//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___STRING_CONSTEXPR_C_FUNCTIONS_H #define _LIBCPP___STRING_CONSTEXPR_C_FUNCTIONS_H #include <__config> #include <__memory/addressof.h> #include <__memory/construct_at.h> #include <__type_traits/datasizeof.h> #include <__type_traits/is_always_bitcastable.h> #include <__type_traits/is_assignable.h> #include <__type_traits/is_constant_evaluated.h> #include <__type_traits/is_constructible.h> #include <__type_traits/is_equality_comparable.h> #include <__type_traits/is_same.h> #include <__type_traits/is_trivially_copyable.h> #include <__type_traits/is_trivially_lexicographically_comparable.h> #include <__type_traits/remove_cv.h> #include <__utility/is_pointer_in_range.h> #include #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_BEGIN_NAMESPACE_STD // Type used to encode that a function takes an integer that represents a number // of elements as opposed to a number of bytes. enum class __element_count : size_t {}; inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 size_t __constexpr_strlen(const char* __str) { // GCC currently doesn't support __builtin_strlen for heap-allocated memory during constant evaluation. // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70816 #ifdef _LIBCPP_COMPILER_GCC if (__libcpp_is_constant_evaluated()) { size_t __i = 0; for (; __str[__i] != '\0'; ++__i) ; return __i; } #endif return __builtin_strlen(__str); } // Because of __libcpp_is_trivially_lexicographically_comparable we know that comparing the object representations is // equivalent to a std::memcmp. Since we have multiple objects contiguously in memory, we can call memcmp once instead // of invoking it on every object individually. template _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 int __constexpr_memcmp(const _Tp* __lhs, const _Up* __rhs, __element_count __n) { static_assert(__libcpp_is_trivially_lexicographically_comparable<_Tp, _Up>::value, "_Tp and _Up have to be trivially lexicographically comparable"); auto __count = static_cast(__n); if (__libcpp_is_constant_evaluated()) { #ifdef _LIBCPP_COMPILER_CLANG_BASED if (sizeof(_Tp) == 1 && !is_same<_Tp, bool>::value) return __builtin_memcmp(__lhs, __rhs, __count * sizeof(_Tp)); #endif while (__count != 0) { if (*__lhs < *__rhs) return -1; if (*__rhs < *__lhs) return 1; --__count; ++__lhs; ++__rhs; } return 0; } else { return __builtin_memcmp(__lhs, __rhs, __count * sizeof(_Tp)); } } // Because of __libcpp_is_trivially_equality_comparable we know that comparing the object representations is equivalent // to a std::memcmp(...) == 0. Since we have multiple objects contiguously in memory, we can call memcmp once instead // of invoking it on every object individually. template _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 bool __constexpr_memcmp_equal(const _Tp* __lhs, const _Up* __rhs, __element_count __n) { static_assert(__libcpp_is_trivially_equality_comparable<_Tp, _Up>::value, "_Tp and _Up have to be trivially equality comparable"); auto __count = static_cast(__n); if (__libcpp_is_constant_evaluated()) { #ifdef _LIBCPP_COMPILER_CLANG_BASED if (sizeof(_Tp) == 1 && is_integral<_Tp>::value && !is_same<_Tp, bool>::value) return __builtin_memcmp(__lhs, __rhs, __count * sizeof(_Tp)) == 0; #endif while (__count != 0) { if (*__lhs != *__rhs) return false; --__count; ++__lhs; ++__rhs; } return true; } else { return __builtin_memcmp(__lhs, __rhs, __count * sizeof(_Tp)) == 0; } } template _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 _Tp* __constexpr_memchr(_Tp* __str, _Up __value, size_t __count) { static_assert(sizeof(_Tp) == 1 && __libcpp_is_trivially_equality_comparable<_Tp, _Up>::value, "Calling memchr on non-trivially equality comparable types is unsafe."); if (__libcpp_is_constant_evaluated()) { // use __builtin_char_memchr to optimize constexpr evaluation if we can #if _LIBCPP_STD_VER >= 17 && __has_builtin(__builtin_char_memchr) if constexpr (is_same_v, char> && is_same_v, char>) return __builtin_char_memchr(__str, __value, __count); #endif for (; __count; --__count) { if (*__str == __value) return __str; ++__str; } return nullptr; } else { char __value_buffer = 0; __builtin_memcpy(&__value_buffer, &__value, sizeof(char)); return static_cast<_Tp*>(__builtin_memchr(__str, __value_buffer, __count)); } } // This function performs an assignment to an existing, already alive TriviallyCopyable object // from another TriviallyCopyable object. // // It basically works around the fact that TriviallyCopyable objects are not required to be // syntactically copy/move constructible or copy/move assignable. Technically, only one of the // four operations is required to be syntactically valid -- but at least one definitely has to // be valid. // // This is necessary in order to implement __constexpr_memmove below in a way that mirrors as // closely as possible what the compiler's __builtin_memmove is able to do. template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 _Tp& __assign_trivially_copyable(_Tp& __dest, _Up const& __src) { __dest = __src; return __dest; } // clang-format off template ::value && is_assignable<_Tp&, _Up&&>::value, int> = 0> // clang-format on _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 _Tp& __assign_trivially_copyable(_Tp& __dest, _Up& __src) { __dest = static_cast<_Up&&>(__src); // this is safe, we're not actually moving anything since the assignment is trivial return __dest; } // clang-format off template ::value && !is_assignable<_Tp&, _Up&&>::value && is_constructible<_Tp, _Up const&>::value, int> = 0> // clang-format on _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 _Tp& __assign_trivially_copyable(_Tp& __dest, _Up const& __src) { // _Tp is trivially destructible, so we don't need to call its destructor to end the lifetime of the object // that was there previously std::__construct_at(std::addressof(__dest), __src); return __dest; } // clang-format off template ::value && !is_assignable<_Tp&, _Up&&>::value && !is_constructible<_Tp, _Up const&>::value && is_constructible<_Tp, _Up&&>::value, int> = 0> // clang-format on _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 _Tp& __assign_trivially_copyable(_Tp& __dest, _Up& __src) { // _Tp is trivially destructible, so we don't need to call its destructor to end the lifetime of the object // that was there previously std::__construct_at( std::addressof(__dest), static_cast<_Up&&>(__src)); // this is safe, we're not actually moving anything since the constructor is trivial return __dest; } template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 _Tp* __constexpr_memmove(_Tp* __dest, _Up* __src, __element_count __n) { size_t __count = static_cast(__n); if (__libcpp_is_constant_evaluated()) { #ifdef _LIBCPP_COMPILER_CLANG_BASED if (is_same<__remove_cv_t<_Tp>, __remove_cv_t<_Up> >::value) { ::__builtin_memmove(__dest, __src, __count * sizeof(_Tp)); return __dest; } #endif if (std::__is_pointer_in_range(__src, __src + __count, __dest)) { for (; __count > 0; --__count) std::__assign_trivially_copyable(__dest[__count - 1], __src[__count - 1]); } else { for (size_t __i = 0; __i != __count; ++__i) std::__assign_trivially_copyable(__dest[__i], __src[__i]); } } else if (__count > 0) { ::__builtin_memmove(__dest, __src, (__count - 1) * sizeof(_Tp) + __libcpp_datasizeof<_Tp>::value); } return __dest; } _LIBCPP_END_NAMESPACE_STD #endif // _LIBCPP___STRING_CONSTEXPR_C_FUNCTIONS_H