//===- AVR.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // AVR is a Harvard-architecture 8-bit microcontroller designed for small // baremetal programs. All AVR-family processors have 32 8-bit registers. // The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest // one supports up to 2^24 data address space and 2^22 code address space. // // Since it is a baremetal programming, there's usually no loader to load // ELF files on AVRs. You are expected to link your program against address // 0 and pull out a .text section from the result using objcopy, so that you // can write the linked code to on-chip flush memory. You can do that with // the following commands: // // ld.lld -Ttext=0 -o foo foo.o // objcopy -O binary --only-section=.text foo output.bin // // Note that the current AVR support is very preliminary so you can't // link any useful program yet, though. // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Symbols.h" #include "Target.h" #include "Thunks.h" #include "lld/Common/ErrorHandler.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; namespace { class AVR final : public TargetInfo { public: AVR() { needsThunks = true; } uint32_t calcEFlags() const override; RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const override; bool needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const override; void relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const override; }; } // namespace RelExpr AVR::getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const { switch (type) { case R_AVR_6: case R_AVR_6_ADIW: case R_AVR_8: case R_AVR_8_LO8: case R_AVR_8_HI8: case R_AVR_8_HLO8: case R_AVR_16: case R_AVR_16_PM: case R_AVR_32: case R_AVR_LDI: case R_AVR_LO8_LDI: case R_AVR_LO8_LDI_NEG: case R_AVR_HI8_LDI: case R_AVR_HI8_LDI_NEG: case R_AVR_HH8_LDI_NEG: case R_AVR_HH8_LDI: case R_AVR_MS8_LDI_NEG: case R_AVR_MS8_LDI: case R_AVR_LO8_LDI_GS: case R_AVR_LO8_LDI_PM: case R_AVR_LO8_LDI_PM_NEG: case R_AVR_HI8_LDI_GS: case R_AVR_HI8_LDI_PM: case R_AVR_HI8_LDI_PM_NEG: case R_AVR_HH8_LDI_PM: case R_AVR_HH8_LDI_PM_NEG: case R_AVR_LDS_STS_16: case R_AVR_PORT5: case R_AVR_PORT6: case R_AVR_CALL: return R_ABS; case R_AVR_7_PCREL: case R_AVR_13_PCREL: return R_PC; default: error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + ") against symbol " + toString(s)); return R_NONE; } } static void writeLDI(uint8_t *loc, uint64_t val) { write16le(loc, (read16le(loc) & 0xf0f0) | (val & 0xf0) << 4 | (val & 0x0f)); } bool AVR::needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const { switch (type) { case R_AVR_LO8_LDI_GS: case R_AVR_HI8_LDI_GS: // A thunk is needed if the symbol's virtual address is out of range // [0, 0x1ffff]. return s.getVA() >= 0x20000; default: return false; } } void AVR::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_AVR_8: checkUInt(loc, val, 8, rel); *loc = val; break; case R_AVR_8_LO8: checkUInt(loc, val, 32, rel); *loc = val & 0xff; break; case R_AVR_8_HI8: checkUInt(loc, val, 32, rel); *loc = (val >> 8) & 0xff; break; case R_AVR_8_HLO8: checkUInt(loc, val, 32, rel); *loc = (val >> 16) & 0xff; break; case R_AVR_16: // Note: this relocation is often used between code and data space, which // are 0x800000 apart in the output ELF file. The bitmask cuts off the high // bit. write16le(loc, val & 0xffff); break; case R_AVR_16_PM: checkAlignment(loc, val, 2, rel); checkUInt(loc, val >> 1, 16, rel); write16le(loc, val >> 1); break; case R_AVR_32: checkUInt(loc, val, 32, rel); write32le(loc, val); break; case R_AVR_LDI: checkUInt(loc, val, 8, rel); writeLDI(loc, val & 0xff); break; case R_AVR_LO8_LDI_NEG: writeLDI(loc, -val & 0xff); break; case R_AVR_LO8_LDI: writeLDI(loc, val & 0xff); break; case R_AVR_HI8_LDI_NEG: writeLDI(loc, (-val >> 8) & 0xff); break; case R_AVR_HI8_LDI: writeLDI(loc, (val >> 8) & 0xff); break; case R_AVR_HH8_LDI_NEG: writeLDI(loc, (-val >> 16) & 0xff); break; case R_AVR_HH8_LDI: writeLDI(loc, (val >> 16) & 0xff); break; case R_AVR_MS8_LDI_NEG: writeLDI(loc, (-val >> 24) & 0xff); break; case R_AVR_MS8_LDI: writeLDI(loc, (val >> 24) & 0xff); break; case R_AVR_LO8_LDI_GS: checkUInt(loc, val, 17, rel); [[fallthrough]]; case R_AVR_LO8_LDI_PM: checkAlignment(loc, val, 2, rel); writeLDI(loc, (val >> 1) & 0xff); break; case R_AVR_HI8_LDI_GS: checkUInt(loc, val, 17, rel); [[fallthrough]]; case R_AVR_HI8_LDI_PM: checkAlignment(loc, val, 2, rel); writeLDI(loc, (val >> 9) & 0xff); break; case R_AVR_HH8_LDI_PM: checkAlignment(loc, val, 2, rel); writeLDI(loc, (val >> 17) & 0xff); break; case R_AVR_LO8_LDI_PM_NEG: checkAlignment(loc, val, 2, rel); writeLDI(loc, (-val >> 1) & 0xff); break; case R_AVR_HI8_LDI_PM_NEG: checkAlignment(loc, val, 2, rel); writeLDI(loc, (-val >> 9) & 0xff); break; case R_AVR_HH8_LDI_PM_NEG: checkAlignment(loc, val, 2, rel); writeLDI(loc, (-val >> 17) & 0xff); break; case R_AVR_LDS_STS_16: { checkUInt(loc, val, 7, rel); const uint16_t hi = val >> 4; const uint16_t lo = val & 0xf; write16le(loc, (read16le(loc) & 0xf8f0) | ((hi << 8) | lo)); break; } case R_AVR_PORT5: checkUInt(loc, val, 5, rel); write16le(loc, (read16le(loc) & 0xff07) | (val << 3)); break; case R_AVR_PORT6: checkUInt(loc, val, 6, rel); write16le(loc, (read16le(loc) & 0xf9f0) | (val & 0x30) << 5 | (val & 0x0f)); break; // Since every jump destination is word aligned we gain an extra bit case R_AVR_7_PCREL: { checkInt(loc, val - 2, 7, rel); checkAlignment(loc, val, 2, rel); const uint16_t target = (val - 2) >> 1; write16le(loc, (read16le(loc) & 0xfc07) | ((target & 0x7f) << 3)); break; } case R_AVR_13_PCREL: { checkInt(loc, val - 2, 13, rel); checkAlignment(loc, val, 2, rel); const uint16_t target = (val - 2) >> 1; write16le(loc, (read16le(loc) & 0xf000) | (target & 0xfff)); break; } case R_AVR_6: checkInt(loc, val, 6, rel); write16le(loc, (read16le(loc) & 0xd3f8) | (val & 0x20) << 8 | (val & 0x18) << 7 | (val & 0x07)); break; case R_AVR_6_ADIW: checkInt(loc, val, 6, rel); write16le(loc, (read16le(loc) & 0xff30) | (val & 0x30) << 2 | (val & 0x0F)); break; case R_AVR_CALL: { checkAlignment(loc, val, 2, rel); uint16_t hi = val >> 17; uint16_t lo = val >> 1; write16le(loc, read16le(loc) | ((hi >> 1) << 4) | (hi & 1)); write16le(loc + 2, lo); break; } default: llvm_unreachable("unknown relocation"); } } TargetInfo *elf::getAVRTargetInfo() { static AVR target; return ⌖ } static uint32_t getEFlags(InputFile *file) { return cast>(file)->getObj().getHeader().e_flags; } uint32_t AVR::calcEFlags() const { assert(!ctx.objectFiles.empty()); uint32_t flags = getEFlags(ctx.objectFiles[0]); bool hasLinkRelaxFlag = flags & EF_AVR_LINKRELAX_PREPARED; for (InputFile *f : ArrayRef(ctx.objectFiles).slice(1)) { uint32_t objFlags = getEFlags(f); if ((objFlags & EF_AVR_ARCH_MASK) != (flags & EF_AVR_ARCH_MASK)) error(toString(f) + ": cannot link object files with incompatible target ISA"); if (!(objFlags & EF_AVR_LINKRELAX_PREPARED)) hasLinkRelaxFlag = false; } if (!hasLinkRelaxFlag) flags &= ~EF_AVR_LINKRELAX_PREPARED; return flags; }