//===- LTO.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "LTO.h" #include "COFFLinkerContext.h" #include "Config.h" #include "InputFiles.h" #include "Symbols.h" #include "lld/Common/Args.h" #include "lld/Common/CommonLinkerContext.h" #include "lld/Common/Strings.h" #include "lld/Common/TargetOptionsCommandFlags.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/LTO/Config.h" #include "llvm/LTO/LTO.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Support/Caching.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; using namespace llvm::object; using namespace lld; using namespace lld::coff; // Creates an empty file to and returns a raw_fd_ostream to write to it. static std::unique_ptr openFile(StringRef file) { std::error_code ec; auto ret = std::make_unique(file, ec, sys::fs::OpenFlags::OF_None); if (ec) { error("cannot open " + file + ": " + ec.message()); return nullptr; } return ret; } std::string BitcodeCompiler::getThinLTOOutputFile(StringRef path) { return lto::getThinLTOOutputFile(path, ctx.config.thinLTOPrefixReplaceOld, ctx.config.thinLTOPrefixReplaceNew); } lto::Config BitcodeCompiler::createConfig() { lto::Config c; c.Options = initTargetOptionsFromCodeGenFlags(); c.Options.EmitAddrsig = true; for (StringRef C : ctx.config.mllvmOpts) c.MllvmArgs.emplace_back(C.str()); // Always emit a section per function/datum with LTO. LLVM LTO should get most // of the benefit of linker GC, but there are still opportunities for ICF. c.Options.FunctionSections = true; c.Options.DataSections = true; // Use static reloc model on 32-bit x86 because it usually results in more // compact code, and because there are also known code generation bugs when // using the PIC model (see PR34306). if (ctx.config.machine == COFF::IMAGE_FILE_MACHINE_I386) c.RelocModel = Reloc::Static; else c.RelocModel = Reloc::PIC_; #ifndef NDEBUG c.DisableVerify = false; #else c.DisableVerify = true; #endif c.DiagHandler = diagnosticHandler; c.DwoDir = ctx.config.dwoDir.str(); c.OptLevel = ctx.config.ltoo; c.CPU = getCPUStr(); c.MAttrs = getMAttrs(); std::optional optLevelOrNone = CodeGenOpt::getLevel( ctx.config.ltoCgo.value_or(args::getCGOptLevel(ctx.config.ltoo))); assert(optLevelOrNone && "Invalid optimization level!"); c.CGOptLevel = *optLevelOrNone; c.AlwaysEmitRegularLTOObj = !ctx.config.ltoObjPath.empty(); c.DebugPassManager = ctx.config.ltoDebugPassManager; c.CSIRProfile = std::string(ctx.config.ltoCSProfileFile); c.RunCSIRInstr = ctx.config.ltoCSProfileGenerate; c.PGOWarnMismatch = ctx.config.ltoPGOWarnMismatch; if (ctx.config.saveTemps) checkError(c.addSaveTemps(std::string(ctx.config.outputFile) + ".", /*UseInputModulePath*/ true)); return c; } BitcodeCompiler::BitcodeCompiler(COFFLinkerContext &c) : ctx(c) { // Initialize indexFile. if (!ctx.config.thinLTOIndexOnlyArg.empty()) indexFile = openFile(ctx.config.thinLTOIndexOnlyArg); // Initialize ltoObj. lto::ThinBackend backend; if (ctx.config.thinLTOIndexOnly) { auto OnIndexWrite = [&](StringRef S) { thinIndices.erase(S); }; backend = lto::createWriteIndexesThinBackend( std::string(ctx.config.thinLTOPrefixReplaceOld), std::string(ctx.config.thinLTOPrefixReplaceNew), std::string(ctx.config.thinLTOPrefixReplaceNativeObject), ctx.config.thinLTOEmitImportsFiles, indexFile.get(), OnIndexWrite); } else { backend = lto::createInProcessThinBackend( llvm::heavyweight_hardware_concurrency(ctx.config.thinLTOJobs)); } ltoObj = std::make_unique(createConfig(), backend, ctx.config.ltoPartitions); } BitcodeCompiler::~BitcodeCompiler() = default; static void undefine(Symbol *s) { replaceSymbol(s, s->getName()); } void BitcodeCompiler::add(BitcodeFile &f) { lto::InputFile &obj = *f.obj; unsigned symNum = 0; std::vector symBodies = f.getSymbols(); std::vector resols(symBodies.size()); if (ctx.config.thinLTOIndexOnly) thinIndices.insert(obj.getName()); // Provide a resolution to the LTO API for each symbol. for (const lto::InputFile::Symbol &objSym : obj.symbols()) { Symbol *sym = symBodies[symNum]; lto::SymbolResolution &r = resols[symNum]; ++symNum; // Ideally we shouldn't check for SF_Undefined but currently IRObjectFile // reports two symbols for module ASM defined. Without this check, lld // flags an undefined in IR with a definition in ASM as prevailing. // Once IRObjectFile is fixed to report only one symbol this hack can // be removed. r.Prevailing = !objSym.isUndefined() && sym->getFile() == &f; r.VisibleToRegularObj = sym->isUsedInRegularObj; if (r.Prevailing) undefine(sym); // We tell LTO to not apply interprocedural optimization for wrapped // (with -wrap) symbols because otherwise LTO would inline them while // their values are still not final. r.LinkerRedefined = !sym->canInline; } checkError(ltoObj->add(std::move(f.obj), resols)); } // Merge all the bitcode files we have seen, codegen the result // and return the resulting objects. std::vector BitcodeCompiler::compile() { unsigned maxTasks = ltoObj->getMaxTasks(); buf.resize(maxTasks); files.resize(maxTasks); file_names.resize(maxTasks); // The /lldltocache option specifies the path to a directory in which to cache // native object files for ThinLTO incremental builds. If a path was // specified, configure LTO to use it as the cache directory. FileCache cache; if (!ctx.config.ltoCache.empty()) cache = check(localCache("ThinLTO", "Thin", ctx.config.ltoCache, [&](size_t task, const Twine &moduleName, std::unique_ptr mb) { files[task] = std::move(mb); file_names[task] = moduleName.str(); })); checkError(ltoObj->run( [&](size_t task, const Twine &moduleName) { buf[task].first = moduleName.str(); return std::make_unique( std::make_unique(buf[task].second)); }, cache)); // Emit empty index files for non-indexed files for (StringRef s : thinIndices) { std::string path = getThinLTOOutputFile(s); openFile(path + ".thinlto.bc"); if (ctx.config.thinLTOEmitImportsFiles) openFile(path + ".imports"); } // ThinLTO with index only option is required to generate only the index // files. After that, we exit from linker and ThinLTO backend runs in a // distributed environment. if (ctx.config.thinLTOIndexOnly) { if (!ctx.config.ltoObjPath.empty()) saveBuffer(buf[0].second, ctx.config.ltoObjPath); if (indexFile) indexFile->close(); return {}; } if (!ctx.config.ltoCache.empty()) pruneCache(ctx.config.ltoCache, ctx.config.ltoCachePolicy, files); std::vector ret; for (unsigned i = 0; i != maxTasks; ++i) { StringRef bitcodeFilePath; // Get the native object contents either from the cache or from memory. Do // not use the cached MemoryBuffer directly, or the PDB will not be // deterministic. StringRef objBuf; if (files[i]) { objBuf = files[i]->getBuffer(); bitcodeFilePath = file_names[i]; } else { objBuf = buf[i].second; bitcodeFilePath = buf[i].first; } if (objBuf.empty()) continue; // If the input bitcode file is path/to/a.obj, then the corresponding lto // object file name will look something like: path/to/main.exe.lto.a.obj. StringRef ltoObjName; if (bitcodeFilePath == "ld-temp.o") { ltoObjName = saver().save(Twine(ctx.config.outputFile) + ".lto" + (i == 0 ? Twine("") : Twine('.') + Twine(i)) + ".obj"); } else { StringRef directory = sys::path::parent_path(bitcodeFilePath); StringRef baseName = sys::path::filename(bitcodeFilePath); StringRef outputFileBaseName = sys::path::filename(ctx.config.outputFile); SmallString<64> path; sys::path::append(path, directory, outputFileBaseName + ".lto." + baseName); sys::path::remove_dots(path, true); ltoObjName = saver().save(path.str()); } if (ctx.config.saveTemps) saveBuffer(buf[i].second, ltoObjName); ret.push_back(make(ctx, MemoryBufferRef(objBuf, ltoObjName))); } return ret; }