//===-- sanitizer_posix_libcdep.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements libc-dependent POSIX-specific functions // from sanitizer_libc.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_POSIX #include "sanitizer_common.h" #include "sanitizer_flags.h" #include "sanitizer_platform_limits_netbsd.h" #include "sanitizer_platform_limits_posix.h" #include "sanitizer_platform_limits_solaris.h" #include "sanitizer_posix.h" #include "sanitizer_procmaps.h" #include #include #include #include #include #include #include #include #include #include #include #include #if SANITIZER_FREEBSD // The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before // that, it was never implemented. So just define it to zero. #undef MAP_NORESERVE #define MAP_NORESERVE 0 #endif typedef void (*sa_sigaction_t)(int, siginfo_t *, void *); namespace __sanitizer { u32 GetUid() { return getuid(); } uptr GetThreadSelf() { return (uptr)pthread_self(); } void ReleaseMemoryPagesToOS(uptr beg, uptr end) { uptr page_size = GetPageSizeCached(); uptr beg_aligned = RoundUpTo(beg, page_size); uptr end_aligned = RoundDownTo(end, page_size); if (beg_aligned < end_aligned) internal_madvise(beg_aligned, end_aligned - beg_aligned, SANITIZER_MADVISE_DONTNEED); } void SetShadowRegionHugePageMode(uptr addr, uptr size) { #ifdef MADV_NOHUGEPAGE // May not be defined on old systems. if (common_flags()->no_huge_pages_for_shadow) internal_madvise(addr, size, MADV_NOHUGEPAGE); else internal_madvise(addr, size, MADV_HUGEPAGE); #endif // MADV_NOHUGEPAGE } bool DontDumpShadowMemory(uptr addr, uptr length) { #if defined(MADV_DONTDUMP) return internal_madvise(addr, length, MADV_DONTDUMP) == 0; #elif defined(MADV_NOCORE) return internal_madvise(addr, length, MADV_NOCORE) == 0; #else return true; #endif // MADV_DONTDUMP } static rlim_t getlim(int res) { rlimit rlim; CHECK_EQ(0, getrlimit(res, &rlim)); return rlim.rlim_cur; } static void setlim(int res, rlim_t lim) { struct rlimit rlim; if (getrlimit(res, &rlim)) { Report("ERROR: %s getrlimit() failed %d\n", SanitizerToolName, errno); Die(); } rlim.rlim_cur = lim; if (setrlimit(res, &rlim)) { Report("ERROR: %s setrlimit() failed %d\n", SanitizerToolName, errno); Die(); } } void DisableCoreDumperIfNecessary() { if (common_flags()->disable_coredump) { rlimit rlim; CHECK_EQ(0, getrlimit(RLIMIT_CORE, &rlim)); // On Linux, if the kernel.core_pattern sysctl starts with a '|' (i.e. it // is being piped to a coredump handler such as systemd-coredumpd), the // kernel ignores RLIMIT_CORE (since we aren't creating a file in the file // system) except for the magic value of 1, which disables coredumps when // piping. 1 byte is too small for any kind of valid core dump, so it // also disables coredumps if kernel.core_pattern creates files directly. // While most piped coredump handlers do respect the crashing processes' // RLIMIT_CORE, this is notable not the case for Debian's systemd-coredump // due to a local patch that changes sysctl.d/50-coredump.conf to ignore // the specified limit and instead use RLIM_INFINITY. // // The alternative to using RLIMIT_CORE=1 would be to use prctl() with the // PR_SET_DUMPABLE flag, however that also prevents ptrace(), so makes it // impossible to attach a debugger. // // Note: we use rlim_max in the Min() call here since that is the upper // limit for what can be set without getting an EINVAL error. rlim.rlim_cur = Min(SANITIZER_LINUX ? 1 : 0, rlim.rlim_max); CHECK_EQ(0, setrlimit(RLIMIT_CORE, &rlim)); } } bool StackSizeIsUnlimited() { rlim_t stack_size = getlim(RLIMIT_STACK); return (stack_size == RLIM_INFINITY); } void SetStackSizeLimitInBytes(uptr limit) { setlim(RLIMIT_STACK, (rlim_t)limit); CHECK(!StackSizeIsUnlimited()); } bool AddressSpaceIsUnlimited() { rlim_t as_size = getlim(RLIMIT_AS); return (as_size == RLIM_INFINITY); } void SetAddressSpaceUnlimited() { setlim(RLIMIT_AS, RLIM_INFINITY); CHECK(AddressSpaceIsUnlimited()); } void Abort() { #if !SANITIZER_GO // If we are handling SIGABRT, unhandle it first. // TODO(vitalybuka): Check if handler belongs to sanitizer. if (GetHandleSignalMode(SIGABRT) != kHandleSignalNo) { struct sigaction sigact; internal_memset(&sigact, 0, sizeof(sigact)); sigact.sa_handler = SIG_DFL; internal_sigaction(SIGABRT, &sigact, nullptr); } #endif abort(); } int Atexit(void (*function)(void)) { #if !SANITIZER_GO return atexit(function); #else return 0; #endif } bool CreateDir(const char *pathname) { return mkdir(pathname, 0755) == 0; } bool SupportsColoredOutput(fd_t fd) { return isatty(fd) != 0; } #if !SANITIZER_GO // TODO(glider): different tools may require different altstack size. static uptr GetAltStackSize() { // Note: since GLIBC_2.31, SIGSTKSZ may be a function call, so this may be // more costly that you think. However GetAltStackSize is only call 2-3 times // per thread so don't cache the evaluation. return SIGSTKSZ * 4; } void SetAlternateSignalStack() { stack_t altstack, oldstack; CHECK_EQ(0, sigaltstack(nullptr, &oldstack)); // If the alternate stack is already in place, do nothing. // Android always sets an alternate stack, but it's too small for us. if (!SANITIZER_ANDROID && !(oldstack.ss_flags & SS_DISABLE)) return; // TODO(glider): the mapped stack should have the MAP_STACK flag in the // future. It is not required by man 2 sigaltstack now (they're using // malloc()). altstack.ss_size = GetAltStackSize(); altstack.ss_sp = (char *)MmapOrDie(altstack.ss_size, __func__); altstack.ss_flags = 0; CHECK_EQ(0, sigaltstack(&altstack, nullptr)); } void UnsetAlternateSignalStack() { stack_t altstack, oldstack; altstack.ss_sp = nullptr; altstack.ss_flags = SS_DISABLE; altstack.ss_size = GetAltStackSize(); // Some sane value required on Darwin. CHECK_EQ(0, sigaltstack(&altstack, &oldstack)); UnmapOrDie(oldstack.ss_sp, oldstack.ss_size); } static void MaybeInstallSigaction(int signum, SignalHandlerType handler) { if (GetHandleSignalMode(signum) == kHandleSignalNo) return; struct sigaction sigact; internal_memset(&sigact, 0, sizeof(sigact)); sigact.sa_sigaction = (sa_sigaction_t)handler; // Do not block the signal from being received in that signal's handler. // Clients are responsible for handling this correctly. sigact.sa_flags = SA_SIGINFO | SA_NODEFER; if (common_flags()->use_sigaltstack) sigact.sa_flags |= SA_ONSTACK; CHECK_EQ(0, internal_sigaction(signum, &sigact, nullptr)); VReport(1, "Installed the sigaction for signal %d\n", signum); } void InstallDeadlySignalHandlers(SignalHandlerType handler) { // Set the alternate signal stack for the main thread. // This will cause SetAlternateSignalStack to be called twice, but the stack // will be actually set only once. if (common_flags()->use_sigaltstack) SetAlternateSignalStack(); MaybeInstallSigaction(SIGSEGV, handler); MaybeInstallSigaction(SIGBUS, handler); MaybeInstallSigaction(SIGABRT, handler); MaybeInstallSigaction(SIGFPE, handler); MaybeInstallSigaction(SIGILL, handler); MaybeInstallSigaction(SIGTRAP, handler); } bool SignalContext::IsStackOverflow() const { // Access at a reasonable offset above SP, or slightly below it (to account // for x86_64 or PowerPC redzone, ARM push of multiple registers, etc) is // probably a stack overflow. #ifdef __s390__ // On s390, the fault address in siginfo points to start of the page, not // to the precise word that was accessed. Mask off the low bits of sp to // take it into account. bool IsStackAccess = addr >= (sp & ~0xFFF) && addr < sp + 0xFFFF; #else // Let's accept up to a page size away from top of stack. Things like stack // probing can trigger accesses with such large offsets. bool IsStackAccess = addr + GetPageSizeCached() > sp && addr < sp + 0xFFFF; #endif #if __powerpc__ // Large stack frames can be allocated with e.g. // lis r0,-10000 // stdux r1,r1,r0 # store sp to [sp-10000] and update sp by -10000 // If the store faults then sp will not have been updated, so test above // will not work, because the fault address will be more than just "slightly" // below sp. if (!IsStackAccess && IsAccessibleMemoryRange(pc, 4)) { u32 inst = *(unsigned *)pc; u32 ra = (inst >> 16) & 0x1F; u32 opcd = inst >> 26; u32 xo = (inst >> 1) & 0x3FF; // Check for store-with-update to sp. The instructions we accept are: // stbu rs,d(ra) stbux rs,ra,rb // sthu rs,d(ra) sthux rs,ra,rb // stwu rs,d(ra) stwux rs,ra,rb // stdu rs,ds(ra) stdux rs,ra,rb // where ra is r1 (the stack pointer). if (ra == 1 && (opcd == 39 || opcd == 45 || opcd == 37 || opcd == 62 || (opcd == 31 && (xo == 247 || xo == 439 || xo == 183 || xo == 181)))) IsStackAccess = true; } #endif // __powerpc__ // We also check si_code to filter out SEGV caused by something else other // then hitting the guard page or unmapped memory, like, for example, // unaligned memory access. auto si = static_cast(siginfo); return IsStackAccess && (si->si_code == si_SEGV_MAPERR || si->si_code == si_SEGV_ACCERR); } #endif // SANITIZER_GO bool IsAccessibleMemoryRange(uptr beg, uptr size) { uptr page_size = GetPageSizeCached(); // Checking too large memory ranges is slow. CHECK_LT(size, page_size * 10); int sock_pair[2]; if (pipe(sock_pair)) return false; uptr bytes_written = internal_write(sock_pair[1], reinterpret_cast(beg), size); int write_errno; bool result; if (internal_iserror(bytes_written, &write_errno)) { CHECK_EQ(EFAULT, write_errno); result = false; } else { result = (bytes_written == size); } internal_close(sock_pair[0]); internal_close(sock_pair[1]); return result; } void PlatformPrepareForSandboxing(void *args) { // Some kinds of sandboxes may forbid filesystem access, so we won't be able // to read the file mappings from /proc/self/maps. Luckily, neither the // process will be able to load additional libraries, so it's fine to use the // cached mappings. MemoryMappingLayout::CacheMemoryMappings(); } static bool MmapFixed(uptr fixed_addr, uptr size, int additional_flags, const char *name) { size = RoundUpTo(size, GetPageSizeCached()); fixed_addr = RoundDownTo(fixed_addr, GetPageSizeCached()); uptr p = MmapNamed((void *)fixed_addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED | additional_flags | MAP_ANON, name); int reserrno; if (internal_iserror(p, &reserrno)) { Report( "ERROR: %s failed to " "allocate 0x%zx (%zd) bytes at address %p (errno: %d)\n", SanitizerToolName, size, size, (void *)fixed_addr, reserrno); return false; } IncreaseTotalMmap(size); return true; } bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) { return MmapFixed(fixed_addr, size, MAP_NORESERVE, name); } bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) { #if SANITIZER_FREEBSD if (common_flags()->no_huge_pages_for_shadow) return MmapFixedNoReserve(fixed_addr, size, name); // MAP_NORESERVE is implicit with FreeBSD return MmapFixed(fixed_addr, size, MAP_ALIGNED_SUPER, name); #else bool r = MmapFixedNoReserve(fixed_addr, size, name); if (r) SetShadowRegionHugePageMode(fixed_addr, size); return r; #endif } uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) { base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size, name) : MmapNoAccess(size); size_ = size; name_ = name; (void)os_handle_; // unsupported return reinterpret_cast(base_); } // Uses fixed_addr for now. // Will use offset instead once we've implemented this function for real. uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) { return reinterpret_cast( MmapFixedOrDieOnFatalError(fixed_addr, size, name)); } uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size, const char *name) { return reinterpret_cast(MmapFixedOrDie(fixed_addr, size, name)); } void ReservedAddressRange::Unmap(uptr addr, uptr size) { CHECK_LE(size, size_); if (addr == reinterpret_cast(base_)) // If we unmap the whole range, just null out the base. base_ = (size == size_) ? nullptr : reinterpret_cast(addr + size); else CHECK_EQ(addr + size, reinterpret_cast(base_) + size_); size_ -= size; UnmapOrDie(reinterpret_cast(addr), size); } void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { return (void *)MmapNamed((void *)fixed_addr, size, PROT_NONE, MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE | MAP_ANON, name); } void *MmapNoAccess(uptr size) { unsigned flags = MAP_PRIVATE | MAP_ANON | MAP_NORESERVE; return (void *)internal_mmap(nullptr, size, PROT_NONE, flags, -1, 0); } // This function is defined elsewhere if we intercepted pthread_attr_getstack. extern "C" { SANITIZER_WEAK_ATTRIBUTE int real_pthread_attr_getstack(void *attr, void **addr, size_t *size); } // extern "C" int internal_pthread_attr_getstack(void *attr, void **addr, uptr *size) { #if !SANITIZER_GO && !SANITIZER_APPLE if (&real_pthread_attr_getstack) return real_pthread_attr_getstack((pthread_attr_t *)attr, addr, (size_t *)size); #endif return pthread_attr_getstack((pthread_attr_t *)attr, addr, (size_t *)size); } #if !SANITIZER_GO void AdjustStackSize(void *attr_) { pthread_attr_t *attr = (pthread_attr_t *)attr_; uptr stackaddr = 0; uptr stacksize = 0; internal_pthread_attr_getstack(attr, (void **)&stackaddr, &stacksize); // GLibC will return (0 - stacksize) as the stack address in the case when // stacksize is set, but stackaddr is not. bool stack_set = (stackaddr != 0) && (stackaddr + stacksize != 0); // We place a lot of tool data into TLS, account for that. const uptr minstacksize = GetTlsSize() + 128*1024; if (stacksize < minstacksize) { if (!stack_set) { if (stacksize != 0) { VPrintf(1, "Sanitizer: increasing stacksize %zu->%zu\n", stacksize, minstacksize); pthread_attr_setstacksize(attr, minstacksize); } } else { Printf("Sanitizer: pre-allocated stack size is insufficient: " "%zu < %zu\n", stacksize, minstacksize); Printf("Sanitizer: pthread_create is likely to fail.\n"); } } } #endif // !SANITIZER_GO pid_t StartSubprocess(const char *program, const char *const argv[], const char *const envp[], fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) { auto file_closer = at_scope_exit([&] { if (stdin_fd != kInvalidFd) { internal_close(stdin_fd); } if (stdout_fd != kInvalidFd) { internal_close(stdout_fd); } if (stderr_fd != kInvalidFd) { internal_close(stderr_fd); } }); int pid = internal_fork(); if (pid < 0) { int rverrno; if (internal_iserror(pid, &rverrno)) { Report("WARNING: failed to fork (errno %d)\n", rverrno); } return pid; } if (pid == 0) { // Child subprocess if (stdin_fd != kInvalidFd) { internal_close(STDIN_FILENO); internal_dup2(stdin_fd, STDIN_FILENO); internal_close(stdin_fd); } if (stdout_fd != kInvalidFd) { internal_close(STDOUT_FILENO); internal_dup2(stdout_fd, STDOUT_FILENO); internal_close(stdout_fd); } if (stderr_fd != kInvalidFd) { internal_close(STDERR_FILENO); internal_dup2(stderr_fd, STDERR_FILENO); internal_close(stderr_fd); } for (int fd = sysconf(_SC_OPEN_MAX); fd > 2; fd--) internal_close(fd); internal_execve(program, const_cast(&argv[0]), const_cast(envp)); internal__exit(1); } return pid; } bool IsProcessRunning(pid_t pid) { int process_status; uptr waitpid_status = internal_waitpid(pid, &process_status, WNOHANG); int local_errno; if (internal_iserror(waitpid_status, &local_errno)) { VReport(1, "Waiting on the process failed (errno %d).\n", local_errno); return false; } return waitpid_status == 0; } int WaitForProcess(pid_t pid) { int process_status; uptr waitpid_status = internal_waitpid(pid, &process_status, 0); int local_errno; if (internal_iserror(waitpid_status, &local_errno)) { VReport(1, "Waiting on the process failed (errno %d).\n", local_errno); return -1; } return process_status; } bool IsStateDetached(int state) { return state == PTHREAD_CREATE_DETACHED; } } // namespace __sanitizer #endif // SANITIZER_POSIX