//===- Chunks.cpp ---------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Chunks.h" #include "COFFLinkerContext.h" #include "InputFiles.h" #include "SymbolTable.h" #include "Symbols.h" #include "Writer.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/Object/COFF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::COFF; using llvm::support::ulittle32_t; namespace lld::coff { SectionChunk::SectionChunk(ObjFile *f, const coff_section *h, Kind k) : Chunk(k), file(f), header(h), repl(this) { // Initialize relocs. if (file) setRelocs(file->getCOFFObj()->getRelocations(header)); // Initialize sectionName. StringRef sectionName; if (file) { if (Expected e = file->getCOFFObj()->getSectionName(header)) sectionName = *e; } sectionNameData = sectionName.data(); sectionNameSize = sectionName.size(); setAlignment(header->getAlignment()); hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); // If linker GC is disabled, every chunk starts out alive. If linker GC is // enabled, treat non-comdat sections as roots. Generally optimized object // files will be built with -ffunction-sections or /Gy, so most things worth // stripping will be in a comdat. if (file) live = !file->ctx.config.doGC || !isCOMDAT(); else live = true; } // SectionChunk is one of the most frequently allocated classes, so it is // important to keep it as compact as possible. As of this writing, the number // below is the size of this class on x64 platforms. static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } // Verify that given sections are appropriate targets for SECREL // relocations. This check is relaxed because unfortunately debug // sections have section-relative relocations against absolute symbols. static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { if (os) return true; if (sec->isCodeView()) return false; error("SECREL relocation cannot be applied to absolute symbols"); return false; } static void applySecRel(const SectionChunk *sec, uint8_t *off, OutputSection *os, uint64_t s) { if (!checkSecRel(sec, os)) return; uint64_t secRel = s - os->getRVA(); if (secRel > UINT32_MAX) { error("overflow in SECREL relocation in section: " + sec->getSectionName()); return; } add32(off, secRel); } static void applySecIdx(uint8_t *off, OutputSection *os, unsigned numOutputSections) { // numOutputSections is the largest valid section index. Make sure that // it fits in 16 bits. assert(numOutputSections <= 0xffff && "size of outputSections is too big"); // Absolute symbol doesn't have section index, but section index relocation // against absolute symbol should be resolved to one plus the last output // section index. This is required for compatibility with MSVC. if (os) add16(off, os->sectionIndex); else add16(off, numOutputSections + 1); } void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s, uint64_t p, uint64_t imageBase) const { switch (type) { case IMAGE_REL_AMD64_ADDR32: add32(off, s + imageBase); break; case IMAGE_REL_AMD64_ADDR64: add64(off, s + imageBase); break; case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; case IMAGE_REL_AMD64_SECTION: applySecIdx(off, os, file->ctx.outputSections.size()); break; case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; default: error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + toString(file)); } } void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s, uint64_t p, uint64_t imageBase) const { switch (type) { case IMAGE_REL_I386_ABSOLUTE: break; case IMAGE_REL_I386_DIR32: add32(off, s + imageBase); break; case IMAGE_REL_I386_DIR32NB: add32(off, s); break; case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; case IMAGE_REL_I386_SECTION: applySecIdx(off, os, file->ctx.outputSections.size()); break; case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; default: error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + toString(file)); } } static void applyMOV(uint8_t *off, uint16_t v) { write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); } static uint16_t readMOV(uint8_t *off, bool movt) { uint16_t op1 = read16le(off); if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + " instruction in MOV32T relocation"); uint16_t op2 = read16le(off + 2); if ((op2 & 0x8000) != 0) error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + " instruction in MOV32T relocation"); return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | ((op1 & 0x000f) << 12); } void applyMOV32T(uint8_t *off, uint32_t v) { uint16_t immW = readMOV(off, false); // read MOVW operand uint16_t immT = readMOV(off + 4, true); // read MOVT operand uint32_t imm = immW | (immT << 16); v += imm; // add the immediate offset applyMOV(off, v); // set MOVW operand applyMOV(off + 4, v >> 16); // set MOVT operand } static void applyBranch20T(uint8_t *off, int32_t v) { if (!isInt<21>(v)) error("relocation out of range"); uint32_t s = v < 0 ? 1 : 0; uint32_t j1 = (v >> 19) & 1; uint32_t j2 = (v >> 18) & 1; or16(off, (s << 10) | ((v >> 12) & 0x3f)); or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); } void applyBranch24T(uint8_t *off, int32_t v) { if (!isInt<25>(v)) error("relocation out of range"); uint32_t s = v < 0 ? 1 : 0; uint32_t j1 = ((~v >> 23) & 1) ^ s; uint32_t j2 = ((~v >> 22) & 1) ^ s; or16(off, (s << 10) | ((v >> 12) & 0x3ff)); // Clear out the J1 and J2 bits which may be set. write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); } void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s, uint64_t p, uint64_t imageBase) const { // Pointer to thumb code must have the LSB set. uint64_t sx = s; if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) sx |= 1; switch (type) { case IMAGE_REL_ARM_ADDR32: add32(off, sx + imageBase); break; case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; case IMAGE_REL_ARM_MOV32T: applyMOV32T(off, sx + imageBase); break; case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; case IMAGE_REL_ARM_SECTION: applySecIdx(off, os, file->ctx.outputSections.size()); break; case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; default: error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + toString(file)); } } // Interpret the existing immediate value as a byte offset to the // target symbol, then update the instruction with the immediate as // the page offset from the current instruction to the target. void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { uint32_t orig = read32le(off); int64_t imm = SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC)); s += imm; imm = (s >> shift) - (p >> shift); uint32_t immLo = (imm & 0x3) << 29; uint32_t immHi = (imm & 0x1FFFFC) << 3; uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); write32le(off, (orig & ~mask) | immLo | immHi); } // Update the immediate field in a AARCH64 ldr, str, and add instruction. // Optionally limit the range of the written immediate by one or more bits // (rangeLimit). void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { uint32_t orig = read32le(off); imm += (orig >> 10) & 0xFFF; orig &= ~(0xFFF << 10); write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); } // Add the 12 bit page offset to the existing immediate. // Ldr/str instructions store the opcode immediate scaled // by the load/store size (giving a larger range for larger // loads/stores). The immediate is always (both before and after // fixing up the relocation) stored scaled similarly. // Even if larger loads/stores have a larger range, limit the // effective offset to 12 bit, since it is intended to be a // page offset. static void applyArm64Ldr(uint8_t *off, uint64_t imm) { uint32_t orig = read32le(off); uint32_t size = orig >> 30; // 0x04000000 indicates SIMD/FP registers // 0x00800000 indicates 128 bit if ((orig & 0x4800000) == 0x4800000) size += 4; if ((imm & ((1 << size) - 1)) != 0) error("misaligned ldr/str offset"); applyArm64Imm(off, imm >> size, size); } static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, OutputSection *os, uint64_t s) { if (checkSecRel(sec, os)) applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); } static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, OutputSection *os, uint64_t s) { if (!checkSecRel(sec, os)) return; uint64_t secRel = (s - os->getRVA()) >> 12; if (0xfff < secRel) { error("overflow in SECREL_HIGH12A relocation in section: " + sec->getSectionName()); return; } applyArm64Imm(off, secRel & 0xfff, 0); } static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, OutputSection *os, uint64_t s) { if (checkSecRel(sec, os)) applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); } void applyArm64Branch26(uint8_t *off, int64_t v) { if (!isInt<28>(v)) error("relocation out of range"); or32(off, (v & 0x0FFFFFFC) >> 2); } static void applyArm64Branch19(uint8_t *off, int64_t v) { if (!isInt<21>(v)) error("relocation out of range"); or32(off, (v & 0x001FFFFC) << 3); } static void applyArm64Branch14(uint8_t *off, int64_t v) { if (!isInt<16>(v)) error("relocation out of range"); or32(off, (v & 0x0000FFFC) << 3); } void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s, uint64_t p, uint64_t imageBase) const { switch (type) { case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; case IMAGE_REL_ARM64_ADDR32: add32(off, s + imageBase); break; case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; case IMAGE_REL_ARM64_ADDR64: add64(off, s + imageBase); break; case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; case IMAGE_REL_ARM64_SECTION: applySecIdx(off, os, file->ctx.outputSections.size()); break; case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; default: error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + toString(file)); } } static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, Defined *sym, const coff_relocation &rel, bool isMinGW) { // Don't report these errors when the relocation comes from a debug info // section or in mingw mode. MinGW mode object files (built by GCC) can // have leftover sections with relocations against discarded comdat // sections. Such sections are left as is, with relocations untouched. if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW) return; // Get the name of the symbol. If it's null, it was discarded early, so we // have to go back to the object file. ObjFile *file = fromChunk->file; StringRef name; if (sym) { name = sym->getName(); } else { COFFSymbolRef coffSym = check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); name = check(file->getCOFFObj()->getSymbolName(coffSym)); } std::vector symbolLocations = getSymbolLocations(file, rel.SymbolTableIndex); std::string out; llvm::raw_string_ostream os(out); os << "relocation against symbol in discarded section: " + name; for (const std::string &s : symbolLocations) os << s; error(os.str()); } void SectionChunk::writeTo(uint8_t *buf) const { if (!hasData) return; // Copy section contents from source object file to output file. ArrayRef a = getContents(); if (!a.empty()) memcpy(buf, a.data(), a.size()); // Apply relocations. size_t inputSize = getSize(); for (const coff_relocation &rel : getRelocs()) { // Check for an invalid relocation offset. This check isn't perfect, because // we don't have the relocation size, which is only known after checking the // machine and relocation type. As a result, a relocation may overwrite the // beginning of the following input section. if (rel.VirtualAddress >= inputSize) { error("relocation points beyond the end of its parent section"); continue; } applyRelocation(buf + rel.VirtualAddress, rel); } // Write the offset to EC entry thunk preceding section contents. The low bit // is always set, so it's effectively an offset from the last byte of the // offset. if (Defined *entryThunk = getEntryThunk()) write32le(buf - sizeof(uint32_t), entryThunk->getRVA() - rva + 1); } void SectionChunk::applyRelocation(uint8_t *off, const coff_relocation &rel) const { auto *sym = dyn_cast_or_null(file->getSymbol(rel.SymbolTableIndex)); // Get the output section of the symbol for this relocation. The output // section is needed to compute SECREL and SECTION relocations used in debug // info. Chunk *c = sym ? sym->getChunk() : nullptr; OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr; // Skip the relocation if it refers to a discarded section, and diagnose it // as an error if appropriate. If a symbol was discarded early, it may be // null. If it was discarded late, the output section will be null, unless // it was an absolute or synthetic symbol. if (!sym || (!os && !isa(sym) && !isa(sym))) { maybeReportRelocationToDiscarded(this, sym, rel, file->ctx.config.mingw); return; } uint64_t s = sym->getRVA(); // Compute the RVA of the relocation for relative relocations. uint64_t p = rva + rel.VirtualAddress; uint64_t imageBase = file->ctx.config.imageBase; switch (getArch()) { case Triple::x86_64: applyRelX64(off, rel.Type, os, s, p, imageBase); break; case Triple::x86: applyRelX86(off, rel.Type, os, s, p, imageBase); break; case Triple::thumb: applyRelARM(off, rel.Type, os, s, p, imageBase); break; case Triple::aarch64: applyRelARM64(off, rel.Type, os, s, p, imageBase); break; default: llvm_unreachable("unknown machine type"); } } // Defend against unsorted relocations. This may be overly conservative. void SectionChunk::sortRelocations() { auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) { return l.VirtualAddress < r.VirtualAddress; }; if (llvm::is_sorted(getRelocs(), cmpByVa)) return; warn("some relocations in " + file->getName() + " are not sorted"); MutableArrayRef newRelocs( bAlloc().Allocate(relocsSize), relocsSize); memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation)); llvm::sort(newRelocs, cmpByVa); setRelocs(newRelocs); } // Similar to writeTo, but suitable for relocating a subsection of the overall // section. void SectionChunk::writeAndRelocateSubsection(ArrayRef sec, ArrayRef subsec, uint32_t &nextRelocIndex, uint8_t *buf) const { assert(!subsec.empty() && !sec.empty()); assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() && "subsection is not part of this section"); size_t vaBegin = std::distance(sec.begin(), subsec.begin()); size_t vaEnd = std::distance(sec.begin(), subsec.end()); memcpy(buf, subsec.data(), subsec.size()); for (; nextRelocIndex < relocsSize; ++nextRelocIndex) { const coff_relocation &rel = relocsData[nextRelocIndex]; // Only apply relocations that apply to this subsection. These checks // assume that all subsections completely contain their relocations. // Relocations must not straddle the beginning or end of a subsection. if (rel.VirtualAddress < vaBegin) continue; if (rel.VirtualAddress + 1 >= vaEnd) break; applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel); } } void SectionChunk::addAssociative(SectionChunk *child) { // Insert the child section into the list of associated children. Keep the // list ordered by section name so that ICF does not depend on section order. assert(child->assocChildren == nullptr && "associated sections cannot have their own associated children"); SectionChunk *prev = this; SectionChunk *next = assocChildren; for (; next != nullptr; prev = next, next = next->assocChildren) { if (next->getSectionName() <= child->getSectionName()) break; } // Insert child between prev and next. assert(prev->assocChildren == next); prev->assocChildren = child; child->assocChildren = next; } static uint8_t getBaserelType(const coff_relocation &rel, Triple::ArchType arch) { switch (arch) { case Triple::x86_64: if (rel.Type == IMAGE_REL_AMD64_ADDR64) return IMAGE_REL_BASED_DIR64; if (rel.Type == IMAGE_REL_AMD64_ADDR32) return IMAGE_REL_BASED_HIGHLOW; return IMAGE_REL_BASED_ABSOLUTE; case Triple::x86: if (rel.Type == IMAGE_REL_I386_DIR32) return IMAGE_REL_BASED_HIGHLOW; return IMAGE_REL_BASED_ABSOLUTE; case Triple::thumb: if (rel.Type == IMAGE_REL_ARM_ADDR32) return IMAGE_REL_BASED_HIGHLOW; if (rel.Type == IMAGE_REL_ARM_MOV32T) return IMAGE_REL_BASED_ARM_MOV32T; return IMAGE_REL_BASED_ABSOLUTE; case Triple::aarch64: if (rel.Type == IMAGE_REL_ARM64_ADDR64) return IMAGE_REL_BASED_DIR64; return IMAGE_REL_BASED_ABSOLUTE; default: llvm_unreachable("unknown machine type"); } } // Windows-specific. // Collect all locations that contain absolute addresses, which need to be // fixed by the loader if load-time relocation is needed. // Only called when base relocation is enabled. void SectionChunk::getBaserels(std::vector *res) { for (const coff_relocation &rel : getRelocs()) { uint8_t ty = getBaserelType(rel, getArch()); if (ty == IMAGE_REL_BASED_ABSOLUTE) continue; Symbol *target = file->getSymbol(rel.SymbolTableIndex); if (!target || isa(target)) continue; res->emplace_back(rva + rel.VirtualAddress, ty); } } // MinGW specific. // Check whether a static relocation of type Type can be deferred and // handled at runtime as a pseudo relocation (for references to a module // local variable, which turned out to actually need to be imported from // another DLL) This returns the size the relocation is supposed to update, // in bits, or 0 if the relocation cannot be handled as a runtime pseudo // relocation. static int getRuntimePseudoRelocSize(uint16_t type, llvm::COFF::MachineTypes machine) { // Relocations that either contain an absolute address, or a plain // relative offset, since the runtime pseudo reloc implementation // adds 8/16/32/64 bit values to a memory address. // // Given a pseudo relocation entry, // // typedef struct { // DWORD sym; // DWORD target; // DWORD flags; // } runtime_pseudo_reloc_item_v2; // // the runtime relocation performs this adjustment: // *(base + .target) += *(base + .sym) - (base + .sym) // // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, // IMAGE_REL_I386_DIR32, where the memory location initially contains // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), // where the memory location originally contains the relative offset to the // IAT slot. // // This requires the target address to be writable, either directly out of // the image, or temporarily changed at runtime with VirtualProtect. // Since this only operates on direct address values, it doesn't work for // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. switch (machine) { case AMD64: switch (type) { case IMAGE_REL_AMD64_ADDR64: return 64; case IMAGE_REL_AMD64_ADDR32: case IMAGE_REL_AMD64_REL32: case IMAGE_REL_AMD64_REL32_1: case IMAGE_REL_AMD64_REL32_2: case IMAGE_REL_AMD64_REL32_3: case IMAGE_REL_AMD64_REL32_4: case IMAGE_REL_AMD64_REL32_5: return 32; default: return 0; } case I386: switch (type) { case IMAGE_REL_I386_DIR32: case IMAGE_REL_I386_REL32: return 32; default: return 0; } case ARMNT: switch (type) { case IMAGE_REL_ARM_ADDR32: return 32; default: return 0; } case ARM64: switch (type) { case IMAGE_REL_ARM64_ADDR64: return 64; case IMAGE_REL_ARM64_ADDR32: return 32; default: return 0; } default: llvm_unreachable("unknown machine type"); } } // MinGW specific. // Append information to the provided vector about all relocations that // need to be handled at runtime as runtime pseudo relocations (references // to a module local variable, which turned out to actually need to be // imported from another DLL). void SectionChunk::getRuntimePseudoRelocs( std::vector &res) { for (const coff_relocation &rel : getRelocs()) { auto *target = dyn_cast_or_null(file->getSymbol(rel.SymbolTableIndex)); if (!target || !target->isRuntimePseudoReloc) continue; // If the target doesn't have a chunk allocated, it may be a // DefinedImportData symbol which ended up unnecessary after GC. // Normally we wouldn't eliminate section chunks that are referenced, but // references within DWARF sections don't count for keeping section chunks // alive. Thus such dangling references in DWARF sections are expected. if (!target->getChunk()) continue; int sizeInBits = getRuntimePseudoRelocSize(rel.Type, file->ctx.config.machine); if (sizeInBits == 0) { error("unable to automatically import from " + target->getName() + " with relocation type " + file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + toString(file)); continue; } int addressSizeInBits = file->ctx.config.is64() ? 64 : 32; if (sizeInBits < addressSizeInBits) { warn("runtime pseudo relocation in " + toString(file) + " against " + "symbol " + target->getName() + " is too narrow (only " + Twine(sizeInBits) + " bits wide); this can fail at runtime " + "depending on memory layout"); } // sizeInBits is used to initialize the Flags field; currently no // other flags are defined. res.emplace_back(target, this, rel.VirtualAddress, sizeInBits); } } bool SectionChunk::isCOMDAT() const { return header->Characteristics & IMAGE_SCN_LNK_COMDAT; } void SectionChunk::printDiscardedMessage() const { // Removed by dead-stripping. If it's removed by ICF, ICF already // printed out the name, so don't repeat that here. if (sym && this == repl) log("Discarded " + sym->getName()); } StringRef SectionChunk::getDebugName() const { if (sym) return sym->getName(); return ""; } ArrayRef SectionChunk::getContents() const { ArrayRef a; cantFail(file->getCOFFObj()->getSectionContents(header, a)); return a; } ArrayRef SectionChunk::consumeDebugMagic() { assert(isCodeView()); return consumeDebugMagic(getContents(), getSectionName()); } ArrayRef SectionChunk::consumeDebugMagic(ArrayRef data, StringRef sectionName) { if (data.empty()) return {}; // First 4 bytes are section magic. if (data.size() < 4) fatal("the section is too short: " + sectionName); if (!sectionName.starts_with(".debug$")) fatal("invalid section: " + sectionName); uint32_t magic = support::endian::read32le(data.data()); uint32_t expectedMagic = sectionName == ".debug$H" ? DEBUG_HASHES_SECTION_MAGIC : DEBUG_SECTION_MAGIC; if (magic != expectedMagic) { warn("ignoring section " + sectionName + " with unrecognized magic 0x" + utohexstr(magic)); return {}; } return data.slice(4); } SectionChunk *SectionChunk::findByName(ArrayRef sections, StringRef name) { for (SectionChunk *c : sections) if (c->getSectionName() == name) return c; return nullptr; } void SectionChunk::replace(SectionChunk *other) { p2Align = std::max(p2Align, other->p2Align); other->repl = repl; other->live = false; } uint32_t SectionChunk::getSectionNumber() const { DataRefImpl r; r.p = reinterpret_cast(header); SectionRef s(r, file->getCOFFObj()); return s.getIndex() + 1; } CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { // The value of a common symbol is its size. Align all common symbols smaller // than 32 bytes naturally, i.e. round the size up to the next power of two. // This is what MSVC link.exe does. setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); hasData = false; } uint32_t CommonChunk::getOutputCharacteristics() const { return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE; } void StringChunk::writeTo(uint8_t *buf) const { memcpy(buf, str.data(), str.size()); buf[str.size()] = '\0'; } ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s) : ImportThunkChunk(ctx, s) { // Intel Optimization Manual says that all branch targets // should be 16-byte aligned. MSVC linker does this too. setAlignment(16); } void ImportThunkChunkX64::writeTo(uint8_t *buf) const { memcpy(buf, importThunkX86, sizeof(importThunkX86)); // The first two bytes is a JMP instruction. Fill its operand. write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); } void ImportThunkChunkX86::getBaserels(std::vector *res) { res->emplace_back(getRVA() + 2, ctx.config.machine); } void ImportThunkChunkX86::writeTo(uint8_t *buf) const { memcpy(buf, importThunkX86, sizeof(importThunkX86)); // The first two bytes is a JMP instruction. Fill its operand. write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase); } void ImportThunkChunkARM::getBaserels(std::vector *res) { res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); } void ImportThunkChunkARM::writeTo(uint8_t *buf) const { memcpy(buf, importThunkARM, sizeof(importThunkARM)); // Fix mov.w and mov.t operands. applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase); } void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { int64_t off = impSymbol->getRVA() & 0xfff; memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); applyArm64Ldr(buf + 4, off); } // A Thumb2, PIC, non-interworking range extension thunk. const uint8_t armThunk[] = { 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 0xe7, 0x44, // L1: add pc, ip }; size_t RangeExtensionThunkARM::getSize() const { assert(ctx.config.machine == ARMNT); (void)&ctx; return sizeof(armThunk); } void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { assert(ctx.config.machine == ARMNT); uint64_t offset = target->getRVA() - rva - 12; memcpy(buf, armThunk, sizeof(armThunk)); applyMOV32T(buf, uint32_t(offset)); } // A position independent ARM64 adrp+add thunk, with a maximum range of // +/- 4 GB, which is enough for any PE-COFF. const uint8_t arm64Thunk[] = { 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest 0x00, 0x02, 0x1f, 0xd6, // br x16 }; size_t RangeExtensionThunkARM64::getSize() const { assert(ctx.config.machine == ARM64); (void)&ctx; return sizeof(arm64Thunk); } void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { assert(ctx.config.machine == ARM64); memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); applyArm64Addr(buf + 0, target->getRVA(), rva, 12); applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); } LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s) : sym(s), ctx(c) { setAlignment(ctx.config.wordsize); } void LocalImportChunk::getBaserels(std::vector *res) { res->emplace_back(getRVA(), ctx.config.machine); } size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; } void LocalImportChunk::writeTo(uint8_t *buf) const { if (ctx.config.is64()) { write64le(buf, sym->getRVA() + ctx.config.imageBase); } else { write32le(buf, sym->getRVA() + ctx.config.imageBase); } } void RVATableChunk::writeTo(uint8_t *buf) const { ulittle32_t *begin = reinterpret_cast(buf); size_t cnt = 0; for (const ChunkAndOffset &co : syms) begin[cnt++] = co.inputChunk->getRVA() + co.offset; llvm::sort(begin, begin + cnt); assert(std::unique(begin, begin + cnt) == begin + cnt && "RVA tables should be de-duplicated"); } void RVAFlagTableChunk::writeTo(uint8_t *buf) const { struct RVAFlag { ulittle32_t rva; uint8_t flag; }; auto flags = MutableArrayRef(reinterpret_cast(buf), syms.size()); for (auto t : zip(syms, flags)) { const auto &sym = std::get<0>(t); auto &flag = std::get<1>(t); flag.rva = sym.inputChunk->getRVA() + sym.offset; flag.flag = 0; } llvm::sort(flags, [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; }); assert(llvm::unique(flags, [](const RVAFlag &a, const RVAFlag &b) { return a.rva == b.rva; }) == flags.end() && "RVA tables should be de-duplicated"); } size_t ECCodeMapChunk::getSize() const { return map.size() * sizeof(chpe_range_entry); } void ECCodeMapChunk::writeTo(uint8_t *buf) const { auto table = reinterpret_cast(buf); for (uint32_t i = 0; i < map.size(); i++) { const ECCodeMapEntry &entry = map[i]; uint32_t start = entry.first->getRVA(); table[i].StartOffset = start | entry.type; table[i].Length = entry.last->getRVA() + entry.last->getSize() - start; } } // MinGW specific, for the "automatic import of variables from DLLs" feature. size_t PseudoRelocTableChunk::getSize() const { if (relocs.empty()) return 0; return 12 + 12 * relocs.size(); } // MinGW specific. void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { if (relocs.empty()) return; ulittle32_t *table = reinterpret_cast(buf); // This is the list header, to signal the runtime pseudo relocation v2 // format. table[0] = 0; table[1] = 0; table[2] = 1; size_t idx = 3; for (const RuntimePseudoReloc &rpr : relocs) { table[idx + 0] = rpr.sym->getRVA(); table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; table[idx + 2] = rpr.flags; idx += 3; } } // Windows-specific. This class represents a block in .reloc section. // The format is described here. // // On Windows, each DLL is linked against a fixed base address and // usually loaded to that address. However, if there's already another // DLL that overlaps, the loader has to relocate it. To do that, DLLs // contain .reloc sections which contain offsets that need to be fixed // up at runtime. If the loader finds that a DLL cannot be loaded to its // desired base address, it loads it to somewhere else, and add - to each offset that is // specified by the .reloc section. In ELF terms, .reloc sections // contain relative relocations in REL format (as opposed to RELA.) // // This already significantly reduces the size of relocations compared // to ELF .rel.dyn, but Windows does more to reduce it (probably because // it was invented for PCs in the late '80s or early '90s.) Offsets in // .reloc are grouped by page where the page size is 12 bits, and // offsets sharing the same page address are stored consecutively to // represent them with less space. This is very similar to the page // table which is grouped by (multiple stages of) pages. // // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they // are represented like this: // // 0x00000 -- page address (4 bytes) // 16 -- size of this block (4 bytes) // 0xA030 -- entries (2 bytes each) // 0xA500 // 0xA700 // 0xAA00 // 0x20000 -- page address (4 bytes) // 12 -- size of this block (4 bytes) // 0xA004 -- entries (2 bytes each) // 0xA008 // // Usually we have a lot of relocations for each page, so the number of // bytes for one .reloc entry is close to 2 bytes on average. BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { // Block header consists of 4 byte page RVA and 4 byte block size. // Each entry is 2 byte. Last entry may be padding. data.resize(alignTo((end - begin) * 2 + 8, 4)); uint8_t *p = data.data(); write32le(p, page); write32le(p + 4, data.size()); p += 8; for (Baserel *i = begin; i != end; ++i) { write16le(p, (i->type << 12) | (i->rva - page)); p += 2; } } void BaserelChunk::writeTo(uint8_t *buf) const { memcpy(buf, data.data(), data.size()); } uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) { switch (machine) { case AMD64: case ARM64: return IMAGE_REL_BASED_DIR64; case I386: case ARMNT: return IMAGE_REL_BASED_HIGHLOW; default: llvm_unreachable("unknown machine type"); } } MergeChunk::MergeChunk(uint32_t alignment) : builder(StringTableBuilder::RAW, llvm::Align(alignment)) { setAlignment(alignment); } void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) { assert(isPowerOf2_32(c->getAlignment())); uint8_t p2Align = llvm::Log2_32(c->getAlignment()); assert(p2Align < std::size(ctx.mergeChunkInstances)); auto *&mc = ctx.mergeChunkInstances[p2Align]; if (!mc) mc = make(c->getAlignment()); mc->sections.push_back(c); } void MergeChunk::finalizeContents() { assert(!finalized && "should only finalize once"); for (SectionChunk *c : sections) if (c->live) builder.add(toStringRef(c->getContents())); builder.finalize(); finalized = true; } void MergeChunk::assignSubsectionRVAs() { for (SectionChunk *c : sections) { if (!c->live) continue; size_t off = builder.getOffset(toStringRef(c->getContents())); c->setRVA(rva + off); } } uint32_t MergeChunk::getOutputCharacteristics() const { return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; } size_t MergeChunk::getSize() const { return builder.getSize(); } void MergeChunk::writeTo(uint8_t *buf) const { builder.write(buf); } // MinGW specific. size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; } void AbsolutePointerChunk::writeTo(uint8_t *buf) const { if (ctx.config.is64()) { write64le(buf, value); } else { write32le(buf, value); } } } // namespace lld::coff