//===- ARM.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Filesystem.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::support::endian; using namespace llvm::support; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; using namespace llvm::object; namespace { class ARM final : public TargetInfo { public: ARM(); uint32_t calcEFlags() const override; RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const override; RelType getDynRel(RelType type) const override; int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; void writeGotPlt(uint8_t *buf, const Symbol &s) const override; void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; void addPltSymbols(InputSection &isec, uint64_t off) const override; void addPltHeaderSymbols(InputSection &isd) const override; bool needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const override; uint32_t getThunkSectionSpacing() const override; bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; void relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const override; }; enum class CodeState { Data = 0, Thumb = 2, Arm = 4 }; } // namespace static DenseMap> sectionMap{}; ARM::ARM() { copyRel = R_ARM_COPY; relativeRel = R_ARM_RELATIVE; iRelativeRel = R_ARM_IRELATIVE; gotRel = R_ARM_GLOB_DAT; pltRel = R_ARM_JUMP_SLOT; symbolicRel = R_ARM_ABS32; tlsGotRel = R_ARM_TLS_TPOFF32; tlsModuleIndexRel = R_ARM_TLS_DTPMOD32; tlsOffsetRel = R_ARM_TLS_DTPOFF32; pltHeaderSize = 32; pltEntrySize = 16; ipltEntrySize = 16; trapInstr = {0xd4, 0xd4, 0xd4, 0xd4}; needsThunks = true; defaultMaxPageSize = 65536; } uint32_t ARM::calcEFlags() const { // The ABIFloatType is used by loaders to detect the floating point calling // convention. uint32_t abiFloatType = 0; // Set the EF_ARM_BE8 flag in the ELF header, if ELF file is big-endian // with BE-8 code. uint32_t armBE8 = 0; if (config->armVFPArgs == ARMVFPArgKind::Base || config->armVFPArgs == ARMVFPArgKind::Default) abiFloatType = EF_ARM_ABI_FLOAT_SOFT; else if (config->armVFPArgs == ARMVFPArgKind::VFP) abiFloatType = EF_ARM_ABI_FLOAT_HARD; if (!config->isLE && config->armBe8) armBE8 = EF_ARM_BE8; // We don't currently use any features incompatible with EF_ARM_EABI_VER5, // but we don't have any firm guarantees of conformance. Linux AArch64 // kernels (as of 2016) require an EABI version to be set. return EF_ARM_EABI_VER5 | abiFloatType | armBE8; } RelExpr ARM::getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const { switch (type) { case R_ARM_ABS32: case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_ALU_ABS_G0_NC: case R_ARM_THM_ALU_ABS_G1_NC: case R_ARM_THM_ALU_ABS_G2_NC: case R_ARM_THM_ALU_ABS_G3: return R_ABS; case R_ARM_THM_JUMP8: case R_ARM_THM_JUMP11: return R_PC; case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_PREL31: case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: return R_PLT_PC; case R_ARM_GOTOFF32: // (S + A) - GOT_ORG return R_GOTREL; case R_ARM_GOT_BREL: // GOT(S) + A - GOT_ORG return R_GOT_OFF; case R_ARM_GOT_PREL: case R_ARM_TLS_IE32: // GOT(S) + A - P return R_GOT_PC; case R_ARM_SBREL32: return R_ARM_SBREL; case R_ARM_TARGET1: return config->target1Rel ? R_PC : R_ABS; case R_ARM_TARGET2: if (config->target2 == Target2Policy::Rel) return R_PC; if (config->target2 == Target2Policy::Abs) return R_ABS; return R_GOT_PC; case R_ARM_TLS_GD32: return R_TLSGD_PC; case R_ARM_TLS_LDM32: return R_TLSLD_PC; case R_ARM_TLS_LDO32: return R_DTPREL; case R_ARM_BASE_PREL: // B(S) + A - P // FIXME: currently B(S) assumed to be .got, this may not hold for all // platforms. return R_GOTONLY_PC; case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_REL32: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: return R_PC; case R_ARM_ALU_PC_G0: case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G1: case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G2: case R_ARM_LDR_PC_G0: case R_ARM_LDR_PC_G1: case R_ARM_LDR_PC_G2: case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_PC_G2: case R_ARM_THM_ALU_PREL_11_0: case R_ARM_THM_PC8: case R_ARM_THM_PC12: return R_ARM_PCA; case R_ARM_MOVW_BREL_NC: case R_ARM_MOVW_BREL: case R_ARM_MOVT_BREL: case R_ARM_THM_MOVW_BREL_NC: case R_ARM_THM_MOVW_BREL: case R_ARM_THM_MOVT_BREL: return R_ARM_SBREL; case R_ARM_NONE: return R_NONE; case R_ARM_TLS_LE32: return R_TPREL; case R_ARM_V4BX: // V4BX is just a marker to indicate there's a "bx rN" instruction at the // given address. It can be used to implement a special linker mode which // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and // not ARMv4 output, we can just ignore it. return R_NONE; default: error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + ") against symbol " + toString(s)); return R_NONE; } } RelType ARM::getDynRel(RelType type) const { if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel)) return R_ARM_ABS32; return R_ARM_NONE; } void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const { write32(buf, in.plt->getVA()); } void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const { // An ARM entry is the address of the ifunc resolver function. write32(buf, s.getVA()); } // Long form PLT Header that does not have any restrictions on the displacement // of the .plt from the .got.plt. static void writePltHeaderLong(uint8_t *buf) { write32(buf + 0, 0xe52de004); // str lr, [sp,#-4]! write32(buf + 4, 0xe59fe004); // ldr lr, L2 write32(buf + 8, 0xe08fe00e); // L1: add lr, pc, lr write32(buf + 12, 0xe5bef008); // ldr pc, [lr, #8] write32(buf + 16, 0x00000000); // L2: .word &(.got.plt) - L1 - 8 write32(buf + 20, 0xd4d4d4d4); // Pad to 32-byte boundary write32(buf + 24, 0xd4d4d4d4); // Pad to 32-byte boundary write32(buf + 28, 0xd4d4d4d4); uint64_t gotPlt = in.gotPlt->getVA(); uint64_t l1 = in.plt->getVA() + 8; write32(buf + 16, gotPlt - l1 - 8); } // The default PLT header requires the .got.plt to be within 128 Mb of the // .plt in the positive direction. void ARM::writePltHeader(uint8_t *buf) const { // Use a similar sequence to that in writePlt(), the difference is the calling // conventions mean we use lr instead of ip. The PLT entry is responsible for // saving lr on the stack, the dynamic loader is responsible for reloading // it. const uint32_t pltData[] = { 0xe52de004, // L1: str lr, [sp,#-4]! 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4) 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4) 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4) }; uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4; if (!llvm::isUInt<27>(offset)) { // We cannot encode the Offset, use the long form. writePltHeaderLong(buf); return; } write32(buf + 0, pltData[0]); write32(buf + 4, pltData[1] | ((offset >> 20) & 0xff)); write32(buf + 8, pltData[2] | ((offset >> 12) & 0xff)); write32(buf + 12, pltData[3] | (offset & 0xfff)); memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary memcpy(buf + 20, trapInstr.data(), 4); memcpy(buf + 24, trapInstr.data(), 4); memcpy(buf + 28, trapInstr.data(), 4); } void ARM::addPltHeaderSymbols(InputSection &isec) const { addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec); addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec); } // Long form PLT entries that do not have any restrictions on the displacement // of the .plt from the .got.plt. static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr) { write32(buf + 0, 0xe59fc004); // ldr ip, L2 write32(buf + 4, 0xe08cc00f); // L1: add ip, ip, pc write32(buf + 8, 0xe59cf000); // ldr pc, [ip] write32(buf + 12, 0x00000000); // L2: .word Offset(&(.got.plt) - L1 - 8 uint64_t l1 = pltEntryAddr + 4; write32(buf + 12, gotPltEntryAddr - l1 - 8); } // The default PLT entries require the .got.plt to be within 128 Mb of the // .plt in the positive direction. void ARM::writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { // The PLT entry is similar to the example given in Appendix A of ELF for // the Arm Architecture. Instead of using the Group Relocations to find the // optimal rotation for the 8-bit immediate used in the add instructions we // hard code the most compact rotations for simplicity. This saves a load // instruction over the long plt sequences. const uint32_t pltData[] = { 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8 }; uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8; if (!llvm::isUInt<27>(offset)) { // We cannot encode the Offset, use the long form. writePltLong(buf, sym.getGotPltVA(), pltEntryAddr); return; } write32(buf + 0, pltData[0] | ((offset >> 20) & 0xff)); write32(buf + 4, pltData[1] | ((offset >> 12) & 0xff)); write32(buf + 8, pltData[2] | (offset & 0xfff)); memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary } void ARM::addPltSymbols(InputSection &isec, uint64_t off) const { addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec); addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec); } bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const { // If s is an undefined weak symbol and does not have a PLT entry then it will // be resolved as a branch to the next instruction. If it is hidden, its // binding has been converted to local, so we just check isUndefined() here. A // undefined non-weak symbol will have been errored. if (s.isUndefined() && !s.isInPlt()) return false; // A state change from ARM to Thumb and vice versa must go through an // interworking thunk if the relocation type is not R_ARM_CALL or // R_ARM_THM_CALL. switch (type) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: // Source is ARM, all PLT entries are ARM so no interworking required. // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb). if (s.isFunc() && expr == R_PC && (s.getVA() & 1)) return true; [[fallthrough]]; case R_ARM_CALL: { uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA(); return !inBranchRange(type, branchAddr, dst + a) || (!config->armHasBlx && (s.getVA() & 1)); } case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: // Source is Thumb, all PLT entries are ARM so interworking is required. // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM). if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0)) return true; [[fallthrough]]; case R_ARM_THM_CALL: { uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA(); return !inBranchRange(type, branchAddr, dst + a) || (!config->armHasBlx && (s.getVA() & 1) == 0);; } } return false; } uint32_t ARM::getThunkSectionSpacing() const { // The placing of pre-created ThunkSections is controlled by the value // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to // place the ThunkSection such that all branches from the InputSections // prior to the ThunkSection can reach a Thunk placed at the end of the // ThunkSection. Graphically: // | up to thunkSectionSpacing .text input sections | // | ThunkSection | // | up to thunkSectionSpacing .text input sections | // | ThunkSection | // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This // is to match the most common expected case of a Thumb 2 encoded BL, BLX or // B.W: // ARM B, BL, BLX range +/- 32MiB // Thumb B.W, BL, BLX range +/- 16MiB // Thumb B.W range +/- 1MiB // If a branch cannot reach a pre-created ThunkSection a new one will be // created so we can handle the rare cases of a Thumb 2 conditional branch. // We intentionally use a lower size for thunkSectionSpacing than the maximum // branch range so the end of the ThunkSection is more likely to be within // range of the branch instruction that is furthest away. The value we shorten // thunkSectionSpacing by is set conservatively to allow us to create 16,384 // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to // one of the Thunks going out of range. // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except // ARMv6T2) the range is +/- 4MiB. return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000 : 0x400000 - 0x7500; } bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { if ((dst & 0x1) == 0) // Destination is ARM, if ARM caller then Src is already 4-byte aligned. // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure // destination will be 4 byte aligned. src &= ~0x3; else // Bit 0 == 1 denotes Thumb state, it is not part of the range. dst &= ~0x1; int64_t offset = dst - src; switch (type) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: case R_ARM_CALL: return llvm::isInt<26>(offset); case R_ARM_THM_JUMP19: return llvm::isInt<21>(offset); case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset) : llvm::isInt<23>(offset); default: return true; } } // Helper to produce message text when LLD detects that a CALL relocation to // a non STT_FUNC symbol that may result in incorrect interworking between ARM // or Thumb. static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) { assert(!s.isFunc()); const ErrorPlace place = getErrorPlace(loc); std::string hint; if (!place.srcLoc.empty()) hint = "; " + place.srcLoc; if (s.isSection()) { // Section symbols must be defined and in a section. Users cannot change // the type. Use the section name as getName() returns an empty string. warn(place.loc + "branch and link relocation: " + toString(relt) + " to STT_SECTION symbol " + cast(s).section->name + " ; interworking not performed" + hint); } else { // Warn with hint on how to alter the symbol type. warn(getErrorLocation(loc) + "branch and link relocation: " + toString(relt) + " to non STT_FUNC symbol: " + s.getName() + " interworking not performed; consider using directive '.type " + s.getName() + ", %function' to give symbol type STT_FUNC if interworking between " "ARM and Thumb is required" + hint); } } // Rotate a 32-bit unsigned value right by a specified amt of bits. static uint32_t rotr32(uint32_t val, uint32_t amt) { assert(amt < 32 && "Invalid rotate amount"); return (val >> amt) | (val << ((32 - amt) & 31)); } static std::pair getRemAndLZForGroup(unsigned group, uint32_t val) { uint32_t rem, lz; do { lz = llvm::countl_zero(val) & ~1; rem = val; if (lz == 32) // implies rem == 0 break; val &= 0xffffff >> lz; } while (group--); return {rem, lz}; } static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val, int group, bool check) { // ADD/SUB (immediate) add = bit23, sub = bit22 // immediate field carries is a 12-bit modified immediate, made up of a 4-bit // even rotate right and an 8-bit immediate. uint32_t opcode = 0x00800000; if (val >> 63) { opcode = 0x00400000; val = -val; } uint32_t imm, lz; std::tie(imm, lz) = getRemAndLZForGroup(group, val); uint32_t rot = 0; if (lz < 24) { imm = rotr32(imm, 24 - lz); rot = (lz + 8) << 7; } if (check && imm > 0xff) error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() + " for relocation " + toString(rel.type)); write32(loc, (read32(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff)); } static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val, int group) { // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear // bottom bit to recover S + A - P. if (rel.sym->isFunc()) val &= ~0x1; // LDR (literal) u = bit23 uint32_t opcode = 0x00800000; if (val >> 63) { opcode = 0x0; val = -val; } uint32_t imm = getRemAndLZForGroup(group, val).first; checkUInt(loc, imm, 12, rel); write32(loc, (read32(loc) & 0xff7ff000) | opcode | imm); } static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val, int group) { // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear // bottom bit to recover S + A - P. if (rel.sym->isFunc()) val &= ~0x1; // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 uint32_t opcode = 0x00800000; if (val >> 63) { opcode = 0x0; val = -val; } uint32_t imm = getRemAndLZForGroup(group, val).first; checkUInt(loc, imm, 8, rel); write32(loc, (read32(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) | (imm & 0xf)); } void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_ARM_ABS32: case R_ARM_BASE_PREL: case R_ARM_GOTOFF32: case R_ARM_GOT_BREL: case R_ARM_GOT_PREL: case R_ARM_REL32: case R_ARM_RELATIVE: case R_ARM_SBREL32: case R_ARM_TARGET1: case R_ARM_TARGET2: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: case R_ARM_TLS_LDM32: case R_ARM_TLS_LDO32: case R_ARM_TLS_LE32: case R_ARM_TLS_TPOFF32: case R_ARM_TLS_DTPOFF32: write32(loc, val); break; case R_ARM_PREL31: checkInt(loc, val, 31, rel); write32(loc, (read32(loc) & 0x80000000) | (val & ~0x80000000)); break; case R_ARM_CALL: { // R_ARM_CALL is used for BL and BLX instructions, for symbols of type // STT_FUNC we choose whether to write a BL or BLX depending on the // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is // not of type STT_FUNC then we must preserve the original instruction. // PLT entries are always ARM state so we know we don't need to interwork. assert(rel.sym); // R_ARM_CALL is always reached via relocate(). bool bit0Thumb = val & 1; bool isBlx = (read32(loc) & 0xfe000000) == 0xfa000000; // lld 10.0 and before always used bit0Thumb when deciding to write a BLX // even when type not STT_FUNC. if (!rel.sym->isFunc() && isBlx != bit0Thumb) stateChangeWarning(loc, rel.type, *rel.sym); if (rel.sym->isFunc() ? bit0Thumb : isBlx) { // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' checkInt(loc, val, 26, rel); write32(loc, 0xfa000000 | // opcode ((val & 2) << 23) | // H ((val >> 2) & 0x00ffffff)); // imm24 break; } // BLX (always unconditional) instruction to an ARM Target, select an // unconditional BL. write32(loc, 0xeb000000 | (read32(loc) & 0x00ffffff)); // fall through as BL encoding is shared with B } [[fallthrough]]; case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: checkInt(loc, val, 26, rel); write32(loc, (read32(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff)); break; case R_ARM_THM_JUMP8: // We do a 9 bit check because val is right-shifted by 1 bit. checkInt(loc, val, 9, rel); write16(loc, (read32(loc) & 0xff00) | ((val >> 1) & 0x00ff)); break; case R_ARM_THM_JUMP11: // We do a 12 bit check because val is right-shifted by 1 bit. checkInt(loc, val, 12, rel); write16(loc, (read32(loc) & 0xf800) | ((val >> 1) & 0x07ff)); break; case R_ARM_THM_JUMP19: // Encoding T3: Val = S:J2:J1:imm6:imm11:0 checkInt(loc, val, 21, rel); write16(loc, (read16(loc) & 0xfbc0) | // opcode cond ((val >> 10) & 0x0400) | // S ((val >> 12) & 0x003f)); // imm6 write16(loc + 2, 0x8000 | // opcode ((val >> 8) & 0x0800) | // J2 ((val >> 5) & 0x2000) | // J1 ((val >> 1) & 0x07ff)); // imm11 break; case R_ARM_THM_CALL: { // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type // STT_FUNC we choose whether to write a BL or BLX depending on the // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is // not of type STT_FUNC then we must preserve the original instruction. // PLT entries are always ARM state so we know we need to interwork. assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate(). bool bit0Thumb = val & 1; bool isBlx = (read16(loc + 2) & 0x1000) == 0; // lld 10.0 and before always used bit0Thumb when deciding to write a BLX // even when type not STT_FUNC. PLT entries generated by LLD are always ARM. if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb) stateChangeWarning(loc, rel.type, *rel.sym); if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) { // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As // the BLX instruction may only be two byte aligned. This must be done // before overflow check. val = alignTo(val, 4); write16(loc + 2, read16(loc + 2) & ~0x1000); } else { write16(loc + 2, (read16(loc + 2) & ~0x1000) | 1 << 12); } if (!config->armJ1J2BranchEncoding) { // Older Arm architectures do not support R_ARM_THM_JUMP24 and have // different encoding rules and range due to J1 and J2 always being 1. checkInt(loc, val, 23, rel); write16(loc, 0xf000 | // opcode ((val >> 12) & 0x07ff)); // imm11 write16(loc + 2, (read16(loc + 2) & 0xd000) | // opcode 0x2800 | // J1 == J2 == 1 ((val >> 1) & 0x07ff)); // imm11 break; } } // Fall through as rest of encoding is the same as B.W [[fallthrough]]; case R_ARM_THM_JUMP24: // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 checkInt(loc, val, 25, rel); write16(loc, 0xf000 | // opcode ((val >> 14) & 0x0400) | // S ((val >> 12) & 0x03ff)); // imm10 write16(loc + 2, (read16(loc + 2) & 0xd000) | // opcode (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1 (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2 ((val >> 1) & 0x07ff)); // imm11 break; case R_ARM_MOVW_ABS_NC: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVW_BREL_NC: write32(loc, (read32(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) | (val & 0x0fff)); break; case R_ARM_MOVT_ABS: case R_ARM_MOVT_PREL: case R_ARM_MOVT_BREL: write32(loc, (read32(loc) & ~0x000f0fff) | (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff)); break; case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVT_PREL: case R_ARM_THM_MOVT_BREL: // Encoding T1: A = imm4:i:imm3:imm8 write16(loc, 0xf2c0 | // opcode ((val >> 17) & 0x0400) | // i ((val >> 28) & 0x000f)); // imm4 write16(loc + 2, (read16(loc + 2) & 0x8f00) | // opcode ((val >> 12) & 0x7000) | // imm3 ((val >> 16) & 0x00ff)); // imm8 break; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVW_BREL_NC: // Encoding T3: A = imm4:i:imm3:imm8 write16(loc, 0xf240 | // opcode ((val >> 1) & 0x0400) | // i ((val >> 12) & 0x000f)); // imm4 write16(loc + 2, (read16(loc + 2) & 0x8f00) | // opcode ((val << 4) & 0x7000) | // imm3 (val & 0x00ff)); // imm8 break; case R_ARM_THM_ALU_ABS_G3: write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 24) & 0x00ff)); break; case R_ARM_THM_ALU_ABS_G2_NC: write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 16) & 0x00ff)); break; case R_ARM_THM_ALU_ABS_G1_NC: write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 8) & 0x00ff)); break; case R_ARM_THM_ALU_ABS_G0_NC: write16(loc, (read16(loc) &~ 0x00ff) | (val & 0x00ff)); break; case R_ARM_ALU_PC_G0: encodeAluGroup(loc, rel, val, 0, true); break; case R_ARM_ALU_PC_G0_NC: encodeAluGroup(loc, rel, val, 0, false); break; case R_ARM_ALU_PC_G1: encodeAluGroup(loc, rel, val, 1, true); break; case R_ARM_ALU_PC_G1_NC: encodeAluGroup(loc, rel, val, 1, false); break; case R_ARM_ALU_PC_G2: encodeAluGroup(loc, rel, val, 2, true); break; case R_ARM_LDR_PC_G0: encodeLdrGroup(loc, rel, val, 0); break; case R_ARM_LDR_PC_G1: encodeLdrGroup(loc, rel, val, 1); break; case R_ARM_LDR_PC_G2: encodeLdrGroup(loc, rel, val, 2); break; case R_ARM_LDRS_PC_G0: encodeLdrsGroup(loc, rel, val, 0); break; case R_ARM_LDRS_PC_G1: encodeLdrsGroup(loc, rel, val, 1); break; case R_ARM_LDRS_PC_G2: encodeLdrsGroup(loc, rel, val, 2); break; case R_ARM_THM_ALU_PREL_11_0: { // ADR encoding T2 (sub), T3 (add) i:imm3:imm8 int64_t imm = val; uint16_t sub = 0; if (imm < 0) { imm = -imm; sub = 0x00a0; } checkUInt(loc, imm, 12, rel); write16(loc, (read16(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1); write16(loc + 2, (read16(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff)); break; } case R_ARM_THM_PC8: // ADR and LDR literal encoding T1 positive offset only imm8:00 // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear // bottom bit to recover S + A - Pa. if (rel.sym->isFunc()) val &= ~0x1; checkUInt(loc, val, 10, rel); checkAlignment(loc, val, 4, rel); write16(loc, (read16(loc) & 0xff00) | (val & 0x3fc) >> 2); break; case R_ARM_THM_PC12: { // LDR (literal) encoding T2, add = (U == '1') imm12 // imm12 is unsigned // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear // bottom bit to recover S + A - Pa. if (rel.sym->isFunc()) val &= ~0x1; int64_t imm12 = val; uint16_t u = 0x0080; if (imm12 < 0) { imm12 = -imm12; u = 0; } checkUInt(loc, imm12, 12, rel); write16(loc, read16(loc) | u); write16(loc + 2, (read16(loc + 2) & 0xf000) | imm12); break; } default: llvm_unreachable("unknown relocation"); } } int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const { switch (type) { default: internalLinkerError(getErrorLocation(buf), "cannot read addend for relocation " + toString(type)); return 0; case R_ARM_ABS32: case R_ARM_BASE_PREL: case R_ARM_GLOB_DAT: case R_ARM_GOTOFF32: case R_ARM_GOT_BREL: case R_ARM_GOT_PREL: case R_ARM_IRELATIVE: case R_ARM_REL32: case R_ARM_RELATIVE: case R_ARM_SBREL32: case R_ARM_TARGET1: case R_ARM_TARGET2: case R_ARM_TLS_DTPMOD32: case R_ARM_TLS_DTPOFF32: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: case R_ARM_TLS_LDM32: case R_ARM_TLS_LE32: case R_ARM_TLS_LDO32: case R_ARM_TLS_TPOFF32: return SignExtend64<32>(read32(buf)); case R_ARM_PREL31: return SignExtend64<31>(read32(buf)); case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: return SignExtend64<26>(read32(buf) << 2); case R_ARM_THM_JUMP8: return SignExtend64<9>(read16(buf) << 1); case R_ARM_THM_JUMP11: return SignExtend64<12>(read16(buf) << 1); case R_ARM_THM_JUMP19: { // Encoding T3: A = S:J2:J1:imm10:imm6:0 uint16_t hi = read16(buf); uint16_t lo = read16(buf + 2); return SignExtend64<20>(((hi & 0x0400) << 10) | // S ((lo & 0x0800) << 8) | // J2 ((lo & 0x2000) << 5) | // J1 ((hi & 0x003f) << 12) | // imm6 ((lo & 0x07ff) << 1)); // imm11:0 } case R_ARM_THM_CALL: if (!config->armJ1J2BranchEncoding) { // Older Arm architectures do not support R_ARM_THM_JUMP24 and have // different encoding rules and range due to J1 and J2 always being 1. uint16_t hi = read16(buf); uint16_t lo = read16(buf + 2); return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11 ((lo & 0x7ff) << 1)); // imm11:0 break; } [[fallthrough]]; case R_ARM_THM_JUMP24: { // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) uint16_t hi = read16(buf); uint16_t lo = read16(buf + 2); return SignExtend64<24>(((hi & 0x0400) << 14) | // S (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1 (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2 ((hi & 0x003ff) << 12) | // imm0 ((lo & 0x007ff) << 1)); // imm11:0 } // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and // MOVT is in the range -32768 <= A < 32768 case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_MOVW_BREL_NC: case R_ARM_MOVT_BREL: { uint64_t val = read32(buf) & 0x000f0fff; return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff)); } case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: case R_ARM_THM_MOVW_BREL_NC: case R_ARM_THM_MOVT_BREL: { // Encoding T3: A = imm4:i:imm3:imm8 uint16_t hi = read16(buf); uint16_t lo = read16(buf + 2); return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4 ((hi & 0x0400) << 1) | // i ((lo & 0x7000) >> 4) | // imm3 (lo & 0x00ff)); // imm8 } case R_ARM_THM_ALU_ABS_G0_NC: case R_ARM_THM_ALU_ABS_G1_NC: case R_ARM_THM_ALU_ABS_G2_NC: case R_ARM_THM_ALU_ABS_G3: return read16(buf) & 0xff; case R_ARM_ALU_PC_G0: case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G1: case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G2: { // 12-bit immediate is a modified immediate made up of a 4-bit even // right rotation and 8-bit constant. After the rotation the value // is zero-extended. When bit 23 is set the instruction is an add, when // bit 22 is set it is a sub. uint32_t instr = read32(buf); uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2); return (instr & 0x00400000) ? -val : val; } case R_ARM_LDR_PC_G0: case R_ARM_LDR_PC_G1: case R_ARM_LDR_PC_G2: { // ADR (literal) add = bit23, sub = bit22 // LDR (literal) u = bit23 unsigned imm12 bool u = read32(buf) & 0x00800000; uint32_t imm12 = read32(buf) & 0xfff; return u ? imm12 : -imm12; } case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_PC_G2: { // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8 uint32_t opcode = read32(buf); bool u = opcode & 0x00800000; uint32_t imm4l = opcode & 0xf; uint32_t imm4h = (opcode & 0xf00) >> 4; return u ? (imm4h | imm4l) : -(imm4h | imm4l); } case R_ARM_THM_ALU_PREL_11_0: { // Thumb2 ADR, which is an alias for a sub or add instruction with an // unsigned immediate. // ADR encoding T2 (sub), T3 (add) i:imm3:imm8 uint16_t hi = read16(buf); uint16_t lo = read16(buf + 2); uint64_t imm = (hi & 0x0400) << 1 | // i (lo & 0x7000) >> 4 | // imm3 (lo & 0x00ff); // imm8 // For sub, addend is negative, add is positive. return (hi & 0x00f0) ? -imm : imm; } case R_ARM_THM_PC8: // ADR and LDR (literal) encoding T1 // From ELF for the ARM Architecture the initial signed addend is formed // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4) // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff return ((((read16(buf) & 0xff) << 2) + 4) & 0x3ff) - 4; case R_ARM_THM_PC12: { // LDR (literal) encoding T2, add = (U == '1') imm12 bool u = read16(buf) & 0x0080; uint64_t imm12 = read16(buf + 2) & 0x0fff; return u ? imm12 : -imm12; } case R_ARM_NONE: case R_ARM_V4BX: case R_ARM_JUMP_SLOT: // These relocations are defined as not having an implicit addend. return 0; } } static bool isArmMapSymbol(const Symbol *b) { return b->getName() == "$a" || b->getName().startswith("$a."); } static bool isThumbMapSymbol(const Symbol *s) { return s->getName() == "$t" || s->getName().startswith("$t."); } static bool isDataMapSymbol(const Symbol *b) { return b->getName() == "$d" || b->getName().startswith("$d."); } void elf::sortArmMappingSymbols() { // For each input section make sure the mapping symbols are sorted in // ascending order. for (auto &kv : sectionMap) { SmallVector &mapSyms = kv.second; llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { return a->value < b->value; }); } } void elf::addArmInputSectionMappingSymbols() { // Collect mapping symbols for every executable input sections. // The linker generated mapping symbols for all the synthetic // sections are adding into the sectionmap through the function // addArmSyntheitcSectionMappingSymbol. for (ELFFileBase *file : ctx.objectFiles) { for (Symbol *sym : file->getLocalSymbols()) { auto *def = dyn_cast(sym); if (!def) continue; if (!isArmMapSymbol(def) && !isDataMapSymbol(def) && !isThumbMapSymbol(def)) continue; if (auto *sec = cast_if_present(def->section)) if (sec->flags & SHF_EXECINSTR) sectionMap[sec].push_back(def); } } } // Synthetic sections are not backed by an ELF file where we can access the // symbol table, instead mapping symbols added to synthetic sections are stored // in the synthetic symbol table. Due to the presence of strip (--strip-all), // we can not rely on the synthetic symbol table retaining the mapping symbols. // Instead we record the mapping symbols locally. void elf::addArmSyntheticSectionMappingSymbol(Defined *sym) { if (!isArmMapSymbol(sym) && !isDataMapSymbol(sym) && !isThumbMapSymbol(sym)) return; if (auto *sec = cast_if_present(sym->section)) if (sec->flags & SHF_EXECINSTR) sectionMap[sec].push_back(sym); } static void toLittleEndianInstructions(uint8_t *buf, uint64_t start, uint64_t end, uint64_t width) { CodeState curState = static_cast(width); if (curState == CodeState::Arm) for (uint64_t i = start; i < end; i += width) write32le(buf + i, read32(buf + i)); if (curState == CodeState::Thumb) for (uint64_t i = start; i < end; i += width) write16le(buf + i, read16(buf + i)); } // Arm BE8 big endian format requires instructions to be little endian, with // the initial contents big-endian. Convert the big-endian instructions to // little endian leaving literal data untouched. We use mapping symbols to // identify half open intervals of Arm code [$a, non $a) and Thumb code // [$t, non $t) and convert these to little endian a word or half word at a // time respectively. void elf::convertArmInstructionstoBE8(InputSection *sec, uint8_t *buf) { if (!sectionMap.contains(sec)) return; SmallVector &mapSyms = sectionMap[sec]; if (mapSyms.empty()) return; CodeState curState = CodeState::Data; uint64_t start = 0, width = 0, size = sec->getSize(); for (auto &msym : mapSyms) { CodeState newState = CodeState::Data; if (isThumbMapSymbol(msym)) newState = CodeState::Thumb; else if (isArmMapSymbol(msym)) newState = CodeState::Arm; if (newState == curState) continue; if (curState != CodeState::Data) { width = static_cast(curState); toLittleEndianInstructions(buf, start, msym->value, width); } start = msym->value; curState = newState; } // Passed last mapping symbol, may need to reverse // up to end of section. if (curState != CodeState::Data) { width = static_cast(curState); toLittleEndianInstructions(buf, start, size, width); } } // The Arm Cortex-M Security Extensions (CMSE) splits a system into two parts; // the non-secure and secure states with the secure state inaccessible from the // non-secure state, apart from an area of memory in secure state called the // secure gateway which is accessible from non-secure state. The secure gateway // contains one or more entry points which must start with a landing pad // instruction SG. Arm recommends that the secure gateway consists only of // secure gateway veneers, which are made up of a SG instruction followed by a // branch to the destination in secure state. Full details can be found in Arm // v8-M Security Extensions Requirements on Development Tools. // // The CMSE model of software development requires the non-secure and secure // states to be developed as two separate programs. The non-secure developer is // provided with an import library defining symbols describing the entry points // in the secure gateway. No additional linker support is required for the // non-secure state. // // Development of the secure state requires linker support to manage the secure // gateway veneers. The management consists of: // - Creation of new secure gateway veneers based on symbol conventions. // - Checking the address of existing secure gateway veneers. // - Warning when existing secure gateway veneers removed. // // The secure gateway veneers are created in an import library, which is just an // ELF object with a symbol table. The import library is controlled by two // command line options: // --in-implib (specify an input import library from a previous revision of the // program). // --out-implib (specify an output import library to be created by the linker). // // The input import library is used to manage consistency of the secure entry // points. The output import library is for new and updated secure entry points. // // The symbol convention that identifies secure entry functions is the prefix // __acle_se_ for a symbol called name the linker is expected to create a secure // gateway veneer if symbols __acle_se_name and name have the same address. // After creating a secure gateway veneer the symbol name labels the secure // gateway veneer and the __acle_se_name labels the function definition. // // The LLD implementation: // - Reads an existing import library with importCmseSymbols(). // - Determines which new secure gateway veneers to create and redirects calls // within the secure state to the __acle_se_ prefixed symbol with // processArmCmseSymbols(). // - Models the SG veneers as a synthetic section. // Initialize symbols. symbols is a parallel array to the corresponding ELF // symbol table. template void ObjFile::importCmseSymbols() { ArrayRef eSyms = getELFSyms(); // Error for local symbols. The symbol at index 0 is LOCAL. So skip it. for (size_t i = 1, end = firstGlobal; i != end; ++i) { errorOrWarn("CMSE symbol '" + CHECK(eSyms[i].getName(stringTable), this) + "' in import library '" + toString(this) + "' is not global"); } for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { const Elf_Sym &eSym = eSyms[i]; Defined *sym = reinterpret_cast(make()); // Initialize symbol fields. memset(sym, 0, sizeof(Symbol)); sym->setName(CHECK(eSyms[i].getName(stringTable), this)); sym->value = eSym.st_value; sym->size = eSym.st_size; sym->type = eSym.getType(); sym->binding = eSym.getBinding(); sym->stOther = eSym.st_other; if (eSym.st_shndx != SHN_ABS) { error("CMSE symbol '" + sym->getName() + "' in import library '" + toString(this) + "' is not absolute"); continue; } if (!(eSym.st_value & 1) || (eSym.getType() != STT_FUNC)) { error("CMSE symbol '" + sym->getName() + "' in import library '" + toString(this) + "' is not a Thumb function definition"); continue; } if (symtab.cmseImportLib.count(sym->getName())) { error("CMSE symbol '" + sym->getName() + "' is multiply defined in import library '" + toString(this) + "'"); continue; } if (eSym.st_size != ACLESESYM_SIZE) { warn("CMSE symbol '" + sym->getName() + "' in import library '" + toString(this) + "' does not have correct size of " + Twine(ACLESESYM_SIZE) + " bytes"); } symtab.cmseImportLib[sym->getName()] = sym; } } // Check symbol attributes of the acleSeSym, sym pair. // Both symbols should be global/weak Thumb code symbol definitions. static std::string checkCmseSymAttributes(Symbol *acleSeSym, Symbol *sym) { auto check = [](Symbol *s, StringRef type) -> std::optional { auto d = dyn_cast_or_null(s); if (!(d && d->isFunc() && (d->value & 1))) return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" + s->getName() + "' is not a Thumb function definition") .str(); if (!d->section) return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" + s->getName() + "' cannot be an absolute symbol") .str(); return std::nullopt; }; for (auto [sym, type] : {std::make_pair(acleSeSym, "special"), std::make_pair(sym, "entry")}) if (auto err = check(sym, type)) return *err; return ""; } // Look for [__acle_se_, ] pairs, as specified in the Cortex-M // Security Extensions specification. // 1) : A standard function name. // 2) __acle_se_ : A special symbol that prefixes the standard function // name with __acle_se_. // Both these symbols are Thumb function symbols with external linkage. // may be redefined in .gnu.sgstubs. void elf::processArmCmseSymbols() { if (!config->cmseImplib) return; // Only symbols with external linkage end up in symtab, so no need to do // linkage checks. Only check symbol type. for (Symbol *acleSeSym : symtab.getSymbols()) { if (!acleSeSym->getName().startswith(ACLESESYM_PREFIX)) continue; // If input object build attributes do not support CMSE, error and disable // further scanning for , __acle_se_ pairs. if (!config->armCMSESupport) { error("CMSE is only supported by ARMv8-M architecture or later"); config->cmseImplib = false; break; } // Try to find the associated symbol definition. // Symbol must have external linkage. StringRef name = acleSeSym->getName().substr(std::strlen(ACLESESYM_PREFIX)); Symbol *sym = symtab.find(name); if (!sym) { error(toString(acleSeSym->file) + ": cmse special symbol '" + acleSeSym->getName() + "' detected, but no associated entry function definition '" + name + "' with external linkage found"); continue; } std::string errMsg = checkCmseSymAttributes(acleSeSym, sym); if (!errMsg.empty()) { error(errMsg); continue; } // may be redefined later in the link in .gnu.sgstubs symtab.cmseSymMap[name] = {acleSeSym, sym}; } // If this is an Arm CMSE secure app, replace references to entry symbol // with its corresponding special symbol __acle_se_. parallelForEach(ctx.objectFiles, [&](InputFile *file) { MutableArrayRef syms = file->getMutableSymbols(); for (size_t i = 0, e = syms.size(); i != e; ++i) { StringRef symName = syms[i]->getName(); if (symtab.cmseSymMap.count(symName)) syms[i] = symtab.cmseSymMap[symName].acleSeSym; } }); } class elf::ArmCmseSGVeneer { public: ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym, std::optional addr = std::nullopt) : sym(sym), acleSeSym(acleSeSym), entAddr{addr} {} static const size_t size{ACLESESYM_SIZE}; const std::optional getAddr() const { return entAddr; }; Symbol *sym; Symbol *acleSeSym; uint64_t offset = 0; private: const std::optional entAddr; }; ArmCmseSGSection::ArmCmseSGSection() : SyntheticSection(llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR, llvm::ELF::SHT_PROGBITS, /*alignment=*/32, ".gnu.sgstubs") { entsize = ACLESESYM_SIZE; // The range of addresses used in the CMSE import library should be fixed. for (auto &[_, sym] : symtab.cmseImportLib) { if (impLibMaxAddr <= sym->value) impLibMaxAddr = sym->value + sym->size; } if (symtab.cmseSymMap.empty()) return; addMappingSymbol(); for (auto &[_, entryFunc] : symtab.cmseSymMap) addSGVeneer(cast(entryFunc.acleSeSym), cast(entryFunc.sym)); for (auto &[_, sym] : symtab.cmseImportLib) { if (!symtab.inCMSEOutImpLib.count(sym->getName())) warn("entry function '" + sym->getName() + "' from CMSE import library is not present in secure application"); } if (!symtab.cmseImportLib.empty() && config->cmseOutputLib.empty()) { for (auto &[_, entryFunc] : symtab.cmseSymMap) { Symbol *sym = entryFunc.sym; if (!symtab.inCMSEOutImpLib.count(sym->getName())) warn("new entry function '" + sym->getName() + "' introduced but no output import library specified"); } } } void ArmCmseSGSection::addSGVeneer(Symbol *acleSeSym, Symbol *sym) { entries.emplace_back(acleSeSym, sym); if (symtab.cmseImportLib.count(sym->getName())) symtab.inCMSEOutImpLib[sym->getName()] = true; // Symbol addresses different, nothing to do. if (acleSeSym->file != sym->file || cast(*acleSeSym).value != cast(*sym).value) return; // Only secure symbols with values equal to that of it's non-secure // counterpart needs to be in the .gnu.sgstubs section. ArmCmseSGVeneer *ss = nullptr; if (symtab.cmseImportLib.count(sym->getName())) { Defined *impSym = symtab.cmseImportLib[sym->getName()]; ss = make(sym, acleSeSym, impSym->value); } else { ss = make(sym, acleSeSym); ++newEntries; } sgVeneers.emplace_back(ss); } void ArmCmseSGSection::writeTo(uint8_t *buf) { for (ArmCmseSGVeneer *s : sgVeneers) { uint8_t *p = buf + s->offset; write16(p + 0, 0xe97f); // SG write16(p + 2, 0xe97f); write16(p + 4, 0xf000); // B.W S write16(p + 6, 0xb000); target->relocateNoSym(p + 4, R_ARM_THM_JUMP24, s->acleSeSym->getVA() - (getVA() + s->offset + s->size)); } } void ArmCmseSGSection::addMappingSymbol() { addSyntheticLocal("$t", STT_NOTYPE, /*off=*/0, /*size=*/0, *this); } size_t ArmCmseSGSection::getSize() const { if (sgVeneers.empty()) return (impLibMaxAddr ? impLibMaxAddr - getVA() : 0) + newEntries * entsize; return entries.size() * entsize; } void ArmCmseSGSection::finalizeContents() { if (sgVeneers.empty()) return; auto it = std::stable_partition(sgVeneers.begin(), sgVeneers.end(), [](auto *i) { return i->getAddr().has_value(); }); std::sort(sgVeneers.begin(), it, [](auto *a, auto *b) { return a->getAddr().value() < b->getAddr().value(); }); // This is the partition of the veneers with fixed addresses. uint64_t addr = (*sgVeneers.begin())->getAddr().has_value() ? (*sgVeneers.begin())->getAddr().value() : getVA(); // Check if the start address of '.gnu.sgstubs' correspond to the // linker-synthesized veneer with the lowest address. if ((getVA() & ~1) != (addr & ~1)) { error("start address of '.gnu.sgstubs' is different from previous link"); return; } for (size_t i = 0; i < sgVeneers.size(); ++i) { ArmCmseSGVeneer *s = sgVeneers[i]; s->offset = i * s->size; Defined(file, StringRef(), s->sym->binding, s->sym->stOther, s->sym->type, s->offset | 1, s->size, this) .overwrite(*s->sym); } } // Write the CMSE import library to disk. // The CMSE import library is a relocatable object with only a symbol table. // The symbols are copies of the (absolute) symbols of the secure gateways // in the executable output by this link. // See Arm® v8-M Security Extensions: Requirements on Development Tools // https://developer.arm.com/documentation/ecm0359818/latest template void elf::writeARMCmseImportLib() { StringTableSection *shstrtab = make(".shstrtab", /*dynamic=*/false); StringTableSection *strtab = make(".strtab", /*dynamic=*/false); SymbolTableBaseSection *impSymTab = make>(*strtab); SmallVector, 0> osIsPairs; osIsPairs.emplace_back(make(strtab->name, 0, 0), strtab); osIsPairs.emplace_back(make(impSymTab->name, 0, 0), impSymTab); osIsPairs.emplace_back(make(shstrtab->name, 0, 0), shstrtab); std::sort(symtab.cmseSymMap.begin(), symtab.cmseSymMap.end(), [](const auto &a, const auto &b) -> bool { return a.second.sym->getVA() < b.second.sym->getVA(); }); // Copy the secure gateway entry symbols to the import library symbol table. for (auto &p : symtab.cmseSymMap) { Defined *d = cast(p.second.sym); impSymTab->addSymbol(makeDefined(nullptr, d->getName(), d->computeBinding(), /*stOther=*/0, STT_FUNC, d->getVA(), d->getSize(), nullptr)); } size_t idx = 0; uint64_t off = sizeof(typename ELFT::Ehdr); for (auto &[osec, isec] : osIsPairs) { osec->sectionIndex = ++idx; osec->recordSection(isec); osec->finalizeInputSections(); osec->shName = shstrtab->addString(osec->name); osec->size = isec->getSize(); isec->finalizeContents(); osec->offset = alignToPowerOf2(off, osec->addralign); off = osec->offset + osec->size; } const uint64_t sectionHeaderOff = alignToPowerOf2(off, config->wordsize); const auto shnum = osIsPairs.size() + 1; const uint64_t fileSize = sectionHeaderOff + shnum * sizeof(typename ELFT::Shdr); const unsigned flags = config->mmapOutputFile ? 0 : (unsigned)FileOutputBuffer::F_no_mmap; unlinkAsync(config->cmseOutputLib); Expected> bufferOrErr = FileOutputBuffer::create(config->cmseOutputLib, fileSize, flags); if (!bufferOrErr) { error("failed to open " + config->cmseOutputLib + ": " + llvm::toString(bufferOrErr.takeError())); return; } // Write the ELF Header std::unique_ptr &buffer = *bufferOrErr; uint8_t *const buf = buffer->getBufferStart(); memcpy(buf, "\177ELF", 4); auto *eHdr = reinterpret_cast(buf); eHdr->e_type = ET_REL; eHdr->e_entry = 0; eHdr->e_shoff = sectionHeaderOff; eHdr->e_ident[EI_CLASS] = ELFCLASS32; eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; eHdr->e_ident[EI_VERSION] = EV_CURRENT; eHdr->e_ident[EI_OSABI] = config->osabi; eHdr->e_ident[EI_ABIVERSION] = 0; eHdr->e_machine = EM_ARM; eHdr->e_version = EV_CURRENT; eHdr->e_flags = config->eflags; eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); eHdr->e_phnum = 0; eHdr->e_shentsize = sizeof(typename ELFT::Shdr); eHdr->e_phoff = 0; eHdr->e_phentsize = 0; eHdr->e_shnum = shnum; eHdr->e_shstrndx = shstrtab->getParent()->sectionIndex; // Write the section header table. auto *sHdrs = reinterpret_cast(buf + eHdr->e_shoff); for (auto &[osec, _] : osIsPairs) osec->template writeHeaderTo(++sHdrs); // Write section contents to a mmap'ed file. { parallel::TaskGroup tg; for (auto &[osec, _] : osIsPairs) osec->template writeTo(buf + osec->offset, tg); } if (auto e = buffer->commit()) fatal("failed to write output '" + buffer->getPath() + "': " + toString(std::move(e))); } TargetInfo *elf::getARMTargetInfo() { static ARM target; return ⌖ } template void elf::writeARMCmseImportLib(); template void elf::writeARMCmseImportLib(); template void elf::writeARMCmseImportLib(); template void elf::writeARMCmseImportLib(); template void ObjFile::importCmseSymbols(); template void ObjFile::importCmseSymbols(); template void ObjFile::importCmseSymbols(); template void ObjFile::importCmseSymbols();