//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H #define _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H #include <__config> #include <__random/clamp_to_integral.h> #include <__random/exponential_distribution.h> #include <__random/is_valid.h> #include <__random/normal_distribution.h> #include <__random/uniform_real_distribution.h> #include #include #include #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_PUSH_MACROS #include <__undef_macros> _LIBCPP_BEGIN_NAMESPACE_STD template class _LIBCPP_TEMPLATE_VIS poisson_distribution { static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type"); public: // types typedef _IntType result_type; class _LIBCPP_TEMPLATE_VIS param_type { double __mean_; double __s_; double __d_; double __l_; double __omega_; double __c0_; double __c1_; double __c2_; double __c3_; double __c_; public: typedef poisson_distribution distribution_type; explicit param_type(double __mean = 1.0); _LIBCPP_INLINE_VISIBILITY double mean() const {return __mean_;} friend _LIBCPP_INLINE_VISIBILITY bool operator==(const param_type& __x, const param_type& __y) {return __x.__mean_ == __y.__mean_;} friend _LIBCPP_INLINE_VISIBILITY bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} friend class poisson_distribution; }; private: param_type __p_; public: // constructors and reset functions #ifndef _LIBCPP_CXX03_LANG _LIBCPP_INLINE_VISIBILITY poisson_distribution() : poisson_distribution(1.0) {} _LIBCPP_INLINE_VISIBILITY explicit poisson_distribution(double __mean) : __p_(__mean) {} #else _LIBCPP_INLINE_VISIBILITY explicit poisson_distribution(double __mean = 1.0) : __p_(__mean) {} #endif _LIBCPP_INLINE_VISIBILITY explicit poisson_distribution(const param_type& __p) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY void reset() {} // generating functions template _LIBCPP_INLINE_VISIBILITY result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions _LIBCPP_INLINE_VISIBILITY double mean() const {return __p_.mean();} _LIBCPP_INLINE_VISIBILITY param_type param() const {return __p_;} _LIBCPP_INLINE_VISIBILITY void param(const param_type& __p) {__p_ = __p;} _LIBCPP_INLINE_VISIBILITY result_type min() const {return 0;} _LIBCPP_INLINE_VISIBILITY result_type max() const {return numeric_limits::max();} friend _LIBCPP_INLINE_VISIBILITY bool operator==(const poisson_distribution& __x, const poisson_distribution& __y) {return __x.__p_ == __y.__p_;} friend _LIBCPP_INLINE_VISIBILITY bool operator!=(const poisson_distribution& __x, const poisson_distribution& __y) {return !(__x == __y);} }; template poisson_distribution<_IntType>::param_type::param_type(double __mean) // According to the standard `inf` is a valid input, but it causes the // distribution to hang, so we replace it with the maximum representable // mean. : __mean_(isinf(__mean) ? numeric_limits::max() : __mean) { if (__mean_ < 10) { __s_ = 0; __d_ = 0; __l_ = _VSTD::exp(-__mean_); __omega_ = 0; __c3_ = 0; __c2_ = 0; __c1_ = 0; __c0_ = 0; __c_ = 0; } else { __s_ = _VSTD::sqrt(__mean_); __d_ = 6 * __mean_ * __mean_; __l_ = _VSTD::trunc(__mean_ - 1.1484); __omega_ = .3989423 / __s_; double __b1_ = .4166667E-1 / __mean_; double __b2_ = .3 * __b1_ * __b1_; __c3_ = .1428571 * __b1_ * __b2_; __c2_ = __b2_ - 15. * __c3_; __c1_ = __b1_ - 6. * __b2_ + 45. * __c3_; __c0_ = 1. - __b1_ + 3. * __b2_ - 15. * __c3_; __c_ = .1069 / __mean_; } } template template _IntType poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr) { static_assert(__libcpp_random_is_valid_urng<_URNG>::value, ""); double __tx; uniform_real_distribution __urd; if (__pr.__mean_ < 10) { __tx = 0; for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx) __p *= __urd(__urng); } else { double __difmuk; double __g = __pr.__mean_ + __pr.__s_ * normal_distribution()(__urng); double __u; if (__g > 0) { __tx = _VSTD::trunc(__g); if (__tx >= __pr.__l_) return _VSTD::__clamp_to_integral(__tx); __difmuk = __pr.__mean_ - __tx; __u = __urd(__urng); if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk) return _VSTD::__clamp_to_integral(__tx); } exponential_distribution __edist; for (bool __using_exp_dist = false; true; __using_exp_dist = true) { double __e; if (__using_exp_dist || __g <= 0) { double __t; do { __e = __edist(__urng); __u = __urd(__urng); __u += __u - 1; __t = 1.8 + (__u < 0 ? -__e : __e); } while (__t <= -.6744); __tx = _VSTD::trunc(__pr.__mean_ + __pr.__s_ * __t); __difmuk = __pr.__mean_ - __tx; __using_exp_dist = true; } double __px; double __py; if (__tx < 10 && __tx >= 0) { const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880}; __px = -__pr.__mean_; __py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast(__tx)]; } else { double __del = .8333333E-1 / __tx; __del -= 4.8 * __del * __del * __del; double __v = __difmuk / __tx; if (_VSTD::abs(__v) > 0.25) __px = __tx * _VSTD::log(1 + __v) - __difmuk - __del; else __px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) * __v + .1421878) * __v + -.1661269) * __v + .2000118) * __v + -.2500068) * __v + .3333333) * __v + -.5) - __del; __py = .3989423 / _VSTD::sqrt(__tx); } double __r = (0.5 - __difmuk) / __pr.__s_; double __r2 = __r * __r; double __fx = -0.5 * __r2; double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) * __r2 + __pr.__c1_) * __r2 + __pr.__c0_); if (__using_exp_dist) { if (__pr.__c_ * _VSTD::abs(__u) <= __py * _VSTD::exp(__px + __e) - __fy * _VSTD::exp(__fx + __e)) break; } else { if (__fy - __u * __fy <= __py * _VSTD::exp(__px - __fx)) break; } } } return _VSTD::__clamp_to_integral(__tx); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const poisson_distribution<_IntType>& __x) { __save_flags<_CharT, _Traits> __lx(__os); typedef basic_ostream<_CharT, _Traits> _OStream; __os.flags(_OStream::dec | _OStream::left | _OStream::fixed | _OStream::scientific); return __os << __x.mean(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, poisson_distribution<_IntType>& __x) { typedef poisson_distribution<_IntType> _Eng; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> __lx(__is); typedef basic_istream<_CharT, _Traits> _Istream; __is.flags(_Istream::dec | _Istream::skipws); double __mean; __is >> __mean; if (!__is.fail()) __x.param(param_type(__mean)); return __is; } _LIBCPP_END_NAMESPACE_STD _LIBCPP_POP_MACROS #endif // _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H