//===- AArch64ErrataFix.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file implements Section Patching for the purpose of working around // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 // versions of the core. // // The general principle is that an erratum sequence of one or // more instructions is detected in the instruction stream, one of the // instructions in the sequence is replaced with a branch to a patch sequence // of replacement instructions. At the end of the replacement sequence the // patch branches back to the instruction stream. // This technique is only suitable for fixing an erratum when: // - There is a set of necessary conditions required to trigger the erratum that // can be detected at static link time. // - There is a set of replacement instructions that can be used to remove at // least one of the necessary conditions that trigger the erratum. // - We can overwrite an instruction in the erratum sequence with a branch to // the replacement sequence. // - We can place the replacement sequence within range of the branch. //===----------------------------------------------------------------------===// #include "AArch64ErrataFix.h" #include "InputFiles.h" #include "LinkerScript.h" #include "OutputSections.h" #include "Relocations.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/CommonLinkerContext.h" #include "lld/Common/Strings.h" #include "llvm/Support/Endian.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; // Helper functions to identify instructions and conditions needed to trigger // the Cortex-A53-843419 erratum. // ADRP // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | static bool isADRP(uint32_t instr) { return (instr & 0x9f000000) == 0x90000000; } // Load and store bit patterns from ARMv8-A ARM ARM. // Instructions appear in order of appearance starting from table in // C4.1.3 Loads and Stores. // All loads and stores have 1 (at bit position 27), (0 at bit position 25). // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | static bool isLoadStoreClass(uint32_t instr) { return (instr & 0x0a000000) == 0x08000000; } // LDN/STN multiple no offset // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | // LDN/STN multiple post-indexed // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | // L == 0 for stores. // Utility routine to decode opcode field of LDN/STN multiple structure // instructions to find the ST1 instructions. // opcode == 0010 ST1 4 registers. // opcode == 0110 ST1 3 registers. // opcode == 0111 ST1 1 register. // opcode == 1010 ST1 2 registers. static bool isST1MultipleOpcode(uint32_t instr) { return (instr & 0x0000f000) == 0x00002000 || (instr & 0x0000f000) == 0x00006000 || (instr & 0x0000f000) == 0x00007000 || (instr & 0x0000f000) == 0x0000a000; } static bool isST1Multiple(uint32_t instr) { return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr); } // Writes to Rn (writeback). static bool isST1MultiplePost(uint32_t instr) { return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr); } // LDN/STN single no offset // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| // LDN/STN single post-indexed // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| // L == 0 for stores // Utility routine to decode opcode field of LDN/STN single structure // instructions to find the ST1 instructions. // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. // opcode == 000 ST1 8-bit. // opcode == 010 ST1 16-bit. // opcode == 100 ST1 32 or 64-bit (Size determines which). static bool isST1SingleOpcode(uint32_t instr) { return (instr & 0x0040e000) == 0x00000000 || (instr & 0x0040e000) == 0x00004000 || (instr & 0x0040e000) == 0x00008000; } static bool isST1Single(uint32_t instr) { return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr); } // Writes to Rn (writeback). static bool isST1SinglePost(uint32_t instr) { return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr); } static bool isST1(uint32_t instr) { return isST1Multiple(instr) || isST1MultiplePost(instr) || isST1Single(instr) || isST1SinglePost(instr); } // Load/store exclusive // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | // L == 0 for Stores. static bool isLoadStoreExclusive(uint32_t instr) { return (instr & 0x3f000000) == 0x08000000; } static bool isLoadExclusive(uint32_t instr) { return (instr & 0x3f400000) == 0x08400000; } // Load register literal // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | static bool isLoadLiteral(uint32_t instr) { return (instr & 0x3b000000) == 0x18000000; } // Load/store no-allocate pair // (offset) // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | // L == 0 for stores. // Never writes to register static bool isSTNP(uint32_t instr) { return (instr & 0x3bc00000) == 0x28000000; } // Load/store register pair // (post-indexed) // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP // Writes to Rn. static bool isSTPPost(uint32_t instr) { return (instr & 0x3bc00000) == 0x28800000; } // (offset) // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | static bool isSTPOffset(uint32_t instr) { return (instr & 0x3bc00000) == 0x29000000; } // (pre-index) // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | // Writes to Rn. static bool isSTPPre(uint32_t instr) { return (instr & 0x3bc00000) == 0x29800000; } static bool isSTP(uint32_t instr) { return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr); } // Load/store register (unscaled immediate) // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | // V == 0 for Scalar, V == 1 for Simd/FP. static bool isLoadStoreUnscaled(uint32_t instr) { return (instr & 0x3b000c00) == 0x38000000; } // Load/store register (immediate post-indexed) // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | static bool isLoadStoreImmediatePost(uint32_t instr) { return (instr & 0x3b200c00) == 0x38000400; } // Load/store register (unprivileged) // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | static bool isLoadStoreUnpriv(uint32_t instr) { return (instr & 0x3b200c00) == 0x38000800; } // Load/store register (immediate pre-indexed) // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | static bool isLoadStoreImmediatePre(uint32_t instr) { return (instr & 0x3b200c00) == 0x38000c00; } // Load/store register (register offset) // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | static bool isLoadStoreRegisterOff(uint32_t instr) { return (instr & 0x3b200c00) == 0x38200800; } // Load/store register (unsigned immediate) // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | static bool isLoadStoreRegisterUnsigned(uint32_t instr) { return (instr & 0x3b000000) == 0x39000000; } // Rt is always in bit position 0 - 4. static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); } // Rn is always in bit position 5 - 9. static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; } // C4.1.2 Branches, Exception Generating and System instructions // | op0 (3) 1 | 01 op1 (4) | x (22) | // op0 == 010 101 op1 == 0xxx Conditional Branch. // op0 == 110 101 op1 == 1xxx Unconditional Branch Register. // op0 == x00 101 op1 == xxxx Unconditional Branch immediate. // op0 == x01 101 op1 == 0xxx Compare and branch immediate. // op0 == x01 101 op1 == 1xxx Test and branch immediate. static bool isBranch(uint32_t instr) { return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch. ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. ((instr & 0x7c000000) == 0x34000000); // Compare and test branch. } static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) { return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) || isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) || isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr); } // Note that this function refers to v8.0 only and does not include the // additional load and store instructions added for in later revisions of // the architecture such as the Atomic memory operations introduced // in v8.1. static bool isV8NonStructureLoad(uint32_t instr) { if (isLoadExclusive(instr)) return true; if (isLoadLiteral(instr)) return true; else if (isV8SingleRegisterNonStructureLoadStore(instr)) { // For Load and Store single register, Loads are derived from a // combination of the Size, V and Opc fields. uint32_t size = (instr >> 30) & 0xff; uint32_t v = (instr >> 26) & 0x1; uint32_t opc = (instr >> 22) & 0x3; // For the load and store instructions that we are decoding. // Opc == 0 are all stores. // Opc == 1 with a couple of exceptions are loads. The exceptions are: // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. return opc != 0 && !(size == 0 && v == 1 && opc == 2) && !(size == 3 && v == 0 && opc == 2); } return false; } // The following decode instructions are only complete up to the instructions // needed for errata 843419. // Instruction with writeback updates the index register after the load/store. static bool hasWriteback(uint32_t instr) { return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) || isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) || isST1MultiplePost(instr); } // For the load and store class of instructions, a load can write to the // destination register, a load and a store can write to the base register when // the instruction has writeback. static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) { return (isV8NonStructureLoad(instr) && getRt(instr) == reg) || (hasWriteback(instr) && getRn(instr) == reg); } // Scanner for Cortex-A53 errata 843419 // Full details are available in the Cortex A53 MPCore revision 0 Software // Developers Errata Notice (ARM-EPM-048406). // // The instruction sequence that triggers the erratum is common in compiled // AArch64 code, however it is sensitive to the offset of the sequence within // a 4k page. This means that by scanning and fixing the patch after we have // assigned addresses we only need to disassemble and fix instances of the // sequence in the range of affected offsets. // // In summary the erratum conditions are a series of 4 instructions: // 1.) An ADRP instruction that writes to register Rn with low 12 bits of // address of instruction either 0xff8 or 0xffc. // 2.) A load or store instruction that can be: // - A single register load or store, of either integer or vector registers. // - An STP or STNP, of either integer or vector registers. // - An Advanced SIMD ST1 store instruction. // - Must not write to Rn, but may optionally read from it. // 3.) An optional instruction that is not a branch and does not write to Rn. // 4.) A load or store from the Load/store register (unsigned immediate) class // that uses Rn as the base address register. // // Note that we do not attempt to scan for Sequence 2 as described in the // Software Developers Errata Notice as this has been assessed to be extremely // unlikely to occur in compiled code. This matches gold and ld.bfd behavior. // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), // and 4.) in the Scanner for Cortex-A53 errata comment above. static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2, uint32_t instr4) { if (!isADRP(instr1)) return false; uint32_t rn = getRt(instr1); return isLoadStoreClass(instr2) && (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) || isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) || isSTNP(instr2) || isST1(instr2)) && !doesLoadStoreWriteToReg(instr2, rn) && isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn; } // Scan the instruction sequence starting at Offset Off from the base of // InputSection isec. We update Off in this function rather than in the caller // as we can skip ahead much further into the section when we know how many // instructions we've scanned. // Return the offset of the load or store instruction in isec that we want to // patch or 0 if no patch required. static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off, uint64_t limit) { uint64_t isecAddr = isec->getVA(0); // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8. uint64_t initialPageOff = (isecAddr + off) & 0xfff; if (initialPageOff < 0xff8) off += 0xff8 - initialPageOff; bool optionalAllowed = limit - off > 12; if (off >= limit || limit - off < 12) { // Need at least 3 4-byte sized instructions to trigger erratum. off = limit; return 0; } uint64_t patchOff = 0; const uint8_t *buf = isec->rawData.begin(); const ulittle32_t *instBuf = reinterpret_cast(buf + off); uint32_t instr1 = *instBuf++; uint32_t instr2 = *instBuf++; uint32_t instr3 = *instBuf++; if (is843419ErratumSequence(instr1, instr2, instr3)) { patchOff = off + 8; } else if (optionalAllowed && !isBranch(instr3)) { uint32_t instr4 = *instBuf++; if (is843419ErratumSequence(instr1, instr2, instr4)) patchOff = off + 12; } if (((isecAddr + off) & 0xfff) == 0xff8) off += 4; else off += 0xffc; return patchOff; } class elf::Patch843419Section : public SyntheticSection { public: Patch843419Section(InputSection *p, uint64_t off); void writeTo(uint8_t *buf) override; size_t getSize() const override { return 8; } uint64_t getLDSTAddr() const; static bool classof(const SectionBase *d) { return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch"; } // The Section we are patching. const InputSection *patchee; // The offset of the instruction in the patchee section we are patching. uint64_t patcheeOffset; // A label for the start of the Patch that we can use as a relocation target. Symbol *patchSym; }; Patch843419Section::Patch843419Section(InputSection *p, uint64_t off) : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, ".text.patch"), patchee(p), patcheeOffset(off) { this->parent = p->getParent(); patchSym = addSyntheticLocal( saver().save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0, getSize(), *this); addSyntheticLocal(saver().save("$x"), STT_NOTYPE, 0, 0, *this); } uint64_t Patch843419Section::getLDSTAddr() const { return patchee->getVA(patcheeOffset); } void Patch843419Section::writeTo(uint8_t *buf) { // Copy the instruction that we will be replacing with a branch in the // patchee Section. write32le(buf, read32le(patchee->rawData.begin() + patcheeOffset)); // Apply any relocation transferred from the original patchee section. relocateAlloc(buf, buf + getSize()); // Return address is the next instruction after the one we have just copied. uint64_t s = getLDSTAddr() + 4; uint64_t p = patchSym->getVA() + 4; target->relocateNoSym(buf + 4, R_AARCH64_JUMP26, s - p); } void AArch64Err843419Patcher::init() { // The AArch64 ABI permits data in executable sections. We must avoid scanning // this data as if it were instructions to avoid false matches. We use the // mapping symbols in the InputObjects to identify this data, caching the // results in sectionMap so we don't have to recalculate it each pass. // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe // half open intervals [Symbol Value, Next Symbol Value) of code and data // within sections. If there is no next symbol then the half open interval is // [Symbol Value, End of section). The type, code or data, is determined by // the mapping symbol name, $x for code, $d for data. auto isCodeMapSymbol = [](const Symbol *b) { return b->getName() == "$x" || b->getName().startswith("$x."); }; auto isDataMapSymbol = [](const Symbol *b) { return b->getName() == "$d" || b->getName().startswith("$d."); }; // Collect mapping symbols for every executable InputSection. for (ELFFileBase *file : ctx->objectFiles) { for (Symbol *b : file->getLocalSymbols()) { auto *def = dyn_cast(b); if (!def) continue; if (!isCodeMapSymbol(def) && !isDataMapSymbol(def)) continue; if (auto *sec = dyn_cast_or_null(def->section)) if (sec->flags & SHF_EXECINSTR) sectionMap[sec].push_back(def); } } // For each InputSection make sure the mapping symbols are in sorted in // ascending order and free from consecutive runs of mapping symbols with // the same type. For example we must remove the redundant $d.1 from $x.0 // $d.0 $d.1 $x.1. for (auto &kv : sectionMap) { std::vector &mapSyms = kv.second; llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { return a->value < b->value; }); mapSyms.erase( std::unique(mapSyms.begin(), mapSyms.end(), [=](const Defined *a, const Defined *b) { return isCodeMapSymbol(a) == isCodeMapSymbol(b); }), mapSyms.end()); // Always start with a Code Mapping Symbol. if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front())) mapSyms.erase(mapSyms.begin()); } initialized = true; } // Insert the PatchSections we have created back into the // InputSectionDescription. As inserting patches alters the addresses of // InputSections that follow them, we try and place the patches after all the // executable sections, although we may need to insert them earlier if the // InputSectionDescription is larger than the maximum branch range. void AArch64Err843419Patcher::insertPatches( InputSectionDescription &isd, std::vector &patches) { uint64_t isecLimit; uint64_t prevIsecLimit = isd.sections.front()->outSecOff; uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing(); uint64_t outSecAddr = isd.sections.front()->getParent()->addr; // Set the outSecOff of patches to the place where we want to insert them. // We use a similar strategy to Thunk placement. Place patches roughly // every multiple of maximum branch range. auto patchIt = patches.begin(); auto patchEnd = patches.end(); for (const InputSection *isec : isd.sections) { isecLimit = isec->outSecOff + isec->getSize(); if (isecLimit > patchUpperBound) { while (patchIt != patchEnd) { if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit) break; (*patchIt)->outSecOff = prevIsecLimit; ++patchIt; } patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing(); } prevIsecLimit = isecLimit; } for (; patchIt != patchEnd; ++patchIt) { (*patchIt)->outSecOff = isecLimit; } // Merge all patch sections. We use the outSecOff assigned above to // determine the insertion point. This is ok as we only merge into an // InputSectionDescription once per pass, and at the end of the pass // assignAddresses() will recalculate all the outSecOff values. SmallVector tmp; tmp.reserve(isd.sections.size() + patches.size()); auto mergeCmp = [](const InputSection *a, const InputSection *b) { if (a->outSecOff != b->outSecOff) return a->outSecOff < b->outSecOff; return isa(a) && !isa(b); }; std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(), patches.end(), std::back_inserter(tmp), mergeCmp); isd.sections = std::move(tmp); } // Given an erratum sequence that starts at address adrpAddr, with an // instruction that we need to patch at patcheeOffset from the start of // InputSection isec, create a Patch843419 Section and add it to the // Patches that we need to insert. static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset, InputSection *isec, std::vector &patches) { // There may be a relocation at the same offset that we are patching. There // are four cases that we need to consider. // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this // instance of the erratum on a previous patch and altered the relocation. We // have nothing more to do. // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that // we read will be transformed into a MOVZ later so we actually don't match // the sequence and have nothing more to do. // Case 3: A load/store register (unsigned immediate) class relocation. There // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and // they are both absolute. We need to add the same relocation to the patch, // and replace the relocation with a R_AARCH_JUMP26 branch relocation. // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch // relocation at the offset. auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) { return r.offset == patcheeOffset; }); if (relIt != isec->relocations.end() && (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE)) return; log("detected cortex-a53-843419 erratum sequence starting at " + utohexstr(adrpAddr) + " in unpatched output."); auto *ps = make(isec, patcheeOffset); patches.push_back(ps); auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) { return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym}; }; if (relIt != isec->relocations.end()) { ps->relocations.push_back( {relIt->expr, relIt->type, 0, relIt->addend, relIt->sym}); *relIt = makeRelToPatch(patcheeOffset, ps->patchSym); } else isec->relocations.push_back(makeRelToPatch(patcheeOffset, ps->patchSym)); } // Scan all the instructions in InputSectionDescription, for each instance of // the erratum sequence create a Patch843419Section. We return the list of // Patch843419Sections that need to be applied to the InputSectionDescription. std::vector AArch64Err843419Patcher::patchInputSectionDescription( InputSectionDescription &isd) { std::vector patches; for (InputSection *isec : isd.sections) { // LLD doesn't use the erratum sequence in SyntheticSections. if (isa(isec)) continue; // Use sectionMap to make sure we only scan code and not inline data. // We have already sorted MapSyms in ascending order and removed consecutive // mapping symbols of the same type. Our range of executable instructions to // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value, // section size). std::vector &mapSyms = sectionMap[isec]; auto codeSym = mapSyms.begin(); while (codeSym != mapSyms.end()) { auto dataSym = std::next(codeSym); uint64_t off = (*codeSym)->value; uint64_t limit = (dataSym == mapSyms.end()) ? isec->rawData.size() : (*dataSym)->value; while (off < limit) { uint64_t startAddr = isec->getVA(off); if (uint64_t patcheeOffset = scanCortexA53Errata843419(isec, off, limit)) implementPatch(startAddr, patcheeOffset, isec, patches); } if (dataSym == mapSyms.end()) break; codeSym = std::next(dataSym); } } return patches; } // For each InputSectionDescription make one pass over the executable sections // looking for the erratum sequence; creating a synthetic Patch843419Section // for each instance found. We insert these synthetic patch sections after the // executable code in each InputSectionDescription. // // PreConditions: // The Output and Input Sections have had their final addresses assigned. // // PostConditions: // Returns true if at least one patch was added. The addresses of the // Output and Input Sections may have been changed. // Returns false if no patches were required and no changes were made. bool AArch64Err843419Patcher::createFixes() { if (!initialized) init(); bool addressesChanged = false; for (OutputSection *os : outputSections) { if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) continue; for (SectionCommand *cmd : os->commands) if (auto *isd = dyn_cast(cmd)) { std::vector patches = patchInputSectionDescription(*isd); if (!patches.empty()) { insertPatches(*isd, patches); addressesChanged = true; } } } return addressesChanged; }