// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___TREE #define _LIBCPP___TREE #include <__algorithm/min.h> #include <__assert> #include <__config> #include <__functional/invoke.h> #include <__iterator/distance.h> #include <__iterator/iterator_traits.h> #include <__iterator/next.h> #include <__memory/addressof.h> #include <__memory/allocator_traits.h> #include <__memory/compressed_pair.h> #include <__memory/pointer_traits.h> #include <__memory/swap_allocator.h> #include <__memory/unique_ptr.h> #include <__type_traits/can_extract_key.h> #include <__type_traits/conditional.h> #include <__type_traits/is_const.h> #include <__type_traits/is_constructible.h> #include <__type_traits/is_nothrow_assignable.h> #include <__type_traits/is_nothrow_constructible.h> #include <__type_traits/is_pointer.h> #include <__type_traits/is_same.h> #include <__type_traits/is_swappable.h> #include <__type_traits/remove_const_ref.h> #include <__type_traits/remove_cvref.h> #include <__utility/forward.h> #include <__utility/move.h> #include <__utility/pair.h> #include <__utility/swap.h> #include #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_PUSH_MACROS #include <__undef_macros> _LIBCPP_BEGIN_NAMESPACE_STD template class _LIBCPP_TEMPLATE_VIS map; template class _LIBCPP_TEMPLATE_VIS multimap; template class _LIBCPP_TEMPLATE_VIS set; template class _LIBCPP_TEMPLATE_VIS multiset; template class __tree; template class _LIBCPP_TEMPLATE_VIS __tree_iterator; template class _LIBCPP_TEMPLATE_VIS __tree_const_iterator; template class __tree_end_node; template class __tree_node_base; template class __tree_node; template struct __value_type; template class __map_node_destructor; template class _LIBCPP_TEMPLATE_VIS __map_iterator; template class _LIBCPP_TEMPLATE_VIS __map_const_iterator; /* _NodePtr algorithms The algorithms taking _NodePtr are red black tree algorithms. Those algorithms taking a parameter named __root should assume that __root points to a proper red black tree (unless otherwise specified). Each algorithm herein assumes that __root->__parent_ points to a non-null structure which has a member __left_ which points back to __root. No other member is read or written to at __root->__parent_. __root->__parent_ will be referred to below (in comments only) as end_node. end_node->__left_ is an externably accessible lvalue for __root, and can be changed by node insertion and removal (without explicit reference to end_node). All nodes (with the exception of end_node), even the node referred to as __root, have a non-null __parent_ field. */ // Returns: true if __x is a left child of its parent, else false // Precondition: __x != nullptr. template inline _LIBCPP_HIDE_FROM_ABI bool __tree_is_left_child(_NodePtr __x) _NOEXCEPT { return __x == __x->__parent_->__left_; } // Determines if the subtree rooted at __x is a proper red black subtree. If // __x is a proper subtree, returns the black height (null counts as 1). If // __x is an improper subtree, returns 0. template unsigned __tree_sub_invariant(_NodePtr __x) { if (__x == nullptr) return 1; // parent consistency checked by caller // check __x->__left_ consistency if (__x->__left_ != nullptr && __x->__left_->__parent_ != __x) return 0; // check __x->__right_ consistency if (__x->__right_ != nullptr && __x->__right_->__parent_ != __x) return 0; // check __x->__left_ != __x->__right_ unless both are nullptr if (__x->__left_ == __x->__right_ && __x->__left_ != nullptr) return 0; // If this is red, neither child can be red if (!__x->__is_black_) { if (__x->__left_ && !__x->__left_->__is_black_) return 0; if (__x->__right_ && !__x->__right_->__is_black_) return 0; } unsigned __h = std::__tree_sub_invariant(__x->__left_); if (__h == 0) return 0; // invalid left subtree if (__h != std::__tree_sub_invariant(__x->__right_)) return 0; // invalid or different height right subtree return __h + __x->__is_black_; // return black height of this node } // Determines if the red black tree rooted at __root is a proper red black tree. // __root == nullptr is a proper tree. Returns true is __root is a proper // red black tree, else returns false. template _LIBCPP_HIDE_FROM_ABI bool __tree_invariant(_NodePtr __root) { if (__root == nullptr) return true; // check __x->__parent_ consistency if (__root->__parent_ == nullptr) return false; if (!std::__tree_is_left_child(__root)) return false; // root must be black if (!__root->__is_black_) return false; // do normal node checks return std::__tree_sub_invariant(__root) != 0; } // Returns: pointer to the left-most node under __x. template inline _LIBCPP_HIDE_FROM_ABI _NodePtr __tree_min(_NodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "Root node shouldn't be null"); while (__x->__left_ != nullptr) __x = __x->__left_; return __x; } // Returns: pointer to the right-most node under __x. template inline _LIBCPP_HIDE_FROM_ABI _NodePtr __tree_max(_NodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "Root node shouldn't be null"); while (__x->__right_ != nullptr) __x = __x->__right_; return __x; } // Returns: pointer to the next in-order node after __x. template _LIBCPP_HIDE_FROM_ABI _NodePtr __tree_next(_NodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null"); if (__x->__right_ != nullptr) return std::__tree_min(__x->__right_); while (!std::__tree_is_left_child(__x)) __x = __x->__parent_unsafe(); return __x->__parent_unsafe(); } template inline _LIBCPP_HIDE_FROM_ABI _EndNodePtr __tree_next_iter(_NodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null"); if (__x->__right_ != nullptr) return static_cast<_EndNodePtr>(std::__tree_min(__x->__right_)); while (!std::__tree_is_left_child(__x)) __x = __x->__parent_unsafe(); return static_cast<_EndNodePtr>(__x->__parent_); } // Returns: pointer to the previous in-order node before __x. // Note: __x may be the end node. template inline _LIBCPP_HIDE_FROM_ABI _NodePtr __tree_prev_iter(_EndNodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null"); if (__x->__left_ != nullptr) return std::__tree_max(__x->__left_); _NodePtr __xx = static_cast<_NodePtr>(__x); while (std::__tree_is_left_child(__xx)) __xx = __xx->__parent_unsafe(); return __xx->__parent_unsafe(); } // Returns: pointer to a node which has no children template _LIBCPP_HIDE_FROM_ABI _NodePtr __tree_leaf(_NodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null"); while (true) { if (__x->__left_ != nullptr) { __x = __x->__left_; continue; } if (__x->__right_ != nullptr) { __x = __x->__right_; continue; } break; } return __x; } // Effects: Makes __x->__right_ the subtree root with __x as its left child // while preserving in-order order. template _LIBCPP_HIDE_FROM_ABI void __tree_left_rotate(_NodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null"); _LIBCPP_ASSERT_INTERNAL(__x->__right_ != nullptr, "node should have a right child"); _NodePtr __y = __x->__right_; __x->__right_ = __y->__left_; if (__x->__right_ != nullptr) __x->__right_->__set_parent(__x); __y->__parent_ = __x->__parent_; if (std::__tree_is_left_child(__x)) __x->__parent_->__left_ = __y; else __x->__parent_unsafe()->__right_ = __y; __y->__left_ = __x; __x->__set_parent(__y); } // Effects: Makes __x->__left_ the subtree root with __x as its right child // while preserving in-order order. template _LIBCPP_HIDE_FROM_ABI void __tree_right_rotate(_NodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null"); _LIBCPP_ASSERT_INTERNAL(__x->__left_ != nullptr, "node should have a left child"); _NodePtr __y = __x->__left_; __x->__left_ = __y->__right_; if (__x->__left_ != nullptr) __x->__left_->__set_parent(__x); __y->__parent_ = __x->__parent_; if (std::__tree_is_left_child(__x)) __x->__parent_->__left_ = __y; else __x->__parent_unsafe()->__right_ = __y; __y->__right_ = __x; __x->__set_parent(__y); } // Effects: Rebalances __root after attaching __x to a leaf. // Precondition: __x has no children. // __x == __root or == a direct or indirect child of __root. // If __x were to be unlinked from __root (setting __root to // nullptr if __root == __x), __tree_invariant(__root) == true. // Postcondition: __tree_invariant(end_node->__left_) == true. end_node->__left_ // may be different than the value passed in as __root. template _LIBCPP_HIDE_FROM_ABI void __tree_balance_after_insert(_NodePtr __root, _NodePtr __x) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__root != nullptr, "Root of the tree shouldn't be null"); _LIBCPP_ASSERT_INTERNAL(__x != nullptr, "Can't attach null node to a leaf"); __x->__is_black_ = __x == __root; while (__x != __root && !__x->__parent_unsafe()->__is_black_) { // __x->__parent_ != __root because __x->__parent_->__is_black == false if (std::__tree_is_left_child(__x->__parent_unsafe())) { _NodePtr __y = __x->__parent_unsafe()->__parent_unsafe()->__right_; if (__y != nullptr && !__y->__is_black_) { __x = __x->__parent_unsafe(); __x->__is_black_ = true; __x = __x->__parent_unsafe(); __x->__is_black_ = __x == __root; __y->__is_black_ = true; } else { if (!std::__tree_is_left_child(__x)) { __x = __x->__parent_unsafe(); std::__tree_left_rotate(__x); } __x = __x->__parent_unsafe(); __x->__is_black_ = true; __x = __x->__parent_unsafe(); __x->__is_black_ = false; std::__tree_right_rotate(__x); break; } } else { _NodePtr __y = __x->__parent_unsafe()->__parent_->__left_; if (__y != nullptr && !__y->__is_black_) { __x = __x->__parent_unsafe(); __x->__is_black_ = true; __x = __x->__parent_unsafe(); __x->__is_black_ = __x == __root; __y->__is_black_ = true; } else { if (std::__tree_is_left_child(__x)) { __x = __x->__parent_unsafe(); std::__tree_right_rotate(__x); } __x = __x->__parent_unsafe(); __x->__is_black_ = true; __x = __x->__parent_unsafe(); __x->__is_black_ = false; std::__tree_left_rotate(__x); break; } } } } // Precondition: __z == __root or == a direct or indirect child of __root. // Effects: unlinks __z from the tree rooted at __root, rebalancing as needed. // Postcondition: __tree_invariant(end_node->__left_) == true && end_node->__left_ // nor any of its children refer to __z. end_node->__left_ // may be different than the value passed in as __root. template _LIBCPP_HIDE_FROM_ABI void __tree_remove(_NodePtr __root, _NodePtr __z) _NOEXCEPT { _LIBCPP_ASSERT_INTERNAL(__root != nullptr, "Root node should not be null"); _LIBCPP_ASSERT_INTERNAL(__z != nullptr, "The node to remove should not be null"); _LIBCPP_ASSERT_INTERNAL(std::__tree_invariant(__root), "The tree invariants should hold"); // __z will be removed from the tree. Client still needs to destruct/deallocate it // __y is either __z, or if __z has two children, __tree_next(__z). // __y will have at most one child. // __y will be the initial hole in the tree (make the hole at a leaf) _NodePtr __y = (__z->__left_ == nullptr || __z->__right_ == nullptr) ? __z : std::__tree_next(__z); // __x is __y's possibly null single child _NodePtr __x = __y->__left_ != nullptr ? __y->__left_ : __y->__right_; // __w is __x's possibly null uncle (will become __x's sibling) _NodePtr __w = nullptr; // link __x to __y's parent, and find __w if (__x != nullptr) __x->__parent_ = __y->__parent_; if (std::__tree_is_left_child(__y)) { __y->__parent_->__left_ = __x; if (__y != __root) __w = __y->__parent_unsafe()->__right_; else __root = __x; // __w == nullptr } else { __y->__parent_unsafe()->__right_ = __x; // __y can't be root if it is a right child __w = __y->__parent_->__left_; } bool __removed_black = __y->__is_black_; // If we didn't remove __z, do so now by splicing in __y for __z, // but copy __z's color. This does not impact __x or __w. if (__y != __z) { // __z->__left_ != nulptr but __z->__right_ might == __x == nullptr __y->__parent_ = __z->__parent_; if (std::__tree_is_left_child(__z)) __y->__parent_->__left_ = __y; else __y->__parent_unsafe()->__right_ = __y; __y->__left_ = __z->__left_; __y->__left_->__set_parent(__y); __y->__right_ = __z->__right_; if (__y->__right_ != nullptr) __y->__right_->__set_parent(__y); __y->__is_black_ = __z->__is_black_; if (__root == __z) __root = __y; } // There is no need to rebalance if we removed a red, or if we removed // the last node. if (__removed_black && __root != nullptr) { // Rebalance: // __x has an implicit black color (transferred from the removed __y) // associated with it, no matter what its color is. // If __x is __root (in which case it can't be null), it is supposed // to be black anyway, and if it is doubly black, then the double // can just be ignored. // If __x is red (in which case it can't be null), then it can absorb // the implicit black just by setting its color to black. // Since __y was black and only had one child (which __x points to), __x // is either red with no children, else null, otherwise __y would have // different black heights under left and right pointers. // if (__x == __root || __x != nullptr && !__x->__is_black_) if (__x != nullptr) __x->__is_black_ = true; else { // Else __x isn't root, and is "doubly black", even though it may // be null. __w can not be null here, else the parent would // see a black height >= 2 on the __x side and a black height // of 1 on the __w side (__w must be a non-null black or a red // with a non-null black child). while (true) { if (!std::__tree_is_left_child(__w)) // if x is left child { if (!__w->__is_black_) { __w->__is_black_ = true; __w->__parent_unsafe()->__is_black_ = false; std::__tree_left_rotate(__w->__parent_unsafe()); // __x is still valid // reset __root only if necessary if (__root == __w->__left_) __root = __w; // reset sibling, and it still can't be null __w = __w->__left_->__right_; } // __w->__is_black_ is now true, __w may have null children if ((__w->__left_ == nullptr || __w->__left_->__is_black_) && (__w->__right_ == nullptr || __w->__right_->__is_black_)) { __w->__is_black_ = false; __x = __w->__parent_unsafe(); // __x can no longer be null if (__x == __root || !__x->__is_black_) { __x->__is_black_ = true; break; } // reset sibling, and it still can't be null __w = std::__tree_is_left_child(__x) ? __x->__parent_unsafe()->__right_ : __x->__parent_->__left_; // continue; } else // __w has a red child { if (__w->__right_ == nullptr || __w->__right_->__is_black_) { // __w left child is non-null and red __w->__left_->__is_black_ = true; __w->__is_black_ = false; std::__tree_right_rotate(__w); // __w is known not to be root, so root hasn't changed // reset sibling, and it still can't be null __w = __w->__parent_unsafe(); } // __w has a right red child, left child may be null __w->__is_black_ = __w->__parent_unsafe()->__is_black_; __w->__parent_unsafe()->__is_black_ = true; __w->__right_->__is_black_ = true; std::__tree_left_rotate(__w->__parent_unsafe()); break; } } else { if (!__w->__is_black_) { __w->__is_black_ = true; __w->__parent_unsafe()->__is_black_ = false; std::__tree_right_rotate(__w->__parent_unsafe()); // __x is still valid // reset __root only if necessary if (__root == __w->__right_) __root = __w; // reset sibling, and it still can't be null __w = __w->__right_->__left_; } // __w->__is_black_ is now true, __w may have null children if ((__w->__left_ == nullptr || __w->__left_->__is_black_) && (__w->__right_ == nullptr || __w->__right_->__is_black_)) { __w->__is_black_ = false; __x = __w->__parent_unsafe(); // __x can no longer be null if (!__x->__is_black_ || __x == __root) { __x->__is_black_ = true; break; } // reset sibling, and it still can't be null __w = std::__tree_is_left_child(__x) ? __x->__parent_unsafe()->__right_ : __x->__parent_->__left_; // continue; } else // __w has a red child { if (__w->__left_ == nullptr || __w->__left_->__is_black_) { // __w right child is non-null and red __w->__right_->__is_black_ = true; __w->__is_black_ = false; std::__tree_left_rotate(__w); // __w is known not to be root, so root hasn't changed // reset sibling, and it still can't be null __w = __w->__parent_unsafe(); } // __w has a left red child, right child may be null __w->__is_black_ = __w->__parent_unsafe()->__is_black_; __w->__parent_unsafe()->__is_black_ = true; __w->__left_->__is_black_ = true; std::__tree_right_rotate(__w->__parent_unsafe()); break; } } } } } } // node traits template struct __is_tree_value_type_imp : false_type {}; template struct __is_tree_value_type_imp<__value_type<_Key, _Value> > : true_type {}; template struct __is_tree_value_type : false_type {}; template struct __is_tree_value_type<_One> : __is_tree_value_type_imp<__remove_cvref_t<_One> > {}; template struct __tree_key_value_types { typedef _Tp key_type; typedef _Tp __node_value_type; typedef _Tp __container_value_type; static const bool __is_map = false; _LIBCPP_HIDE_FROM_ABI static key_type const& __get_key(_Tp const& __v) { return __v; } _LIBCPP_HIDE_FROM_ABI static __container_value_type const& __get_value(__node_value_type const& __v) { return __v; } _LIBCPP_HIDE_FROM_ABI static __container_value_type* __get_ptr(__node_value_type& __n) { return std::addressof(__n); } _LIBCPP_HIDE_FROM_ABI static __container_value_type&& __move(__node_value_type& __v) { return std::move(__v); } }; template struct __tree_key_value_types<__value_type<_Key, _Tp> > { typedef _Key key_type; typedef _Tp mapped_type; typedef __value_type<_Key, _Tp> __node_value_type; typedef pair __container_value_type; typedef __container_value_type __map_value_type; static const bool __is_map = true; _LIBCPP_HIDE_FROM_ABI static key_type const& __get_key(__node_value_type const& __t) { return __t.__get_value().first; } template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI static key_type const& __get_key(_Up& __t) { return __t.first; } _LIBCPP_HIDE_FROM_ABI static __container_value_type const& __get_value(__node_value_type const& __t) { return __t.__get_value(); } template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI static __container_value_type const& __get_value(_Up& __t) { return __t; } _LIBCPP_HIDE_FROM_ABI static __container_value_type* __get_ptr(__node_value_type& __n) { return std::addressof(__n.__get_value()); } _LIBCPP_HIDE_FROM_ABI static pair __move(__node_value_type& __v) { return __v.__move(); } }; template struct __tree_node_base_types { typedef _VoidPtr __void_pointer; typedef __tree_node_base<__void_pointer> __node_base_type; typedef __rebind_pointer_t<_VoidPtr, __node_base_type> __node_base_pointer; typedef __tree_end_node<__node_base_pointer> __end_node_type; typedef __rebind_pointer_t<_VoidPtr, __end_node_type> __end_node_pointer; #if defined(_LIBCPP_ABI_TREE_REMOVE_NODE_POINTER_UB) typedef __end_node_pointer __parent_pointer; #else typedef __conditional_t< is_pointer<__end_node_pointer>::value, __end_node_pointer, __node_base_pointer> __parent_pointer; #endif private: static_assert(is_same::element_type, void>::value, "_VoidPtr does not point to unqualified void type"); }; template , bool = _KVTypes::__is_map> struct __tree_map_pointer_types {}; template struct __tree_map_pointer_types<_Tp, _AllocPtr, _KVTypes, true> { typedef typename _KVTypes::__map_value_type _Mv; typedef __rebind_pointer_t<_AllocPtr, _Mv> __map_value_type_pointer; typedef __rebind_pointer_t<_AllocPtr, const _Mv> __const_map_value_type_pointer; }; template ::element_type> struct __tree_node_types; template struct __tree_node_types<_NodePtr, __tree_node<_Tp, _VoidPtr> > : public __tree_node_base_types<_VoidPtr>, __tree_key_value_types<_Tp>, __tree_map_pointer_types<_Tp, _VoidPtr> { typedef __tree_node_base_types<_VoidPtr> __base; typedef __tree_key_value_types<_Tp> __key_base; typedef __tree_map_pointer_types<_Tp, _VoidPtr> __map_pointer_base; public: typedef typename pointer_traits<_NodePtr>::element_type __node_type; typedef _NodePtr __node_pointer; typedef _Tp __node_value_type; typedef __rebind_pointer_t<_VoidPtr, __node_value_type> __node_value_type_pointer; typedef __rebind_pointer_t<_VoidPtr, const __node_value_type> __const_node_value_type_pointer; #if defined(_LIBCPP_ABI_TREE_REMOVE_NODE_POINTER_UB) typedef typename __base::__end_node_pointer __iter_pointer; #else typedef __conditional_t< is_pointer<__node_pointer>::value, typename __base::__end_node_pointer, __node_pointer> __iter_pointer; #endif private: static_assert(!is_const<__node_type>::value, "_NodePtr should never be a pointer to const"); static_assert(is_same<__rebind_pointer_t<_VoidPtr, __node_type>, _NodePtr>::value, "_VoidPtr does not rebind to _NodePtr."); }; template struct __make_tree_node_types { typedef __rebind_pointer_t<_VoidPtr, __tree_node<_ValueTp, _VoidPtr> > _NodePtr; typedef __tree_node_types<_NodePtr> type; }; // node template class __tree_end_node { public: typedef _Pointer pointer; pointer __left_; _LIBCPP_HIDE_FROM_ABI __tree_end_node() _NOEXCEPT : __left_() {} }; template class _LIBCPP_STANDALONE_DEBUG __tree_node_base : public __tree_node_base_types<_VoidPtr>::__end_node_type { typedef __tree_node_base_types<_VoidPtr> _NodeBaseTypes; public: typedef typename _NodeBaseTypes::__node_base_pointer pointer; typedef typename _NodeBaseTypes::__parent_pointer __parent_pointer; pointer __right_; __parent_pointer __parent_; bool __is_black_; _LIBCPP_HIDE_FROM_ABI pointer __parent_unsafe() const { return static_cast(__parent_); } _LIBCPP_HIDE_FROM_ABI void __set_parent(pointer __p) { __parent_ = static_cast<__parent_pointer>(__p); } ~__tree_node_base() = delete; __tree_node_base(__tree_node_base const&) = delete; __tree_node_base& operator=(__tree_node_base const&) = delete; }; template class _LIBCPP_STANDALONE_DEBUG __tree_node : public __tree_node_base<_VoidPtr> { public: typedef _Tp __node_value_type; __node_value_type __value_; _LIBCPP_HIDE_FROM_ABI _Tp& __get_value() { return __value_; } ~__tree_node() = delete; __tree_node(__tree_node const&) = delete; __tree_node& operator=(__tree_node const&) = delete; }; template class __tree_node_destructor { typedef _Allocator allocator_type; typedef allocator_traits __alloc_traits; public: typedef typename __alloc_traits::pointer pointer; private: typedef __tree_node_types _NodeTypes; allocator_type& __na_; public: bool __value_constructed; _LIBCPP_HIDE_FROM_ABI __tree_node_destructor(const __tree_node_destructor&) = default; __tree_node_destructor& operator=(const __tree_node_destructor&) = delete; _LIBCPP_HIDE_FROM_ABI explicit __tree_node_destructor(allocator_type& __na, bool __val = false) _NOEXCEPT : __na_(__na), __value_constructed(__val) {} _LIBCPP_HIDE_FROM_ABI void operator()(pointer __p) _NOEXCEPT { if (__value_constructed) __alloc_traits::destroy(__na_, _NodeTypes::__get_ptr(__p->__value_)); if (__p) __alloc_traits::deallocate(__na_, __p, 1); } template friend class __map_node_destructor; }; #if _LIBCPP_STD_VER >= 17 template struct __generic_container_node_destructor; template struct __generic_container_node_destructor<__tree_node<_Tp, _VoidPtr>, _Alloc> : __tree_node_destructor<_Alloc> { using __tree_node_destructor<_Alloc>::__tree_node_destructor; }; #endif template class _LIBCPP_TEMPLATE_VIS __tree_iterator { typedef __tree_node_types<_NodePtr> _NodeTypes; typedef _NodePtr __node_pointer; typedef typename _NodeTypes::__node_base_pointer __node_base_pointer; typedef typename _NodeTypes::__end_node_pointer __end_node_pointer; typedef typename _NodeTypes::__iter_pointer __iter_pointer; typedef pointer_traits<__node_pointer> __pointer_traits; __iter_pointer __ptr_; public: typedef bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef _DiffType difference_type; typedef value_type& reference; typedef typename _NodeTypes::__node_value_type_pointer pointer; _LIBCPP_HIDE_FROM_ABI __tree_iterator() _NOEXCEPT #if _LIBCPP_STD_VER >= 14 : __ptr_(nullptr) #endif { } _LIBCPP_HIDE_FROM_ABI reference operator*() const { return __get_np()->__value_; } _LIBCPP_HIDE_FROM_ABI pointer operator->() const { return pointer_traits::pointer_to(__get_np()->__value_); } _LIBCPP_HIDE_FROM_ABI __tree_iterator& operator++() { __ptr_ = static_cast<__iter_pointer>( std::__tree_next_iter<__end_node_pointer>(static_cast<__node_base_pointer>(__ptr_))); return *this; } _LIBCPP_HIDE_FROM_ABI __tree_iterator operator++(int) { __tree_iterator __t(*this); ++(*this); return __t; } _LIBCPP_HIDE_FROM_ABI __tree_iterator& operator--() { __ptr_ = static_cast<__iter_pointer>( std::__tree_prev_iter<__node_base_pointer>(static_cast<__end_node_pointer>(__ptr_))); return *this; } _LIBCPP_HIDE_FROM_ABI __tree_iterator operator--(int) { __tree_iterator __t(*this); --(*this); return __t; } friend _LIBCPP_HIDE_FROM_ABI bool operator==(const __tree_iterator& __x, const __tree_iterator& __y) { return __x.__ptr_ == __y.__ptr_; } friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const __tree_iterator& __x, const __tree_iterator& __y) { return !(__x == __y); } private: _LIBCPP_HIDE_FROM_ABI explicit __tree_iterator(__node_pointer __p) _NOEXCEPT : __ptr_(__p) {} _LIBCPP_HIDE_FROM_ABI explicit __tree_iterator(__end_node_pointer __p) _NOEXCEPT : __ptr_(__p) {} _LIBCPP_HIDE_FROM_ABI __node_pointer __get_np() const { return static_cast<__node_pointer>(__ptr_); } template friend class __tree; template friend class _LIBCPP_TEMPLATE_VIS __tree_const_iterator; template friend class _LIBCPP_TEMPLATE_VIS __map_iterator; template friend class _LIBCPP_TEMPLATE_VIS map; template friend class _LIBCPP_TEMPLATE_VIS multimap; template friend class _LIBCPP_TEMPLATE_VIS set; template friend class _LIBCPP_TEMPLATE_VIS multiset; }; template class _LIBCPP_TEMPLATE_VIS __tree_const_iterator { typedef __tree_node_types<_NodePtr> _NodeTypes; typedef typename _NodeTypes::__node_pointer __node_pointer; typedef typename _NodeTypes::__node_base_pointer __node_base_pointer; typedef typename _NodeTypes::__end_node_pointer __end_node_pointer; typedef typename _NodeTypes::__iter_pointer __iter_pointer; typedef pointer_traits<__node_pointer> __pointer_traits; __iter_pointer __ptr_; public: typedef bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef _DiffType difference_type; typedef const value_type& reference; typedef typename _NodeTypes::__const_node_value_type_pointer pointer; _LIBCPP_HIDE_FROM_ABI __tree_const_iterator() _NOEXCEPT #if _LIBCPP_STD_VER >= 14 : __ptr_(nullptr) #endif { } private: typedef __tree_iterator __non_const_iterator; public: _LIBCPP_HIDE_FROM_ABI __tree_const_iterator(__non_const_iterator __p) _NOEXCEPT : __ptr_(__p.__ptr_) {} _LIBCPP_HIDE_FROM_ABI reference operator*() const { return __get_np()->__value_; } _LIBCPP_HIDE_FROM_ABI pointer operator->() const { return pointer_traits::pointer_to(__get_np()->__value_); } _LIBCPP_HIDE_FROM_ABI __tree_const_iterator& operator++() { __ptr_ = static_cast<__iter_pointer>( std::__tree_next_iter<__end_node_pointer>(static_cast<__node_base_pointer>(__ptr_))); return *this; } _LIBCPP_HIDE_FROM_ABI __tree_const_iterator operator++(int) { __tree_const_iterator __t(*this); ++(*this); return __t; } _LIBCPP_HIDE_FROM_ABI __tree_const_iterator& operator--() { __ptr_ = static_cast<__iter_pointer>( std::__tree_prev_iter<__node_base_pointer>(static_cast<__end_node_pointer>(__ptr_))); return *this; } _LIBCPP_HIDE_FROM_ABI __tree_const_iterator operator--(int) { __tree_const_iterator __t(*this); --(*this); return __t; } friend _LIBCPP_HIDE_FROM_ABI bool operator==(const __tree_const_iterator& __x, const __tree_const_iterator& __y) { return __x.__ptr_ == __y.__ptr_; } friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const __tree_const_iterator& __x, const __tree_const_iterator& __y) { return !(__x == __y); } private: _LIBCPP_HIDE_FROM_ABI explicit __tree_const_iterator(__node_pointer __p) _NOEXCEPT : __ptr_(__p) {} _LIBCPP_HIDE_FROM_ABI explicit __tree_const_iterator(__end_node_pointer __p) _NOEXCEPT : __ptr_(__p) {} _LIBCPP_HIDE_FROM_ABI __node_pointer __get_np() const { return static_cast<__node_pointer>(__ptr_); } template friend class __tree; template friend class _LIBCPP_TEMPLATE_VIS map; template friend class _LIBCPP_TEMPLATE_VIS multimap; template friend class _LIBCPP_TEMPLATE_VIS set; template friend class _LIBCPP_TEMPLATE_VIS multiset; template friend class _LIBCPP_TEMPLATE_VIS __map_const_iterator; }; template #ifndef _LIBCPP_CXX03_LANG _LIBCPP_DIAGNOSE_WARNING(!__invokable<_Compare const&, _Tp const&, _Tp const&>::value, "the specified comparator type does not provide a viable const call operator") #endif int __diagnose_non_const_comparator(); template class __tree { public: typedef _Tp value_type; typedef _Compare value_compare; typedef _Allocator allocator_type; private: typedef allocator_traits __alloc_traits; typedef typename __make_tree_node_types::type _NodeTypes; typedef typename _NodeTypes::key_type key_type; public: typedef typename _NodeTypes::__node_value_type __node_value_type; typedef typename _NodeTypes::__container_value_type __container_value_type; typedef typename __alloc_traits::pointer pointer; typedef typename __alloc_traits::const_pointer const_pointer; typedef typename __alloc_traits::size_type size_type; typedef typename __alloc_traits::difference_type difference_type; public: typedef typename _NodeTypes::__void_pointer __void_pointer; typedef typename _NodeTypes::__node_type __node; typedef typename _NodeTypes::__node_pointer __node_pointer; typedef typename _NodeTypes::__node_base_type __node_base; typedef typename _NodeTypes::__node_base_pointer __node_base_pointer; typedef typename _NodeTypes::__end_node_type __end_node_t; typedef typename _NodeTypes::__end_node_pointer __end_node_ptr; typedef typename _NodeTypes::__parent_pointer __parent_pointer; typedef typename _NodeTypes::__iter_pointer __iter_pointer; typedef __rebind_alloc<__alloc_traits, __node> __node_allocator; typedef allocator_traits<__node_allocator> __node_traits; private: // check for sane allocator pointer rebinding semantics. Rebinding the // allocator for a new pointer type should be exactly the same as rebinding // the pointer using 'pointer_traits'. static_assert(is_same<__node_pointer, typename __node_traits::pointer>::value, "Allocator does not rebind pointers in a sane manner."); typedef __rebind_alloc<__node_traits, __node_base> __node_base_allocator; typedef allocator_traits<__node_base_allocator> __node_base_traits; static_assert(is_same<__node_base_pointer, typename __node_base_traits::pointer>::value, "Allocator does not rebind pointers in a sane manner."); private: __iter_pointer __begin_node_; __compressed_pair<__end_node_t, __node_allocator> __pair1_; __compressed_pair __pair3_; public: _LIBCPP_HIDE_FROM_ABI __iter_pointer __end_node() _NOEXCEPT { return static_cast<__iter_pointer>(pointer_traits<__end_node_ptr>::pointer_to(__pair1_.first())); } _LIBCPP_HIDE_FROM_ABI __iter_pointer __end_node() const _NOEXCEPT { return static_cast<__iter_pointer>( pointer_traits<__end_node_ptr>::pointer_to(const_cast<__end_node_t&>(__pair1_.first()))); } _LIBCPP_HIDE_FROM_ABI __node_allocator& __node_alloc() _NOEXCEPT { return __pair1_.second(); } private: _LIBCPP_HIDE_FROM_ABI const __node_allocator& __node_alloc() const _NOEXCEPT { return __pair1_.second(); } _LIBCPP_HIDE_FROM_ABI __iter_pointer& __begin_node() _NOEXCEPT { return __begin_node_; } _LIBCPP_HIDE_FROM_ABI const __iter_pointer& __begin_node() const _NOEXCEPT { return __begin_node_; } public: _LIBCPP_HIDE_FROM_ABI allocator_type __alloc() const _NOEXCEPT { return allocator_type(__node_alloc()); } private: _LIBCPP_HIDE_FROM_ABI size_type& size() _NOEXCEPT { return __pair3_.first(); } public: _LIBCPP_HIDE_FROM_ABI const size_type& size() const _NOEXCEPT { return __pair3_.first(); } _LIBCPP_HIDE_FROM_ABI value_compare& value_comp() _NOEXCEPT { return __pair3_.second(); } _LIBCPP_HIDE_FROM_ABI const value_compare& value_comp() const _NOEXCEPT { return __pair3_.second(); } public: _LIBCPP_HIDE_FROM_ABI __node_pointer __root() const _NOEXCEPT { return static_cast<__node_pointer>(__end_node()->__left_); } _LIBCPP_HIDE_FROM_ABI __node_base_pointer* __root_ptr() const _NOEXCEPT { return std::addressof(__end_node()->__left_); } typedef __tree_iterator iterator; typedef __tree_const_iterator const_iterator; _LIBCPP_HIDE_FROM_ABI explicit __tree(const value_compare& __comp) _NOEXCEPT_( is_nothrow_default_constructible<__node_allocator>::value&& is_nothrow_copy_constructible::value); _LIBCPP_HIDE_FROM_ABI explicit __tree(const allocator_type& __a); _LIBCPP_HIDE_FROM_ABI __tree(const value_compare& __comp, const allocator_type& __a); _LIBCPP_HIDE_FROM_ABI __tree(const __tree& __t); _LIBCPP_HIDE_FROM_ABI __tree& operator=(const __tree& __t); template _LIBCPP_HIDE_FROM_ABI void __assign_unique(_ForwardIterator __first, _ForwardIterator __last); template _LIBCPP_HIDE_FROM_ABI void __assign_multi(_InputIterator __first, _InputIterator __last); _LIBCPP_HIDE_FROM_ABI __tree(__tree&& __t) _NOEXCEPT_( is_nothrow_move_constructible<__node_allocator>::value&& is_nothrow_move_constructible::value); _LIBCPP_HIDE_FROM_ABI __tree(__tree&& __t, const allocator_type& __a); _LIBCPP_HIDE_FROM_ABI __tree& operator=(__tree&& __t) _NOEXCEPT_( __node_traits::propagate_on_container_move_assignment::value&& is_nothrow_move_assignable::value&& is_nothrow_move_assignable<__node_allocator>::value); _LIBCPP_HIDE_FROM_ABI ~__tree(); _LIBCPP_HIDE_FROM_ABI iterator begin() _NOEXCEPT { return iterator(__begin_node()); } _LIBCPP_HIDE_FROM_ABI const_iterator begin() const _NOEXCEPT { return const_iterator(__begin_node()); } _LIBCPP_HIDE_FROM_ABI iterator end() _NOEXCEPT { return iterator(__end_node()); } _LIBCPP_HIDE_FROM_ABI const_iterator end() const _NOEXCEPT { return const_iterator(__end_node()); } _LIBCPP_HIDE_FROM_ABI size_type max_size() const _NOEXCEPT { return std::min(__node_traits::max_size(__node_alloc()), numeric_limits::max()); } _LIBCPP_HIDE_FROM_ABI void clear() _NOEXCEPT; _LIBCPP_HIDE_FROM_ABI void swap(__tree& __t) #if _LIBCPP_STD_VER <= 11 _NOEXCEPT_(__is_nothrow_swappable_v && (!__node_traits::propagate_on_container_swap::value || __is_nothrow_swappable_v<__node_allocator>)); #else _NOEXCEPT_(__is_nothrow_swappable_v); #endif template _LIBCPP_HIDE_FROM_ABI pair __emplace_unique_key_args(_Key const&, _Args&&... __args); template _LIBCPP_HIDE_FROM_ABI pair __emplace_hint_unique_key_args(const_iterator, _Key const&, _Args&&...); template _LIBCPP_HIDE_FROM_ABI pair __emplace_unique_impl(_Args&&... __args); template _LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_unique_impl(const_iterator __p, _Args&&... __args); template _LIBCPP_HIDE_FROM_ABI iterator __emplace_multi(_Args&&... __args); template _LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_multi(const_iterator __p, _Args&&... __args); template _LIBCPP_HIDE_FROM_ABI pair __emplace_unique(_Pp&& __x) { return __emplace_unique_extract_key(std::forward<_Pp>(__x), __can_extract_key<_Pp, key_type>()); } template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI pair __emplace_unique(_First&& __f, _Second&& __s) { return __emplace_unique_key_args(__f, std::forward<_First>(__f), std::forward<_Second>(__s)); } template _LIBCPP_HIDE_FROM_ABI pair __emplace_unique(_Args&&... __args) { return __emplace_unique_impl(std::forward<_Args>(__args)...); } template _LIBCPP_HIDE_FROM_ABI pair __emplace_unique_extract_key(_Pp&& __x, __extract_key_fail_tag) { return __emplace_unique_impl(std::forward<_Pp>(__x)); } template _LIBCPP_HIDE_FROM_ABI pair __emplace_unique_extract_key(_Pp&& __x, __extract_key_self_tag) { return __emplace_unique_key_args(__x, std::forward<_Pp>(__x)); } template _LIBCPP_HIDE_FROM_ABI pair __emplace_unique_extract_key(_Pp&& __x, __extract_key_first_tag) { return __emplace_unique_key_args(__x.first, std::forward<_Pp>(__x)); } template _LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_unique(const_iterator __p, _Pp&& __x) { return __emplace_hint_unique_extract_key(__p, std::forward<_Pp>(__x), __can_extract_key<_Pp, key_type>()); } template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_unique(const_iterator __p, _First&& __f, _Second&& __s) { return __emplace_hint_unique_key_args(__p, __f, std::forward<_First>(__f), std::forward<_Second>(__s)).first; } template _LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_unique(const_iterator __p, _Args&&... __args) { return __emplace_hint_unique_impl(__p, std::forward<_Args>(__args)...); } template _LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_unique_extract_key(const_iterator __p, _Pp&& __x, __extract_key_fail_tag) { return __emplace_hint_unique_impl(__p, std::forward<_Pp>(__x)); } template _LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_unique_extract_key(const_iterator __p, _Pp&& __x, __extract_key_self_tag) { return __emplace_hint_unique_key_args(__p, __x, std::forward<_Pp>(__x)).first; } template _LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_unique_extract_key(const_iterator __p, _Pp&& __x, __extract_key_first_tag) { return __emplace_hint_unique_key_args(__p, __x.first, std::forward<_Pp>(__x)).first; } _LIBCPP_HIDE_FROM_ABI pair __insert_unique(const __container_value_type& __v) { return __emplace_unique_key_args(_NodeTypes::__get_key(__v), __v); } _LIBCPP_HIDE_FROM_ABI iterator __insert_unique(const_iterator __p, const __container_value_type& __v) { return __emplace_hint_unique_key_args(__p, _NodeTypes::__get_key(__v), __v).first; } _LIBCPP_HIDE_FROM_ABI pair __insert_unique(__container_value_type&& __v) { return __emplace_unique_key_args(_NodeTypes::__get_key(__v), std::move(__v)); } _LIBCPP_HIDE_FROM_ABI iterator __insert_unique(const_iterator __p, __container_value_type&& __v) { return __emplace_hint_unique_key_args(__p, _NodeTypes::__get_key(__v), std::move(__v)).first; } template , __container_value_type>::value, int> = 0> _LIBCPP_HIDE_FROM_ABI pair __insert_unique(_Vp&& __v) { return __emplace_unique(std::forward<_Vp>(__v)); } template , __container_value_type>::value, int> = 0> _LIBCPP_HIDE_FROM_ABI iterator __insert_unique(const_iterator __p, _Vp&& __v) { return __emplace_hint_unique(__p, std::forward<_Vp>(__v)); } _LIBCPP_HIDE_FROM_ABI iterator __insert_multi(__container_value_type&& __v) { return __emplace_multi(std::move(__v)); } _LIBCPP_HIDE_FROM_ABI iterator __insert_multi(const_iterator __p, __container_value_type&& __v) { return __emplace_hint_multi(__p, std::move(__v)); } template _LIBCPP_HIDE_FROM_ABI iterator __insert_multi(_Vp&& __v) { return __emplace_multi(std::forward<_Vp>(__v)); } template _LIBCPP_HIDE_FROM_ABI iterator __insert_multi(const_iterator __p, _Vp&& __v) { return __emplace_hint_multi(__p, std::forward<_Vp>(__v)); } _LIBCPP_HIDE_FROM_ABI pair __node_assign_unique(const __container_value_type& __v, __node_pointer __dest); _LIBCPP_HIDE_FROM_ABI iterator __node_insert_multi(__node_pointer __nd); _LIBCPP_HIDE_FROM_ABI iterator __node_insert_multi(const_iterator __p, __node_pointer __nd); _LIBCPP_HIDE_FROM_ABI iterator __remove_node_pointer(__node_pointer) _NOEXCEPT; #if _LIBCPP_STD_VER >= 17 template _LIBCPP_HIDE_FROM_ABI _InsertReturnType __node_handle_insert_unique(_NodeHandle&&); template _LIBCPP_HIDE_FROM_ABI iterator __node_handle_insert_unique(const_iterator, _NodeHandle&&); template _LIBCPP_HIDE_FROM_ABI void __node_handle_merge_unique(_Tree& __source); template _LIBCPP_HIDE_FROM_ABI iterator __node_handle_insert_multi(_NodeHandle&&); template _LIBCPP_HIDE_FROM_ABI iterator __node_handle_insert_multi(const_iterator, _NodeHandle&&); template _LIBCPP_HIDE_FROM_ABI void __node_handle_merge_multi(_Tree& __source); template _LIBCPP_HIDE_FROM_ABI _NodeHandle __node_handle_extract(key_type const&); template _LIBCPP_HIDE_FROM_ABI _NodeHandle __node_handle_extract(const_iterator); #endif _LIBCPP_HIDE_FROM_ABI iterator erase(const_iterator __p); _LIBCPP_HIDE_FROM_ABI iterator erase(const_iterator __f, const_iterator __l); template _LIBCPP_HIDE_FROM_ABI size_type __erase_unique(const _Key& __k); template _LIBCPP_HIDE_FROM_ABI size_type __erase_multi(const _Key& __k); _LIBCPP_HIDE_FROM_ABI void __insert_node_at(__parent_pointer __parent, __node_base_pointer& __child, __node_base_pointer __new_node) _NOEXCEPT; template _LIBCPP_HIDE_FROM_ABI iterator find(const _Key& __v); template _LIBCPP_HIDE_FROM_ABI const_iterator find(const _Key& __v) const; template _LIBCPP_HIDE_FROM_ABI size_type __count_unique(const _Key& __k) const; template _LIBCPP_HIDE_FROM_ABI size_type __count_multi(const _Key& __k) const; template _LIBCPP_HIDE_FROM_ABI iterator lower_bound(const _Key& __v) { return __lower_bound(__v, __root(), __end_node()); } template _LIBCPP_HIDE_FROM_ABI iterator __lower_bound(const _Key& __v, __node_pointer __root, __iter_pointer __result); template _LIBCPP_HIDE_FROM_ABI const_iterator lower_bound(const _Key& __v) const { return __lower_bound(__v, __root(), __end_node()); } template _LIBCPP_HIDE_FROM_ABI const_iterator __lower_bound(const _Key& __v, __node_pointer __root, __iter_pointer __result) const; template _LIBCPP_HIDE_FROM_ABI iterator upper_bound(const _Key& __v) { return __upper_bound(__v, __root(), __end_node()); } template _LIBCPP_HIDE_FROM_ABI iterator __upper_bound(const _Key& __v, __node_pointer __root, __iter_pointer __result); template _LIBCPP_HIDE_FROM_ABI const_iterator upper_bound(const _Key& __v) const { return __upper_bound(__v, __root(), __end_node()); } template _LIBCPP_HIDE_FROM_ABI const_iterator __upper_bound(const _Key& __v, __node_pointer __root, __iter_pointer __result) const; template _LIBCPP_HIDE_FROM_ABI pair __equal_range_unique(const _Key& __k); template _LIBCPP_HIDE_FROM_ABI pair __equal_range_unique(const _Key& __k) const; template _LIBCPP_HIDE_FROM_ABI pair __equal_range_multi(const _Key& __k); template _LIBCPP_HIDE_FROM_ABI pair __equal_range_multi(const _Key& __k) const; typedef __tree_node_destructor<__node_allocator> _Dp; typedef unique_ptr<__node, _Dp> __node_holder; _LIBCPP_HIDE_FROM_ABI __node_holder remove(const_iterator __p) _NOEXCEPT; private: _LIBCPP_HIDE_FROM_ABI __node_base_pointer& __find_leaf_low(__parent_pointer& __parent, const key_type& __v); _LIBCPP_HIDE_FROM_ABI __node_base_pointer& __find_leaf_high(__parent_pointer& __parent, const key_type& __v); _LIBCPP_HIDE_FROM_ABI __node_base_pointer& __find_leaf(const_iterator __hint, __parent_pointer& __parent, const key_type& __v); // FIXME: Make this function const qualified. Unfortunately doing so // breaks existing code which uses non-const callable comparators. template _LIBCPP_HIDE_FROM_ABI __node_base_pointer& __find_equal(__parent_pointer& __parent, const _Key& __v); template _LIBCPP_HIDE_FROM_ABI __node_base_pointer& __find_equal(__parent_pointer& __parent, const _Key& __v) const { return const_cast<__tree*>(this)->__find_equal(__parent, __v); } template _LIBCPP_HIDE_FROM_ABI __node_base_pointer& __find_equal(const_iterator __hint, __parent_pointer& __parent, __node_base_pointer& __dummy, const _Key& __v); template _LIBCPP_HIDE_FROM_ABI __node_holder __construct_node(_Args&&... __args); // TODO: Make this _LIBCPP_HIDE_FROM_ABI _LIBCPP_HIDDEN void destroy(__node_pointer __nd) _NOEXCEPT; _LIBCPP_HIDE_FROM_ABI void __copy_assign_alloc(const __tree& __t) { __copy_assign_alloc(__t, integral_constant()); } _LIBCPP_HIDE_FROM_ABI void __copy_assign_alloc(const __tree& __t, true_type) { if (__node_alloc() != __t.__node_alloc()) clear(); __node_alloc() = __t.__node_alloc(); } _LIBCPP_HIDE_FROM_ABI void __copy_assign_alloc(const __tree&, false_type) {} _LIBCPP_HIDE_FROM_ABI void __move_assign(__tree& __t, false_type); _LIBCPP_HIDE_FROM_ABI void __move_assign(__tree& __t, true_type) _NOEXCEPT_( is_nothrow_move_assignable::value&& is_nothrow_move_assignable<__node_allocator>::value); _LIBCPP_HIDE_FROM_ABI void __move_assign_alloc(__tree& __t) _NOEXCEPT_(!__node_traits::propagate_on_container_move_assignment::value || is_nothrow_move_assignable<__node_allocator>::value) { __move_assign_alloc(__t, integral_constant()); } _LIBCPP_HIDE_FROM_ABI void __move_assign_alloc(__tree& __t, true_type) _NOEXCEPT_(is_nothrow_move_assignable<__node_allocator>::value) { __node_alloc() = std::move(__t.__node_alloc()); } _LIBCPP_HIDE_FROM_ABI void __move_assign_alloc(__tree&, false_type) _NOEXCEPT {} struct _DetachedTreeCache { _LIBCPP_HIDE_FROM_ABI explicit _DetachedTreeCache(__tree* __t) _NOEXCEPT : __t_(__t), __cache_root_(__detach_from_tree(__t)) { __advance(); } _LIBCPP_HIDE_FROM_ABI __node_pointer __get() const _NOEXCEPT { return __cache_elem_; } _LIBCPP_HIDE_FROM_ABI void __advance() _NOEXCEPT { __cache_elem_ = __cache_root_; if (__cache_root_) { __cache_root_ = __detach_next(__cache_root_); } } _LIBCPP_HIDE_FROM_ABI ~_DetachedTreeCache() { __t_->destroy(__cache_elem_); if (__cache_root_) { while (__cache_root_->__parent_ != nullptr) __cache_root_ = static_cast<__node_pointer>(__cache_root_->__parent_); __t_->destroy(__cache_root_); } } _DetachedTreeCache(_DetachedTreeCache const&) = delete; _DetachedTreeCache& operator=(_DetachedTreeCache const&) = delete; private: _LIBCPP_HIDE_FROM_ABI static __node_pointer __detach_from_tree(__tree* __t) _NOEXCEPT; _LIBCPP_HIDE_FROM_ABI static __node_pointer __detach_next(__node_pointer) _NOEXCEPT; __tree* __t_; __node_pointer __cache_root_; __node_pointer __cache_elem_; }; template friend class _LIBCPP_TEMPLATE_VIS map; template friend class _LIBCPP_TEMPLATE_VIS multimap; }; template __tree<_Tp, _Compare, _Allocator>::__tree(const value_compare& __comp) _NOEXCEPT_( is_nothrow_default_constructible<__node_allocator>::value&& is_nothrow_copy_constructible::value) : __pair3_(0, __comp) { __begin_node() = __end_node(); } template __tree<_Tp, _Compare, _Allocator>::__tree(const allocator_type& __a) : __begin_node_(__iter_pointer()), __pair1_(__default_init_tag(), __node_allocator(__a)), __pair3_(0, __default_init_tag()) { __begin_node() = __end_node(); } template __tree<_Tp, _Compare, _Allocator>::__tree(const value_compare& __comp, const allocator_type& __a) : __begin_node_(__iter_pointer()), __pair1_(__default_init_tag(), __node_allocator(__a)), __pair3_(0, __comp) { __begin_node() = __end_node(); } // Precondition: size() != 0 template typename __tree<_Tp, _Compare, _Allocator>::__node_pointer __tree<_Tp, _Compare, _Allocator>::_DetachedTreeCache::__detach_from_tree(__tree* __t) _NOEXCEPT { __node_pointer __cache = static_cast<__node_pointer>(__t->__begin_node()); __t->__begin_node() = __t->__end_node(); __t->__end_node()->__left_->__parent_ = nullptr; __t->__end_node()->__left_ = nullptr; __t->size() = 0; // __cache->__left_ == nullptr if (__cache->__right_ != nullptr) __cache = static_cast<__node_pointer>(__cache->__right_); // __cache->__left_ == nullptr // __cache->__right_ == nullptr return __cache; } // Precondition: __cache != nullptr // __cache->left_ == nullptr // __cache->right_ == nullptr // This is no longer a red-black tree template typename __tree<_Tp, _Compare, _Allocator>::__node_pointer __tree<_Tp, _Compare, _Allocator>::_DetachedTreeCache::__detach_next(__node_pointer __cache) _NOEXCEPT { if (__cache->__parent_ == nullptr) return nullptr; if (std::__tree_is_left_child(static_cast<__node_base_pointer>(__cache))) { __cache->__parent_->__left_ = nullptr; __cache = static_cast<__node_pointer>(__cache->__parent_); if (__cache->__right_ == nullptr) return __cache; return static_cast<__node_pointer>(std::__tree_leaf(__cache->__right_)); } // __cache is right child __cache->__parent_unsafe()->__right_ = nullptr; __cache = static_cast<__node_pointer>(__cache->__parent_); if (__cache->__left_ == nullptr) return __cache; return static_cast<__node_pointer>(std::__tree_leaf(__cache->__left_)); } template __tree<_Tp, _Compare, _Allocator>& __tree<_Tp, _Compare, _Allocator>::operator=(const __tree& __t) { if (this != std::addressof(__t)) { value_comp() = __t.value_comp(); __copy_assign_alloc(__t); __assign_multi(__t.begin(), __t.end()); } return *this; } template template void __tree<_Tp, _Compare, _Allocator>::__assign_unique(_ForwardIterator __first, _ForwardIterator __last) { typedef iterator_traits<_ForwardIterator> _ITraits; typedef typename _ITraits::value_type _ItValueType; static_assert(is_same<_ItValueType, __container_value_type>::value, "__assign_unique may only be called with the containers value type"); static_assert( __has_forward_iterator_category<_ForwardIterator>::value, "__assign_unique requires a forward iterator"); if (size() != 0) { _DetachedTreeCache __cache(this); for (; __cache.__get() != nullptr && __first != __last; ++__first) { if (__node_assign_unique(*__first, __cache.__get()).second) __cache.__advance(); } } for (; __first != __last; ++__first) __insert_unique(*__first); } template template void __tree<_Tp, _Compare, _Allocator>::__assign_multi(_InputIterator __first, _InputIterator __last) { typedef iterator_traits<_InputIterator> _ITraits; typedef typename _ITraits::value_type _ItValueType; static_assert( (is_same<_ItValueType, __container_value_type>::value || is_same<_ItValueType, __node_value_type>::value), "__assign_multi may only be called with the containers value type" " or the nodes value type"); if (size() != 0) { _DetachedTreeCache __cache(this); for (; __cache.__get() && __first != __last; ++__first) { __cache.__get()->__value_ = *__first; __node_insert_multi(__cache.__get()); __cache.__advance(); } } for (; __first != __last; ++__first) __insert_multi(_NodeTypes::__get_value(*__first)); } template __tree<_Tp, _Compare, _Allocator>::__tree(const __tree& __t) : __begin_node_(__iter_pointer()), __pair1_(__default_init_tag(), __node_traits::select_on_container_copy_construction(__t.__node_alloc())), __pair3_(0, __t.value_comp()) { __begin_node() = __end_node(); } template __tree<_Tp, _Compare, _Allocator>::__tree(__tree&& __t) _NOEXCEPT_( is_nothrow_move_constructible<__node_allocator>::value&& is_nothrow_move_constructible::value) : __begin_node_(std::move(__t.__begin_node_)), __pair1_(std::move(__t.__pair1_)), __pair3_(std::move(__t.__pair3_)) { if (size() == 0) __begin_node() = __end_node(); else { __end_node()->__left_->__parent_ = static_cast<__parent_pointer>(__end_node()); __t.__begin_node() = __t.__end_node(); __t.__end_node()->__left_ = nullptr; __t.size() = 0; } } template __tree<_Tp, _Compare, _Allocator>::__tree(__tree&& __t, const allocator_type& __a) : __pair1_(__default_init_tag(), __node_allocator(__a)), __pair3_(0, std::move(__t.value_comp())) { if (__a == __t.__alloc()) { if (__t.size() == 0) __begin_node() = __end_node(); else { __begin_node() = __t.__begin_node(); __end_node()->__left_ = __t.__end_node()->__left_; __end_node()->__left_->__parent_ = static_cast<__parent_pointer>(__end_node()); size() = __t.size(); __t.__begin_node() = __t.__end_node(); __t.__end_node()->__left_ = nullptr; __t.size() = 0; } } else { __begin_node() = __end_node(); } } template void __tree<_Tp, _Compare, _Allocator>::__move_assign(__tree& __t, true_type) _NOEXCEPT_(is_nothrow_move_assignable::value&& is_nothrow_move_assignable<__node_allocator>::value) { destroy(static_cast<__node_pointer>(__end_node()->__left_)); __begin_node_ = __t.__begin_node_; __pair1_.first() = __t.__pair1_.first(); __move_assign_alloc(__t); __pair3_ = std::move(__t.__pair3_); if (size() == 0) __begin_node() = __end_node(); else { __end_node()->__left_->__parent_ = static_cast<__parent_pointer>(__end_node()); __t.__begin_node() = __t.__end_node(); __t.__end_node()->__left_ = nullptr; __t.size() = 0; } } template void __tree<_Tp, _Compare, _Allocator>::__move_assign(__tree& __t, false_type) { if (__node_alloc() == __t.__node_alloc()) __move_assign(__t, true_type()); else { value_comp() = std::move(__t.value_comp()); const_iterator __e = end(); if (size() != 0) { _DetachedTreeCache __cache(this); while (__cache.__get() != nullptr && __t.size() != 0) { __cache.__get()->__value_ = std::move(__t.remove(__t.begin())->__value_); __node_insert_multi(__cache.__get()); __cache.__advance(); } } while (__t.size() != 0) __insert_multi(__e, _NodeTypes::__move(__t.remove(__t.begin())->__value_)); } } template __tree<_Tp, _Compare, _Allocator>& __tree<_Tp, _Compare, _Allocator>::operator=(__tree&& __t) _NOEXCEPT_( __node_traits::propagate_on_container_move_assignment::value&& is_nothrow_move_assignable::value&& is_nothrow_move_assignable<__node_allocator>::value) { __move_assign(__t, integral_constant()); return *this; } template __tree<_Tp, _Compare, _Allocator>::~__tree() { static_assert(is_copy_constructible::value, "Comparator must be copy-constructible."); destroy(__root()); } template void __tree<_Tp, _Compare, _Allocator>::destroy(__node_pointer __nd) _NOEXCEPT { if (__nd != nullptr) { destroy(static_cast<__node_pointer>(__nd->__left_)); destroy(static_cast<__node_pointer>(__nd->__right_)); __node_allocator& __na = __node_alloc(); __node_traits::destroy(__na, _NodeTypes::__get_ptr(__nd->__value_)); __node_traits::deallocate(__na, __nd, 1); } } template void __tree<_Tp, _Compare, _Allocator>::swap(__tree& __t) #if _LIBCPP_STD_VER <= 11 _NOEXCEPT_(__is_nothrow_swappable_v && (!__node_traits::propagate_on_container_swap::value || __is_nothrow_swappable_v<__node_allocator>)) #else _NOEXCEPT_(__is_nothrow_swappable_v) #endif { using std::swap; swap(__begin_node_, __t.__begin_node_); swap(__pair1_.first(), __t.__pair1_.first()); std::__swap_allocator(__node_alloc(), __t.__node_alloc()); __pair3_.swap(__t.__pair3_); if (size() == 0) __begin_node() = __end_node(); else __end_node()->__left_->__parent_ = static_cast<__parent_pointer>(__end_node()); if (__t.size() == 0) __t.__begin_node() = __t.__end_node(); else __t.__end_node()->__left_->__parent_ = static_cast<__parent_pointer>(__t.__end_node()); } template void __tree<_Tp, _Compare, _Allocator>::clear() _NOEXCEPT { destroy(__root()); size() = 0; __begin_node() = __end_node(); __end_node()->__left_ = nullptr; } // Find lower_bound place to insert // Set __parent to parent of null leaf // Return reference to null leaf template typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer& __tree<_Tp, _Compare, _Allocator>::__find_leaf_low(__parent_pointer& __parent, const key_type& __v) { __node_pointer __nd = __root(); if (__nd != nullptr) { while (true) { if (value_comp()(__nd->__value_, __v)) { if (__nd->__right_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__right_); else { __parent = static_cast<__parent_pointer>(__nd); return __nd->__right_; } } else { if (__nd->__left_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__left_); else { __parent = static_cast<__parent_pointer>(__nd); return __parent->__left_; } } } } __parent = static_cast<__parent_pointer>(__end_node()); return __parent->__left_; } // Find upper_bound place to insert // Set __parent to parent of null leaf // Return reference to null leaf template typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer& __tree<_Tp, _Compare, _Allocator>::__find_leaf_high(__parent_pointer& __parent, const key_type& __v) { __node_pointer __nd = __root(); if (__nd != nullptr) { while (true) { if (value_comp()(__v, __nd->__value_)) { if (__nd->__left_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__left_); else { __parent = static_cast<__parent_pointer>(__nd); return __parent->__left_; } } else { if (__nd->__right_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__right_); else { __parent = static_cast<__parent_pointer>(__nd); return __nd->__right_; } } } } __parent = static_cast<__parent_pointer>(__end_node()); return __parent->__left_; } // Find leaf place to insert closest to __hint // First check prior to __hint. // Next check after __hint. // Next do O(log N) search. // Set __parent to parent of null leaf // Return reference to null leaf template typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer& __tree<_Tp, _Compare, _Allocator>::__find_leaf(const_iterator __hint, __parent_pointer& __parent, const key_type& __v) { if (__hint == end() || !value_comp()(*__hint, __v)) // check before { // __v <= *__hint const_iterator __prior = __hint; if (__prior == begin() || !value_comp()(__v, *--__prior)) { // *prev(__hint) <= __v <= *__hint if (__hint.__ptr_->__left_ == nullptr) { __parent = static_cast<__parent_pointer>(__hint.__ptr_); return __parent->__left_; } else { __parent = static_cast<__parent_pointer>(__prior.__ptr_); return static_cast<__node_base_pointer>(__prior.__ptr_)->__right_; } } // __v < *prev(__hint) return __find_leaf_high(__parent, __v); } // else __v > *__hint return __find_leaf_low(__parent, __v); } // Find place to insert if __v doesn't exist // Set __parent to parent of null leaf // Return reference to null leaf // If __v exists, set parent to node of __v and return reference to node of __v template template typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer& __tree<_Tp, _Compare, _Allocator>::__find_equal(__parent_pointer& __parent, const _Key& __v) { __node_pointer __nd = __root(); __node_base_pointer* __nd_ptr = __root_ptr(); if (__nd != nullptr) { while (true) { if (value_comp()(__v, __nd->__value_)) { if (__nd->__left_ != nullptr) { __nd_ptr = std::addressof(__nd->__left_); __nd = static_cast<__node_pointer>(__nd->__left_); } else { __parent = static_cast<__parent_pointer>(__nd); return __parent->__left_; } } else if (value_comp()(__nd->__value_, __v)) { if (__nd->__right_ != nullptr) { __nd_ptr = std::addressof(__nd->__right_); __nd = static_cast<__node_pointer>(__nd->__right_); } else { __parent = static_cast<__parent_pointer>(__nd); return __nd->__right_; } } else { __parent = static_cast<__parent_pointer>(__nd); return *__nd_ptr; } } } __parent = static_cast<__parent_pointer>(__end_node()); return __parent->__left_; } // Find place to insert if __v doesn't exist // First check prior to __hint. // Next check after __hint. // Next do O(log N) search. // Set __parent to parent of null leaf // Return reference to null leaf // If __v exists, set parent to node of __v and return reference to node of __v template template typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer& __tree<_Tp, _Compare, _Allocator>::__find_equal( const_iterator __hint, __parent_pointer& __parent, __node_base_pointer& __dummy, const _Key& __v) { if (__hint == end() || value_comp()(__v, *__hint)) // check before { // __v < *__hint const_iterator __prior = __hint; if (__prior == begin() || value_comp()(*--__prior, __v)) { // *prev(__hint) < __v < *__hint if (__hint.__ptr_->__left_ == nullptr) { __parent = static_cast<__parent_pointer>(__hint.__ptr_); return __parent->__left_; } else { __parent = static_cast<__parent_pointer>(__prior.__ptr_); return static_cast<__node_base_pointer>(__prior.__ptr_)->__right_; } } // __v <= *prev(__hint) return __find_equal(__parent, __v); } else if (value_comp()(*__hint, __v)) // check after { // *__hint < __v const_iterator __next = std::next(__hint); if (__next == end() || value_comp()(__v, *__next)) { // *__hint < __v < *std::next(__hint) if (__hint.__get_np()->__right_ == nullptr) { __parent = static_cast<__parent_pointer>(__hint.__ptr_); return static_cast<__node_base_pointer>(__hint.__ptr_)->__right_; } else { __parent = static_cast<__parent_pointer>(__next.__ptr_); return __parent->__left_; } } // *next(__hint) <= __v return __find_equal(__parent, __v); } // else __v == *__hint __parent = static_cast<__parent_pointer>(__hint.__ptr_); __dummy = static_cast<__node_base_pointer>(__hint.__ptr_); return __dummy; } template void __tree<_Tp, _Compare, _Allocator>::__insert_node_at( __parent_pointer __parent, __node_base_pointer& __child, __node_base_pointer __new_node) _NOEXCEPT { __new_node->__left_ = nullptr; __new_node->__right_ = nullptr; __new_node->__parent_ = __parent; // __new_node->__is_black_ is initialized in __tree_balance_after_insert __child = __new_node; if (__begin_node()->__left_ != nullptr) __begin_node() = static_cast<__iter_pointer>(__begin_node()->__left_); std::__tree_balance_after_insert(__end_node()->__left_, __child); ++size(); } template template pair::iterator, bool> __tree<_Tp, _Compare, _Allocator>::__emplace_unique_key_args(_Key const& __k, _Args&&... __args) { __parent_pointer __parent; __node_base_pointer& __child = __find_equal(__parent, __k); __node_pointer __r = static_cast<__node_pointer>(__child); bool __inserted = false; if (__child == nullptr) { __node_holder __h = __construct_node(std::forward<_Args>(__args)...); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get())); __r = __h.release(); __inserted = true; } return pair(iterator(__r), __inserted); } template template pair::iterator, bool> __tree<_Tp, _Compare, _Allocator>::__emplace_hint_unique_key_args( const_iterator __p, _Key const& __k, _Args&&... __args) { __parent_pointer __parent; __node_base_pointer __dummy; __node_base_pointer& __child = __find_equal(__p, __parent, __dummy, __k); __node_pointer __r = static_cast<__node_pointer>(__child); bool __inserted = false; if (__child == nullptr) { __node_holder __h = __construct_node(std::forward<_Args>(__args)...); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get())); __r = __h.release(); __inserted = true; } return pair(iterator(__r), __inserted); } template template typename __tree<_Tp, _Compare, _Allocator>::__node_holder __tree<_Tp, _Compare, _Allocator>::__construct_node(_Args&&... __args) { static_assert(!__is_tree_value_type<_Args...>::value, "Cannot construct from __value_type"); __node_allocator& __na = __node_alloc(); __node_holder __h(__node_traits::allocate(__na, 1), _Dp(__na)); __node_traits::construct(__na, _NodeTypes::__get_ptr(__h->__value_), std::forward<_Args>(__args)...); __h.get_deleter().__value_constructed = true; return __h; } template template pair::iterator, bool> __tree<_Tp, _Compare, _Allocator>::__emplace_unique_impl(_Args&&... __args) { __node_holder __h = __construct_node(std::forward<_Args>(__args)...); __parent_pointer __parent; __node_base_pointer& __child = __find_equal(__parent, __h->__value_); __node_pointer __r = static_cast<__node_pointer>(__child); bool __inserted = false; if (__child == nullptr) { __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get())); __r = __h.release(); __inserted = true; } return pair(iterator(__r), __inserted); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__emplace_hint_unique_impl(const_iterator __p, _Args&&... __args) { __node_holder __h = __construct_node(std::forward<_Args>(__args)...); __parent_pointer __parent; __node_base_pointer __dummy; __node_base_pointer& __child = __find_equal(__p, __parent, __dummy, __h->__value_); __node_pointer __r = static_cast<__node_pointer>(__child); if (__child == nullptr) { __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get())); __r = __h.release(); } return iterator(__r); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__emplace_multi(_Args&&... __args) { __node_holder __h = __construct_node(std::forward<_Args>(__args)...); __parent_pointer __parent; __node_base_pointer& __child = __find_leaf_high(__parent, _NodeTypes::__get_key(__h->__value_)); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get())); return iterator(static_cast<__node_pointer>(__h.release())); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__emplace_hint_multi(const_iterator __p, _Args&&... __args) { __node_holder __h = __construct_node(std::forward<_Args>(__args)...); __parent_pointer __parent; __node_base_pointer& __child = __find_leaf(__p, __parent, _NodeTypes::__get_key(__h->__value_)); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get())); return iterator(static_cast<__node_pointer>(__h.release())); } template pair::iterator, bool> __tree<_Tp, _Compare, _Allocator>::__node_assign_unique(const __container_value_type& __v, __node_pointer __nd) { __parent_pointer __parent; __node_base_pointer& __child = __find_equal(__parent, _NodeTypes::__get_key(__v)); __node_pointer __r = static_cast<__node_pointer>(__child); bool __inserted = false; if (__child == nullptr) { __nd->__value_ = __v; __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd)); __r = __nd; __inserted = true; } return pair(iterator(__r), __inserted); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__node_insert_multi(__node_pointer __nd) { __parent_pointer __parent; __node_base_pointer& __child = __find_leaf_high(__parent, _NodeTypes::__get_key(__nd->__value_)); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd)); return iterator(__nd); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__node_insert_multi(const_iterator __p, __node_pointer __nd) { __parent_pointer __parent; __node_base_pointer& __child = __find_leaf(__p, __parent, _NodeTypes::__get_key(__nd->__value_)); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd)); return iterator(__nd); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__remove_node_pointer(__node_pointer __ptr) _NOEXCEPT { iterator __r(__ptr); ++__r; if (__begin_node() == __ptr) __begin_node() = __r.__ptr_; --size(); std::__tree_remove(__end_node()->__left_, static_cast<__node_base_pointer>(__ptr)); return __r; } #if _LIBCPP_STD_VER >= 17 template template _LIBCPP_HIDE_FROM_ABI _InsertReturnType __tree<_Tp, _Compare, _Allocator>::__node_handle_insert_unique(_NodeHandle&& __nh) { if (__nh.empty()) return _InsertReturnType{end(), false, _NodeHandle()}; __node_pointer __ptr = __nh.__ptr_; __parent_pointer __parent; __node_base_pointer& __child = __find_equal(__parent, __ptr->__value_); if (__child != nullptr) return _InsertReturnType{iterator(static_cast<__node_pointer>(__child)), false, std::move(__nh)}; __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__ptr)); __nh.__release_ptr(); return _InsertReturnType{iterator(__ptr), true, _NodeHandle()}; } template template _LIBCPP_HIDE_FROM_ABI typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__node_handle_insert_unique(const_iterator __hint, _NodeHandle&& __nh) { if (__nh.empty()) return end(); __node_pointer __ptr = __nh.__ptr_; __parent_pointer __parent; __node_base_pointer __dummy; __node_base_pointer& __child = __find_equal(__hint, __parent, __dummy, __ptr->__value_); __node_pointer __r = static_cast<__node_pointer>(__child); if (__child == nullptr) { __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__ptr)); __r = __ptr; __nh.__release_ptr(); } return iterator(__r); } template template _LIBCPP_HIDE_FROM_ABI _NodeHandle __tree<_Tp, _Compare, _Allocator>::__node_handle_extract(key_type const& __key) { iterator __it = find(__key); if (__it == end()) return _NodeHandle(); return __node_handle_extract<_NodeHandle>(__it); } template template _LIBCPP_HIDE_FROM_ABI _NodeHandle __tree<_Tp, _Compare, _Allocator>::__node_handle_extract(const_iterator __p) { __node_pointer __np = __p.__get_np(); __remove_node_pointer(__np); return _NodeHandle(__np, __alloc()); } template template _LIBCPP_HIDE_FROM_ABI void __tree<_Tp, _Compare, _Allocator>::__node_handle_merge_unique(_Tree& __source) { static_assert(is_same::value, ""); for (typename _Tree::iterator __i = __source.begin(); __i != __source.end();) { __node_pointer __src_ptr = __i.__get_np(); __parent_pointer __parent; __node_base_pointer& __child = __find_equal(__parent, _NodeTypes::__get_key(__src_ptr->__value_)); ++__i; if (__child != nullptr) continue; __source.__remove_node_pointer(__src_ptr); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__src_ptr)); } } template template _LIBCPP_HIDE_FROM_ABI typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__node_handle_insert_multi(_NodeHandle&& __nh) { if (__nh.empty()) return end(); __node_pointer __ptr = __nh.__ptr_; __parent_pointer __parent; __node_base_pointer& __child = __find_leaf_high(__parent, _NodeTypes::__get_key(__ptr->__value_)); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__ptr)); __nh.__release_ptr(); return iterator(__ptr); } template template _LIBCPP_HIDE_FROM_ABI typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__node_handle_insert_multi(const_iterator __hint, _NodeHandle&& __nh) { if (__nh.empty()) return end(); __node_pointer __ptr = __nh.__ptr_; __parent_pointer __parent; __node_base_pointer& __child = __find_leaf(__hint, __parent, _NodeTypes::__get_key(__ptr->__value_)); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__ptr)); __nh.__release_ptr(); return iterator(__ptr); } template template _LIBCPP_HIDE_FROM_ABI void __tree<_Tp, _Compare, _Allocator>::__node_handle_merge_multi(_Tree& __source) { static_assert(is_same::value, ""); for (typename _Tree::iterator __i = __source.begin(); __i != __source.end();) { __node_pointer __src_ptr = __i.__get_np(); __parent_pointer __parent; __node_base_pointer& __child = __find_leaf_high(__parent, _NodeTypes::__get_key(__src_ptr->__value_)); ++__i; __source.__remove_node_pointer(__src_ptr); __insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__src_ptr)); } } #endif // _LIBCPP_STD_VER >= 17 template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::erase(const_iterator __p) { __node_pointer __np = __p.__get_np(); iterator __r = __remove_node_pointer(__np); __node_allocator& __na = __node_alloc(); __node_traits::destroy(__na, _NodeTypes::__get_ptr(const_cast<__node_value_type&>(*__p))); __node_traits::deallocate(__na, __np, 1); return __r; } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::erase(const_iterator __f, const_iterator __l) { while (__f != __l) __f = erase(__f); return iterator(__l.__ptr_); } template template typename __tree<_Tp, _Compare, _Allocator>::size_type __tree<_Tp, _Compare, _Allocator>::__erase_unique(const _Key& __k) { iterator __i = find(__k); if (__i == end()) return 0; erase(__i); return 1; } template template typename __tree<_Tp, _Compare, _Allocator>::size_type __tree<_Tp, _Compare, _Allocator>::__erase_multi(const _Key& __k) { pair __p = __equal_range_multi(__k); size_type __r = 0; for (; __p.first != __p.second; ++__r) __p.first = erase(__p.first); return __r; } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::find(const _Key& __v) { iterator __p = __lower_bound(__v, __root(), __end_node()); if (__p != end() && !value_comp()(__v, *__p)) return __p; return end(); } template template typename __tree<_Tp, _Compare, _Allocator>::const_iterator __tree<_Tp, _Compare, _Allocator>::find(const _Key& __v) const { const_iterator __p = __lower_bound(__v, __root(), __end_node()); if (__p != end() && !value_comp()(__v, *__p)) return __p; return end(); } template template typename __tree<_Tp, _Compare, _Allocator>::size_type __tree<_Tp, _Compare, _Allocator>::__count_unique(const _Key& __k) const { __node_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __rt = static_cast<__node_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_pointer>(__rt->__right_); else return 1; } return 0; } template template typename __tree<_Tp, _Compare, _Allocator>::size_type __tree<_Tp, _Compare, _Allocator>::__count_multi(const _Key& __k) const { __iter_pointer __result = __end_node(); __node_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = static_cast<__iter_pointer>(__rt); __rt = static_cast<__node_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_pointer>(__rt->__right_); else return std::distance( __lower_bound(__k, static_cast<__node_pointer>(__rt->__left_), static_cast<__iter_pointer>(__rt)), __upper_bound(__k, static_cast<__node_pointer>(__rt->__right_), __result)); } return 0; } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__lower_bound(const _Key& __v, __node_pointer __root, __iter_pointer __result) { while (__root != nullptr) { if (!value_comp()(__root->__value_, __v)) { __result = static_cast<__iter_pointer>(__root); __root = static_cast<__node_pointer>(__root->__left_); } else __root = static_cast<__node_pointer>(__root->__right_); } return iterator(__result); } template template typename __tree<_Tp, _Compare, _Allocator>::const_iterator __tree<_Tp, _Compare, _Allocator>::__lower_bound( const _Key& __v, __node_pointer __root, __iter_pointer __result) const { while (__root != nullptr) { if (!value_comp()(__root->__value_, __v)) { __result = static_cast<__iter_pointer>(__root); __root = static_cast<__node_pointer>(__root->__left_); } else __root = static_cast<__node_pointer>(__root->__right_); } return const_iterator(__result); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__upper_bound(const _Key& __v, __node_pointer __root, __iter_pointer __result) { while (__root != nullptr) { if (value_comp()(__v, __root->__value_)) { __result = static_cast<__iter_pointer>(__root); __root = static_cast<__node_pointer>(__root->__left_); } else __root = static_cast<__node_pointer>(__root->__right_); } return iterator(__result); } template template typename __tree<_Tp, _Compare, _Allocator>::const_iterator __tree<_Tp, _Compare, _Allocator>::__upper_bound( const _Key& __v, __node_pointer __root, __iter_pointer __result) const { while (__root != nullptr) { if (value_comp()(__v, __root->__value_)) { __result = static_cast<__iter_pointer>(__root); __root = static_cast<__node_pointer>(__root->__left_); } else __root = static_cast<__node_pointer>(__root->__right_); } return const_iterator(__result); } template template pair::iterator, typename __tree<_Tp, _Compare, _Allocator>::iterator> __tree<_Tp, _Compare, _Allocator>::__equal_range_unique(const _Key& __k) { typedef pair _Pp; __iter_pointer __result = __end_node(); __node_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = static_cast<__iter_pointer>(__rt); __rt = static_cast<__node_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_pointer>(__rt->__right_); else return _Pp(iterator(__rt), iterator(__rt->__right_ != nullptr ? static_cast<__iter_pointer>(std::__tree_min(__rt->__right_)) : __result)); } return _Pp(iterator(__result), iterator(__result)); } template template pair::const_iterator, typename __tree<_Tp, _Compare, _Allocator>::const_iterator> __tree<_Tp, _Compare, _Allocator>::__equal_range_unique(const _Key& __k) const { typedef pair _Pp; __iter_pointer __result = __end_node(); __node_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = static_cast<__iter_pointer>(__rt); __rt = static_cast<__node_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_pointer>(__rt->__right_); else return _Pp( const_iterator(__rt), const_iterator( __rt->__right_ != nullptr ? static_cast<__iter_pointer>(std::__tree_min(__rt->__right_)) : __result)); } return _Pp(const_iterator(__result), const_iterator(__result)); } template template pair::iterator, typename __tree<_Tp, _Compare, _Allocator>::iterator> __tree<_Tp, _Compare, _Allocator>::__equal_range_multi(const _Key& __k) { typedef pair _Pp; __iter_pointer __result = __end_node(); __node_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = static_cast<__iter_pointer>(__rt); __rt = static_cast<__node_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_pointer>(__rt->__right_); else return _Pp(__lower_bound(__k, static_cast<__node_pointer>(__rt->__left_), static_cast<__iter_pointer>(__rt)), __upper_bound(__k, static_cast<__node_pointer>(__rt->__right_), __result)); } return _Pp(iterator(__result), iterator(__result)); } template template pair::const_iterator, typename __tree<_Tp, _Compare, _Allocator>::const_iterator> __tree<_Tp, _Compare, _Allocator>::__equal_range_multi(const _Key& __k) const { typedef pair _Pp; __iter_pointer __result = __end_node(); __node_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = static_cast<__iter_pointer>(__rt); __rt = static_cast<__node_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_pointer>(__rt->__right_); else return _Pp(__lower_bound(__k, static_cast<__node_pointer>(__rt->__left_), static_cast<__iter_pointer>(__rt)), __upper_bound(__k, static_cast<__node_pointer>(__rt->__right_), __result)); } return _Pp(const_iterator(__result), const_iterator(__result)); } template typename __tree<_Tp, _Compare, _Allocator>::__node_holder __tree<_Tp, _Compare, _Allocator>::remove(const_iterator __p) _NOEXCEPT { __node_pointer __np = __p.__get_np(); if (__begin_node() == __p.__ptr_) { if (__np->__right_ != nullptr) __begin_node() = static_cast<__iter_pointer>(__np->__right_); else __begin_node() = static_cast<__iter_pointer>(__np->__parent_); } --size(); std::__tree_remove(__end_node()->__left_, static_cast<__node_base_pointer>(__np)); return __node_holder(__np, _Dp(__node_alloc(), true)); } template inline _LIBCPP_HIDE_FROM_ABI void swap(__tree<_Tp, _Compare, _Allocator>& __x, __tree<_Tp, _Compare, _Allocator>& __y) _NOEXCEPT_(_NOEXCEPT_(__x.swap(__y))) { __x.swap(__y); } _LIBCPP_END_NAMESPACE_STD _LIBCPP_POP_MACROS #endif // _LIBCPP___TREE