//===----------------------------------------------------------------------===//// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===//// #ifndef FILESYSTEM_TIME_UTILS_H #define FILESYSTEM_TIME_UTILS_H #include <__config> #include #include #include #include #include #include #include #include #include "error.h" #include "format_string.h" #if defined(_LIBCPP_WIN32API) # define WIN32_LEAN_AND_MEAN # define NOMINMAX # include #else # include # include # include // for ::utimes as used in __last_write_time #endif // We can use the presence of UTIME_OMIT to detect platforms that provide utimensat. #if defined(UTIME_OMIT) # define _LIBCPP_USE_UTIMENSAT #endif _LIBCPP_BEGIN_NAMESPACE_FILESYSTEM namespace detail { #if defined(_LIBCPP_WIN32API) // Various C runtime versions (UCRT, or the legacy msvcrt.dll used by // some mingw toolchains) provide different stat function implementations, // with a number of limitations with respect to what we want from the // stat function. Instead provide our own which does exactly what we want, // along with our own stat structure and flag macros. struct TimeSpec { int64_t tv_sec; int64_t tv_nsec; }; struct StatT { unsigned st_mode; TimeSpec st_atim; TimeSpec st_mtim; uint64_t st_dev; // FILE_ID_INFO::VolumeSerialNumber struct FileIdStruct { unsigned char id[16]; // FILE_ID_INFO::FileId bool operator==(const FileIdStruct& other) const { for (int i = 0; i < 16; i++) if (id[i] != other.id[i]) return false; return true; } } st_ino; uint32_t st_nlink; uintmax_t st_size; }; // There were 369 years and 89 leap days from the Windows epoch // (1601) to the Unix epoch (1970). # define FILE_TIME_OFFSET_SECS (uint64_t(369 * 365 + 89) * (24 * 60 * 60)) inline TimeSpec filetime_to_timespec(LARGE_INTEGER li) { TimeSpec ret; ret.tv_sec = li.QuadPart / 10000000 - FILE_TIME_OFFSET_SECS; ret.tv_nsec = (li.QuadPart % 10000000) * 100; return ret; } inline TimeSpec filetime_to_timespec(FILETIME ft) { LARGE_INTEGER li; li.LowPart = ft.dwLowDateTime; li.HighPart = ft.dwHighDateTime; return filetime_to_timespec(li); } inline FILETIME timespec_to_filetime(TimeSpec ts) { LARGE_INTEGER li; li.QuadPart = ts.tv_nsec / 100 + (ts.tv_sec + FILE_TIME_OFFSET_SECS) * 10000000; FILETIME ft; ft.dwLowDateTime = li.LowPart; ft.dwHighDateTime = li.HighPart; return ft; } #else using TimeSpec = struct timespec; using TimeVal = struct timeval; using StatT = struct stat; inline TimeVal make_timeval(TimeSpec const& ts) { using namespace chrono; auto Convert = [](long nsec) { using int_type = decltype(std::declval().tv_usec); auto dur = duration_cast(nanoseconds(nsec)).count(); return static_cast(dur); }; TimeVal TV = {}; TV.tv_sec = ts.tv_sec; TV.tv_usec = Convert(ts.tv_nsec); return TV; } #endif using chrono::duration; using chrono::duration_cast; template ::value> struct time_util_base { using rep = typename FileTimeT::rep; using fs_duration = typename FileTimeT::duration; using fs_seconds = duration; using fs_nanoseconds = duration; using fs_microseconds = duration; static constexpr rep max_seconds = duration_cast(FileTimeT::duration::max()).count(); static constexpr rep max_nsec = duration_cast(FileTimeT::duration::max() - fs_seconds(max_seconds)).count(); static constexpr rep min_seconds = duration_cast(FileTimeT::duration::min()).count(); static constexpr rep min_nsec_timespec = duration_cast((FileTimeT::duration::min() - fs_seconds(min_seconds)) + fs_seconds(1)).count(); private: static constexpr fs_duration get_min_nsecs() { return duration_cast(fs_nanoseconds(min_nsec_timespec) - duration_cast(fs_seconds(1))); } // Static assert that these values properly round trip. static_assert(fs_seconds(min_seconds) + get_min_nsecs() == FileTimeT::duration::min(), "value doesn't roundtrip"); static constexpr bool check_range() { // This kinda sucks, but it's what happens when we don't have __int128_t. if (sizeof(TimeT) == sizeof(rep)) { typedef duration > Years; return duration_cast(fs_seconds(max_seconds)) > Years(250) && duration_cast(fs_seconds(min_seconds)) < Years(-250); } return max_seconds >= numeric_limits::max() && min_seconds <= numeric_limits::min(); } #if _LIBCPP_STD_VER >= 14 static_assert(check_range(), "the representable range is unacceptable small"); #endif }; template struct time_util_base { using rep = typename FileTimeT::rep; using fs_duration = typename FileTimeT::duration; using fs_seconds = duration; using fs_nanoseconds = duration; using fs_microseconds = duration; static const rep max_seconds; static const rep max_nsec; static const rep min_seconds; static const rep min_nsec_timespec; }; template const typename FileTimeT::rep time_util_base::max_seconds = duration_cast(FileTimeT::duration::max()).count(); template const typename FileTimeT::rep time_util_base::max_nsec = duration_cast(FileTimeT::duration::max() - fs_seconds(max_seconds)).count(); template const typename FileTimeT::rep time_util_base::min_seconds = duration_cast(FileTimeT::duration::min()).count(); template const typename FileTimeT::rep time_util_base::min_nsec_timespec = duration_cast((FileTimeT::duration::min() - fs_seconds(min_seconds)) + fs_seconds(1)).count(); template struct time_util : time_util_base { using Base = time_util_base; using Base::max_nsec; using Base::max_seconds; using Base::min_nsec_timespec; using Base::min_seconds; using typename Base::fs_duration; using typename Base::fs_microseconds; using typename Base::fs_nanoseconds; using typename Base::fs_seconds; public: template static constexpr bool checked_set(CType* out, ChronoType time) { using Lim = numeric_limits; if (time > Lim::max() || time < Lim::min()) return false; *out = static_cast(time); return true; } static constexpr bool is_representable(TimeSpecT tm) { if (tm.tv_sec >= 0) { return tm.tv_sec < max_seconds || (tm.tv_sec == max_seconds && tm.tv_nsec <= max_nsec); } else if (tm.tv_sec == (min_seconds - 1)) { return tm.tv_nsec >= min_nsec_timespec; } else { return tm.tv_sec >= min_seconds; } } static constexpr bool is_representable(FileTimeT tm) { auto secs = duration_cast(tm.time_since_epoch()); auto nsecs = duration_cast(tm.time_since_epoch() - secs); if (nsecs.count() < 0) { secs = secs + fs_seconds(1); nsecs = nsecs + fs_seconds(1); } using TLim = numeric_limits; if (secs.count() >= 0) return secs.count() <= TLim::max(); return secs.count() >= TLim::min(); } static constexpr FileTimeT convert_from_timespec(TimeSpecT tm) { if (tm.tv_sec >= 0 || tm.tv_nsec == 0) { return FileTimeT(fs_seconds(tm.tv_sec) + duration_cast(fs_nanoseconds(tm.tv_nsec))); } else { // tm.tv_sec < 0 auto adj_subsec = duration_cast(fs_seconds(1) - fs_nanoseconds(tm.tv_nsec)); auto Dur = fs_seconds(tm.tv_sec + 1) - adj_subsec; return FileTimeT(Dur); } } template static constexpr bool set_times_checked(TimeT* sec_out, SubSecT* subsec_out, FileTimeT tp) { auto dur = tp.time_since_epoch(); auto sec_dur = duration_cast(dur); auto subsec_dur = duration_cast(dur - sec_dur); // The tv_nsec and tv_usec fields must not be negative so adjust accordingly if (subsec_dur.count() < 0) { if (sec_dur.count() > min_seconds) { sec_dur = sec_dur - fs_seconds(1); subsec_dur = subsec_dur + fs_seconds(1); } else { subsec_dur = fs_nanoseconds::zero(); } } return checked_set(sec_out, sec_dur.count()) && checked_set(subsec_out, subsec_dur.count()); } static constexpr bool convert_to_timespec(TimeSpecT& dest, FileTimeT tp) { if (!is_representable(tp)) return false; return set_times_checked(&dest.tv_sec, &dest.tv_nsec, tp); } }; #if defined(_LIBCPP_WIN32API) using fs_time = time_util; #else using fs_time = time_util; #endif #if defined(__APPLE__) inline TimeSpec extract_mtime(StatT const& st) { return st.st_mtimespec; } inline TimeSpec extract_atime(StatT const& st) { return st.st_atimespec; } #elif defined(__MVS__) inline TimeSpec extract_mtime(StatT const& st) { TimeSpec TS = {st.st_mtime, 0}; return TS; } inline TimeSpec extract_atime(StatT const& st) { TimeSpec TS = {st.st_atime, 0}; return TS; } #elif defined(_AIX) inline TimeSpec extract_mtime(StatT const& st) { TimeSpec TS = {st.st_mtime, st.st_mtime_n}; return TS; } inline TimeSpec extract_atime(StatT const& st) { TimeSpec TS = {st.st_atime, st.st_atime_n}; return TS; } #else inline TimeSpec extract_mtime(StatT const& st) { return st.st_mtim; } inline TimeSpec extract_atime(StatT const& st) { return st.st_atim; } #endif #ifndef _LIBCPP_HAS_NO_FILESYSTEM # if !defined(_LIBCPP_WIN32API) inline bool posix_utimes(const path& p, std::array const& TS, error_code& ec) { TimeVal ConvertedTS[2] = {make_timeval(TS[0]), make_timeval(TS[1])}; if (::utimes(p.c_str(), ConvertedTS) == -1) { ec = capture_errno(); return true; } return false; } # if defined(_LIBCPP_USE_UTIMENSAT) inline bool posix_utimensat(const path& p, std::array const& TS, error_code& ec) { if (::utimensat(AT_FDCWD, p.c_str(), TS.data(), 0) == -1) { ec = capture_errno(); return true; } return false; } # endif inline bool set_file_times(const path& p, std::array const& TS, error_code& ec) { # if !defined(_LIBCPP_USE_UTIMENSAT) return posix_utimes(p, TS, ec); # else return posix_utimensat(p, TS, ec); # endif } # endif // !_LIBCPP_WIN32API inline file_time_type __extract_last_write_time(const path& p, const StatT& st, error_code* ec) { using detail::fs_time; ErrorHandler err("last_write_time", ec, &p); auto ts = detail::extract_mtime(st); if (!fs_time::is_representable(ts)) return err.report(errc::value_too_large); return fs_time::convert_from_timespec(ts); } #endif // !_LIBCPP_HAS_NO_FILESYSTEM } // end namespace detail _LIBCPP_END_NAMESPACE_FILESYSTEM #endif // FILESYSTEM_TIME_UTILS_H