//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Copyright (c) Microsoft Corporation. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Copyright 2018 Ulf Adams // Copyright (c) Microsoft Corporation. All rights reserved. // Boost Software License - Version 1.0 - August 17th, 2003 // Permission is hereby granted, free of charge, to any person or organization // obtaining a copy of the software and accompanying documentation covered by // this license (the "Software") to use, reproduce, display, distribute, // execute, and transmit the Software, and to prepare derivative works of the // Software, and to permit third-parties to whom the Software is furnished to // do so, all subject to the following: // The copyright notices in the Software and this entire statement, including // the above license grant, this restriction and the following disclaimer, // must be included in all copies of the Software, in whole or in part, and // all derivative works of the Software, unless such copies or derivative // works are solely in the form of machine-executable object code generated by // a source language processor. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // Avoid formatting to keep the changes with the original code minimal. // clang-format off #include <__assert> #include <__config> #include #include "include/ryu/common.h" #include "include/ryu/d2fixed.h" #include "include/ryu/d2s_intrinsics.h" #include "include/ryu/digit_table.h" #include "include/ryu/f2s.h" #include "include/ryu/ryu.h" _LIBCPP_BEGIN_NAMESPACE_STD inline constexpr int __FLOAT_MANTISSA_BITS = 23; inline constexpr int __FLOAT_EXPONENT_BITS = 8; inline constexpr int __FLOAT_BIAS = 127; inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59; inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = { 576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u, 472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u, 386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u, 316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u, 519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u, 425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u, 348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u, 570899077082383953u, 456719261665907162u, 365375409332725730u }; inline constexpr int __FLOAT_POW5_BITCOUNT = 61; inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = { 1152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u, 1407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u, 1717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u, 2097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u, 1280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u, 1562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u, 1907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u, 1164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u, 1421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u, 1734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u, 2117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u, 1292469707114105741u, 1615587133892632177u, 2019483917365790221u }; [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) { uint32_t __count = 0; for (;;) { _LIBCPP_ASSERT_INTERNAL(__value != 0, ""); const uint32_t __q = __value / 5; const uint32_t __r = __value % 5; if (__r != 0) { break; } __value = __q; ++__count; } return __count; } // Returns true if __value is divisible by 5^__p. [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) { return __pow5Factor(__value) >= __p; } // Returns true if __value is divisible by 2^__p. [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) { _LIBCPP_ASSERT_INTERNAL(__value != 0, ""); _LIBCPP_ASSERT_INTERNAL(__p < 32, ""); // __builtin_ctz doesn't appear to be faster here. return (__value & ((1u << __p) - 1)) == 0; } [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) { _LIBCPP_ASSERT_INTERNAL(__shift > 32, ""); // The casts here help MSVC to avoid calls to the __allmul library // function. const uint32_t __factorLo = static_cast(__factor); const uint32_t __factorHi = static_cast(__factor >> 32); const uint64_t __bits0 = static_cast(__m) * __factorLo; const uint64_t __bits1 = static_cast(__m) * __factorHi; #ifndef _LIBCPP_64_BIT // On 32-bit platforms we can avoid a 64-bit shift-right since we only // need the upper 32 bits of the result and the shift value is > 32. const uint32_t __bits0Hi = static_cast(__bits0 >> 32); uint32_t __bits1Lo = static_cast(__bits1); uint32_t __bits1Hi = static_cast(__bits1 >> 32); __bits1Lo += __bits0Hi; __bits1Hi += (__bits1Lo < __bits0Hi); const int32_t __s = __shift - 32; return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s); #else // ^^^ 32-bit ^^^ / vvv 64-bit vvv const uint64_t __sum = (__bits0 >> 32) + __bits1; const uint64_t __shiftedSum = __sum >> (__shift - 32); _LIBCPP_ASSERT_INTERNAL(__shiftedSum <= UINT32_MAX, ""); return static_cast(__shiftedSum); #endif // ^^^ 64-bit ^^^ } [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) { return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j); } [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) { return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j); } // A floating decimal representing m * 10^e. struct __floating_decimal_32 { uint32_t __mantissa; int32_t __exponent; }; [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) { int32_t __e2; uint32_t __m2; if (__ieeeExponent == 0) { // We subtract 2 so that the bounds computation has 2 additional bits. __e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2; __m2 = __ieeeMantissa; } else { __e2 = static_cast(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2; __m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa; } const bool __even = (__m2 & 1) == 0; const bool __acceptBounds = __even; // Step 2: Determine the interval of valid decimal representations. const uint32_t __mv = 4 * __m2; const uint32_t __mp = 4 * __m2 + 2; // Implicit bool -> int conversion. True is 1, false is 0. const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1; const uint32_t __mm = 4 * __m2 - 1 - __mmShift; // Step 3: Convert to a decimal power base using 64-bit arithmetic. uint32_t __vr, __vp, __vm; int32_t __e10; bool __vmIsTrailingZeros = false; bool __vrIsTrailingZeros = false; uint8_t __lastRemovedDigit = 0; if (__e2 >= 0) { const uint32_t __q = __log10Pow2(__e2); __e10 = static_cast(__q); const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast(__q)) - 1; const int32_t __i = -__e2 + static_cast(__q) + __k; __vr = __mulPow5InvDivPow2(__mv, __q, __i); __vp = __mulPow5InvDivPow2(__mp, __q, __i); __vm = __mulPow5InvDivPow2(__mm, __q, __i); if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) { // We need to know one removed digit even if we are not going to loop below. We could use // __q = X - 1 above, except that would require 33 bits for the result, and we've found that // 32-bit arithmetic is faster even on 64-bit machines. const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast(__q - 1)) - 1; __lastRemovedDigit = static_cast(__mulPow5InvDivPow2(__mv, __q - 1, -__e2 + static_cast(__q) - 1 + __l) % 10); } if (__q <= 9) { // The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well. // Only one of __mp, __mv, and __mm can be a multiple of 5, if any. if (__mv % 5 == 0) { __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q); } else if (__acceptBounds) { __vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q); } else { __vp -= __multipleOfPowerOf5(__mp, __q); } } } else { const uint32_t __q = __log10Pow5(-__e2); __e10 = static_cast(__q) + __e2; const int32_t __i = -__e2 - static_cast(__q); const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT; int32_t __j = static_cast(__q) - __k; __vr = __mulPow5divPow2(__mv, static_cast(__i), __j); __vp = __mulPow5divPow2(__mp, static_cast(__i), __j); __vm = __mulPow5divPow2(__mm, static_cast(__i), __j); if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) { __j = static_cast(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT); __lastRemovedDigit = static_cast(__mulPow5divPow2(__mv, static_cast(__i + 1), __j) % 10); } if (__q <= 1) { // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits. // __mv = 4 * __m2, so it always has at least two trailing 0 bits. __vrIsTrailingZeros = true; if (__acceptBounds) { // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1. __vmIsTrailingZeros = __mmShift == 1; } else { // __mp = __mv + 2, so it always has at least one trailing 0 bit. --__vp; } } else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here. __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1); } } // Step 4: Find the shortest decimal representation in the interval of valid representations. int32_t __removed = 0; uint32_t _Output; if (__vmIsTrailingZeros || __vrIsTrailingZeros) { // General case, which happens rarely (~4.0%). while (__vp / 10 > __vm / 10) { #ifdef __clang__ // TRANSITION, LLVM-23106 __vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0; #else __vmIsTrailingZeros &= __vm % 10 == 0; #endif __vrIsTrailingZeros &= __lastRemovedDigit == 0; __lastRemovedDigit = static_cast(__vr % 10); __vr /= 10; __vp /= 10; __vm /= 10; ++__removed; } if (__vmIsTrailingZeros) { while (__vm % 10 == 0) { __vrIsTrailingZeros &= __lastRemovedDigit == 0; __lastRemovedDigit = static_cast(__vr % 10); __vr /= 10; __vp /= 10; __vm /= 10; ++__removed; } } if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) { // Round even if the exact number is .....50..0. __lastRemovedDigit = 4; } // We need to take __vr + 1 if __vr is outside bounds or we need to round up. _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5); } else { // Specialized for the common case (~96.0%). Percentages below are relative to this. // Loop iterations below (approximately): // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01% while (__vp / 10 > __vm / 10) { __lastRemovedDigit = static_cast(__vr % 10); __vr /= 10; __vp /= 10; __vm /= 10; ++__removed; } // We need to take __vr + 1 if __vr is outside bounds or we need to round up. _Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5); } const int32_t __exp = __e10 + __removed; __floating_decimal_32 __fd; __fd.__exponent = __exp; __fd.__mantissa = _Output; return __fd; } [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last, const uint32_t _Mantissa2, const int32_t _Exponent2) { // Print the integer _Mantissa2 * 2^_Exponent2 exactly. // For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1. // In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away // the zeros.) The dense range of exactly representable integers has negative or zero exponents // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used: // every digit is necessary to uniquely identify the value, so Ryu must print them all. // Positive exponents are the non-dense range of exactly representable integers. // This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values). // Performance note: Long division appears to be faster than losslessly widening float to double and calling // __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division. _LIBCPP_ASSERT_INTERNAL(_Exponent2 > 0, ""); _LIBCPP_ASSERT_INTERNAL(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254 // Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits // (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits. // 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements. // We use a little-endian representation, visualized like this: // << left shift << // most significant // _Data[3] _Data[2] _Data[1] _Data[0] // least significant // >> right shift >> constexpr uint32_t _Data_size = 4; uint32_t _Data[_Data_size]{}; // _Maxidx is the index of the most significant nonzero element. uint32_t _Maxidx = ((24 + static_cast(_Exponent2) + 31) / 32) - 1; _LIBCPP_ASSERT_INTERNAL(_Maxidx < _Data_size, ""); const uint32_t _Bit_shift = static_cast(_Exponent2) % 32; if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary _Data[_Maxidx] = _Mantissa2 << _Bit_shift; } else { // _Mantissa2's 24 bits cross an element boundary _Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift; _Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift); } // If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left // by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440 uint32_t _Blocks[4]; int32_t _Filled_blocks = 0; // From left to right, we're going to print: // _Data[0] will be [1, 10] digits. // Then if _Filled_blocks > 0: // _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks. if (_Maxidx != 0) { // If the integer is actually large, perform long division. // Otherwise, skip to printing _Data[0]. for (;;) { // Loop invariant: _Maxidx != 0 (i.e. the integer is actually large) const uint32_t _Most_significant_elem = _Data[_Maxidx]; const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000; const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000; _Data[_Maxidx] = _Initial_quotient; uint64_t _Remainder = _Initial_remainder; // Process less significant elements. uint32_t _Idx = _Maxidx; do { --_Idx; // Initially, _Remainder is at most 10^9 - 1. // Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1. _Remainder = (_Remainder << 32) | _Data[_Idx]; // floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless. const uint32_t _Quotient = static_cast(__div1e9(_Remainder)); // _Remainder is at most 10^9 - 1 again. // For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h. _Remainder = static_cast(_Remainder) - 1000000000u * _Quotient; _Data[_Idx] = _Quotient; } while (_Idx != 0); // Store a 0-filled 9-digit block. _Blocks[_Filled_blocks++] = static_cast(_Remainder); if (_Initial_quotient == 0) { // Is the large integer shrinking? --_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element. if (_Maxidx == 0) { break; // We've finished long division. Now we need to print _Data[0]. } } } } _LIBCPP_ASSERT_INTERNAL(_Data[0] != 0, ""); for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) { _LIBCPP_ASSERT_INTERNAL(_Data[_Idx] == 0, ""); } const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]); const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks; if (_Last - _First < static_cast(_Total_fixed_length)) { return { _Last, errc::value_too_large }; } char* _Result = _First; // Print _Data[0]. While it's up to 10 digits, // which is more than Ryu generates, the code below can handle this. __append_n_digits(_Data_olength, _Data[0], _Result); _Result += _Data_olength; // Print 0-filled 9-digit blocks. for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) { __append_nine_digits(_Blocks[_Idx], _Result); _Result += 9; } return { _Result, errc{} }; } [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v, chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) { // Step 5: Print the decimal representation. uint32_t _Output = __v.__mantissa; int32_t _Ryu_exponent = __v.__exponent; const uint32_t __olength = __decimalLength9(_Output); int32_t _Scientific_exponent = _Ryu_exponent + static_cast(__olength) - 1; if (_Fmt == chars_format{}) { int32_t _Lower; int32_t _Upper; if (__olength == 1) { // Value | Fixed | Scientific // 1e-3 | "0.001" | "1e-03" // 1e4 | "10000" | "1e+04" _Lower = -3; _Upper = 4; } else { // Value | Fixed | Scientific // 1234e-7 | "0.0001234" | "1.234e-04" // 1234e5 | "123400000" | "1.234e+08" _Lower = -static_cast(__olength + 3); _Upper = 5; } if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) { _Fmt = chars_format::fixed; } else { _Fmt = chars_format::scientific; } } else if (_Fmt == chars_format::general) { // C11 7.21.6.1 "The fprintf function"/8: // "Let P equal [...] 6 if the precision is omitted [...]. // Then, if a conversion with style E would have an exponent of X: // - if P > X >= -4, the conversion is with style f [...]. // - otherwise, the conversion is with style e [...]." if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) { _Fmt = chars_format::fixed; } else { _Fmt = chars_format::scientific; } } if (_Fmt == chars_format::fixed) { // Example: _Output == 1729, __olength == 4 // _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes // --------------|----------|---------------|----------------------|--------------------------------------- // 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing // 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero. // --------------|----------|---------------|----------------------|--------------------------------------- // 0 | 1729 | 4 | _Whole_digits | Unified length cases. // --------------|----------|---------------|----------------------|--------------------------------------- // -1 | 172.9 | 3 | __olength + 1 | This case can't happen for // -2 | 17.29 | 2 | | __olength == 1, but no additional // -3 | 1.729 | 1 | | code is needed to avoid it. // --------------|----------|---------------|----------------------|--------------------------------------- // -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8: // -5 | 0.01729 | -1 | | "If a decimal-point character appears, // -6 | 0.001729 | -2 | | at least one digit appears before it." const int32_t _Whole_digits = static_cast(__olength) + _Ryu_exponent; uint32_t _Total_fixed_length; if (_Ryu_exponent >= 0) { // cases "172900" and "1729" _Total_fixed_length = static_cast(_Whole_digits); if (_Output == 1) { // Rounding can affect the number of digits. // For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12. // We can use a lookup table to detect this and adjust the total length. static constexpr uint8_t _Adjustment[39] = { 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 }; _Total_fixed_length -= _Adjustment[_Ryu_exponent]; // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later. } } else if (_Whole_digits > 0) { // case "17.29" _Total_fixed_length = __olength + 1; } else { // case "0.001729" _Total_fixed_length = static_cast(2 - _Ryu_exponent); } if (_Last - _First < static_cast(_Total_fixed_length)) { return { _Last, errc::value_too_large }; } char* _Mid; if (_Ryu_exponent > 0) { // case "172900" bool _Can_use_ryu; if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float. _Can_use_ryu = false; } else { // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits) // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent // _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2 // with 9 decimal digits, which is float's round-trip limit.) // _Ryu_exponent is [1, 10]. // Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5). // This adds up to [3, 62], which is well below float's maximum binary exponent 127. // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent. // If that product would exceed 24 bits, then X can't be exactly represented as a float. // (That's not a problem for round-tripping, because X is close enough to the original float, // but X isn't mathematically equal to the original float.) This requires a high-precision fallback. // If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't // need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the // same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled). // (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10 static constexpr uint32_t _Max_shifted_mantissa[11] = { 16777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 }; unsigned long _Trailing_zero_bits; (void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits; _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent]; } if (!_Can_use_ryu) { const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit const int32_t _Exponent2 = static_cast(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization // Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking. return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2); } // _Can_use_ryu // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length). _Mid = _First + __olength; } else { // cases "1729", "17.29", and "0.001729" // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length). _Mid = _First + _Total_fixed_length; } while (_Output >= 10000) { #ifdef __clang__ // TRANSITION, LLVM-38217 const uint32_t __c = _Output - 10000 * (_Output / 10000); #else const uint32_t __c = _Output % 10000; #endif _Output /= 10000; const uint32_t __c0 = (__c % 100) << 1; const uint32_t __c1 = (__c / 100) << 1; std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2); std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2); } if (_Output >= 100) { const uint32_t __c = (_Output % 100) << 1; _Output /= 100; std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2); } if (_Output >= 10) { const uint32_t __c = _Output << 1; std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2); } else { *--_Mid = static_cast('0' + _Output); } if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu // Performance note: it might be more efficient to do this immediately after setting _Mid. std::memset(_First + __olength, '0', static_cast(_Ryu_exponent)); } else if (_Ryu_exponent == 0) { // case "1729" // Done! } else if (_Whole_digits > 0) { // case "17.29" // Performance note: moving digits might not be optimal. std::memmove(_First, _First + 1, static_cast(_Whole_digits)); _First[_Whole_digits] = '.'; } else { // case "0.001729" // Performance note: a larger memset() followed by overwriting '.' might be more efficient. _First[0] = '0'; _First[1] = '.'; std::memset(_First + 2, '0', static_cast(-_Whole_digits)); } return { _First + _Total_fixed_length, errc{} }; } const uint32_t _Total_scientific_length = __olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent if (_Last - _First < static_cast(_Total_scientific_length)) { return { _Last, errc::value_too_large }; } char* const __result = _First; // Print the decimal digits. uint32_t __i = 0; while (_Output >= 10000) { #ifdef __clang__ // TRANSITION, LLVM-38217 const uint32_t __c = _Output - 10000 * (_Output / 10000); #else const uint32_t __c = _Output % 10000; #endif _Output /= 10000; const uint32_t __c0 = (__c % 100) << 1; const uint32_t __c1 = (__c / 100) << 1; std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2); std::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2); __i += 4; } if (_Output >= 100) { const uint32_t __c = (_Output % 100) << 1; _Output /= 100; std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2); __i += 2; } if (_Output >= 10) { const uint32_t __c = _Output << 1; // We can't use memcpy here: the decimal dot goes between these two digits. __result[2] = __DIGIT_TABLE[__c + 1]; __result[0] = __DIGIT_TABLE[__c]; } else { __result[0] = static_cast('0' + _Output); } // Print decimal point if needed. uint32_t __index; if (__olength > 1) { __result[1] = '.'; __index = __olength + 1; } else { __index = 1; } // Print the exponent. __result[__index++] = 'e'; if (_Scientific_exponent < 0) { __result[__index++] = '-'; _Scientific_exponent = -_Scientific_exponent; } else { __result[__index++] = '+'; } std::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2); __index += 2; return { _First + _Total_scientific_length, errc{} }; } [[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f, const chars_format _Fmt) { // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. const uint32_t __bits = __float_to_bits(__f); // Case distinction; exit early for the easy cases. if (__bits == 0) { if (_Fmt == chars_format::scientific) { if (_Last - _First < 5) { return { _Last, errc::value_too_large }; } std::memcpy(_First, "0e+00", 5); return { _First + 5, errc{} }; } // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}. if (_First == _Last) { return { _Last, errc::value_too_large }; } *_First = '0'; return { _First + 1, errc{} }; } // Decode __bits into mantissa and exponent. const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1); const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS; // When _Fmt == chars_format::fixed and the floating-point number is a large integer, // it's faster to skip Ryu and immediately print the integer exactly. if (_Fmt == chars_format::fixed) { const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit const int32_t _Exponent2 = static_cast(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization // Normal values are equal to _Mantissa2 * 2^_Exponent2. // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.) if (_Exponent2 > 0) { return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2); } } const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent); return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent); } _LIBCPP_END_NAMESPACE_STD // clang-format on