next 3 are reserved for the dynamic loader. gotPltHeaderEntriesNum = 4; pltEntrySize = 16; pltHeaderSize = 32; // Hexagon Linux uses 64K pages by default. defaultMaxPageSize = 0x10000; noneRel = R_HEX_NONE; tlsGotRel = R_HEX_TPREL_32; } uint32_t Hexagon::calcEFlags() const { assert(!objectFiles.empty()); // The architecture revision must always be equal to or greater than // greatest revision in the list of inputs. uint32_t ret = 0; for (InputFile *f : objectFiles) { uint32_t eflags = cast>(f)->getObj().getHeader()->e_flags; if (eflags > ret) ret = eflags; } return ret; } static uint32_t applyMask(uint32_t mask, uint32_t data) { uint32_t result = 0; size_t off = 0; for (size_t bit = 0; bit != 32; ++bit) { uint32_t valBit = (data >> off) & 1; uint32_t maskBit = (mask >> bit) & 1; if (maskBit) { result |= (valBit << bit); ++off; } } return result; } RelExpr Hexagon::getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const { switch (type) { case R_HEX_NONE: return R_NONE; case R_HEX_6_X: case R_HEX_8_X: case R_HEX_9_X: case R_HEX_10_X: case R_HEX_11_X: case R_HEX_12_X: case R_HEX_16_X: case R_HEX_32: case R_HEX_32_6_X: case R_HEX_HI16: case R_HEX_LO16: return R_ABS; case R_HEX_B9_PCREL: case R_HEX_B13_PCREL: case R_HEX_B15_PCREL: case R_HEX_6_PCREL_X: case R_HEX_32_PCREL: return R_PC; case R_HEX_B9_PCREL_X: case R_HEX_B15_PCREL_X: case R_HEX_B22_PCREL: case R_HEX_PLT_B22_PCREL: case R_HEX_B22_PCREL_X: case R_HEX_B32_PCREL_X: return R_PLT_PC; case R_HEX_IE_32_6_X: case R_HEX_IE_16_X: case R_HEX_IE_HI16: case R_HEX_IE_LO16: return R_GOT; case R_HEX_GOTREL_11_X: case R_HEX_GOTREL_16_X: case R_HEX_GOTREL_32_6_X: case R_HEX_GOTREL_HI16: case R_HEX_GOTREL_LO16: return R_GOTPLTREL; case R_HEX_GOT_11_X: case R_HEX_GOT_16_X: case R_HEX_GOT_32_6_X: return R_GOTPLT; case R_HEX_IE_GOT_11_X: case R_HEX_IE_GOT_16_X: case R_HEX_IE_GOT_32_6_X: case R_HEX_IE_GOT_HI16: case R_HEX_IE_GOT_LO16: config->hasStaticTlsModel = true; return R_GOTPLT; case R_HEX_TPREL_11_X: case R_HEX_TPREL_16: case R_HEX_TPREL_16_X: case R_HEX_TPREL_32_6_X: case R_HEX_TPREL_HI16: case R_HEX_TPREL_LO16: return R_TLS; default: error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + ") against symbol " + toString(s)); return R_NONE; } } static uint32_t findMaskR6(uint32_t insn) { // There are (arguably too) many relocation masks for the DSP's // R_HEX_6_X type. The table below is used to select the correct mask // for the given instruction. struct InstructionMask { uint32_t cmpMask; uint32_t relocMask; }; static const InstructionMask r6[] = { {0x38000000, 0x0000201f}, {0x39000000, 0x0000201f}, {0x3e000000, 0x00001f80}, {0x3f000000, 0x00001f80}, {0x40000000, 0x000020f8}, {0x41000000, 0x000007e0}, {0x42000000, 0x000020f8}, {0x43000000, 0x000007e0}, {0x44000000, 0x000020f8}, {0x45000000, 0x000007e0}, {0x46000000, 0x000020f8}, {0x47000000, 0x000007e0}, {0x6a000000, 0x00001f80}, {0x7c000000, 0x001f2000}, {0x9a000000, 0x00000f60}, {0x9b000000, 0x00000f60}, {0x9c000000, 0x00000f60}, {0x9d000000, 0x00000f60}, {0x9f000000, 0x001f0100}, {0xab000000, 0x0000003f}, {0xad000000, 0x0000003f}, {0xaf000000, 0x00030078}, {0xd7000000, 0x006020e0}, {0xd8000000, 0x006020e0}, {0xdb000000, 0x006020e0}, {0xdf000000, 0x006020e0}}; // Duplex forms have a fixed mask and parse bits 15:14 are always // zero. Non-duplex insns will always have at least one bit set in the // parse field. if ((0xC000 & insn) == 0x0) return 0x03f00000; for (InstructionMask i : r6) if ((0xff000000 & insn) == i.cmpMask) return i.relocMask; error("unrecognized instruction for R_HEX_6 relocation: 0x" + utohexstr(insn)); return 0; } static uint32_t findMaskR8(uint32_t insn) { if ((0xff000000 & insn) == 0xde000000) return 0x00e020e8; if ((0xff000000 & insn) == 0x3c000000) return 0x0000207f; return 0x00001fe0; } static uint32_t findMaskR11(uint32_t insn) { if ((0xff000000 & insn) == 0xa1000000) return 0x060020ff; return 0x06003fe0; } static uint32_t findMaskR16(uint32_t insn) { if ((0xff000000 & insn) == 0x48000000) return 0x061f20ff; if ((0xff000000 & insn) == 0x49000000) return 0x061f3fe0; if ((0xff000000 & insn) == 0x78000000) return 0x00df3fe0; if ((0xff000000 & insn) == 0xb0000000) return 0x0fe03fe0; error("unrecognized instruction for R_HEX_16_X relocation: 0x" + utohexstr(insn)); return 0; } static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); } void Hexagon::relocateOne(uint8_t *loc, RelType type, uint64_t val) const { switch (type) { case R_HEX_NONE: break; case R_HEX_6_PCREL_X: case R_HEX_6_X: or32le(loc, applyMask(findMaskR6(read32le(loc)), val)); break; case R_HEX_8_X: or32le(loc, applyMask(findMaskR8(read32le(loc)), val)); break; case R_HEX_9_X: or32le(loc, applyMask(0x00003fe0, val & 0x3f)); break; case R_HEX_10_X: or32le(loc, applyMask(0x00203fe0, val & 0x3f)); break; case R_HEX_11_X: case R_HEX_IE_GOT_11_X: case R_HEX_GOT_11_X: case R_HEX_GOTREL_11_X: case R_HEX_TPREL_11_X: or32le(loc, applyMask(findMaskR11(read32le(loc)), val & 0x3f)); break; case R_HEX_12_X: or32le(loc, applyMask(0x000007e0, val)); break; case R_HEX_16_X: // These relocs only have 6 effective bits. case R_HEX_IE_16_X: case R_HEX_IE_GOT_16_X: case R_HEX_GOT_16_X: case R_HEX_GOTREL_16_X: case R_HEX_TPREL_16_X: or32le(loc, applyMask(findMaskR16(read32le(loc)), val & 0x3f)); break; case R_HEX_TPREL_16: or32le(loc, applyMask(findMaskR16(read32le(loc)), val & 0xffff)); break; case R_HEX_32: case R_HEX_32_PCREL: or32le(loc, val); break; case R_HEX_32_6_X: case R_HEX_GOT_32_6_X: case R_HEX_GOTREL_32_6_X: case R_HEX_IE_GOT_32_6_X: case R_HEX_IE_32_6_X: case R_HEX_TPREL_32_6_X: or32le(loc, applyMask(0x0fff3fff, val >> 6)); break; case R_HEX_B9_PCREL: checkInt(loc, val, 11, type); or32le(loc, applyMask(0x003000fe, val >> 2)); break; case R_HEX_B9_PCREL_X: or32le(loc, applyMask(0x003000fe, val & 0x3f)); break; case R_HEX_B13_PCREL: checkInt(loc, val, 15, type); or32le(loc, applyMask(0x00202ffe, val >> 2)); break; case R_HEX_B15_PCREL: checkInt(loc, val, 17, type); or32le(loc, applyMask(0x00df20fe, val >> 2)); break; case R_HEX_B15_PCREL_X: or32le(loc, applyMask(0x00df20fe, val & 0x3f)); break; case R_HEX_B22_PCREL: case R_HEX_PLT_B22_PCREL: checkInt(loc, val, 22, type); or32le(loc, applyMask(0x1ff3ffe, val >> 2)); break; case R_HEX_B22_PCREL_X: or32le(loc, applyMask(0x1ff3ffe, val & 0x3f)); break; case R_HEX_B32_PCREL_X: or32le(loc, applyMask(0x0fff3fff, val >> 6)); break; case R_HEX_GOTREL_HI16: case R_HEX_HI16: case R_HEX_IE_GOT_HI16: case R_HEX_IE_HI16: case R_HEX_TPREL_HI16: or32le(loc, applyMask(0x00c03fff, val >> 16)); break; case R_HEX_GOTREL_LO16: case R_HEX_LO16: case R_HEX_IE_GOT_LO16: case R_HEX_IE_LO16: case R_HEX_TPREL_LO16: or32le(loc, applyMask(0x00c03fff, val)); break; default: llvm_unreachable("unknown relocation"); } } void Hexagon::writePltHeader(uint8_t *buf) const { const uint8_t pltData[] = { 0x00, 0x40, 0x00, 0x00, // { immext (#0) 0x1c, 0xc0, 0x49, 0x6a, // r28 = add (pc, ##GOT0@PCREL) } # @GOT0 0x0e, 0x42, 0x9c, 0xe2, // { r14 -= add (r28, #16) # offset of GOTn 0x4f, 0x40, 0x9c, 0x91, // r15 = memw (r28 + #8) # object ID at GOT2 0x3c, 0xc0, 0x9c, 0x91, // r28 = memw (r28 + #4) }# dynamic link at GOT1 0x0e, 0x42, 0x0e, 0x8c, // { r14 = asr (r14, #2) # index of PLTn 0x00, 0xc0, 0x9c, 0x52, // jumpr r28 } # call dynamic linker 0x0c, 0xdb, 0x00, 0x54, // trap0(#0xdb) # bring plt0 into 16byte alignment }; memcpy(buf, pltData, sizeof(pltData)); // Offset from PLT0 to the GOT. uint64_t off = in.gotPlt->getVA() - in.plt->getVA(); relocateOne(buf, R_HEX_B32_PCREL_X, off); relocateOne(buf + 4, R_HEX_6_PCREL_X, off); } void Hexagon::writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { const uint8_t inst[] = { 0x00, 0x40, 0x00, 0x00, // { immext (#0) 0x0e, 0xc0, 0x49, 0x6a, // r14 = add (pc, ##GOTn@PCREL) } 0x1c, 0xc0, 0x8e, 0x91, // r28 = memw (r14) 0x00, 0xc0, 0x9c, 0x52, // jumpr r28 }; memcpy(buf, inst, sizeof(inst)); uint64_t gotPltEntryAddr = sym.getGotPltVA(); relocateOne(buf, R_HEX_B32_PCREL_X, gotPltEntryAddr - pltEntryAddr); relocateOne(buf + 4, R_HEX_6_PCREL_X, gotPltEntryAddr - pltEntryAddr); } RelType Hexagon::getDynRel(RelType type) const { if (type == R_HEX_32) return type; return R_HEX_NONE; } TargetInfo *getHexagonTargetInfo() { static Hexagon target; return ⌖ } } // namespace elf } // namespace lld