// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___RANGES_MOVABLE_BOX_H #define _LIBCPP___RANGES_MOVABLE_BOX_H #include <__concepts/constructible.h> #include <__concepts/copyable.h> #include <__concepts/movable.h> #include <__config> #include <__memory/addressof.h> #include <__memory/construct_at.h> #include <__type_traits/is_nothrow_constructible.h> #include <__type_traits/is_nothrow_copy_constructible.h> #include <__type_traits/is_nothrow_default_constructible.h> #include <__utility/move.h> #include #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_PUSH_MACROS #include <__undef_macros> _LIBCPP_BEGIN_NAMESPACE_STD #if _LIBCPP_STD_VER >= 20 // __movable_box allows turning a type that is move-constructible (but maybe not move-assignable) into // a type that is both move-constructible and move-assignable. It does that by introducing an empty state // and basically doing destroy-then-copy-construct in the assignment operator. The empty state is necessary // to handle the case where the copy construction fails after destroying the object. // // In some cases, we can completely avoid the use of an empty state; we provide a specialization of // __movable_box that does this, see below for the details. // until C++23, `__movable_box` was named `__copyable_box` and required the stored type to be copy-constructible, not // just move-constructible; we preserve the old behavior in pre-C++23 modes. template concept __movable_box_object = # if _LIBCPP_STD_VER >= 23 move_constructible<_Tp> # else copy_constructible<_Tp> # endif && is_object_v<_Tp>; namespace ranges { // Primary template - uses std::optional and introduces an empty state in case assignment fails. template <__movable_box_object _Tp> class __movable_box { _LIBCPP_NO_UNIQUE_ADDRESS optional<_Tp> __val_; public: template requires is_constructible_v<_Tp, _Args...> _LIBCPP_HIDE_FROM_ABI constexpr explicit __movable_box(in_place_t, _Args&&... __args) noexcept( is_nothrow_constructible_v<_Tp, _Args...>) : __val_(in_place, std::forward<_Args>(__args)...) {} _LIBCPP_HIDE_FROM_ABI constexpr __movable_box() noexcept(is_nothrow_default_constructible_v<_Tp>) requires default_initializable<_Tp> : __val_(in_place) {} _LIBCPP_HIDE_FROM_ABI __movable_box(__movable_box const&) = default; _LIBCPP_HIDE_FROM_ABI __movable_box(__movable_box&&) = default; _LIBCPP_HIDE_FROM_ABI constexpr __movable_box& operator=(__movable_box const& __other) noexcept(is_nothrow_copy_constructible_v<_Tp>) # if _LIBCPP_STD_VER >= 23 requires copy_constructible<_Tp> # endif { if (this != std::addressof(__other)) { if (__other.__has_value()) __val_.emplace(*__other); else __val_.reset(); } return *this; } _LIBCPP_HIDE_FROM_ABI __movable_box& operator=(__movable_box&&) requires movable<_Tp> = default; _LIBCPP_HIDE_FROM_ABI constexpr __movable_box& operator=(__movable_box&& __other) noexcept(is_nothrow_move_constructible_v<_Tp>) { if (this != std::addressof(__other)) { if (__other.__has_value()) __val_.emplace(std::move(*__other)); else __val_.reset(); } return *this; } _LIBCPP_HIDE_FROM_ABI constexpr _Tp const& operator*() const noexcept { return *__val_; } _LIBCPP_HIDE_FROM_ABI constexpr _Tp& operator*() noexcept { return *__val_; } _LIBCPP_HIDE_FROM_ABI constexpr const _Tp* operator->() const noexcept { return __val_.operator->(); } _LIBCPP_HIDE_FROM_ABI constexpr _Tp* operator->() noexcept { return __val_.operator->(); } _LIBCPP_HIDE_FROM_ABI constexpr bool __has_value() const noexcept { return __val_.has_value(); } }; // This partial specialization implements an optimization for when we know we don't need to store // an empty state to represent failure to perform an assignment. For copy-assignment, this happens: // // 1. If the type is copyable (which includes copy-assignment), we can use the type's own assignment operator // directly and avoid using std::optional. // 2. If the type is not copyable, but it is nothrow-copy-constructible, then we can implement assignment as // destroy-and-then-construct and we know it will never fail, so we don't need an empty state. // // The exact same reasoning can be applied for move-assignment, with copyable replaced by movable and // nothrow-copy-constructible replaced by nothrow-move-constructible. This specialization is enabled // whenever we can apply any of these optimizations for both the copy assignment and the move assignment // operator. # if _LIBCPP_STD_VER >= 23 template concept __doesnt_need_empty_state = (copy_constructible<_Tp> // 1. If copy_constructible is true, movable-box should store only a T if either T models // copyable, or is_nothrow_move_constructible_v && is_nothrow_copy_constructible_v is true. ? copyable<_Tp> || (is_nothrow_move_constructible_v<_Tp> && is_nothrow_copy_constructible_v<_Tp>) // 2. Otherwise, movable-box should store only a T if either T models movable or // is_nothrow_move_constructible_v is true. : movable<_Tp> || is_nothrow_move_constructible_v<_Tp>); // When _Tp doesn't have an assignment operator, we must implement __movable_box's assignment operator // by doing destroy_at followed by construct_at. However, that implementation strategy leads to UB if the nested // _Tp is potentially overlapping, as it is doing a non-transparent replacement of the sub-object, which means that // we're not considered "nested" inside the movable-box anymore, and since we're not nested within it, [basic.life]/1.5 // says that we essentially just reused the storage of the movable-box for a completely unrelated object and ended the // movable-box's lifetime. // https://github.com/llvm/llvm-project/issues/70494#issuecomment-1845646490 // // Hence, when the _Tp doesn't have an assignment operator, we can't risk making it a potentially-overlapping // subobject because of the above, and we don't use [[no_unique_address]] in that case. template concept __can_use_no_unique_address = (copy_constructible<_Tp> ? copyable<_Tp> : movable<_Tp>); # else template concept __doesnt_need_empty_state_for_copy = copyable<_Tp> || is_nothrow_copy_constructible_v<_Tp>; template concept __doesnt_need_empty_state_for_move = movable<_Tp> || is_nothrow_move_constructible_v<_Tp>; template concept __doesnt_need_empty_state = __doesnt_need_empty_state_for_copy<_Tp> && __doesnt_need_empty_state_for_move<_Tp>; template concept __can_use_no_unique_address = copyable<_Tp>; # endif template struct __movable_box_holder { _Tp __val_; template _LIBCPP_HIDE_FROM_ABI constexpr explicit __movable_box_holder(in_place_t, _Args&&... __args) : __val_(std::forward<_Args>(__args)...) {} }; template requires __can_use_no_unique_address<_Tp> struct __movable_box_holder<_Tp> { _LIBCPP_NO_UNIQUE_ADDRESS _Tp __val_; template _LIBCPP_HIDE_FROM_ABI constexpr explicit __movable_box_holder(in_place_t, _Args&&... __args) : __val_(std::forward<_Args>(__args)...) {} }; template <__movable_box_object _Tp> requires __doesnt_need_empty_state<_Tp> class __movable_box<_Tp> { _LIBCPP_NO_UNIQUE_ADDRESS __movable_box_holder<_Tp> __holder_; public: template requires is_constructible_v<_Tp, _Args...> _LIBCPP_HIDE_FROM_ABI constexpr explicit __movable_box(in_place_t __inplace, _Args&&... __args) noexcept( is_nothrow_constructible_v<_Tp, _Args...>) : __holder_(__inplace, std::forward<_Args>(__args)...) {} _LIBCPP_HIDE_FROM_ABI constexpr __movable_box() noexcept(is_nothrow_default_constructible_v<_Tp>) requires default_initializable<_Tp> : __holder_(in_place_t{}) {} _LIBCPP_HIDE_FROM_ABI __movable_box(__movable_box const&) = default; _LIBCPP_HIDE_FROM_ABI __movable_box(__movable_box&&) = default; // Implementation of assignment operators in case we perform optimization (1) _LIBCPP_HIDE_FROM_ABI __movable_box& operator=(__movable_box const&) requires copyable<_Tp> = default; _LIBCPP_HIDE_FROM_ABI __movable_box& operator=(__movable_box&&) requires movable<_Tp> = default; // Implementation of assignment operators in case we perform optimization (2) _LIBCPP_HIDE_FROM_ABI constexpr __movable_box& operator=(__movable_box const& __other) noexcept { static_assert(is_nothrow_copy_constructible_v<_Tp>); static_assert(!__can_use_no_unique_address<_Tp>); if (this != std::addressof(__other)) { std::destroy_at(std::addressof(__holder_.__val_)); std::construct_at(std::addressof(__holder_.__val_), __other.__holder_.__val_); } return *this; } _LIBCPP_HIDE_FROM_ABI constexpr __movable_box& operator=(__movable_box&& __other) noexcept { static_assert(is_nothrow_move_constructible_v<_Tp>); static_assert(!__can_use_no_unique_address<_Tp>); if (this != std::addressof(__other)) { std::destroy_at(std::addressof(__holder_.__val_)); std::construct_at(std::addressof(__holder_.__val_), std::move(__other.__holder_.__val_)); } return *this; } _LIBCPP_HIDE_FROM_ABI constexpr _Tp const& operator*() const noexcept { return __holder_.__val_; } _LIBCPP_HIDE_FROM_ABI constexpr _Tp& operator*() noexcept { return __holder_.__val_; } _LIBCPP_HIDE_FROM_ABI constexpr const _Tp* operator->() const noexcept { return std::addressof(__holder_.__val_); } _LIBCPP_HIDE_FROM_ABI constexpr _Tp* operator->() noexcept { return std::addressof(__holder_.__val_); } _LIBCPP_HIDE_FROM_ABI constexpr bool __has_value() const noexcept { return true; } }; } // namespace ranges #endif // _LIBCPP_STD_VER >= 20 _LIBCPP_END_NAMESPACE_STD _LIBCPP_POP_MACROS #endif // _LIBCPP___RANGES_MOVABLE_BOX_H