//===-- primary32.h ---------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef SCUDO_PRIMARY32_H_ #define SCUDO_PRIMARY32_H_ #include "allocator_common.h" #include "bytemap.h" #include "common.h" #include "list.h" #include "local_cache.h" #include "options.h" #include "release.h" #include "report.h" #include "stats.h" #include "string_utils.h" #include "thread_annotations.h" namespace scudo { // SizeClassAllocator32 is an allocator for 32 or 64-bit address space. // // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes // boundary, and keeps a bytemap of the mappable address space to track the size // class they are associated with. // // Mapped regions are split into equally sized Blocks according to the size // class they belong to, and the associated pointers are shuffled to prevent any // predictable address pattern (the predictability increases with the block // size). // // Regions for size class 0 are special and used to hold TransferBatches, which // allow to transfer arrays of pointers from the global size class freelist to // the thread specific freelist for said class, and back. // // Memory used by this allocator is never unmapped but can be partially // reclaimed if the platform allows for it. template class SizeClassAllocator32 { public: typedef typename Config::CompactPtrT CompactPtrT; typedef typename Config::SizeClassMap SizeClassMap; static const uptr GroupSizeLog = Config::getGroupSizeLog(); // The bytemap can only track UINT8_MAX - 1 classes. static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), ""); // Regions should be large enough to hold the largest Block. static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize, ""); typedef SizeClassAllocator32 ThisT; typedef SizeClassAllocatorLocalCache CacheT; typedef TransferBatch TransferBatchT; typedef BatchGroup BatchGroupT; static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT), "BatchGroupT uses the same class size as TransferBatchT"); static uptr getSizeByClassId(uptr ClassId) { return (ClassId == SizeClassMap::BatchClassId) ? sizeof(TransferBatchT) : SizeClassMap::getSizeByClassId(ClassId); } static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; } void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS { if (SCUDO_FUCHSIA) reportError("SizeClassAllocator32 is not supported on Fuchsia"); if (SCUDO_TRUSTY) reportError("SizeClassAllocator32 is not supported on Trusty"); DCHECK(isAligned(reinterpret_cast(this), alignof(ThisT))); PossibleRegions.init(); u32 Seed; const u64 Time = getMonotonicTimeFast(); if (!getRandom(reinterpret_cast(&Seed), sizeof(Seed))) Seed = static_cast( Time ^ (reinterpret_cast(SizeClassInfoArray) >> 6)); for (uptr I = 0; I < NumClasses; I++) { SizeClassInfo *Sci = getSizeClassInfo(I); Sci->RandState = getRandomU32(&Seed); // Sci->MaxRegionIndex is already initialized to 0. Sci->MinRegionIndex = NumRegions; Sci->ReleaseInfo.LastReleaseAtNs = Time; } // The default value in the primary config has the higher priority. if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN) ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs(); setOption(Option::ReleaseInterval, static_cast(ReleaseToOsInterval)); } void unmapTestOnly() { { ScopedLock L(RegionsStashMutex); while (NumberOfStashedRegions > 0) { unmap(reinterpret_cast(RegionsStash[--NumberOfStashedRegions]), RegionSize); } } uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; for (uptr I = 0; I < NumClasses; I++) { SizeClassInfo *Sci = getSizeClassInfo(I); ScopedLock L(Sci->Mutex); if (Sci->MinRegionIndex < MinRegionIndex) MinRegionIndex = Sci->MinRegionIndex; if (Sci->MaxRegionIndex > MaxRegionIndex) MaxRegionIndex = Sci->MaxRegionIndex; *Sci = {}; } ScopedLock L(ByteMapMutex); for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) if (PossibleRegions[I]) unmap(reinterpret_cast(I * RegionSize), RegionSize); PossibleRegions.unmapTestOnly(); } // When all blocks are freed, it has to be the same size as `AllocatedUser`. void verifyAllBlocksAreReleasedTestOnly() { // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass. uptr BatchClassUsedInFreeLists = 0; for (uptr I = 0; I < NumClasses; I++) { // We have to count BatchClassUsedInFreeLists in other regions first. if (I == SizeClassMap::BatchClassId) continue; SizeClassInfo *Sci = getSizeClassInfo(I); ScopedLock L1(Sci->Mutex); uptr TotalBlocks = 0; for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`. BatchClassUsedInFreeLists += BG.Batches.size() + 1; for (const auto &It : BG.Batches) TotalBlocks += It.getCount(); } const uptr BlockSize = getSizeByClassId(I); DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize); DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks); } SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId); ScopedLock L1(Sci->Mutex); uptr TotalBlocks = 0; for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { if (LIKELY(!BG.Batches.empty())) { for (const auto &It : BG.Batches) TotalBlocks += It.getCount(); } else { // `BatchGroup` with empty freelist doesn't have `TransferBatch` record // itself. ++TotalBlocks; } } const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId); DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists, Sci->AllocatedUser / BlockSize); const uptr BlocksInUse = Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists); } CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const { return static_cast(Ptr); } void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const { return reinterpret_cast(static_cast(CompactPtr)); } uptr compactPtrGroupBase(CompactPtrT CompactPtr) { const uptr Mask = (static_cast(1) << GroupSizeLog) - 1; return CompactPtr & ~Mask; } uptr decompactGroupBase(uptr CompactPtrGroupBase) { return CompactPtrGroupBase; } ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) { const uptr PageSize = getPageSizeCached(); return BlockSize < PageSize / 16U; } ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) { const uptr PageSize = getPageSizeCached(); return BlockSize > PageSize; } u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray, const u16 MaxBlockCount) { DCHECK_LT(ClassId, NumClasses); SizeClassInfo *Sci = getSizeClassInfo(ClassId); ScopedLock L(Sci->Mutex); u16 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount); if (UNLIKELY(PopCount == 0)) { if (UNLIKELY(!populateFreeList(C, ClassId, Sci))) return 0U; PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount); DCHECK_NE(PopCount, 0U); } return PopCount; } // Push the array of free blocks to the designated batch group. void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) { DCHECK_LT(ClassId, NumClasses); DCHECK_GT(Size, 0); SizeClassInfo *Sci = getSizeClassInfo(ClassId); if (ClassId == SizeClassMap::BatchClassId) { ScopedLock L(Sci->Mutex); pushBatchClassBlocks(Sci, Array, Size); return; } // TODO(chiahungduan): Consider not doing grouping if the group size is not // greater than the block size with a certain scale. // Sort the blocks so that blocks belonging to the same group can be pushed // together. bool SameGroup = true; for (u32 I = 1; I < Size; ++I) { if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) SameGroup = false; CompactPtrT Cur = Array[I]; u32 J = I; while (J > 0 && compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) { Array[J] = Array[J - 1]; --J; } Array[J] = Cur; } ScopedLock L(Sci->Mutex); pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup); } void disable() NO_THREAD_SAFETY_ANALYSIS { // The BatchClassId must be locked last since other classes can use it. for (sptr I = static_cast(NumClasses) - 1; I >= 0; I--) { if (static_cast(I) == SizeClassMap::BatchClassId) continue; getSizeClassInfo(static_cast(I))->Mutex.lock(); } getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock(); RegionsStashMutex.lock(); ByteMapMutex.lock(); } void enable() NO_THREAD_SAFETY_ANALYSIS { ByteMapMutex.unlock(); RegionsStashMutex.unlock(); getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock(); for (uptr I = 0; I < NumClasses; I++) { if (I == SizeClassMap::BatchClassId) continue; getSizeClassInfo(I)->Mutex.unlock(); } } template void iterateOverBlocks(F Callback) { uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; for (uptr I = 0; I < NumClasses; I++) { SizeClassInfo *Sci = getSizeClassInfo(I); // TODO: The call of `iterateOverBlocks` requires disabling // SizeClassAllocator32. We may consider locking each region on demand // only. Sci->Mutex.assertHeld(); if (Sci->MinRegionIndex < MinRegionIndex) MinRegionIndex = Sci->MinRegionIndex; if (Sci->MaxRegionIndex > MaxRegionIndex) MaxRegionIndex = Sci->MaxRegionIndex; } // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held. ByteMapMutex.assertHeld(); for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) { if (PossibleRegions[I] && (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) { const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U); const uptr From = I * RegionSize; const uptr To = From + (RegionSize / BlockSize) * BlockSize; for (uptr Block = From; Block < To; Block += BlockSize) Callback(Block); } } } void getStats(ScopedString *Str) { // TODO(kostyak): get the RSS per region. uptr TotalMapped = 0; uptr PoppedBlocks = 0; uptr PushedBlocks = 0; for (uptr I = 0; I < NumClasses; I++) { SizeClassInfo *Sci = getSizeClassInfo(I); ScopedLock L(Sci->Mutex); TotalMapped += Sci->AllocatedUser; PoppedBlocks += Sci->FreeListInfo.PoppedBlocks; PushedBlocks += Sci->FreeListInfo.PushedBlocks; } Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; " "remains %zu\n", TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks); for (uptr I = 0; I < NumClasses; I++) { SizeClassInfo *Sci = getSizeClassInfo(I); ScopedLock L(Sci->Mutex); getStats(Str, I, Sci); } } void getFragmentationInfo(ScopedString *Str) { Str->append( "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n", getPageSizeCached()); for (uptr I = 1; I < NumClasses; I++) { SizeClassInfo *Sci = getSizeClassInfo(I); ScopedLock L(Sci->Mutex); getSizeClassFragmentationInfo(Sci, I, Str); } } bool setOption(Option O, sptr Value) { if (O == Option::ReleaseInterval) { const s32 Interval = Max( Min(static_cast(Value), Config::getMaxReleaseToOsIntervalMs()), Config::getMinReleaseToOsIntervalMs()); atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval); return true; } // Not supported by the Primary, but not an error either. return true; } uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) { SizeClassInfo *Sci = getSizeClassInfo(ClassId); // TODO: Once we have separate locks like primary64, we may consider using // tryLock() as well. ScopedLock L(Sci->Mutex); return releaseToOSMaybe(Sci, ClassId, ReleaseType); } uptr releaseToOS(ReleaseToOS ReleaseType) { uptr TotalReleasedBytes = 0; for (uptr I = 0; I < NumClasses; I++) { if (I == SizeClassMap::BatchClassId) continue; SizeClassInfo *Sci = getSizeClassInfo(I); ScopedLock L(Sci->Mutex); TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType); } return TotalReleasedBytes; } const char *getRegionInfoArrayAddress() const { return nullptr; } static uptr getRegionInfoArraySize() { return 0; } static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData, UNUSED uptr Ptr) { return {}; } AtomicOptions Options; private: static const uptr NumClasses = SizeClassMap::NumClasses; static const uptr RegionSize = 1UL << Config::getRegionSizeLog(); static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >> Config::getRegionSizeLog(); static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U; typedef FlatByteMap ByteMap; struct ReleaseToOsInfo { uptr BytesInFreeListAtLastCheckpoint; uptr RangesReleased; uptr LastReleasedBytes; u64 LastReleaseAtNs; }; struct BlocksInfo { SinglyLinkedList BlockList = {}; uptr PoppedBlocks = 0; uptr PushedBlocks = 0; }; struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo { HybridMutex Mutex; BlocksInfo FreeListInfo GUARDED_BY(Mutex); uptr CurrentRegion GUARDED_BY(Mutex); uptr CurrentRegionAllocated GUARDED_BY(Mutex); u32 RandState; uptr AllocatedUser GUARDED_BY(Mutex); // Lowest & highest region index allocated for this size class, to avoid // looping through the whole NumRegions. uptr MinRegionIndex GUARDED_BY(Mutex); uptr MaxRegionIndex GUARDED_BY(Mutex); ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex); }; static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, ""); uptr computeRegionId(uptr Mem) { const uptr Id = Mem >> Config::getRegionSizeLog(); CHECK_LT(Id, NumRegions); return Id; } uptr allocateRegionSlow() { uptr MapSize = 2 * RegionSize; const uptr MapBase = reinterpret_cast( map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM)); if (!MapBase) return 0; const uptr MapEnd = MapBase + MapSize; uptr Region = MapBase; if (isAligned(Region, RegionSize)) { ScopedLock L(RegionsStashMutex); if (NumberOfStashedRegions < MaxStashedRegions) RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize; else MapSize = RegionSize; } else { Region = roundUp(MapBase, RegionSize); unmap(reinterpret_cast(MapBase), Region - MapBase); MapSize = RegionSize; } const uptr End = Region + MapSize; if (End != MapEnd) unmap(reinterpret_cast(End), MapEnd - End); DCHECK_EQ(Region % RegionSize, 0U); static_assert(Config::getRegionSizeLog() == GroupSizeLog, "Memory group should be the same size as Region"); return Region; } uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) { DCHECK_LT(ClassId, NumClasses); uptr Region = 0; { ScopedLock L(RegionsStashMutex); if (NumberOfStashedRegions > 0) Region = RegionsStash[--NumberOfStashedRegions]; } if (!Region) Region = allocateRegionSlow(); if (LIKELY(Region)) { // Sci->Mutex is held by the caller, updating the Min/Max is safe. const uptr RegionIndex = computeRegionId(Region); if (RegionIndex < Sci->MinRegionIndex) Sci->MinRegionIndex = RegionIndex; if (RegionIndex > Sci->MaxRegionIndex) Sci->MaxRegionIndex = RegionIndex; ScopedLock L(ByteMapMutex); PossibleRegions.set(RegionIndex, static_cast(ClassId + 1U)); } return Region; } SizeClassInfo *getSizeClassInfo(uptr ClassId) { DCHECK_LT(ClassId, NumClasses); return &SizeClassInfoArray[ClassId]; } void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size) REQUIRES(Sci->Mutex) { DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId)); // Free blocks are recorded by TransferBatch in freelist for all // size-classes. In addition, TransferBatch is allocated from BatchClassId. // In order not to use additional block to record the free blocks in // BatchClassId, they are self-contained. I.e., A TransferBatch records the // block address of itself. See the figure below: // // TransferBatch at 0xABCD // +----------------------------+ // | Free blocks' addr | // | +------+------+------+ | // | |0xABCD|... |... | | // | +------+------+------+ | // +----------------------------+ // // When we allocate all the free blocks in the TransferBatch, the block used // by TransferBatch is also free for use. We don't need to recycle the // TransferBatch. Note that the correctness is maintained by the invariant, // // Each popBlocks() request returns the entire TransferBatch. Returning // part of the blocks in a TransferBatch is invalid. // // This ensures that TransferBatch won't leak the address itself while it's // still holding other valid data. // // Besides, BatchGroup is also allocated from BatchClassId and has its // address recorded in the TransferBatch too. To maintain the correctness, // // The address of BatchGroup is always recorded in the last TransferBatch // in the freelist (also imply that the freelist should only be // updated with push_front). Once the last TransferBatch is popped, // the block used by BatchGroup is also free for use. // // With this approach, the blocks used by BatchGroup and TransferBatch are // reusable and don't need additional space for them. Sci->FreeListInfo.PushedBlocks += Size; BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); if (BG == nullptr) { // Construct `BatchGroup` on the last element. BG = reinterpret_cast( decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1])); --Size; BG->Batches.clear(); // BatchClass hasn't enabled memory group. Use `0` to indicate there's no // memory group here. BG->CompactPtrGroupBase = 0; // `BG` is also the block of BatchClassId. Note that this is different // from `CreateGroup` in `pushBlocksImpl` BG->PushedBlocks = 1; BG->BytesInBGAtLastCheckpoint = 0; BG->MaxCachedPerBatch = CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId)); Sci->FreeListInfo.BlockList.push_front(BG); } if (UNLIKELY(Size == 0)) return; // This happens under 2 cases. // 1. just allocated a new `BatchGroup`. // 2. Only 1 block is pushed when the freelist is empty. if (BG->Batches.empty()) { // Construct the `TransferBatch` on the last element. TransferBatchT *TB = reinterpret_cast( decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1])); TB->clear(); // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are // recorded in the TransferBatch. TB->add(Array[Size - 1]); TB->add( compactPtr(SizeClassMap::BatchClassId, reinterpret_cast(BG))); --Size; DCHECK_EQ(BG->PushedBlocks, 1U); // `TB` is also the block of BatchClassId. BG->PushedBlocks += 1; BG->Batches.push_front(TB); } TransferBatchT *CurBatch = BG->Batches.front(); DCHECK_NE(CurBatch, nullptr); for (u32 I = 0; I < Size;) { u16 UnusedSlots = static_cast(BG->MaxCachedPerBatch - CurBatch->getCount()); if (UnusedSlots == 0) { CurBatch = reinterpret_cast( decompactPtr(SizeClassMap::BatchClassId, Array[I])); CurBatch->clear(); // Self-contained CurBatch->add(Array[I]); ++I; // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of // BatchClassId. BG->Batches.push_front(CurBatch); UnusedSlots = static_cast(BG->MaxCachedPerBatch - 1); } // `UnusedSlots` is u16 so the result will be also fit in u16. const u16 AppendSize = static_cast(Min(UnusedSlots, Size - I)); CurBatch->appendFromArray(&Array[I], AppendSize); I += AppendSize; } BG->PushedBlocks += Size; } // Push the blocks to their batch group. The layout will be like, // // FreeListInfo.BlockList - > BG -> BG -> BG // | | | // v v v // TB TB TB // | // v // TB // // Each BlockGroup(BG) will associate with unique group id and the free blocks // are managed by a list of TransferBatch(TB). To reduce the time of inserting // blocks, BGs are sorted and the input `Array` are supposed to be sorted so // that we can get better performance of maintaining sorted property. // Use `SameGroup=true` to indicate that all blocks in the array are from the // same group then we will skip checking the group id of each block. // // The region mutex needs to be held while calling this method. void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci, CompactPtrT *Array, u32 Size, bool SameGroup = false) REQUIRES(Sci->Mutex) { DCHECK_NE(ClassId, SizeClassMap::BatchClassId); DCHECK_GT(Size, 0U); auto CreateGroup = [&](uptr CompactPtrGroupBase) { BatchGroupT *BG = reinterpret_cast(C->getBatchClassBlock()); BG->Batches.clear(); TransferBatchT *TB = reinterpret_cast(C->getBatchClassBlock()); TB->clear(); BG->CompactPtrGroupBase = CompactPtrGroupBase; BG->Batches.push_front(TB); BG->PushedBlocks = 0; BG->BytesInBGAtLastCheckpoint = 0; BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached; return BG; }; auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) { SinglyLinkedList &Batches = BG->Batches; TransferBatchT *CurBatch = Batches.front(); DCHECK_NE(CurBatch, nullptr); for (u32 I = 0; I < Size;) { DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount()); u16 UnusedSlots = static_cast(BG->MaxCachedPerBatch - CurBatch->getCount()); if (UnusedSlots == 0) { CurBatch = reinterpret_cast(C->getBatchClassBlock()); CurBatch->clear(); Batches.push_front(CurBatch); UnusedSlots = BG->MaxCachedPerBatch; } // `UnusedSlots` is u16 so the result will be also fit in u16. u16 AppendSize = static_cast(Min(UnusedSlots, Size - I)); CurBatch->appendFromArray(&Array[I], AppendSize); I += AppendSize; } BG->PushedBlocks += Size; }; Sci->FreeListInfo.PushedBlocks += Size; BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front(); // In the following, `Cur` always points to the BatchGroup for blocks that // will be pushed next. `Prev` is the element right before `Cur`. BatchGroupT *Prev = nullptr; while (Cur != nullptr && compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) { Prev = Cur; Cur = Cur->Next; } if (Cur == nullptr || compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) { Cur = CreateGroup(compactPtrGroupBase(Array[0])); if (Prev == nullptr) Sci->FreeListInfo.BlockList.push_front(Cur); else Sci->FreeListInfo.BlockList.insert(Prev, Cur); } // All the blocks are from the same group, just push without checking group // id. if (SameGroup) { for (u32 I = 0; I < Size; ++I) DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase); InsertBlocks(Cur, Array, Size); return; } // The blocks are sorted by group id. Determine the segment of group and // push them to their group together. u32 Count = 1; for (u32 I = 1; I < Size; ++I) { if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) { DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase); InsertBlocks(Cur, Array + I - Count, Count); while (Cur != nullptr && compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) { Prev = Cur; Cur = Cur->Next; } if (Cur == nullptr || compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) { Cur = CreateGroup(compactPtrGroupBase(Array[I])); DCHECK_NE(Prev, nullptr); Sci->FreeListInfo.BlockList.insert(Prev, Cur); } Count = 1; } else { ++Count; } } InsertBlocks(Cur, Array + Size - Count, Count); } u16 popBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci, CompactPtrT *ToArray, const u16 MaxBlockCount) REQUIRES(Sci->Mutex) { if (Sci->FreeListInfo.BlockList.empty()) return 0U; SinglyLinkedList &Batches = Sci->FreeListInfo.BlockList.front()->Batches; if (Batches.empty()) { DCHECK_EQ(ClassId, SizeClassMap::BatchClassId); BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); Sci->FreeListInfo.BlockList.pop_front(); // Block used by `BatchGroup` is from BatchClassId. Turn the block into // `TransferBatch` with single block. TransferBatchT *TB = reinterpret_cast(BG); ToArray[0] = compactPtr(SizeClassMap::BatchClassId, reinterpret_cast(TB)); Sci->FreeListInfo.PoppedBlocks += 1; return 1U; } // So far, instead of always filling the blocks to `MaxBlockCount`, we only // examine single `TransferBatch` to minimize the time spent on the primary // allocator. Besides, the sizes of `TransferBatch` and // `CacheT::getMaxCached()` may also impact the time spent on accessing the // primary allocator. // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount` // blocks and/or adjust the size of `TransferBatch` according to // `CacheT::getMaxCached()`. TransferBatchT *B = Batches.front(); DCHECK_NE(B, nullptr); DCHECK_GT(B->getCount(), 0U); // BachClassId should always take all blocks in the TransferBatch. Read the // comment in `pushBatchClassBlocks()` for more details. const u16 PopCount = ClassId == SizeClassMap::BatchClassId ? B->getCount() : Min(MaxBlockCount, B->getCount()); B->moveNToArray(ToArray, PopCount); // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be // done without holding `Mutex`. if (B->empty()) { Batches.pop_front(); // `TransferBatch` of BatchClassId is self-contained, no need to // deallocate. Read the comment in `pushBatchClassBlocks()` for more // details. if (ClassId != SizeClassMap::BatchClassId) C->deallocate(SizeClassMap::BatchClassId, B); if (Batches.empty()) { BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); Sci->FreeListInfo.BlockList.pop_front(); // We don't keep BatchGroup with zero blocks to avoid empty-checking // while allocating. Note that block used for constructing BatchGroup is // recorded as free blocks in the last element of BatchGroup::Batches. // Which means, once we pop the last TransferBatch, the block is // implicitly deallocated. if (ClassId != SizeClassMap::BatchClassId) C->deallocate(SizeClassMap::BatchClassId, BG); } } Sci->FreeListInfo.PoppedBlocks += PopCount; return PopCount; } NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci) REQUIRES(Sci->Mutex) { uptr Region; uptr Offset; // If the size-class currently has a region associated to it, use it. The // newly created blocks will be located after the currently allocated memory // for that region (up to RegionSize). Otherwise, create a new region, where // the new blocks will be carved from the beginning. if (Sci->CurrentRegion) { Region = Sci->CurrentRegion; DCHECK_GT(Sci->CurrentRegionAllocated, 0U); Offset = Sci->CurrentRegionAllocated; } else { DCHECK_EQ(Sci->CurrentRegionAllocated, 0U); Region = allocateRegion(Sci, ClassId); if (UNLIKELY(!Region)) return false; C->getStats().add(StatMapped, RegionSize); Sci->CurrentRegion = Region; Offset = 0; } const uptr Size = getSizeByClassId(ClassId); const u16 MaxCount = CacheT::getMaxCached(Size); DCHECK_GT(MaxCount, 0U); // The maximum number of blocks we should carve in the region is dictated // by the maximum number of batches we want to fill, and the amount of // memory left in the current region (we use the lowest of the two). This // will not be 0 as we ensure that a region can at least hold one block (via // static_assert and at the end of this function). const u32 NumberOfBlocks = Min(MaxNumBatches * MaxCount, static_cast((RegionSize - Offset) / Size)); DCHECK_GT(NumberOfBlocks, 0U); constexpr u32 ShuffleArraySize = MaxNumBatches * TransferBatchT::MaxNumCached; // Fill the transfer batches and put them in the size-class freelist. We // need to randomize the blocks for security purposes, so we first fill a // local array that we then shuffle before populating the batches. CompactPtrT ShuffleArray[ShuffleArraySize]; DCHECK_LE(NumberOfBlocks, ShuffleArraySize); uptr P = Region + Offset; for (u32 I = 0; I < NumberOfBlocks; I++, P += Size) ShuffleArray[I] = reinterpret_cast(P); if (ClassId != SizeClassMap::BatchClassId) { u32 N = 1; uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]); for (u32 I = 1; I < NumberOfBlocks; I++) { if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) { shuffle(ShuffleArray + I - N, N, &Sci->RandState); pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N, /*SameGroup=*/true); N = 1; CurGroup = compactPtrGroupBase(ShuffleArray[I]); } else { ++N; } } shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState); pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N, /*SameGroup=*/true); } else { pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks); } // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record // the requests from `PushBlocks` and `PopBatch` which are external // interfaces. `populateFreeList` is the internal interface so we should set // the values back to avoid incorrectly setting the stats. Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks; const uptr AllocatedUser = Size * NumberOfBlocks; C->getStats().add(StatFree, AllocatedUser); DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize); // If there is not enough room in the region currently associated to fit // more blocks, we deassociate the region by resetting CurrentRegion and // CurrentRegionAllocated. Otherwise, update the allocated amount. if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) { Sci->CurrentRegion = 0; Sci->CurrentRegionAllocated = 0; } else { Sci->CurrentRegionAllocated += AllocatedUser; } Sci->AllocatedUser += AllocatedUser; return true; } void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci) REQUIRES(Sci->Mutex) { if (Sci->AllocatedUser == 0) return; const uptr BlockSize = getSizeByClassId(ClassId); const uptr InUse = Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize; uptr PushedBytesDelta = 0; if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) { PushedBytesDelta = BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint; } const uptr AvailableChunks = Sci->AllocatedUser / BlockSize; Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu " "inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK " "latest pushed bytes: %6zuK\n", ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10, Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks, InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased, Sci->ReleaseInfo.LastReleasedBytes >> 10, PushedBytesDelta >> 10); } void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId, ScopedString *Str) REQUIRES(Sci->Mutex) { const uptr BlockSize = getSizeByClassId(ClassId); const uptr First = Sci->MinRegionIndex; const uptr Last = Sci->MaxRegionIndex; const uptr Base = First * RegionSize; const uptr NumberOfRegions = Last - First + 1U; auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { ScopedLock L(ByteMapMutex); return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; }; FragmentationRecorder Recorder; if (!Sci->FreeListInfo.BlockList.empty()) { PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions, ReleaseToOS::ForceAll); releaseFreeMemoryToOS(Context, Recorder, SkipRegion); } const uptr PageSize = getPageSizeCached(); const uptr TotalBlocks = Sci->AllocatedUser / BlockSize; const uptr InUseBlocks = Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; uptr AllocatedPagesCount = 0; if (TotalBlocks != 0U) { for (uptr I = 0; I < NumberOfRegions; ++I) { if (SkipRegion(I)) continue; AllocatedPagesCount += RegionSize / PageSize; } DCHECK_NE(AllocatedPagesCount, 0U); } DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount()); const uptr InUsePages = AllocatedPagesCount - Recorder.getReleasedPagesCount(); const uptr InUseBytes = InUsePages * PageSize; uptr Integral; uptr Fractional; computePercentage(BlockSize * InUseBlocks, InUsePages * PageSize, &Integral, &Fractional); Str->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total " "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n", ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages, AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional); } NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId, ReleaseToOS ReleaseType = ReleaseToOS::Normal) REQUIRES(Sci->Mutex) { const uptr BlockSize = getSizeByClassId(ClassId); DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks); const uptr BytesInFreeList = Sci->AllocatedUser - (Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) * BlockSize; if (UNLIKELY(BytesInFreeList == 0)) return 0; // ====================================================================== // // 1. Check if we have enough free blocks and if it's worth doing a page // release. // ====================================================================== // if (ReleaseType != ReleaseToOS::ForceAll && !hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList, ReleaseType)) { return 0; } const uptr First = Sci->MinRegionIndex; const uptr Last = Sci->MaxRegionIndex; DCHECK_NE(Last, 0U); DCHECK_LE(First, Last); uptr TotalReleasedBytes = 0; const uptr Base = First * RegionSize; const uptr NumberOfRegions = Last - First + 1U; // ==================================================================== // // 2. Mark the free blocks and we can tell which pages are in-use by // querying `PageReleaseContext`. // ==================================================================== // PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions, ReleaseType); if (!Context.hasBlockMarked()) return 0; // ==================================================================== // // 3. Release the unused physical pages back to the OS. // ==================================================================== // ReleaseRecorder Recorder(Base); auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { ScopedLock L(ByteMapMutex); return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; }; releaseFreeMemoryToOS(Context, Recorder, SkipRegion); if (Recorder.getReleasedRangesCount() > 0) { Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount(); Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes(); TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes; } Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast(); return TotalReleasedBytes; } bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize, uptr BytesInFreeList, ReleaseToOS ReleaseType) REQUIRES(Sci->Mutex) { DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks); const uptr PageSize = getPageSizeCached(); if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value // so that we won't underestimate the releasable pages. For example, the // following is the region usage, // // BytesInFreeListAtLastCheckpoint AllocatedUser // v v // |---------------------------------------> // ^ ^ // BytesInFreeList ReleaseThreshold // // In general, if we have collected enough bytes and the amount of free // bytes meets the ReleaseThreshold, we will try to do page release. If we // don't update `BytesInFreeListAtLastCheckpoint` when the current // `BytesInFreeList` is smaller, we may take longer time to wait for enough // freed blocks because we miss the bytes between // (BytesInFreeListAtLastCheckpoint - BytesInFreeList). const uptr PushedBytesDelta = BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint; if (PushedBytesDelta < PageSize) return false; // Releasing smaller blocks is expensive, so we want to make sure that a // significant amount of bytes are free, and that there has been a good // amount of batches pushed to the freelist before attempting to release. if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal) if (PushedBytesDelta < Sci->AllocatedUser / 16U) return false; if (ReleaseType == ReleaseToOS::Normal) { const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs); if (IntervalMs < 0) return false; // The constant 8 here is selected from profiling some apps and the number // of unreleased pages in the large size classes is around 16 pages or // more. Choose half of it as a heuristic and which also avoids page // release every time for every pushBlocks() attempt by large blocks. const bool ByPassReleaseInterval = isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize; if (!ByPassReleaseInterval) { if (Sci->ReleaseInfo.LastReleaseAtNs + static_cast(IntervalMs) * 1000000 > getMonotonicTimeFast()) { // Memory was returned recently. return false; } } } // if (ReleaseType == ReleaseToOS::Normal) return true; } PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId, const uptr BlockSize, const uptr Base, const uptr NumberOfRegions, ReleaseToOS ReleaseType) REQUIRES(Sci->Mutex) { const uptr PageSize = getPageSizeCached(); const uptr GroupSize = (1UL << GroupSizeLog); const uptr CurGroupBase = compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion)); PageReleaseContext Context(BlockSize, NumberOfRegions, /*ReleaseSize=*/RegionSize); auto DecompactPtr = [](CompactPtrT CompactPtr) { return reinterpret_cast(CompactPtr); }; for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase); // The `GroupSize` may not be divided by `BlockSize`, which means there is // an unused space at the end of Region. Exclude that space to avoid // unused page map entry. uptr AllocatedGroupSize = GroupBase == CurGroupBase ? Sci->CurrentRegionAllocated : roundDownSlow(GroupSize, BlockSize); if (AllocatedGroupSize == 0) continue; // TransferBatches are pushed in front of BG.Batches. The first one may // not have all caches used. const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch + BG.Batches.front()->getCount(); const uptr BytesInBG = NumBlocks * BlockSize; if (ReleaseType != ReleaseToOS::ForceAll) { if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) { BG.BytesInBGAtLastCheckpoint = BytesInBG; continue; } const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint; if (PushedBytesDelta < PageSize) continue; // Given the randomness property, we try to release the pages only if // the bytes used by free blocks exceed certain proportion of allocated // spaces. if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize < (100U - 1U - BlockSize / 16U)) { continue; } } // TODO: Consider updating this after page release if `ReleaseRecorder` // can tell the released bytes in each group. BG.BytesInBGAtLastCheckpoint = BytesInBG; const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize; const uptr RegionIndex = (GroupBase - Base) / RegionSize; if (NumBlocks == MaxContainedBlocks) { for (const auto &It : BG.Batches) for (u16 I = 0; I < It.getCount(); ++I) DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase); const uptr To = GroupBase + AllocatedGroupSize; Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex, AllocatedGroupSize); } else { DCHECK_LT(NumBlocks, MaxContainedBlocks); // Note that we don't always visit blocks in each BatchGroup so that we // may miss the chance of releasing certain pages that cross // BatchGroups. Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase, RegionIndex, AllocatedGroupSize, /*MayContainLastBlockInRegion=*/true); } // We may not be able to do the page release In a rare case that we may // fail on PageMap allocation. if (UNLIKELY(!Context.hasBlockMarked())) break; } return Context; } SizeClassInfo SizeClassInfoArray[NumClasses] = {}; HybridMutex ByteMapMutex; // Track the regions in use, 0 is unused, otherwise store ClassId + 1. ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {}; atomic_s32 ReleaseToOsIntervalMs = {}; // Unless several threads request regions simultaneously from different size // classes, the stash rarely contains more than 1 entry. static constexpr uptr MaxStashedRegions = 4; HybridMutex RegionsStashMutex; uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0; uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {}; }; } // namespace scudo #endif // SCUDO_PRIMARY32_H_