//===- Writer.cpp ---------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Writer.h" #include "COFFLinkerContext.h" #include "CallGraphSort.h" #include "Config.h" #include "DLL.h" #include "InputFiles.h" #include "LLDMapFile.h" #include "MapFile.h" #include "PDB.h" #include "SymbolTable.h" #include "Symbols.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "lld/Common/Timer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/Support/BinaryStreamReader.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/Parallel.h" #include "llvm/Support/Path.h" #include "llvm/Support/RandomNumberGenerator.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/xxhash.h" #include #include #include #include #include using namespace llvm; using namespace llvm::COFF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::coff; /* To re-generate DOSProgram: $ cat > /tmp/DOSProgram.asm org 0 ; Copy cs to ds. push cs pop ds ; Point ds:dx at the $-terminated string. mov dx, str ; Int 21/AH=09h: Write string to standard output. mov ah, 0x9 int 0x21 ; Int 21/AH=4Ch: Exit with return code (in AL). mov ax, 0x4C01 int 0x21 str: db 'This program cannot be run in DOS mode.$' align 8, db 0 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin $ xxd -i /tmp/DOSProgram.bin */ static unsigned char dosProgram[] = { 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c, 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65, 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00 }; static_assert(sizeof(dosProgram) % 8 == 0, "DOSProgram size must be multiple of 8"); static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram); static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8"); static const int numberOfDataDirectory = 16; namespace { class DebugDirectoryChunk : public NonSectionChunk { public: DebugDirectoryChunk(const COFFLinkerContext &c, const std::vector> &r, bool writeRepro) : records(r), writeRepro(writeRepro), ctx(c) {} size_t getSize() const override { return (records.size() + int(writeRepro)) * sizeof(debug_directory); } void writeTo(uint8_t *b) const override { auto *d = reinterpret_cast(b); for (const std::pair& record : records) { Chunk *c = record.second; const OutputSection *os = ctx.getOutputSection(c); uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA()); fillEntry(d, record.first, c->getSize(), c->getRVA(), offs); ++d; } if (writeRepro) { // FIXME: The COFF spec allows either a 0-sized entry to just say // "the timestamp field is really a hash", or a 4-byte size field // followed by that many bytes containing a longer hash (with the // lowest 4 bytes usually being the timestamp in little-endian order). // Consider storing the full 8 bytes computed by xxh3_64bits here. fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0); } } void setTimeDateStamp(uint32_t timeDateStamp) { for (support::ulittle32_t *tds : timeDateStamps) *tds = timeDateStamp; } private: void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size, uint64_t rva, uint64_t offs) const { d->Characteristics = 0; d->TimeDateStamp = 0; d->MajorVersion = 0; d->MinorVersion = 0; d->Type = debugType; d->SizeOfData = size; d->AddressOfRawData = rva; d->PointerToRawData = offs; timeDateStamps.push_back(&d->TimeDateStamp); } mutable std::vector timeDateStamps; const std::vector> &records; bool writeRepro; const COFFLinkerContext &ctx; }; class CVDebugRecordChunk : public NonSectionChunk { public: CVDebugRecordChunk(const COFFLinkerContext &c) : ctx(c) {} size_t getSize() const override { return sizeof(codeview::DebugInfo) + ctx.config.pdbAltPath.size() + 1; } void writeTo(uint8_t *b) const override { // Save off the DebugInfo entry to backfill the file signature (build id) // in Writer::writeBuildId buildId = reinterpret_cast(b); // variable sized field (PDB Path) char *p = reinterpret_cast(b + sizeof(*buildId)); if (!ctx.config.pdbAltPath.empty()) memcpy(p, ctx.config.pdbAltPath.data(), ctx.config.pdbAltPath.size()); p[ctx.config.pdbAltPath.size()] = '\0'; } mutable codeview::DebugInfo *buildId = nullptr; private: const COFFLinkerContext &ctx; }; class ExtendedDllCharacteristicsChunk : public NonSectionChunk { public: ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {} size_t getSize() const override { return 4; } void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); } uint32_t characteristics = 0; }; // PartialSection represents a group of chunks that contribute to an // OutputSection. Collating a collection of PartialSections of same name and // characteristics constitutes the OutputSection. class PartialSectionKey { public: StringRef name; unsigned characteristics; bool operator<(const PartialSectionKey &other) const { int c = name.compare(other.name); if (c > 0) return false; if (c == 0) return characteristics < other.characteristics; return true; } }; struct ChunkRange { Chunk *first = nullptr, *last; }; // The writer writes a SymbolTable result to a file. class Writer { public: Writer(COFFLinkerContext &c) : buffer(errorHandler().outputBuffer), delayIdata(c), edata(c), ctx(c) {} void run(); private: void createSections(); void createMiscChunks(); void createImportTables(); void appendImportThunks(); void locateImportTables(); void createExportTable(); void mergeSections(); void sortECChunks(); void removeUnusedSections(); void assignAddresses(); bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin); std::pair getThunk(DenseMap &lastThunks, Defined *target, uint64_t p, uint16_t type, int margin); bool createThunks(OutputSection *os, int margin); bool verifyRanges(const std::vector chunks); void createECCodeMap(); void finalizeAddresses(); void removeEmptySections(); void assignOutputSectionIndices(); void createSymbolAndStringTable(); void openFile(StringRef outputPath); template void writeHeader(); void createSEHTable(); void createRuntimePseudoRelocs(); void createECChunks(); void insertCtorDtorSymbols(); void markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols); void createGuardCFTables(); void markSymbolsForRVATable(ObjFile *file, ArrayRef symIdxChunks, SymbolRVASet &tableSymbols); void getSymbolsFromSections(ObjFile *file, ArrayRef symIdxChunks, std::vector &symbols); void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, StringRef countSym, bool hasFlag=false); void setSectionPermissions(); void setECSymbols(); void writeSections(); void writeBuildId(); void writePEChecksum(); void sortSections(); template void sortExceptionTable(ChunkRange &exceptionTable); void sortExceptionTables(); void sortCRTSectionChunks(std::vector &chunks); void addSyntheticIdata(); void sortBySectionOrder(std::vector &chunks); void fixPartialSectionChars(StringRef name, uint32_t chars); bool fixGnuImportChunks(); void fixTlsAlignment(); PartialSection *createPartialSection(StringRef name, uint32_t outChars); PartialSection *findPartialSection(StringRef name, uint32_t outChars); std::optional createSymbol(Defined *d); size_t addEntryToStringTable(StringRef str); OutputSection *findSection(StringRef name); void addBaserels(); void addBaserelBlocks(std::vector &v); uint32_t getSizeOfInitializedData(); void prepareLoadConfig(); template void prepareLoadConfig(T *loadConfig); template void checkLoadConfigGuardData(const T *loadConfig); std::unique_ptr &buffer; std::map partialSections; std::vector strtab; std::vector outputSymtab; std::vector codeMap; IdataContents idata; Chunk *importTableStart = nullptr; uint64_t importTableSize = 0; Chunk *edataStart = nullptr; Chunk *edataEnd = nullptr; Chunk *iatStart = nullptr; uint64_t iatSize = 0; DelayLoadContents delayIdata; EdataContents edata; bool setNoSEHCharacteristic = false; uint32_t tlsAlignment = 0; DebugDirectoryChunk *debugDirectory = nullptr; std::vector> debugRecords; CVDebugRecordChunk *buildId = nullptr; ArrayRef sectionTable; uint64_t fileSize; uint32_t pointerToSymbolTable = 0; uint64_t sizeOfImage; uint64_t sizeOfHeaders; OutputSection *textSec; OutputSection *rdataSec; OutputSection *buildidSec; OutputSection *dataSec; OutputSection *pdataSec; OutputSection *idataSec; OutputSection *edataSec; OutputSection *didatSec; OutputSection *rsrcSec; OutputSection *relocSec; OutputSection *ctorsSec; OutputSection *dtorsSec; // Either .rdata section or .buildid section. OutputSection *debugInfoSec; // The range of .pdata sections in the output file. // // We need to keep track of the location of .pdata in whichever section it // gets merged into so that we can sort its contents and emit a correct data // directory entry for the exception table. This is also the case for some // other sections (such as .edata) but because the contents of those sections // are entirely linker-generated we can keep track of their locations using // the chunks that the linker creates. All .pdata chunks come from input // files, so we need to keep track of them separately. ChunkRange pdata; // x86_64 .pdata sections on ARM64EC/ARM64X targets. ChunkRange hybridPdata; COFFLinkerContext &ctx; }; } // anonymous namespace void lld::coff::writeResult(COFFLinkerContext &ctx) { llvm::TimeTraceScope timeScope("Write output(s)"); Writer(ctx).run(); } void OutputSection::addChunk(Chunk *c) { chunks.push_back(c); } void OutputSection::insertChunkAtStart(Chunk *c) { chunks.insert(chunks.begin(), c); } void OutputSection::setPermissions(uint32_t c) { header.Characteristics &= ~permMask; header.Characteristics |= c; } void OutputSection::merge(OutputSection *other) { chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end()); other->chunks.clear(); contribSections.insert(contribSections.end(), other->contribSections.begin(), other->contribSections.end()); other->contribSections.clear(); // MS link.exe compatibility: when merging a code section into a data section, // mark the target section as a code section. if (other->header.Characteristics & IMAGE_SCN_CNT_CODE) { header.Characteristics |= IMAGE_SCN_CNT_CODE; header.Characteristics &= ~(IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_CNT_UNINITIALIZED_DATA); } } // Write the section header to a given buffer. void OutputSection::writeHeaderTo(uint8_t *buf, bool isDebug) { auto *hdr = reinterpret_cast(buf); *hdr = header; if (stringTableOff) { // If name is too long, write offset into the string table as a name. encodeSectionName(hdr->Name, stringTableOff); } else { assert(!isDebug || name.size() <= COFF::NameSize || (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0); strncpy(hdr->Name, name.data(), std::min(name.size(), (size_t)COFF::NameSize)); } } void OutputSection::addContributingPartialSection(PartialSection *sec) { contribSections.push_back(sec); } // Check whether the target address S is in range from a relocation // of type relType at address P. bool Writer::isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) { if (ctx.config.machine == ARMNT) { int64_t diff = AbsoluteDifference(s, p + 4) + margin; switch (relType) { case IMAGE_REL_ARM_BRANCH20T: return isInt<21>(diff); case IMAGE_REL_ARM_BRANCH24T: case IMAGE_REL_ARM_BLX23T: return isInt<25>(diff); default: return true; } } else if (ctx.config.machine == ARM64) { int64_t diff = AbsoluteDifference(s, p) + margin; switch (relType) { case IMAGE_REL_ARM64_BRANCH26: return isInt<28>(diff); case IMAGE_REL_ARM64_BRANCH19: return isInt<21>(diff); case IMAGE_REL_ARM64_BRANCH14: return isInt<16>(diff); default: return true; } } else { llvm_unreachable("Unexpected architecture"); } } // Return the last thunk for the given target if it is in range, // or create a new one. std::pair Writer::getThunk(DenseMap &lastThunks, Defined *target, uint64_t p, uint16_t type, int margin) { Defined *&lastThunk = lastThunks[target->getRVA()]; if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin)) return {lastThunk, false}; Chunk *c; switch (ctx.config.machine) { case ARMNT: c = make(ctx, target); break; case ARM64: c = make(ctx, target); break; default: llvm_unreachable("Unexpected architecture"); } Defined *d = make("range_extension_thunk", c); lastThunk = d; return {d, true}; } // This checks all relocations, and for any relocation which isn't in range // it adds a thunk after the section chunk that contains the relocation. // If the latest thunk for the specific target is in range, that is used // instead of creating a new thunk. All range checks are done with the // specified margin, to make sure that relocations that originally are in // range, but only barely, also get thunks - in case other added thunks makes // the target go out of range. // // After adding thunks, we verify that all relocations are in range (with // no extra margin requirements). If this failed, we restart (throwing away // the previously created thunks) and retry with a wider margin. bool Writer::createThunks(OutputSection *os, int margin) { bool addressesChanged = false; DenseMap lastThunks; DenseMap, uint32_t> thunkSymtabIndices; size_t thunksSize = 0; // Recheck Chunks.size() each iteration, since we can insert more // elements into it. for (size_t i = 0; i != os->chunks.size(); ++i) { SectionChunk *sc = dyn_cast_or_null(os->chunks[i]); if (!sc) continue; size_t thunkInsertionSpot = i + 1; // Try to get a good enough estimate of where new thunks will be placed. // Offset this by the size of the new thunks added so far, to make the // estimate slightly better. size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize; ObjFile *file = sc->file; std::vector> relocReplacements; ArrayRef originalRelocs = file->getCOFFObj()->getRelocations(sc->header); for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) { const coff_relocation &rel = originalRelocs[j]; Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex); // The estimate of the source address P should be pretty accurate, // but we don't know whether the target Symbol address should be // offset by thunksSize or not (or by some of thunksSize but not all of // it), giving us some uncertainty once we have added one thunk. uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize; Defined *sym = dyn_cast_or_null(relocTarget); if (!sym) continue; uint64_t s = sym->getRVA(); if (isInRange(rel.Type, s, p, margin)) continue; // If the target isn't in range, hook it up to an existing or new thunk. auto [thunk, wasNew] = getThunk(lastThunks, sym, p, rel.Type, margin); if (wasNew) { Chunk *thunkChunk = thunk->getChunk(); thunkChunk->setRVA( thunkInsertionRVA); // Estimate of where it will be located. os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk); thunkInsertionSpot++; thunksSize += thunkChunk->getSize(); thunkInsertionRVA += thunkChunk->getSize(); addressesChanged = true; } // To redirect the relocation, add a symbol to the parent object file's // symbol table, and replace the relocation symbol table index with the // new index. auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U}); uint32_t &thunkSymbolIndex = insertion.first->second; if (insertion.second) thunkSymbolIndex = file->addRangeThunkSymbol(thunk); relocReplacements.emplace_back(j, thunkSymbolIndex); } // Get a writable copy of this section's relocations so they can be // modified. If the relocations point into the object file, allocate new // memory. Otherwise, this must be previously allocated memory that can be // modified in place. ArrayRef curRelocs = sc->getRelocs(); MutableArrayRef newRelocs; if (originalRelocs.data() == curRelocs.data()) { newRelocs = MutableArrayRef( bAlloc().Allocate(originalRelocs.size()), originalRelocs.size()); } else { newRelocs = MutableArrayRef( const_cast(curRelocs.data()), curRelocs.size()); } // Copy each relocation, but replace the symbol table indices which need // thunks. auto nextReplacement = relocReplacements.begin(); auto endReplacement = relocReplacements.end(); for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) { newRelocs[i] = originalRelocs[i]; if (nextReplacement != endReplacement && nextReplacement->first == i) { newRelocs[i].SymbolTableIndex = nextReplacement->second; ++nextReplacement; } } sc->setRelocs(newRelocs); } return addressesChanged; } // Create a code map for CHPE metadata. void Writer::createECCodeMap() { if (!isArm64EC(ctx.config.machine)) return; // Clear the map in case we were're recomputing the map after adding // a range extension thunk. codeMap.clear(); std::optional lastType; Chunk *first, *last; auto closeRange = [&]() { if (lastType) { codeMap.push_back({first, last, *lastType}); lastType.reset(); } }; for (OutputSection *sec : ctx.outputSections) { for (Chunk *c : sec->chunks) { // Skip empty section chunks. MS link.exe does not seem to do that and // generates empty code ranges in some cases. if (isa(c) && !c->getSize()) continue; std::optional chunkType = c->getArm64ECRangeType(); if (chunkType != lastType) { closeRange(); first = c; lastType = chunkType; } last = c; } } closeRange(); Symbol *tableCountSym = ctx.symtab.findUnderscore("__hybrid_code_map_count"); cast(tableCountSym)->setVA(codeMap.size()); } // Verify that all relocations are in range, with no extra margin requirements. bool Writer::verifyRanges(const std::vector chunks) { for (Chunk *c : chunks) { SectionChunk *sc = dyn_cast_or_null(c); if (!sc) continue; ArrayRef relocs = sc->getRelocs(); for (const coff_relocation &rel : relocs) { Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex); Defined *sym = dyn_cast_or_null(relocTarget); if (!sym) continue; uint64_t p = sc->getRVA() + rel.VirtualAddress; uint64_t s = sym->getRVA(); if (!isInRange(rel.Type, s, p, 0)) return false; } } return true; } // Assign addresses and add thunks if necessary. void Writer::finalizeAddresses() { assignAddresses(); if (ctx.config.machine != ARMNT && ctx.config.machine != ARM64) return; size_t origNumChunks = 0; for (OutputSection *sec : ctx.outputSections) { sec->origChunks = sec->chunks; origNumChunks += sec->chunks.size(); } int pass = 0; int margin = 1024 * 100; while (true) { llvm::TimeTraceScope timeScope2("Add thunks pass"); // First check whether we need thunks at all, or if the previous pass of // adding them turned out ok. bool rangesOk = true; size_t numChunks = 0; { llvm::TimeTraceScope timeScope3("Verify ranges"); for (OutputSection *sec : ctx.outputSections) { if (!verifyRanges(sec->chunks)) { rangesOk = false; break; } numChunks += sec->chunks.size(); } } if (rangesOk) { if (pass > 0) log("Added " + Twine(numChunks - origNumChunks) + " thunks with " + "margin " + Twine(margin) + " in " + Twine(pass) + " passes"); return; } if (pass >= 10) fatal("adding thunks hasn't converged after " + Twine(pass) + " passes"); if (pass > 0) { // If the previous pass didn't work out, reset everything back to the // original conditions before retrying with a wider margin. This should // ideally never happen under real circumstances. for (OutputSection *sec : ctx.outputSections) sec->chunks = sec->origChunks; margin *= 2; } // Try adding thunks everywhere where it is needed, with a margin // to avoid things going out of range due to the added thunks. bool addressesChanged = false; { llvm::TimeTraceScope timeScope3("Create thunks"); for (OutputSection *sec : ctx.outputSections) addressesChanged |= createThunks(sec, margin); } // If the verification above thought we needed thunks, we should have // added some. assert(addressesChanged); (void)addressesChanged; // Recalculate the layout for the whole image (and verify the ranges at // the start of the next round). assignAddresses(); pass++; } } void Writer::writePEChecksum() { if (!ctx.config.writeCheckSum) { return; } llvm::TimeTraceScope timeScope("PE checksum"); // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum uint32_t *buf = (uint32_t *)buffer->getBufferStart(); uint32_t size = (uint32_t)(buffer->getBufferSize()); coff_file_header *coffHeader = (coff_file_header *)((uint8_t *)buf + dosStubSize + sizeof(PEMagic)); pe32_header *peHeader = (pe32_header *)((uint8_t *)coffHeader + sizeof(coff_file_header)); uint64_t sum = 0; uint32_t count = size; ulittle16_t *addr = (ulittle16_t *)buf; // The PE checksum algorithm, implemented as suggested in RFC1071 while (count > 1) { sum += *addr++; count -= 2; } // Add left-over byte, if any if (count > 0) sum += *(unsigned char *)addr; // Fold 32-bit sum to 16 bits while (sum >> 16) { sum = (sum & 0xffff) + (sum >> 16); } sum += size; peHeader->CheckSum = sum; } // The main function of the writer. void Writer::run() { { llvm::TimeTraceScope timeScope("Write PE"); ScopedTimer t1(ctx.codeLayoutTimer); createImportTables(); createSections(); appendImportThunks(); // Import thunks must be added before the Control Flow Guard tables are // added. createMiscChunks(); createExportTable(); mergeSections(); sortECChunks(); removeUnusedSections(); finalizeAddresses(); removeEmptySections(); assignOutputSectionIndices(); setSectionPermissions(); setECSymbols(); createSymbolAndStringTable(); if (fileSize > UINT32_MAX) fatal("image size (" + Twine(fileSize) + ") " + "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")"); openFile(ctx.config.outputFile); if (ctx.config.is64()) { writeHeader(); } else { writeHeader(); } writeSections(); prepareLoadConfig(); sortExceptionTables(); // Fix up the alignment in the TLS Directory's characteristic field, // if a specific alignment value is needed if (tlsAlignment) fixTlsAlignment(); } if (!ctx.config.pdbPath.empty() && ctx.config.debug) { assert(buildId); createPDB(ctx, sectionTable, buildId->buildId); } writeBuildId(); writeLLDMapFile(ctx); writeMapFile(ctx); writePEChecksum(); if (errorCount()) return; llvm::TimeTraceScope timeScope("Commit PE to disk"); ScopedTimer t2(ctx.outputCommitTimer); if (auto e = buffer->commit()) fatal("failed to write output '" + buffer->getPath() + "': " + toString(std::move(e))); } static StringRef getOutputSectionName(StringRef name) { StringRef s = name.split('$').first; // Treat a later period as a separator for MinGW, for sections like // ".ctors.01234". return s.substr(0, s.find('.', 1)); } // For /order. void Writer::sortBySectionOrder(std::vector &chunks) { auto getPriority = [&ctx = ctx](const Chunk *c) { if (auto *sec = dyn_cast(c)) if (sec->sym) return ctx.config.order.lookup(sec->sym->getName()); return 0; }; llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) { return getPriority(a) < getPriority(b); }); } // Change the characteristics of existing PartialSections that belong to the // section Name to Chars. void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) { for (auto it : partialSections) { PartialSection *pSec = it.second; StringRef curName = pSec->name; if (!curName.consume_front(name) || (!curName.empty() && !curName.starts_with("$"))) continue; if (pSec->characteristics == chars) continue; PartialSection *destSec = createPartialSection(pSec->name, chars); destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(), pSec->chunks.end()); pSec->chunks.clear(); } } // Sort concrete section chunks from GNU import libraries. // // GNU binutils doesn't use short import files, but instead produces import // libraries that consist of object files, with section chunks for the .idata$* // sections. These are linked just as regular static libraries. Each import // library consists of one header object, one object file for every imported // symbol, and one trailer object. In order for the .idata tables/lists to // be formed correctly, the section chunks within each .idata$* section need // to be grouped by library, and sorted alphabetically within each library // (which makes sure the header comes first and the trailer last). bool Writer::fixGnuImportChunks() { uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; // Make sure all .idata$* section chunks are mapped as RDATA in order to // be sorted into the same sections as our own synthesized .idata chunks. fixPartialSectionChars(".idata", rdata); bool hasIdata = false; // Sort all .idata$* chunks, grouping chunks from the same library, // with alphabetical ordering of the object files within a library. for (auto it : partialSections) { PartialSection *pSec = it.second; if (!pSec->name.starts_with(".idata")) continue; if (!pSec->chunks.empty()) hasIdata = true; llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) { SectionChunk *sc1 = dyn_cast_or_null(s); SectionChunk *sc2 = dyn_cast_or_null(t); if (!sc1 || !sc2) { // if SC1, order them ascending. If SC2 or both null, // S is not less than T. return sc1 != nullptr; } // Make a string with "libraryname/objectfile" for sorting, achieving // both grouping by library and sorting of objects within a library, // at once. std::string key1 = (sc1->file->parentName + "/" + sc1->file->getName()).str(); std::string key2 = (sc2->file->parentName + "/" + sc2->file->getName()).str(); return key1 < key2; }); } return hasIdata; } // Add generated idata chunks, for imported symbols and DLLs, and a // terminator in .idata$2. void Writer::addSyntheticIdata() { uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; idata.create(ctx); // Add the .idata content in the right section groups, to allow // chunks from other linked in object files to be grouped together. // See Microsoft PE/COFF spec 5.4 for details. auto add = [&](StringRef n, std::vector &v) { PartialSection *pSec = createPartialSection(n, rdata); pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end()); }; // The loader assumes a specific order of data. // Add each type in the correct order. add(".idata$2", idata.dirs); add(".idata$4", idata.lookups); add(".idata$5", idata.addresses); if (!idata.hints.empty()) add(".idata$6", idata.hints); add(".idata$7", idata.dllNames); } // Locate the first Chunk and size of the import directory list and the // IAT. void Writer::locateImportTables() { uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ; if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) { if (!importDirs->chunks.empty()) importTableStart = importDirs->chunks.front(); for (Chunk *c : importDirs->chunks) importTableSize += c->getSize(); } if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) { if (!importAddresses->chunks.empty()) iatStart = importAddresses->chunks.front(); for (Chunk *c : importAddresses->chunks) iatSize += c->getSize(); } } // Return whether a SectionChunk's suffix (the dollar and any trailing // suffix) should be removed and sorted into the main suffixless // PartialSection. static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name, bool isMinGW) { // On MinGW, comdat groups are formed by putting the comdat group name // after the '$' in the section name. For .eh_frame$, that must // still be sorted before the .eh_frame trailer from crtend.o, thus just // strip the section name trailer. For other sections, such as // .tls$$ (where non-comdat .tls symbols are otherwise stored in // ".tls$"), they must be strictly sorted after .tls. And for the // hypothetical case of comdat .CRT$XCU, we definitely need to keep the // suffix for sorting. Thus, to play it safe, only strip the suffix for // the standard sections. if (!isMinGW) return false; if (!sc || !sc->isCOMDAT()) return false; return name.starts_with(".text$") || name.starts_with(".data$") || name.starts_with(".rdata$") || name.starts_with(".pdata$") || name.starts_with(".xdata$") || name.starts_with(".eh_frame$"); } void Writer::sortSections() { if (!ctx.config.callGraphProfile.empty()) { DenseMap order = computeCallGraphProfileOrder(ctx); for (auto it : order) { if (DefinedRegular *sym = it.first->sym) ctx.config.order[sym->getName()] = it.second; } } if (!ctx.config.order.empty()) for (auto it : partialSections) sortBySectionOrder(it.second->chunks); } // Create output section objects and add them to OutputSections. void Writer::createSections() { llvm::TimeTraceScope timeScope("Output sections"); // First, create the builtin sections. const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA; const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA; const uint32_t code = IMAGE_SCN_CNT_CODE; const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE; const uint32_t r = IMAGE_SCN_MEM_READ; const uint32_t w = IMAGE_SCN_MEM_WRITE; const uint32_t x = IMAGE_SCN_MEM_EXECUTE; SmallDenseMap, OutputSection *> sections; auto createSection = [&](StringRef name, uint32_t outChars) { OutputSection *&sec = sections[{name, outChars}]; if (!sec) { sec = make(name, outChars); ctx.outputSections.push_back(sec); } return sec; }; // Try to match the section order used by link.exe. textSec = createSection(".text", code | r | x); createSection(".bss", bss | r | w); rdataSec = createSection(".rdata", data | r); buildidSec = createSection(".buildid", data | r); dataSec = createSection(".data", data | r | w); pdataSec = createSection(".pdata", data | r); idataSec = createSection(".idata", data | r); edataSec = createSection(".edata", data | r); didatSec = createSection(".didat", data | r); rsrcSec = createSection(".rsrc", data | r); relocSec = createSection(".reloc", data | discardable | r); ctorsSec = createSection(".ctors", data | r | w); dtorsSec = createSection(".dtors", data | r | w); // Then bin chunks by name and output characteristics. for (Chunk *c : ctx.symtab.getChunks()) { auto *sc = dyn_cast(c); if (sc && !sc->live) { if (ctx.config.verbose) sc->printDiscardedMessage(); continue; } StringRef name = c->getSectionName(); if (shouldStripSectionSuffix(sc, name, ctx.config.mingw)) name = name.split('$').first; if (name.starts_with(".tls")) tlsAlignment = std::max(tlsAlignment, c->getAlignment()); PartialSection *pSec = createPartialSection(name, c->getOutputCharacteristics()); pSec->chunks.push_back(c); } fixPartialSectionChars(".rsrc", data | r); fixPartialSectionChars(".edata", data | r); // Even in non MinGW cases, we might need to link against GNU import // libraries. bool hasIdata = fixGnuImportChunks(); if (!idata.empty()) hasIdata = true; if (hasIdata) addSyntheticIdata(); sortSections(); if (hasIdata) locateImportTables(); // Then create an OutputSection for each section. // '$' and all following characters in input section names are // discarded when determining output section. So, .text$foo // contributes to .text, for example. See PE/COFF spec 3.2. for (auto it : partialSections) { PartialSection *pSec = it.second; StringRef name = getOutputSectionName(pSec->name); uint32_t outChars = pSec->characteristics; if (name == ".CRT") { // In link.exe, there is a special case for the I386 target where .CRT // sections are treated as if they have output characteristics DATA | R if // their characteristics are DATA | R | W. This implements the same // special case for all architectures. outChars = data | r; log("Processing section " + pSec->name + " -> " + name); sortCRTSectionChunks(pSec->chunks); } OutputSection *sec = createSection(name, outChars); for (Chunk *c : pSec->chunks) sec->addChunk(c); sec->addContributingPartialSection(pSec); } // Finally, move some output sections to the end. auto sectionOrder = [&](const OutputSection *s) { // Move DISCARDABLE (or non-memory-mapped) sections to the end of file // because the loader cannot handle holes. Stripping can remove other // discardable ones than .reloc, which is first of them (created early). if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) { // Move discardable sections named .debug_ to the end, after other // discardable sections. Stripping only removes the sections named // .debug_* - thus try to avoid leaving holes after stripping. if (s->name.starts_with(".debug_")) return 3; return 2; } // .rsrc should come at the end of the non-discardable sections because its // size may change by the Win32 UpdateResources() function, causing // subsequent sections to move (see https://crbug.com/827082). if (s == rsrcSec) return 1; return 0; }; llvm::stable_sort(ctx.outputSections, [&](const OutputSection *s, const OutputSection *t) { return sectionOrder(s) < sectionOrder(t); }); } void Writer::createMiscChunks() { llvm::TimeTraceScope timeScope("Misc chunks"); Configuration *config = &ctx.config; for (MergeChunk *p : ctx.mergeChunkInstances) { if (p) { p->finalizeContents(); rdataSec->addChunk(p); } } // Create thunks for locally-dllimported symbols. if (!ctx.symtab.localImportChunks.empty()) { for (Chunk *c : ctx.symtab.localImportChunks) rdataSec->addChunk(c); } // Create Debug Information Chunks debugInfoSec = config->mingw ? buildidSec : rdataSec; if (config->buildIDHash != BuildIDHash::None || config->debug || config->repro || config->cetCompat) { debugDirectory = make(ctx, debugRecords, config->repro); debugDirectory->setAlignment(4); debugInfoSec->addChunk(debugDirectory); } if (config->debug || config->buildIDHash != BuildIDHash::None) { // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We // output a PDB no matter what, and this chunk provides the only means of // allowing a debugger to match a PDB and an executable. So we need it even // if we're ultimately not going to write CodeView data to the PDB. buildId = make(ctx); debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId); if (Symbol *buildidSym = ctx.symtab.findUnderscore("__buildid")) replaceSymbol(buildidSym, buildidSym->getName(), buildId, 4); } if (config->cetCompat) { debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS, make( IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)); } // Align and add each chunk referenced by the debug data directory. for (std::pair r : debugRecords) { r.second->setAlignment(4); debugInfoSec->addChunk(r.second); } // Create SEH table. x86-only. if (config->safeSEH) createSEHTable(); // Create /guard:cf tables if requested. if (config->guardCF != GuardCFLevel::Off) createGuardCFTables(); if (isArm64EC(config->machine)) createECChunks(); if (config->autoImport) createRuntimePseudoRelocs(); if (config->mingw) insertCtorDtorSymbols(); } // Create .idata section for the DLL-imported symbol table. // The format of this section is inherently Windows-specific. // IdataContents class abstracted away the details for us, // so we just let it create chunks and add them to the section. void Writer::createImportTables() { llvm::TimeTraceScope timeScope("Import tables"); // Initialize DLLOrder so that import entries are ordered in // the same order as in the command line. (That affects DLL // initialization order, and this ordering is MSVC-compatible.) for (ImportFile *file : ctx.importFileInstances) { if (!file->live) continue; std::string dll = StringRef(file->dllName).lower(); if (ctx.config.dllOrder.count(dll) == 0) ctx.config.dllOrder[dll] = ctx.config.dllOrder.size(); if (file->impSym && !isa(file->impSym)) fatal(toString(ctx, *file->impSym) + " was replaced"); DefinedImportData *impSym = cast_or_null(file->impSym); if (ctx.config.delayLoads.count(StringRef(file->dllName).lower())) { if (!file->thunkSym) fatal("cannot delay-load " + toString(file) + " due to import of data: " + toString(ctx, *impSym)); delayIdata.add(impSym); } else { idata.add(impSym); } } } void Writer::appendImportThunks() { if (ctx.importFileInstances.empty()) return; llvm::TimeTraceScope timeScope("Import thunks"); for (ImportFile *file : ctx.importFileInstances) { if (!file->live) continue; if (!file->thunkSym) continue; if (!isa(file->thunkSym)) fatal(toString(ctx, *file->thunkSym) + " was replaced"); DefinedImportThunk *thunk = cast(file->thunkSym); if (file->thunkLive) textSec->addChunk(thunk->getChunk()); } if (!delayIdata.empty()) { Defined *helper = cast(ctx.config.delayLoadHelper); delayIdata.create(helper); for (Chunk *c : delayIdata.getChunks()) didatSec->addChunk(c); for (Chunk *c : delayIdata.getDataChunks()) dataSec->addChunk(c); for (Chunk *c : delayIdata.getCodeChunks()) textSec->addChunk(c); for (Chunk *c : delayIdata.getCodePData()) pdataSec->addChunk(c); for (Chunk *c : delayIdata.getCodeUnwindInfo()) rdataSec->addChunk(c); } } void Writer::createExportTable() { llvm::TimeTraceScope timeScope("Export table"); if (!edataSec->chunks.empty()) { // Allow using a custom built export table from input object files, instead // of having the linker synthesize the tables. if (ctx.config.hadExplicitExports) warn("literal .edata sections override exports"); } else if (!ctx.config.exports.empty()) { for (Chunk *c : edata.chunks) edataSec->addChunk(c); } if (!edataSec->chunks.empty()) { edataStart = edataSec->chunks.front(); edataEnd = edataSec->chunks.back(); } // Warn on exported deleting destructor. for (auto e : ctx.config.exports) if (e.sym && e.sym->getName().starts_with("??_G")) warn("export of deleting dtor: " + toString(ctx, *e.sym)); } void Writer::removeUnusedSections() { llvm::TimeTraceScope timeScope("Remove unused sections"); // Remove sections that we can be sure won't get content, to avoid // allocating space for their section headers. auto isUnused = [this](OutputSection *s) { if (s == relocSec) return false; // This section is populated later. // MergeChunks have zero size at this point, as their size is finalized // later. Only remove sections that have no Chunks at all. return s->chunks.empty(); }; llvm::erase_if(ctx.outputSections, isUnused); } // The Windows loader doesn't seem to like empty sections, // so we remove them if any. void Writer::removeEmptySections() { llvm::TimeTraceScope timeScope("Remove empty sections"); auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; }; llvm::erase_if(ctx.outputSections, isEmpty); } void Writer::assignOutputSectionIndices() { llvm::TimeTraceScope timeScope("Output sections indices"); // Assign final output section indices, and assign each chunk to its output // section. uint32_t idx = 1; for (OutputSection *os : ctx.outputSections) { os->sectionIndex = idx; for (Chunk *c : os->chunks) c->setOutputSectionIdx(idx); ++idx; } // Merge chunks are containers of chunks, so assign those an output section // too. for (MergeChunk *mc : ctx.mergeChunkInstances) if (mc) for (SectionChunk *sc : mc->sections) if (sc && sc->live) sc->setOutputSectionIdx(mc->getOutputSectionIdx()); } size_t Writer::addEntryToStringTable(StringRef str) { assert(str.size() > COFF::NameSize); size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field strtab.insert(strtab.end(), str.begin(), str.end()); strtab.push_back('\0'); return offsetOfEntry; } std::optional Writer::createSymbol(Defined *def) { coff_symbol16 sym; switch (def->kind()) { case Symbol::DefinedAbsoluteKind: { auto *da = dyn_cast(def); // Note: COFF symbol can only store 32-bit values, so 64-bit absolute // values will be truncated. sym.Value = da->getVA(); sym.SectionNumber = IMAGE_SYM_ABSOLUTE; break; } default: { // Don't write symbols that won't be written to the output to the symbol // table. // We also try to write DefinedSynthetic as a normal symbol. Some of these // symbols do point to an actual chunk, like __safe_se_handler_table. Others // like __ImageBase are outside of sections and thus cannot be represented. Chunk *c = def->getChunk(); if (!c) return std::nullopt; OutputSection *os = ctx.getOutputSection(c); if (!os) return std::nullopt; sym.Value = def->getRVA() - os->getRVA(); sym.SectionNumber = os->sectionIndex; break; } } // Symbols that are runtime pseudo relocations don't point to the actual // symbol data itself (as they are imported), but points to the IAT entry // instead. Avoid emitting them to the symbol table, as they can confuse // debuggers. if (def->isRuntimePseudoReloc) return std::nullopt; StringRef name = def->getName(); if (name.size() > COFF::NameSize) { sym.Name.Offset.Zeroes = 0; sym.Name.Offset.Offset = addEntryToStringTable(name); } else { memset(sym.Name.ShortName, 0, COFF::NameSize); memcpy(sym.Name.ShortName, name.data(), name.size()); } if (auto *d = dyn_cast(def)) { COFFSymbolRef ref = d->getCOFFSymbol(); sym.Type = ref.getType(); sym.StorageClass = ref.getStorageClass(); } else if (def->kind() == Symbol::DefinedImportThunkKind) { sym.Type = (IMAGE_SYM_DTYPE_FUNCTION << SCT_COMPLEX_TYPE_SHIFT) | IMAGE_SYM_TYPE_NULL; sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; } else { sym.Type = IMAGE_SYM_TYPE_NULL; sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL; } sym.NumberOfAuxSymbols = 0; return sym; } void Writer::createSymbolAndStringTable() { llvm::TimeTraceScope timeScope("Symbol and string table"); // PE/COFF images are limited to 8 byte section names. Longer names can be // supported by writing a non-standard string table, but this string table is // not mapped at runtime and the long names will therefore be inaccessible. // link.exe always truncates section names to 8 bytes, whereas binutils always // preserves long section names via the string table. LLD adopts a hybrid // solution where discardable sections have long names preserved and // non-discardable sections have their names truncated, to ensure that any // section which is mapped at runtime also has its name mapped at runtime. for (OutputSection *sec : ctx.outputSections) { if (sec->name.size() <= COFF::NameSize) continue; if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0) continue; if (ctx.config.warnLongSectionNames) { warn("section name " + sec->name + " is longer than 8 characters and will use a non-standard string " "table"); } sec->setStringTableOff(addEntryToStringTable(sec->name)); } if (ctx.config.writeSymtab) { for (ObjFile *file : ctx.objFileInstances) { for (Symbol *b : file->getSymbols()) { auto *d = dyn_cast_or_null(b); if (!d || d->writtenToSymtab) continue; d->writtenToSymtab = true; if (auto *dc = dyn_cast_or_null(d)) { COFFSymbolRef symRef = dc->getCOFFSymbol(); if (symRef.isSectionDefinition() || symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL) continue; } if (std::optional sym = createSymbol(d)) outputSymtab.push_back(*sym); if (auto *dthunk = dyn_cast(d)) { if (!dthunk->wrappedSym->writtenToSymtab) { dthunk->wrappedSym->writtenToSymtab = true; if (std::optional sym = createSymbol(dthunk->wrappedSym)) outputSymtab.push_back(*sym); } } } } } if (outputSymtab.empty() && strtab.empty()) return; // We position the symbol table to be adjacent to the end of the last section. uint64_t fileOff = fileSize; pointerToSymbolTable = fileOff; fileOff += outputSymtab.size() * sizeof(coff_symbol16); fileOff += 4 + strtab.size(); fileSize = alignTo(fileOff, ctx.config.fileAlign); } void Writer::mergeSections() { llvm::TimeTraceScope timeScope("Merge sections"); if (!pdataSec->chunks.empty()) { if (isArm64EC(ctx.config.machine)) { // On ARM64EC .pdata may contain both ARM64 and X64 data. Split them by // sorting and store their regions separately. llvm::stable_sort(pdataSec->chunks, [=](const Chunk *a, const Chunk *b) { return (a->getMachine() == AMD64) < (b->getMachine() == AMD64); }); for (auto chunk : pdataSec->chunks) { if (chunk->getMachine() == AMD64) { hybridPdata.first = chunk; hybridPdata.last = pdataSec->chunks.back(); break; } if (!pdata.first) pdata.first = chunk; pdata.last = chunk; } } else { pdata.first = pdataSec->chunks.front(); pdata.last = pdataSec->chunks.back(); } } for (auto &p : ctx.config.merge) { StringRef toName = p.second; if (p.first == toName) continue; StringSet<> names; while (true) { if (!names.insert(toName).second) fatal("/merge: cycle found for section '" + p.first + "'"); auto i = ctx.config.merge.find(toName); if (i == ctx.config.merge.end()) break; toName = i->second; } OutputSection *from = findSection(p.first); OutputSection *to = findSection(toName); if (!from) continue; if (!to) { from->name = toName; continue; } to->merge(from); } } // EC targets may have chunks of various architectures mixed together at this // point. Group code chunks of the same architecture together by sorting chunks // by their EC range type. void Writer::sortECChunks() { if (!isArm64EC(ctx.config.machine)) return; for (OutputSection *sec : ctx.outputSections) { if (sec->isCodeSection()) llvm::stable_sort(sec->chunks, [=](const Chunk *a, const Chunk *b) { std::optional aType = a->getArm64ECRangeType(), bType = b->getArm64ECRangeType(); return bType && (!aType || *aType < *bType); }); } } // Visits all sections to assign incremental, non-overlapping RVAs and // file offsets. void Writer::assignAddresses() { llvm::TimeTraceScope timeScope("Assign addresses"); Configuration *config = &ctx.config; // We need to create EC code map so that ECCodeMapChunk knows its size. // We do it here to make sure that we account for range extension chunks. createECCodeMap(); sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) + sizeof(data_directory) * numberOfDataDirectory + sizeof(coff_section) * ctx.outputSections.size(); sizeOfHeaders += config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header); sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign); fileSize = sizeOfHeaders; // The first page is kept unmapped. uint64_t rva = alignTo(sizeOfHeaders, config->align); for (OutputSection *sec : ctx.outputSections) { llvm::TimeTraceScope timeScope("Section: ", sec->name); if (sec == relocSec) addBaserels(); uint64_t rawSize = 0, virtualSize = 0; sec->header.VirtualAddress = rva; // If /FUNCTIONPADMIN is used, functions are padded in order to create a // hotpatchable image. uint32_t padding = sec->isCodeSection() ? config->functionPadMin : 0; std::optional prevECRange; for (Chunk *c : sec->chunks) { // Alignment EC code range baudaries. if (isArm64EC(ctx.config.machine) && sec->isCodeSection()) { std::optional rangeType = c->getArm64ECRangeType(); if (rangeType != prevECRange) { virtualSize = alignTo(virtualSize, 4096); prevECRange = rangeType; } } if (padding && c->isHotPatchable()) virtualSize += padding; virtualSize = alignTo(virtualSize, c->getAlignment()); c->setRVA(rva + virtualSize); virtualSize += c->getSize(); if (c->hasData) rawSize = alignTo(virtualSize, config->fileAlign); } if (virtualSize > UINT32_MAX) error("section larger than 4 GiB: " + sec->name); sec->header.VirtualSize = virtualSize; sec->header.SizeOfRawData = rawSize; if (rawSize != 0) sec->header.PointerToRawData = fileSize; rva += alignTo(virtualSize, config->align); fileSize += alignTo(rawSize, config->fileAlign); } sizeOfImage = alignTo(rva, config->align); // Assign addresses to sections in MergeChunks. for (MergeChunk *mc : ctx.mergeChunkInstances) if (mc) mc->assignSubsectionRVAs(); } template void Writer::writeHeader() { // Write DOS header. For backwards compatibility, the first part of a PE/COFF // executable consists of an MS-DOS MZ executable. If the executable is run // under DOS, that program gets run (usually to just print an error message). // When run under Windows, the loader looks at AddressOfNewExeHeader and uses // the PE header instead. Configuration *config = &ctx.config; uint8_t *buf = buffer->getBufferStart(); auto *dos = reinterpret_cast(buf); buf += sizeof(dos_header); dos->Magic[0] = 'M'; dos->Magic[1] = 'Z'; dos->UsedBytesInTheLastPage = dosStubSize % 512; dos->FileSizeInPages = divideCeil(dosStubSize, 512); dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16; dos->AddressOfRelocationTable = sizeof(dos_header); dos->AddressOfNewExeHeader = dosStubSize; // Write DOS program. memcpy(buf, dosProgram, sizeof(dosProgram)); buf += sizeof(dosProgram); // Write PE magic memcpy(buf, PEMagic, sizeof(PEMagic)); buf += sizeof(PEMagic); // Write COFF header auto *coff = reinterpret_cast(buf); buf += sizeof(*coff); switch (config->machine) { case ARM64EC: coff->Machine = AMD64; break; case ARM64X: coff->Machine = ARM64; break; default: coff->Machine = config->machine; } coff->NumberOfSections = ctx.outputSections.size(); coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE; if (config->largeAddressAware) coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE; if (!config->is64()) coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE; if (config->dll) coff->Characteristics |= IMAGE_FILE_DLL; if (config->driverUponly) coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY; if (!config->relocatable) coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED; if (config->swaprunCD) coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP; if (config->swaprunNet) coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP; coff->SizeOfOptionalHeader = sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory; // Write PE header auto *pe = reinterpret_cast(buf); buf += sizeof(*pe); pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32; // If {Major,Minor}LinkerVersion is left at 0.0, then for some // reason signing the resulting PE file with Authenticode produces a // signature that fails to validate on Windows 7 (but is OK on 10). // Set it to 14.0, which is what VS2015 outputs, and which avoids // that problem. pe->MajorLinkerVersion = 14; pe->MinorLinkerVersion = 0; pe->ImageBase = config->imageBase; pe->SectionAlignment = config->align; pe->FileAlignment = config->fileAlign; pe->MajorImageVersion = config->majorImageVersion; pe->MinorImageVersion = config->minorImageVersion; pe->MajorOperatingSystemVersion = config->majorOSVersion; pe->MinorOperatingSystemVersion = config->minorOSVersion; pe->MajorSubsystemVersion = config->majorSubsystemVersion; pe->MinorSubsystemVersion = config->minorSubsystemVersion; pe->Subsystem = config->subsystem; pe->SizeOfImage = sizeOfImage; pe->SizeOfHeaders = sizeOfHeaders; if (!config->noEntry) { Defined *entry = cast(config->entry); pe->AddressOfEntryPoint = entry->getRVA(); // Pointer to thumb code must have the LSB set, so adjust it. if (config->machine == ARMNT) pe->AddressOfEntryPoint |= 1; } pe->SizeOfStackReserve = config->stackReserve; pe->SizeOfStackCommit = config->stackCommit; pe->SizeOfHeapReserve = config->heapReserve; pe->SizeOfHeapCommit = config->heapCommit; if (config->appContainer) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER; if (config->driverWdm) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER; if (config->dynamicBase) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE; if (config->highEntropyVA) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA; if (!config->allowBind) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND; if (config->nxCompat) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT; if (!config->allowIsolation) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION; if (config->guardCF != GuardCFLevel::Off) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF; if (config->integrityCheck) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY; if (setNoSEHCharacteristic || config->noSEH) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH; if (config->terminalServerAware) pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE; pe->NumberOfRvaAndSize = numberOfDataDirectory; if (textSec->getVirtualSize()) { pe->BaseOfCode = textSec->getRVA(); pe->SizeOfCode = textSec->getRawSize(); } pe->SizeOfInitializedData = getSizeOfInitializedData(); // Write data directory auto *dir = reinterpret_cast(buf); buf += sizeof(*dir) * numberOfDataDirectory; if (edataStart) { dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA(); dir[EXPORT_TABLE].Size = edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA(); } if (importTableStart) { dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA(); dir[IMPORT_TABLE].Size = importTableSize; } if (iatStart) { dir[IAT].RelativeVirtualAddress = iatStart->getRVA(); dir[IAT].Size = iatSize; } if (rsrcSec->getVirtualSize()) { dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA(); dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize(); } // ARM64EC (but not ARM64X) contains x86_64 exception table in data directory. ChunkRange &exceptionTable = ctx.config.machine == ARM64EC ? hybridPdata : pdata; if (exceptionTable.first) { dir[EXCEPTION_TABLE].RelativeVirtualAddress = exceptionTable.first->getRVA(); dir[EXCEPTION_TABLE].Size = exceptionTable.last->getRVA() + exceptionTable.last->getSize() - exceptionTable.first->getRVA(); } if (relocSec->getVirtualSize()) { dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA(); dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize(); } if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) { if (Defined *b = dyn_cast(sym)) { dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA(); dir[TLS_TABLE].Size = config->is64() ? sizeof(object::coff_tls_directory64) : sizeof(object::coff_tls_directory32); } } if (debugDirectory) { dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA(); dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize(); } if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) { if (auto *b = dyn_cast(sym)) { SectionChunk *sc = b->getChunk(); assert(b->getRVA() >= sc->getRVA()); uint64_t offsetInChunk = b->getRVA() - sc->getRVA(); if (!sc->hasData || offsetInChunk + 4 > sc->getSize()) fatal("_load_config_used is malformed"); ArrayRef secContents = sc->getContents(); uint32_t loadConfigSize = *reinterpret_cast(&secContents[offsetInChunk]); if (offsetInChunk + loadConfigSize > sc->getSize()) fatal("_load_config_used is too large"); dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA(); dir[LOAD_CONFIG_TABLE].Size = loadConfigSize; } } if (!delayIdata.empty()) { dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress = delayIdata.getDirRVA(); dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize(); } // Write section table for (OutputSection *sec : ctx.outputSections) { sec->writeHeaderTo(buf, config->debug); buf += sizeof(coff_section); } sectionTable = ArrayRef( buf - ctx.outputSections.size() * sizeof(coff_section), buf); if (outputSymtab.empty() && strtab.empty()) return; coff->PointerToSymbolTable = pointerToSymbolTable; uint32_t numberOfSymbols = outputSymtab.size(); coff->NumberOfSymbols = numberOfSymbols; auto *symbolTable = reinterpret_cast( buffer->getBufferStart() + coff->PointerToSymbolTable); for (size_t i = 0; i != numberOfSymbols; ++i) symbolTable[i] = outputSymtab[i]; // Create the string table, it follows immediately after the symbol table. // The first 4 bytes is length including itself. buf = reinterpret_cast(&symbolTable[numberOfSymbols]); write32le(buf, strtab.size() + 4); if (!strtab.empty()) memcpy(buf + 4, strtab.data(), strtab.size()); } void Writer::openFile(StringRef path) { buffer = CHECK( FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable), "failed to open " + path); } void Writer::createSEHTable() { SymbolRVASet handlers; for (ObjFile *file : ctx.objFileInstances) { if (!file->hasSafeSEH()) error("/safeseh: " + file->getName() + " is not compatible with SEH"); markSymbolsForRVATable(file, file->getSXDataChunks(), handlers); } // Set the "no SEH" characteristic if there really were no handlers, or if // there is no load config object to point to the table of handlers. setNoSEHCharacteristic = handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used"); maybeAddRVATable(std::move(handlers), "__safe_se_handler_table", "__safe_se_handler_count"); } // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the // symbol's offset into that Chunk. static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) { Chunk *c = s->getChunk(); if (!c) return; if (auto *sc = dyn_cast(c)) c = sc->repl; // Look through ICF replacement. uint32_t off = s->getRVA() - (c ? c->getRVA() : 0); rvaSet.insert({c, off}); } // Given a symbol, add it to the GFIDs table if it is a live, defined, function // symbol in an executable section. static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms, Symbol *s) { if (!s) return; switch (s->kind()) { case Symbol::DefinedLocalImportKind: case Symbol::DefinedImportDataKind: // Defines an __imp_ pointer, so it is data, so it is ignored. break; case Symbol::DefinedCommonKind: // Common is always data, so it is ignored. break; case Symbol::DefinedAbsoluteKind: case Symbol::DefinedSyntheticKind: // Absolute is never code, synthetic generally isn't and usually isn't // determinable. break; case Symbol::LazyArchiveKind: case Symbol::LazyObjectKind: case Symbol::LazyDLLSymbolKind: case Symbol::UndefinedKind: // Undefined symbols resolve to zero, so they don't have an RVA. Lazy // symbols shouldn't have relocations. break; case Symbol::DefinedImportThunkKind: // Thunks are always code, include them. addSymbolToRVASet(addressTakenSyms, cast(s)); break; case Symbol::DefinedRegularKind: { // This is a regular, defined, symbol from a COFF file. Mark the symbol as // address taken if the symbol type is function and it's in an executable // section. auto *d = cast(s); if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) { SectionChunk *sc = dyn_cast(d->getChunk()); if (sc && sc->live && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) addSymbolToRVASet(addressTakenSyms, d); } break; } } } // Visit all relocations from all section contributions of this object file and // mark the relocation target as address-taken. void Writer::markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols) { for (Chunk *c : file->getChunks()) { // We only care about live section chunks. Common chunks and other chunks // don't generally contain relocations. SectionChunk *sc = dyn_cast(c); if (!sc || !sc->live) continue; for (const coff_relocation &reloc : sc->getRelocs()) { if (ctx.config.machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32) // Ignore relative relocations on x86. On x86_64 they can't be ignored // since they're also used to compute absolute addresses. continue; Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex); maybeAddAddressTakenFunction(usedSymbols, ref); } } } // Create the guard function id table. This is a table of RVAs of all // address-taken functions. It is sorted and uniqued, just like the safe SEH // table. void Writer::createGuardCFTables() { Configuration *config = &ctx.config; SymbolRVASet addressTakenSyms; SymbolRVASet giatsRVASet; std::vector giatsSymbols; SymbolRVASet longJmpTargets; SymbolRVASet ehContTargets; for (ObjFile *file : ctx.objFileInstances) { // If the object was compiled with /guard:cf, the address taken symbols // are in .gfids$y sections, and the longjmp targets are in .gljmp$y // sections. If the object was not compiled with /guard:cf, we assume there // were no setjmp targets, and that all code symbols with relocations are // possibly address-taken. if (file->hasGuardCF()) { markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms); markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet); getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols); markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets); } else { markSymbolsWithRelocations(file, addressTakenSyms); } // If the object was compiled with /guard:ehcont, the ehcont targets are in // .gehcont$y sections. if (file->hasGuardEHCont()) markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets); } // Mark the image entry as address-taken. if (config->entry) maybeAddAddressTakenFunction(addressTakenSyms, config->entry); // Mark exported symbols in executable sections as address-taken. for (Export &e : config->exports) maybeAddAddressTakenFunction(addressTakenSyms, e.sym); // For each entry in the .giats table, check if it has a corresponding load // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if // so, add the load thunk to the address taken (.gfids) table. for (Symbol *s : giatsSymbols) { if (auto *di = dyn_cast(s)) { if (di->loadThunkSym) addSymbolToRVASet(addressTakenSyms, di->loadThunkSym); } } // Ensure sections referenced in the gfid table are 16-byte aligned. for (const ChunkAndOffset &c : addressTakenSyms) if (c.inputChunk->getAlignment() < 16) c.inputChunk->setAlignment(16); maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table", "__guard_fids_count"); // Add the Guard Address Taken IAT Entry Table (.giats). maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table", "__guard_iat_count"); // Add the longjmp target table unless the user told us not to. if (config->guardCF & GuardCFLevel::LongJmp) maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table", "__guard_longjmp_count"); // Add the ehcont target table unless the user told us not to. if (config->guardCF & GuardCFLevel::EHCont) maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table", "__guard_eh_cont_count"); // Set __guard_flags, which will be used in the load config to indicate that // /guard:cf was enabled. uint32_t guardFlags = uint32_t(GuardFlags::CF_INSTRUMENTED) | uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT); if (config->guardCF & GuardCFLevel::LongJmp) guardFlags |= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT); if (config->guardCF & GuardCFLevel::EHCont) guardFlags |= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT); Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags"); cast(flagSym)->setVA(guardFlags); } // Take a list of input sections containing symbol table indices and add those // symbols to a vector. The challenge is that symbol RVAs are not known and // depend on the table size, so we can't directly build a set of integers. void Writer::getSymbolsFromSections(ObjFile *file, ArrayRef symIdxChunks, std::vector &symbols) { for (SectionChunk *c : symIdxChunks) { // Skip sections discarded by linker GC. This comes up when a .gfids section // is associated with something like a vtable and the vtable is discarded. // In this case, the associated gfids section is discarded, and we don't // mark the virtual member functions as address-taken by the vtable. if (!c->live) continue; // Validate that the contents look like symbol table indices. ArrayRef data = c->getContents(); if (data.size() % 4 != 0) { warn("ignoring " + c->getSectionName() + " symbol table index section in object " + toString(file)); continue; } // Read each symbol table index and check if that symbol was included in the // final link. If so, add it to the vector of symbols. ArrayRef symIndices( reinterpret_cast(data.data()), data.size() / 4); ArrayRef objSymbols = file->getSymbols(); for (uint32_t symIndex : symIndices) { if (symIndex >= objSymbols.size()) { warn("ignoring invalid symbol table index in section " + c->getSectionName() + " in object " + toString(file)); continue; } if (Symbol *s = objSymbols[symIndex]) { if (s->isLive()) symbols.push_back(cast(s)); } } } } // Take a list of input sections containing symbol table indices and add those // symbols to an RVA table. void Writer::markSymbolsForRVATable(ObjFile *file, ArrayRef symIdxChunks, SymbolRVASet &tableSymbols) { std::vector syms; getSymbolsFromSections(file, symIdxChunks, syms); for (Symbol *s : syms) addSymbolToRVASet(tableSymbols, cast(s)); } // Replace the absolute table symbol with a synthetic symbol pointing to // tableChunk so that we can emit base relocations for it and resolve section // relative relocations. void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym, StringRef countSym, bool hasFlag) { if (tableSymbols.empty()) return; NonSectionChunk *tableChunk; if (hasFlag) tableChunk = make(std::move(tableSymbols)); else tableChunk = make(std::move(tableSymbols)); rdataSec->addChunk(tableChunk); Symbol *t = ctx.symtab.findUnderscore(tableSym); Symbol *c = ctx.symtab.findUnderscore(countSym); replaceSymbol(t, t->getName(), tableChunk); cast(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4)); } // Create CHPE metadata chunks. void Writer::createECChunks() { auto codeMapChunk = make(codeMap); rdataSec->addChunk(codeMapChunk); Symbol *codeMapSym = ctx.symtab.findUnderscore("__hybrid_code_map"); replaceSymbol(codeMapSym, codeMapSym->getName(), codeMapChunk); } // MinGW specific. Gather all relocations that are imported from a DLL even // though the code didn't expect it to, produce the table that the runtime // uses for fixing them up, and provide the synthetic symbols that the // runtime uses for finding the table. void Writer::createRuntimePseudoRelocs() { std::vector rels; for (Chunk *c : ctx.symtab.getChunks()) { auto *sc = dyn_cast(c); if (!sc || !sc->live) continue; sc->getRuntimePseudoRelocs(rels); } if (!ctx.config.pseudoRelocs) { // Not writing any pseudo relocs; if some were needed, error out and // indicate what required them. for (const RuntimePseudoReloc &rpr : rels) error("automatic dllimport of " + rpr.sym->getName() + " in " + toString(rpr.target->file) + " requires pseudo relocations"); return; } if (!rels.empty()) log("Writing " + Twine(rels.size()) + " runtime pseudo relocations"); PseudoRelocTableChunk *table = make(rels); rdataSec->addChunk(table); EmptyChunk *endOfList = make(); rdataSec->addChunk(endOfList); Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__"); Symbol *endSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__"); replaceSymbol(headSym, headSym->getName(), table); replaceSymbol(endSym, endSym->getName(), endOfList); } // MinGW specific. // The MinGW .ctors and .dtors lists have sentinels at each end; // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end. // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__ // and __DTOR_LIST__ respectively. void Writer::insertCtorDtorSymbols() { AbsolutePointerChunk *ctorListHead = make(ctx, -1); AbsolutePointerChunk *ctorListEnd = make(ctx, 0); AbsolutePointerChunk *dtorListHead = make(ctx, -1); AbsolutePointerChunk *dtorListEnd = make(ctx, 0); ctorsSec->insertChunkAtStart(ctorListHead); ctorsSec->addChunk(ctorListEnd); dtorsSec->insertChunkAtStart(dtorListHead); dtorsSec->addChunk(dtorListEnd); Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__"); Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__"); replaceSymbol(ctorListSym, ctorListSym->getName(), ctorListHead); replaceSymbol(dtorListSym, dtorListSym->getName(), dtorListHead); } // Handles /section options to allow users to overwrite // section attributes. void Writer::setSectionPermissions() { llvm::TimeTraceScope timeScope("Sections permissions"); for (auto &p : ctx.config.section) { StringRef name = p.first; uint32_t perm = p.second; for (OutputSection *sec : ctx.outputSections) if (sec->name == name) sec->setPermissions(perm); } } // Set symbols used by ARM64EC metadata. void Writer::setECSymbols() { if (!isArm64EC(ctx.config.machine)) return; Symbol *rfeTableSym = ctx.symtab.findUnderscore("__arm64x_extra_rfe_table"); replaceSymbol(rfeTableSym, "__arm64x_extra_rfe_table", pdata.first); if (pdata.first) { Symbol *rfeSizeSym = ctx.symtab.findUnderscore("__arm64x_extra_rfe_table_size"); cast(rfeSizeSym) ->setVA(pdata.last->getRVA() + pdata.last->getSize() - pdata.first->getRVA()); } } // Write section contents to a mmap'ed file. void Writer::writeSections() { llvm::TimeTraceScope timeScope("Write sections"); uint8_t *buf = buffer->getBufferStart(); for (OutputSection *sec : ctx.outputSections) { uint8_t *secBuf = buf + sec->getFileOff(); // Fill gaps between functions in .text with INT3 instructions // instead of leaving as NUL bytes (which can be interpreted as // ADD instructions). Only fill the gaps between chunks. Most // chunks overwrite it anyway, but uninitialized data chunks // merged into a code section don't. if ((sec->header.Characteristics & IMAGE_SCN_CNT_CODE) && (ctx.config.machine == AMD64 || ctx.config.machine == I386)) { uint32_t prevEnd = 0; for (Chunk *c : sec->chunks) { uint32_t off = c->getRVA() - sec->getRVA(); memset(secBuf + prevEnd, 0xCC, off - prevEnd); prevEnd = off + c->getSize(); } memset(secBuf + prevEnd, 0xCC, sec->getRawSize() - prevEnd); } parallelForEach(sec->chunks, [&](Chunk *c) { c->writeTo(secBuf + c->getRVA() - sec->getRVA()); }); } } void Writer::writeBuildId() { llvm::TimeTraceScope timeScope("Write build ID"); // There are two important parts to the build ID. // 1) If building with debug info, the COFF debug directory contains a // timestamp as well as a Guid and Age of the PDB. // 2) In all cases, the PE COFF file header also contains a timestamp. // For reproducibility, instead of a timestamp we want to use a hash of the // PE contents. Configuration *config = &ctx.config; bool generateSyntheticBuildId = config->buildIDHash == BuildIDHash::Binary; if (generateSyntheticBuildId) { assert(buildId && "BuildId is not set!"); // BuildId->BuildId was filled in when the PDB was written. } // At this point the only fields in the COFF file which remain unset are the // "timestamp" in the COFF file header, and the ones in the coff debug // directory. Now we can hash the file and write that hash to the various // timestamp fields in the file. StringRef outputFileData( reinterpret_cast(buffer->getBufferStart()), buffer->getBufferSize()); uint32_t timestamp = config->timestamp; uint64_t hash = 0; if (config->repro || generateSyntheticBuildId) hash = xxh3_64bits(outputFileData); if (config->repro) timestamp = static_cast(hash); if (generateSyntheticBuildId) { buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70; buildId->buildId->PDB70.Age = 1; memcpy(buildId->buildId->PDB70.Signature, &hash, 8); // xxhash only gives us 8 bytes, so put some fixed data in the other half. memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8); } if (debugDirectory) debugDirectory->setTimeDateStamp(timestamp); uint8_t *buf = buffer->getBufferStart(); buf += dosStubSize + sizeof(PEMagic); object::coff_file_header *coffHeader = reinterpret_cast(buf); coffHeader->TimeDateStamp = timestamp; } // Sort .pdata section contents according to PE/COFF spec 5.5. template void Writer::sortExceptionTable(ChunkRange &exceptionTable) { if (!exceptionTable.first) return; // We assume .pdata contains function table entries only. auto bufAddr = [&](Chunk *c) { OutputSection *os = ctx.getOutputSection(c); return buffer->getBufferStart() + os->getFileOff() + c->getRVA() - os->getRVA(); }; uint8_t *begin = bufAddr(exceptionTable.first); uint8_t *end = bufAddr(exceptionTable.last) + exceptionTable.last->getSize(); if ((end - begin) % sizeof(T) != 0) { fatal("unexpected .pdata size: " + Twine(end - begin) + " is not a multiple of " + Twine(sizeof(T))); } parallelSort(MutableArrayRef(reinterpret_cast(begin), reinterpret_cast(end)), [](const T &a, const T &b) { return a.begin < b.begin; }); } // Sort .pdata section contents according to PE/COFF spec 5.5. void Writer::sortExceptionTables() { llvm::TimeTraceScope timeScope("Sort exception table"); struct EntryX64 { ulittle32_t begin, end, unwind; }; struct EntryArm { ulittle32_t begin, unwind; }; switch (ctx.config.machine) { case AMD64: sortExceptionTable(pdata); break; case ARM64EC: case ARM64X: sortExceptionTable(hybridPdata); [[fallthrough]]; case ARMNT: case ARM64: sortExceptionTable(pdata); break; default: if (pdata.first) lld::errs() << "warning: don't know how to handle .pdata.\n"; break; } } // The CRT section contains, among other things, the array of function // pointers that initialize every global variable that is not trivially // constructed. The CRT calls them one after the other prior to invoking // main(). // // As per C++ spec, 3.6.2/2.3, // "Variables with ordered initialization defined within a single // translation unit shall be initialized in the order of their definitions // in the translation unit" // // It is therefore critical to sort the chunks containing the function // pointers in the order that they are listed in the object file (top to // bottom), otherwise global objects might not be initialized in the // correct order. void Writer::sortCRTSectionChunks(std::vector &chunks) { auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) { auto sa = dyn_cast(a); auto sb = dyn_cast(b); assert(sa && sb && "Non-section chunks in CRT section!"); StringRef sAObj = sa->file->mb.getBufferIdentifier(); StringRef sBObj = sb->file->mb.getBufferIdentifier(); return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber(); }; llvm::stable_sort(chunks, sectionChunkOrder); if (ctx.config.verbose) { for (auto &c : chunks) { auto sc = dyn_cast(c); log(" " + sc->file->mb.getBufferIdentifier().str() + ", SectionID: " + Twine(sc->getSectionNumber())); } } } OutputSection *Writer::findSection(StringRef name) { for (OutputSection *sec : ctx.outputSections) if (sec->name == name) return sec; return nullptr; } uint32_t Writer::getSizeOfInitializedData() { uint32_t res = 0; for (OutputSection *s : ctx.outputSections) if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA) res += s->getRawSize(); return res; } // Add base relocations to .reloc section. void Writer::addBaserels() { if (!ctx.config.relocatable) return; relocSec->chunks.clear(); std::vector v; for (OutputSection *sec : ctx.outputSections) { if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) continue; llvm::TimeTraceScope timeScope("Base relocations: ", sec->name); // Collect all locations for base relocations. for (Chunk *c : sec->chunks) c->getBaserels(&v); // Add the addresses to .reloc section. if (!v.empty()) addBaserelBlocks(v); v.clear(); } } // Add addresses to .reloc section. Note that addresses are grouped by page. void Writer::addBaserelBlocks(std::vector &v) { const uint32_t mask = ~uint32_t(pageSize - 1); uint32_t page = v[0].rva & mask; size_t i = 0, j = 1; for (size_t e = v.size(); j < e; ++j) { uint32_t p = v[j].rva & mask; if (p == page) continue; relocSec->addChunk(make(page, &v[i], &v[0] + j)); i = j; page = p; } if (i == j) return; relocSec->addChunk(make(page, &v[i], &v[0] + j)); } PartialSection *Writer::createPartialSection(StringRef name, uint32_t outChars) { PartialSection *&pSec = partialSections[{name, outChars}]; if (pSec) return pSec; pSec = make(name, outChars); return pSec; } PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) { auto it = partialSections.find({name, outChars}); if (it != partialSections.end()) return it->second; return nullptr; } void Writer::fixTlsAlignment() { Defined *tlsSym = dyn_cast_or_null(ctx.symtab.findUnderscore("_tls_used")); if (!tlsSym) return; OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk()); assert(sec && tlsSym->getRVA() >= sec->getRVA() && "no output section for _tls_used"); uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff(); uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA(); uint64_t directorySize = ctx.config.is64() ? sizeof(object::coff_tls_directory64) : sizeof(object::coff_tls_directory32); if (tlsOffset + directorySize > sec->getRawSize()) fatal("_tls_used sym is malformed"); if (ctx.config.is64()) { object::coff_tls_directory64 *tlsDir = reinterpret_cast(&secBuf[tlsOffset]); tlsDir->setAlignment(tlsAlignment); } else { object::coff_tls_directory32 *tlsDir = reinterpret_cast(&secBuf[tlsOffset]); tlsDir->setAlignment(tlsAlignment); } } void Writer::prepareLoadConfig() { Symbol *sym = ctx.symtab.findUnderscore("_load_config_used"); auto *b = cast_if_present(sym); if (!b) { if (ctx.config.guardCF != GuardCFLevel::Off) warn("Control Flow Guard is enabled but '_load_config_used' is missing"); return; } OutputSection *sec = ctx.getOutputSection(b->getChunk()); uint8_t *buf = buffer->getBufferStart(); uint8_t *secBuf = buf + sec->getFileOff(); uint8_t *symBuf = secBuf + (b->getRVA() - sec->getRVA()); uint32_t expectedAlign = ctx.config.is64() ? 8 : 4; if (b->getChunk()->getAlignment() < expectedAlign) warn("'_load_config_used' is misaligned (expected alignment to be " + Twine(expectedAlign) + " bytes, got " + Twine(b->getChunk()->getAlignment()) + " instead)"); else if (!isAligned(Align(expectedAlign), b->getRVA())) warn("'_load_config_used' is misaligned (RVA is 0x" + Twine::utohexstr(b->getRVA()) + " not aligned to " + Twine(expectedAlign) + " bytes)"); if (ctx.config.is64()) prepareLoadConfig(reinterpret_cast(symBuf)); else prepareLoadConfig(reinterpret_cast(symBuf)); } template void Writer::prepareLoadConfig(T *loadConfig) { if (ctx.config.dependentLoadFlags) loadConfig->DependentLoadFlags = ctx.config.dependentLoadFlags; checkLoadConfigGuardData(loadConfig); } template void Writer::checkLoadConfigGuardData(const T *loadConfig) { size_t loadConfigSize = loadConfig->Size; #define RETURN_IF_NOT_CONTAINS(field) \ if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) { \ warn("'_load_config_used' structure too small to include " #field); \ return; \ } #define IF_CONTAINS(field) \ if (loadConfigSize >= offsetof(T, field) + sizeof(T::field)) #define CHECK_VA(field, sym) \ if (auto *s = dyn_cast(ctx.symtab.findUnderscore(sym))) \ if (loadConfig->field != ctx.config.imageBase + s->getRVA()) \ warn(#field " not set correctly in '_load_config_used'"); #define CHECK_ABSOLUTE(field, sym) \ if (auto *s = dyn_cast(ctx.symtab.findUnderscore(sym))) \ if (loadConfig->field != s->getVA()) \ warn(#field " not set correctly in '_load_config_used'"); if (ctx.config.guardCF == GuardCFLevel::Off) return; RETURN_IF_NOT_CONTAINS(GuardFlags) CHECK_VA(GuardCFFunctionTable, "__guard_fids_table") CHECK_ABSOLUTE(GuardCFFunctionCount, "__guard_fids_count") CHECK_ABSOLUTE(GuardFlags, "__guard_flags") IF_CONTAINS(GuardAddressTakenIatEntryCount) { CHECK_VA(GuardAddressTakenIatEntryTable, "__guard_iat_table") CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount, "__guard_iat_count") } if (!(ctx.config.guardCF & GuardCFLevel::LongJmp)) return; RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount) CHECK_VA(GuardLongJumpTargetTable, "__guard_longjmp_table") CHECK_ABSOLUTE(GuardLongJumpTargetCount, "__guard_longjmp_count") if (!(ctx.config.guardCF & GuardCFLevel::EHCont)) return; RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount) CHECK_VA(GuardEHContinuationTable, "__guard_eh_cont_table") CHECK_ABSOLUTE(GuardEHContinuationCount, "__guard_eh_cont_count") #undef RETURN_IF_NOT_CONTAINS #undef IF_CONTAINS #undef CHECK_VA #undef CHECK_ABSOLUTE }