//===- AArch64.cpp --------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "OutputSections.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; // Page(Expr) is the page address of the expression Expr, defined // as (Expr & ~0xFFF). (This applies even if the machine page size // supported by the platform has a different value.) uint64_t elf::getAArch64Page(uint64_t expr) { return expr & ~static_cast(0xFFF); } namespace { class AArch64 : public TargetInfo { public: AArch64(); RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const override; RelType getDynRel(RelType type) const override; int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; void writeGotPlt(uint8_t *buf, const Symbol &s) const override; void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; bool needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const override; uint32_t getThunkSectionSpacing() const override; bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; bool usesOnlyLowPageBits(RelType type) const override; void relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const override; RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; private: void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; }; struct AArch64Relaxer { bool safeToRelaxAdrpLdr = false; AArch64Relaxer(ArrayRef relocs); bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel, uint64_t secAddr, uint8_t *buf) const; bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel, uint64_t secAddr, uint8_t *buf) const; }; } // namespace AArch64::AArch64() { copyRel = R_AARCH64_COPY; relativeRel = R_AARCH64_RELATIVE; iRelativeRel = R_AARCH64_IRELATIVE; gotRel = R_AARCH64_GLOB_DAT; pltRel = R_AARCH64_JUMP_SLOT; symbolicRel = R_AARCH64_ABS64; tlsDescRel = R_AARCH64_TLSDESC; tlsGotRel = R_AARCH64_TLS_TPREL64; pltHeaderSize = 32; pltEntrySize = 16; ipltEntrySize = 16; defaultMaxPageSize = 65536; // Align to the 2 MiB page size (known as a superpage or huge page). // FreeBSD automatically promotes 2 MiB-aligned allocations. defaultImageBase = 0x200000; needsThunks = true; } RelExpr AArch64::getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const { switch (type) { case R_AARCH64_ABS16: case R_AARCH64_ABS32: case R_AARCH64_ABS64: case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_MOVW_SABS_G0: case R_AARCH64_MOVW_SABS_G1: case R_AARCH64_MOVW_SABS_G2: case R_AARCH64_MOVW_UABS_G0: case R_AARCH64_MOVW_UABS_G0_NC: case R_AARCH64_MOVW_UABS_G1: case R_AARCH64_MOVW_UABS_G1_NC: case R_AARCH64_MOVW_UABS_G2: case R_AARCH64_MOVW_UABS_G2_NC: case R_AARCH64_MOVW_UABS_G3: return R_ABS; case R_AARCH64_TLSDESC_ADR_PAGE21: return R_AARCH64_TLSDESC_PAGE; case R_AARCH64_TLSDESC_LD64_LO12: case R_AARCH64_TLSDESC_ADD_LO12: return R_TLSDESC; case R_AARCH64_TLSDESC_CALL: return R_TLSDESC_CALL; case R_AARCH64_TLSLE_ADD_TPREL_HI12: case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G0: case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G1: case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G2: return R_TPREL; case R_AARCH64_CALL26: case R_AARCH64_CONDBR19: case R_AARCH64_JUMP26: case R_AARCH64_TSTBR14: return R_PLT_PC; case R_AARCH64_PLT32: const_cast(s).thunkAccessed = true; return R_PLT_PC; case R_AARCH64_PREL16: case R_AARCH64_PREL32: case R_AARCH64_PREL64: case R_AARCH64_ADR_PREL_LO21: case R_AARCH64_LD_PREL_LO19: case R_AARCH64_MOVW_PREL_G0: case R_AARCH64_MOVW_PREL_G0_NC: case R_AARCH64_MOVW_PREL_G1: case R_AARCH64_MOVW_PREL_G1_NC: case R_AARCH64_MOVW_PREL_G2: case R_AARCH64_MOVW_PREL_G2_NC: case R_AARCH64_MOVW_PREL_G3: return R_PC; case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_ADR_PREL_PG_HI21_NC: return R_AARCH64_PAGE_PC; case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: return R_GOT; case R_AARCH64_LD64_GOTPAGE_LO15: return R_AARCH64_GOT_PAGE; case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: return R_AARCH64_GOT_PAGE_PC; case R_AARCH64_NONE: return R_NONE; default: error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + ") against symbol " + toString(s)); return R_NONE; } } RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const { if (expr == R_RELAX_TLS_GD_TO_IE) { if (type == R_AARCH64_TLSDESC_ADR_PAGE21) return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC; return R_RELAX_TLS_GD_TO_IE_ABS; } return expr; } bool AArch64::usesOnlyLowPageBits(RelType type) const { switch (type) { default: return false; case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12: case R_AARCH64_TLSDESC_LD64_LO12: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: return true; } } RelType AArch64::getDynRel(RelType type) const { if (type == R_AARCH64_ABS64) return type; return R_AARCH64_NONE; } int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const { switch (type) { case R_AARCH64_TLSDESC: return read64(buf + 8); case R_AARCH64_NONE: case R_AARCH64_GLOB_DAT: case R_AARCH64_JUMP_SLOT: return 0; case R_AARCH64_PREL32: return SignExtend64<32>(read32(buf)); case R_AARCH64_ABS64: case R_AARCH64_PREL64: case R_AARCH64_RELATIVE: case R_AARCH64_IRELATIVE: case R_AARCH64_TLS_TPREL64: return read64(buf); default: internalLinkerError(getErrorLocation(buf), "cannot read addend for relocation " + toString(type)); return 0; } } void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const { write64(buf, in.plt->getVA()); } void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { if (config->writeAddends) write64(buf, s.getVA()); } void AArch64::writePltHeader(uint8_t *buf) const { const uint8_t pltData[] = { 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) 0x20, 0x02, 0x1f, 0xd6, // br x17 0x1f, 0x20, 0x03, 0xd5, // nop 0x1f, 0x20, 0x03, 0xd5, // nop 0x1f, 0x20, 0x03, 0xd5 // nop }; memcpy(buf, pltData, sizeof(pltData)); uint64_t got = in.gotPlt->getVA(); uint64_t plt = in.plt->getVA(); relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21, getAArch64Page(got + 16) - getAArch64Page(plt + 4)); relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16); relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16); } void AArch64::writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { const uint8_t inst[] = { 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n])) 0x20, 0x02, 0x1f, 0xd6 // br x17 }; memcpy(buf, inst, sizeof(inst)); uint64_t gotPltEntryAddr = sym.getGotPltVA(); relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21, getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr)); relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr); relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr); } bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const { // If s is an undefined weak symbol and does not have a PLT entry then it will // be resolved as a branch to the next instruction. If it is hidden, its // binding has been converted to local, so we just check isUndefined() here. A // undefined non-weak symbol will have been errored. if (s.isUndefined() && !s.isInPlt()) return false; // ELF for the ARM 64-bit architecture, section Call and Jump relocations // only permits range extension thunks for R_AARCH64_CALL26 and // R_AARCH64_JUMP26 relocation types. if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && type != R_AARCH64_PLT32) return false; uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a); return !inBranchRange(type, branchAddr, dst); } uint32_t AArch64::getThunkSectionSpacing() const { // See comment in Arch/ARM.cpp for a more detailed explanation of // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to // Thunk have a range of +/- 128 MiB return (128 * 1024 * 1024) - 0x30000; } bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && type != R_AARCH64_PLT32) return true; // The AArch64 call and unconditional branch instructions have a range of // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB. uint64_t range = type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024); if (dst > src) { // Immediate of branch is signed. range -= 4; return dst - src <= range; } return src - dst <= range; } static void write32AArch64Addr(uint8_t *l, uint64_t imm) { uint32_t immLo = (imm & 0x3) << 29; uint32_t immHi = (imm & 0x1FFFFC) << 3; uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); write32le(l, (read32le(l) & ~mask) | immLo | immHi); } // Return the bits [Start, End] from Val shifted Start bits. // For instance, getBits(0xF0, 4, 8) returns 0xF. static uint64_t getBits(uint64_t val, int start, int end) { uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1; return (val >> start) & mask; } static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); } // Update the immediate field in a AARCH64 ldr, str, and add instruction. static void or32AArch64Imm(uint8_t *l, uint64_t imm) { or32le(l, (imm & 0xFFF) << 10); } // Update the immediate field in an AArch64 movk, movn or movz instruction // for a signed relocation, and update the opcode of a movn or movz instruction // to match the sign of the operand. static void writeSMovWImm(uint8_t *loc, uint32_t imm) { uint32_t inst = read32le(loc); // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk. if (!(inst & (1 << 29))) { // movn or movz. if (imm & 0x10000) { // Change opcode to movn, which takes an inverted operand. imm ^= 0xFFFF; inst &= ~(1 << 30); } else { // Change opcode to movz. inst |= 1 << 30; } } write32le(loc, inst | ((imm & 0xFFFF) << 5)); } void AArch64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_AARCH64_ABS16: case R_AARCH64_PREL16: checkIntUInt(loc, val, 16, rel); write16(loc, val); break; case R_AARCH64_ABS32: case R_AARCH64_PREL32: checkIntUInt(loc, val, 32, rel); write32(loc, val); break; case R_AARCH64_PLT32: checkInt(loc, val, 32, rel); write32(loc, val); break; case R_AARCH64_ABS64: // AArch64 relocations to tagged symbols have extended semantics, as // described here: // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative. // tl;dr: encode the symbol's special addend in the place, which is an // offset to the point where the logical tag is derived from. Quick hack, if // the addend is within the symbol's bounds, no need to encode the tag // derivation offset. if (rel.sym && rel.sym->isTagged() && (rel.addend < 0 || rel.addend >= static_cast(rel.sym->getSize()))) write64(loc, -rel.addend); else write64(loc, val); break; case R_AARCH64_PREL64: write64(loc, val); break; case R_AARCH64_ADD_ABS_LO12_NC: or32AArch64Imm(loc, val); break; case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: case R_AARCH64_TLSDESC_ADR_PAGE21: checkInt(loc, val, 33, rel); [[fallthrough]]; case R_AARCH64_ADR_PREL_PG_HI21_NC: write32AArch64Addr(loc, val >> 12); break; case R_AARCH64_ADR_PREL_LO21: checkInt(loc, val, 21, rel); write32AArch64Addr(loc, val); break; case R_AARCH64_JUMP26: // Normally we would just write the bits of the immediate field, however // when patching instructions for the cpu errata fix -fix-cortex-a53-843419 // we want to replace a non-branch instruction with a branch immediate // instruction. By writing all the bits of the instruction including the // opcode and the immediate (0 001 | 01 imm26) we can do this // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of // the instruction we want to patch. write32le(loc, 0x14000000); [[fallthrough]]; case R_AARCH64_CALL26: checkInt(loc, val, 28, rel); or32le(loc, (val & 0x0FFFFFFC) >> 2); break; case R_AARCH64_CONDBR19: case R_AARCH64_LD_PREL_LO19: checkAlignment(loc, val, 4, rel); checkInt(loc, val, 21, rel); or32le(loc, (val & 0x1FFFFC) << 3); break; case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: or32AArch64Imm(loc, getBits(val, 0, 11)); break; case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: checkAlignment(loc, val, 2, rel); or32AArch64Imm(loc, getBits(val, 1, 11)); break; case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: checkAlignment(loc, val, 4, rel); or32AArch64Imm(loc, getBits(val, 2, 11)); break; case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: case R_AARCH64_TLSDESC_LD64_LO12: checkAlignment(loc, val, 8, rel); or32AArch64Imm(loc, getBits(val, 3, 11)); break; case R_AARCH64_LDST128_ABS_LO12_NC: case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: checkAlignment(loc, val, 16, rel); or32AArch64Imm(loc, getBits(val, 4, 11)); break; case R_AARCH64_LD64_GOTPAGE_LO15: checkAlignment(loc, val, 8, rel); or32AArch64Imm(loc, getBits(val, 3, 14)); break; case R_AARCH64_MOVW_UABS_G0: checkUInt(loc, val, 16, rel); [[fallthrough]]; case R_AARCH64_MOVW_UABS_G0_NC: or32le(loc, (val & 0xFFFF) << 5); break; case R_AARCH64_MOVW_UABS_G1: checkUInt(loc, val, 32, rel); [[fallthrough]]; case R_AARCH64_MOVW_UABS_G1_NC: or32le(loc, (val & 0xFFFF0000) >> 11); break; case R_AARCH64_MOVW_UABS_G2: checkUInt(loc, val, 48, rel); [[fallthrough]]; case R_AARCH64_MOVW_UABS_G2_NC: or32le(loc, (val & 0xFFFF00000000) >> 27); break; case R_AARCH64_MOVW_UABS_G3: or32le(loc, (val & 0xFFFF000000000000) >> 43); break; case R_AARCH64_MOVW_PREL_G0: case R_AARCH64_MOVW_SABS_G0: case R_AARCH64_TLSLE_MOVW_TPREL_G0: checkInt(loc, val, 17, rel); [[fallthrough]]; case R_AARCH64_MOVW_PREL_G0_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: writeSMovWImm(loc, val); break; case R_AARCH64_MOVW_PREL_G1: case R_AARCH64_MOVW_SABS_G1: case R_AARCH64_TLSLE_MOVW_TPREL_G1: checkInt(loc, val, 33, rel); [[fallthrough]]; case R_AARCH64_MOVW_PREL_G1_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: writeSMovWImm(loc, val >> 16); break; case R_AARCH64_MOVW_PREL_G2: case R_AARCH64_MOVW_SABS_G2: case R_AARCH64_TLSLE_MOVW_TPREL_G2: checkInt(loc, val, 49, rel); [[fallthrough]]; case R_AARCH64_MOVW_PREL_G2_NC: writeSMovWImm(loc, val >> 32); break; case R_AARCH64_MOVW_PREL_G3: writeSMovWImm(loc, val >> 48); break; case R_AARCH64_TSTBR14: checkInt(loc, val, 16, rel); or32le(loc, (val & 0xFFFC) << 3); break; case R_AARCH64_TLSLE_ADD_TPREL_HI12: checkUInt(loc, val, 24, rel); or32AArch64Imm(loc, val >> 12); break; case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12: or32AArch64Imm(loc, val); break; case R_AARCH64_TLSDESC: // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word. write64(loc + 8, val); break; default: llvm_unreachable("unknown relocation"); } } void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const { // TLSDESC Global-Dynamic relocation are in the form: // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] // .tlsdesccall [R_AARCH64_TLSDESC_CALL] // blr x1 // And it can optimized to: // movz x0, #0x0, lsl #16 // movk x0, #0x10 // nop // nop checkUInt(loc, val, 32, rel); switch (rel.type) { case R_AARCH64_TLSDESC_ADD_LO12: case R_AARCH64_TLSDESC_CALL: write32le(loc, 0xd503201f); // nop return; case R_AARCH64_TLSDESC_ADR_PAGE21: write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz return; case R_AARCH64_TLSDESC_LD64_LO12: write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk return; default: llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); } } void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const { // TLSDESC Global-Dynamic relocation are in the form: // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] // .tlsdesccall [R_AARCH64_TLSDESC_CALL] // blr x1 // And it can optimized to: // adrp x0, :gottprel:v // ldr x0, [x0, :gottprel_lo12:v] // nop // nop switch (rel.type) { case R_AARCH64_TLSDESC_ADD_LO12: case R_AARCH64_TLSDESC_CALL: write32le(loc, 0xd503201f); // nop break; case R_AARCH64_TLSDESC_ADR_PAGE21: write32le(loc, 0x90000000); // adrp relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val); break; case R_AARCH64_TLSDESC_LD64_LO12: write32le(loc, 0xf9400000); // ldr relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val); break; default: llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); } } void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const { checkUInt(loc, val, 32, rel); if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { // Generate MOVZ. uint32_t regNo = read32le(loc) & 0x1f; write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5)); return; } if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { // Generate MOVK. uint32_t regNo = read32le(loc) & 0x1f; write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5)); return; } llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); } AArch64Relaxer::AArch64Relaxer(ArrayRef relocs) { if (!config->relax) return; // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC // always appear in pairs. size_t i = 0; const size_t size = relocs.size(); for (; i != size; ++i) { if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) { if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) { ++i; continue; } break; } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) { break; } } safeToRelaxAdrpLdr = i == size; } bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel, uint64_t secAddr, uint8_t *buf) const { // When the address of sym is within the range of ADR then // we may relax // ADRP xn, sym // ADD xn, xn, :lo12: sym // to // NOP // ADR xn, sym if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 || addRel.type != R_AARCH64_ADD_ABS_LO12_NC) return false; // Check if the relocations apply to consecutive instructions. if (adrpRel.offset + 4 != addRel.offset) return false; if (adrpRel.sym != addRel.sym) return false; if (adrpRel.addend != 0 || addRel.addend != 0) return false; uint32_t adrpInstr = read32le(buf + adrpRel.offset); uint32_t addInstr = read32le(buf + addRel.offset); // Check if the first instruction is ADRP and the second instruction is ADD. if ((adrpInstr & 0x9f000000) != 0x90000000 || (addInstr & 0xffc00000) != 0x91000000) return false; uint32_t adrpDestReg = adrpInstr & 0x1f; uint32_t addDestReg = addInstr & 0x1f; uint32_t addSrcReg = (addInstr >> 5) & 0x1f; if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg) return false; Symbol &sym = *adrpRel.sym; // Check if the address difference is within 1MiB range. int64_t val = sym.getVA() - (secAddr + addRel.offset); if (val < -1024 * 1024 || val >= 1024 * 1024) return false; Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset, /*addend=*/0, &sym}; // nop write32le(buf + adrpRel.offset, 0xd503201f); // adr x_ write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg); target->relocate(buf + adrRel.offset, adrRel, val); return true; } bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel, uint64_t secAddr, uint8_t *buf) const { if (!safeToRelaxAdrpLdr) return false; // When the definition of sym is not preemptible then we may // be able to relax // ADRP xn, :got: sym // LDR xn, [ xn :got_lo12: sym] // to // ADRP xn, sym // ADD xn, xn, :lo_12: sym if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE || ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC) return false; // Check if the relocations apply to consecutive instructions. if (adrpRel.offset + 4 != ldrRel.offset) return false; // Check if the relocations reference the same symbol and // skip undefined, preemptible and STT_GNU_IFUNC symbols. if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() || adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc()) return false; // Check if the addends of the both relocations are zero. if (adrpRel.addend != 0 || ldrRel.addend != 0) return false; uint32_t adrpInstr = read32le(buf + adrpRel.offset); uint32_t ldrInstr = read32le(buf + ldrRel.offset); // Check if the first instruction is ADRP and the second instruction is LDR. if ((adrpInstr & 0x9f000000) != 0x90000000 || (ldrInstr & 0x3b000000) != 0x39000000) return false; // Check the value of the sf bit. if (!(ldrInstr >> 31)) return false; uint32_t adrpDestReg = adrpInstr & 0x1f; uint32_t ldrDestReg = ldrInstr & 0x1f; uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f; // Check if ADPR and LDR use the same register. if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg) return false; Symbol &sym = *adrpRel.sym; // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in // position-independent code because these instructions produce a relative // address. if (config->isPic && !cast(sym).section) return false; // Check if the address difference is within 4GB range. int64_t val = getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset); if (val != llvm::SignExtend64(val, 33)) return false; Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21, adrpRel.offset, /*addend=*/0, &sym}; Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset, /*addend=*/0, &sym}; // adrp x_ write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg); // add x_, x_ write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5)); target->relocate(buf + adrpSymRel.offset, adrpSymRel, SignExtend64(getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpSymRel.offset), 64)); target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64)); tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf); return true; } // Tagged symbols have upper address bits that are added by the dynamic loader, // and thus need the full 64-bit GOT entry. Do not relax such symbols. static bool needsGotForMemtag(const Relocation &rel) { return rel.sym->isTagged() && needsGot(rel.expr); } void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { uint64_t secAddr = sec.getOutputSection()->addr; if (auto *s = dyn_cast(&sec)) secAddr += s->outSecOff; else if (auto *ehIn = dyn_cast(&sec)) secAddr += ehIn->getParent()->outSecOff; AArch64Relaxer relaxer(sec.relocs()); for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) { const Relocation &rel = sec.relocs()[i]; uint8_t *loc = buf + rel.offset; const uint64_t val = sec.getRelocTargetVA(sec.file, rel.type, rel.addend, secAddr + rel.offset, *rel.sym, rel.expr); if (needsGotForMemtag(rel)) { relocate(loc, rel, val); continue; } switch (rel.expr) { case R_AARCH64_GOT_PAGE_PC: if (i + 1 < size && relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) { ++i; continue; } break; case R_AARCH64_PAGE_PC: if (i + 1 < size && relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) { ++i; continue; } break; case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: case R_RELAX_TLS_GD_TO_IE_ABS: relaxTlsGdToIe(loc, rel, val); continue; case R_RELAX_TLS_GD_TO_LE: relaxTlsGdToLe(loc, rel, val); continue; case R_RELAX_TLS_IE_TO_LE: relaxTlsIeToLe(loc, rel, val); continue; default: break; } relocate(loc, rel, val); } } // AArch64 may use security features in variant PLT sequences. These are: // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target // Indicator (BTI) introduced in armv8.5-a. The additional instructions used // in the variant Plt sequences are encoded in the Hint space so they can be // deployed on older architectures, which treat the instructions as a nop. // PAC and BTI can be combined leading to the following combinations: // writePltHeader // writePltHeaderBti (no PAC Header needed) // writePlt // writePltBti (BTI only) // writePltPac (PAC only) // writePltBtiPac (BTI and PAC) // // When PAC is enabled the dynamic loader encrypts the address that it places // in the .got.plt using the pacia1716 instruction which encrypts the value in // x17 using the modifier in x16. The static linker places autia1716 before the // indirect branch to x17 to authenticate the address in x17 with the modifier // in x16. This makes it more difficult for an attacker to modify the value in // the .got.plt. // // When BTI is enabled all indirect branches must land on a bti instruction. // The static linker must place a bti instruction at the start of any PLT entry // that may be the target of an indirect branch. As the PLT entries call the // lazy resolver indirectly this must have a bti instruction at start. In // general a bti instruction is not needed for a PLT entry as indirect calls // are resolved to the function address and not the PLT entry for the function. // There are a small number of cases where the PLT address can escape, such as // taking the address of a function or ifunc via a non got-generating // relocation, and a shared library refers to that symbol. // // We use the bti c variant of the instruction which permits indirect branches // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI // guarantees that all indirect branches from code requiring BTI protection // will go via x16/x17 namespace { class AArch64BtiPac final : public AArch64 { public: AArch64BtiPac(); void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; private: bool btiHeader; // bti instruction needed in PLT Header and Entry bool pacEntry; // autia1716 instruction needed in PLT Entry }; } // namespace AArch64BtiPac::AArch64BtiPac() { btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI); // A BTI (Branch Target Indicator) Plt Entry is only required if the // address of the PLT entry can be taken by the program, which permits an // indirect jump to the PLT entry. This can happen when the address // of the PLT entry for a function is canonicalised due to the address of // the function in an executable being taken by a shared library, or // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating // relocations. // The PAC PLT entries require dynamic loader support and this isn't known // from properties in the objects, so we use the command line flag. pacEntry = config->zPacPlt; if (btiHeader || pacEntry) { pltEntrySize = 24; ipltEntrySize = 24; } } void AArch64BtiPac::writePltHeader(uint8_t *buf) const { const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c const uint8_t pltData[] = { 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) 0x20, 0x02, 0x1f, 0xd6, // br x17 0x1f, 0x20, 0x03, 0xd5, // nop 0x1f, 0x20, 0x03, 0xd5 // nop }; const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop uint64_t got = in.gotPlt->getVA(); uint64_t plt = in.plt->getVA(); if (btiHeader) { // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C // instruction. memcpy(buf, btiData, sizeof(btiData)); buf += sizeof(btiData); plt += sizeof(btiData); } memcpy(buf, pltData, sizeof(pltData)); relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21, getAArch64Page(got + 16) - getAArch64Page(plt + 8)); relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16); relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16); if (!btiHeader) // We didn't add the BTI c instruction so round out size with NOP. memcpy(buf + sizeof(pltData), nopData, sizeof(nopData)); } void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { // The PLT entry is of the form: // [btiData] addrInst (pacBr | stdBr) [nopData] const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c const uint8_t addrInst[] = { 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n])) }; const uint8_t pacBr[] = { 0x9f, 0x21, 0x03, 0xd5, // autia1716 0x20, 0x02, 0x1f, 0xd6 // br x17 }; const uint8_t stdBr[] = { 0x20, 0x02, 0x1f, 0xd6, // br x17 0x1f, 0x20, 0x03, 0xd5 // nop }; const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its // address may escape if referenced by a direct relocation. If relative // vtables are used then if the vtable is in a shared object the offsets will // be to the PLT entry. The condition is conservative. bool hasBti = btiHeader && (sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed); if (hasBti) { memcpy(buf, btiData, sizeof(btiData)); buf += sizeof(btiData); pltEntryAddr += sizeof(btiData); } uint64_t gotPltEntryAddr = sym.getGotPltVA(); memcpy(buf, addrInst, sizeof(addrInst)); relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21, getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr)); relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr); relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr); if (pacEntry) memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr)); else memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr)); if (!hasBti) // We didn't add the BTI c instruction so round out size with NOP. memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData)); } static TargetInfo *getTargetInfo() { if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) || config->zPacPlt) { static AArch64BtiPac t; return &t; } static AArch64 t; return &t; } TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); } template static void addTaggedSymbolReferences(InputSectionBase &sec, DenseMap &referenceCount) { assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC); const RelsOrRelas rels = sec.relsOrRelas(); if (rels.areRelocsRel()) error("non-RELA relocations are not allowed with memtag globals"); for (const typename ELFT::Rela &rel : rels.relas) { Symbol &sym = sec.getFile()->getRelocTargetSym(rel); // Linker-synthesized symbols such as __executable_start may be referenced // as tagged in input objfiles, and we don't want them to be tagged. A // cheap way to exclude them is the type check, but their type is // STT_NOTYPE. In addition, this save us from checking untaggable symbols, // like functions or TLS symbols. if (sym.type != STT_OBJECT) continue; // STB_LOCAL symbols can't be referenced from outside the object file, and // thus don't need to be checked for references from other object files. if (sym.binding == STB_LOCAL) { sym.setIsTagged(true); continue; } ++referenceCount[&sym]; } sec.markDead(); } // A tagged symbol must be denoted as being tagged by all references and the // chosen definition. For simplicity, here, it must also be denoted as tagged // for all definitions. Otherwise: // // 1. A tagged definition can be used by an untagged declaration, in which case // the untagged access may be PC-relative, causing a tag mismatch at // runtime. // 2. An untagged definition can be used by a tagged declaration, where the // compiler has taken advantage of the increased alignment of the tagged // declaration, but the alignment at runtime is wrong, causing a fault. // // Ideally, this isn't a problem, as any TU that imports or exports tagged // symbols should also be built with tagging. But, to handle these cases, we // demote the symbol to be untagged. void lld::elf::createTaggedSymbols(const SmallVector &files) { assert(hasMemtag()); // First, collect all symbols that are marked as tagged, and count how many // times they're marked as tagged. DenseMap taggedSymbolReferenceCount; for (InputFile* file : files) { if (file->kind() != InputFile::ObjKind) continue; for (InputSectionBase *section : file->getSections()) { if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC || section == &InputSection::discarded) continue; invokeELFT(addTaggedSymbolReferences, *section, taggedSymbolReferenceCount); } } // Now, go through all the symbols. If the number of declarations + // definitions to a symbol exceeds the amount of times they're marked as // tagged, it means we have an objfile that uses the untagged variant of the // symbol. for (InputFile *file : files) { if (file->kind() != InputFile::BinaryKind && file->kind() != InputFile::ObjKind) continue; for (Symbol *symbol : file->getSymbols()) { // See `addTaggedSymbolReferences` for more details. if (symbol->type != STT_OBJECT || symbol->binding == STB_LOCAL) continue; auto it = taggedSymbolReferenceCount.find(symbol); if (it == taggedSymbolReferenceCount.end()) continue; unsigned &remainingAllowedTaggedRefs = it->second; if (remainingAllowedTaggedRefs == 0) { taggedSymbolReferenceCount.erase(it); continue; } --remainingAllowedTaggedRefs; } } // `addTaggedSymbolReferences` has already checked that we have RELA // relocations, the only other way to get written addends is with // --apply-dynamic-relocs. if (!taggedSymbolReferenceCount.empty() && config->writeAddends) error("--apply-dynamic-relocs cannot be used with MTE globals"); // Now, `taggedSymbolReferenceCount` should only contain symbols that are // defined as tagged exactly the same amount as it's referenced, meaning all // uses are tagged. for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) { assert(remainingTaggedRefs == 0 && "Symbol is defined as tagged more times than it's used"); symbol->setIsTagged(true); } }