// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP_SRC_INCLUDE_OVERRIDABLE_FUNCTION_H #define _LIBCPP_SRC_INCLUDE_OVERRIDABLE_FUNCTION_H #include <__config> #include #if __has_feature(ptrauth_calls) # include #endif #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif // // This file provides the std::__is_function_overridden utility, which allows checking // whether an overridable function (typically a weak symbol) like `operator new` // has been overridden by a user or not. // // This is a low-level utility which does not work on all platforms, since it needs // to make assumptions about the object file format in use. Furthermore, it requires // the "base definition" of the function (the one we want to check whether it has been // overridden) to be annotated with the _LIBCPP_MAKE_OVERRIDABLE_FUNCTION_DETECTABLE macro. // // This currently works with Mach-O files (used on Darwin) and with ELF files (used on Linux // and others). On platforms where we know how to implement this detection, the macro // _LIBCPP_CAN_DETECT_OVERRIDDEN_FUNCTION is defined to 1, and it is defined to 0 on // other platforms. The _LIBCPP_MAKE_OVERRIDABLE_FUNCTION_DETECTABLE macro is defined to // nothing on unsupported platforms so that it can be used to decorate functions regardless // of whether detection is actually supported. // // How does this work? // ------------------- // // Let's say we want to check whether a weak function `f` has been overridden by the user. // The general mechanism works by placing `f`'s definition (in the libc++ built library) // inside a special section, which we do using the `__section__` attribute via the // _LIBCPP_MAKE_OVERRIDABLE_FUNCTION_DETECTABLE macro. // // Then, when comes the time to check whether the function has been overridden, we take // the address of the function and we check whether it falls inside the special function // we created. This can be done by finding pointers to the start and the end of the section // (which is done differently for ELF and Mach-O), and then checking whether `f` falls // within those bounds. If it falls within those bounds, then `f` is still inside the // special section and so it is the version we defined in the libc++ built library, i.e. // it was not overridden. Otherwise, it was overridden by the user because it falls // outside of the section. // // Important note // -------------- // // This mechanism should never be used outside of the libc++ built library. In particular, // attempting to use this within the libc++ headers will not work at all because we don't // want to be defining special sections inside user's executables which use our headers. // #if defined(_LIBCPP_OBJECT_FORMAT_MACHO) # define _LIBCPP_CAN_DETECT_OVERRIDDEN_FUNCTION 1 # define _LIBCPP_MAKE_OVERRIDABLE_FUNCTION_DETECTABLE \ __attribute__((__section__("__TEXT,__lcxx_override,regular,pure_instructions"))) _LIBCPP_BEGIN_NAMESPACE_STD template _LIBCPP_HIDE_FROM_ABI bool __is_function_overridden(_Ret (*__fptr)(_Args...)) noexcept { // Declare two dummy bytes and give them these special `__asm` values. These values are // defined by the linker, which means that referring to `&__lcxx_override_start` will // effectively refer to the address where the section starts (and same for the end). extern char __lcxx_override_start __asm("section$start$__TEXT$__lcxx_override"); extern char __lcxx_override_end __asm("section$end$__TEXT$__lcxx_override"); // Now get a uintptr_t out of these locations, and out of the function pointer. uintptr_t __start = reinterpret_cast(&__lcxx_override_start); uintptr_t __end = reinterpret_cast(&__lcxx_override_end); uintptr_t __ptr = reinterpret_cast(__fptr); # if __has_feature(ptrauth_calls) // We must pass a void* to ptrauth_strip since it only accepts a pointer type. Also, in particular, // we must NOT pass a function pointer, otherwise we will strip the function pointer, and then attempt // to authenticate and re-sign it when casting it to a uintptr_t again, which will fail because we just // stripped the function pointer. See rdar://122927845. __ptr = reinterpret_cast(ptrauth_strip(reinterpret_cast(__ptr), ptrauth_key_function_pointer)); # endif // Finally, the function was overridden if it falls outside of the section's bounds. return __ptr < __start || __ptr > __end; } _LIBCPP_END_NAMESPACE_STD #elif defined(_LIBCPP_OBJECT_FORMAT_ELF) # define _LIBCPP_CAN_DETECT_OVERRIDDEN_FUNCTION 1 # define _LIBCPP_MAKE_OVERRIDABLE_FUNCTION_DETECTABLE __attribute__((__section__("__lcxx_override"))) // This is very similar to what we do for Mach-O above. The ELF linker will implicitly define // variables with those names corresponding to the start and the end of the section. // // See https://stackoverflow.com/questions/16552710/how-do-you-get-the-start-and-end-addresses-of-a-custom-elf-section extern char __start___lcxx_override; extern char __stop___lcxx_override; _LIBCPP_BEGIN_NAMESPACE_STD template _LIBCPP_HIDE_FROM_ABI bool __is_function_overridden(_Ret (*__fptr)(_Args...)) noexcept { uintptr_t __start = reinterpret_cast(&__start___lcxx_override); uintptr_t __end = reinterpret_cast(&__stop___lcxx_override); uintptr_t __ptr = reinterpret_cast(__fptr); return __ptr < __start || __ptr > __end; } _LIBCPP_END_NAMESPACE_STD #else # define _LIBCPP_CAN_DETECT_OVERRIDDEN_FUNCTION 0 # define _LIBCPP_MAKE_OVERRIDABLE_FUNCTION_DETECTABLE /* nothing */ #endif #endif // _LIBCPP_SRC_INCLUDE_OVERRIDABLE_FUNCTION_H