//===-- sanitizer_mac.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is shared between various sanitizers' runtime libraries and // implements OSX-specific functions. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_MAC #include "sanitizer_mac.h" #include "interception/interception.h" // Use 64-bit inodes in file operations. ASan does not support OS X 10.5, so // the clients will most certainly use 64-bit ones as well. #ifndef _DARWIN_USE_64_BIT_INODE #define _DARWIN_USE_64_BIT_INODE 1 #endif #include #include "sanitizer_common.h" #include "sanitizer_file.h" #include "sanitizer_flags.h" #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_platform_limits_posix.h" #include "sanitizer_procmaps.h" #include "sanitizer_ptrauth.h" #if !SANITIZER_IOS #include // for _NSGetEnviron #else extern char **environ; #endif #if defined(__has_include) && __has_include() #define SANITIZER_OS_TRACE 1 #include #else #define SANITIZER_OS_TRACE 0 #endif #if !SANITIZER_IOS #include // for _NSGetArgv and _NSGetEnviron #else extern "C" { extern char ***_NSGetArgv(void); } #endif #include #include // for dladdr() #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // From , but we don't have that file on iOS. extern "C" { extern char ***_NSGetArgv(void); extern char ***_NSGetEnviron(void); } // From , but we don't have that file on iOS. extern "C" { extern kern_return_t mach_vm_region_recurse( vm_map_t target_task, mach_vm_address_t *address, mach_vm_size_t *size, natural_t *nesting_depth, vm_region_recurse_info_t info, mach_msg_type_number_t *infoCnt); } namespace __sanitizer { #include "sanitizer_syscall_generic.inc" // Direct syscalls, don't call libmalloc hooks (but not available on 10.6). extern "C" void *__mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off) SANITIZER_WEAK_ATTRIBUTE; extern "C" int __munmap(void *, size_t) SANITIZER_WEAK_ATTRIBUTE; // ---------------------- sanitizer_libc.h // From , but not on older OSs. #ifndef VM_MEMORY_SANITIZER #define VM_MEMORY_SANITIZER 99 #endif // XNU on Darwin provides a mmap flag that optimizes allocation/deallocation of // giant memory regions (i.e. shadow memory regions). #define kXnuFastMmapFd 0x4 static size_t kXnuFastMmapThreshold = 2 << 30; // 2 GB static bool use_xnu_fast_mmap = false; uptr internal_mmap(void *addr, size_t length, int prot, int flags, int fd, u64 offset) { if (fd == -1) { fd = VM_MAKE_TAG(VM_MEMORY_SANITIZER); if (length >= kXnuFastMmapThreshold) { if (use_xnu_fast_mmap) fd |= kXnuFastMmapFd; } } if (&__mmap) return (uptr)__mmap(addr, length, prot, flags, fd, offset); return (uptr)mmap(addr, length, prot, flags, fd, offset); } uptr internal_munmap(void *addr, uptr length) { if (&__munmap) return __munmap(addr, length); return munmap(addr, length); } int internal_mprotect(void *addr, uptr length, int prot) { return mprotect(addr, length, prot); } int internal_madvise(uptr addr, uptr length, int advice) { return madvise((void *)addr, length, advice); } uptr internal_close(fd_t fd) { return close(fd); } uptr internal_open(const char *filename, int flags) { return open(filename, flags); } uptr internal_open(const char *filename, int flags, u32 mode) { return open(filename, flags, mode); } uptr internal_read(fd_t fd, void *buf, uptr count) { return read(fd, buf, count); } uptr internal_write(fd_t fd, const void *buf, uptr count) { return write(fd, buf, count); } uptr internal_stat(const char *path, void *buf) { return stat(path, (struct stat *)buf); } uptr internal_lstat(const char *path, void *buf) { return lstat(path, (struct stat *)buf); } uptr internal_fstat(fd_t fd, void *buf) { return fstat(fd, (struct stat *)buf); } uptr internal_filesize(fd_t fd) { struct stat st; if (internal_fstat(fd, &st)) return -1; return (uptr)st.st_size; } uptr internal_dup(int oldfd) { return dup(oldfd); } uptr internal_dup2(int oldfd, int newfd) { return dup2(oldfd, newfd); } uptr internal_readlink(const char *path, char *buf, uptr bufsize) { return readlink(path, buf, bufsize); } uptr internal_unlink(const char *path) { return unlink(path); } uptr internal_sched_yield() { return sched_yield(); } void internal__exit(int exitcode) { _exit(exitcode); } unsigned int internal_sleep(unsigned int seconds) { return sleep(seconds); } uptr internal_getpid() { return getpid(); } int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); } int internal_sigaction(int signum, const void *act, void *oldact) { return sigaction(signum, (const struct sigaction *)act, (struct sigaction *)oldact); } void internal_sigfillset(__sanitizer_sigset_t *set) { sigfillset(set); } uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) { // Don't use sigprocmask here, because it affects all threads. return pthread_sigmask(how, set, oldset); } // Doesn't call pthread_atfork() handlers (but not available on 10.6). extern "C" pid_t __fork(void) SANITIZER_WEAK_ATTRIBUTE; int internal_fork() { if (&__fork) return __fork(); return fork(); } int internal_sysctl(const int *name, unsigned int namelen, void *oldp, uptr *oldlenp, const void *newp, uptr newlen) { return sysctl(const_cast(name), namelen, oldp, (size_t *)oldlenp, const_cast(newp), (size_t)newlen); } int internal_sysctlbyname(const char *sname, void *oldp, uptr *oldlenp, const void *newp, uptr newlen) { return sysctlbyname(sname, oldp, (size_t *)oldlenp, const_cast(newp), (size_t)newlen); } static fd_t internal_spawn_impl(const char *argv[], const char *envp[], pid_t *pid) { fd_t master_fd = kInvalidFd; fd_t slave_fd = kInvalidFd; auto fd_closer = at_scope_exit([&] { internal_close(master_fd); internal_close(slave_fd); }); // We need a new pseudoterminal to avoid buffering problems. The 'atos' tool // in particular detects when it's talking to a pipe and forgets to flush the // output stream after sending a response. master_fd = posix_openpt(O_RDWR); if (master_fd == kInvalidFd) return kInvalidFd; int res = grantpt(master_fd) || unlockpt(master_fd); if (res != 0) return kInvalidFd; // Use TIOCPTYGNAME instead of ptsname() to avoid threading problems. char slave_pty_name[128]; res = ioctl(master_fd, TIOCPTYGNAME, slave_pty_name); if (res == -1) return kInvalidFd; slave_fd = internal_open(slave_pty_name, O_RDWR); if (slave_fd == kInvalidFd) return kInvalidFd; // File descriptor actions posix_spawn_file_actions_t acts; res = posix_spawn_file_actions_init(&acts); if (res != 0) return kInvalidFd; auto acts_cleanup = at_scope_exit([&] { posix_spawn_file_actions_destroy(&acts); }); res = posix_spawn_file_actions_adddup2(&acts, slave_fd, STDIN_FILENO) || posix_spawn_file_actions_adddup2(&acts, slave_fd, STDOUT_FILENO) || posix_spawn_file_actions_addclose(&acts, slave_fd); if (res != 0) return kInvalidFd; // Spawn attributes posix_spawnattr_t attrs; res = posix_spawnattr_init(&attrs); if (res != 0) return kInvalidFd; auto attrs_cleanup = at_scope_exit([&] { posix_spawnattr_destroy(&attrs); }); // In the spawned process, close all file descriptors that are not explicitly // described by the file actions object. This is Darwin-specific extension. res = posix_spawnattr_setflags(&attrs, POSIX_SPAWN_CLOEXEC_DEFAULT); if (res != 0) return kInvalidFd; // posix_spawn char **argv_casted = const_cast(argv); char **envp_casted = const_cast(envp); res = posix_spawn(pid, argv[0], &acts, &attrs, argv_casted, envp_casted); if (res != 0) return kInvalidFd; // Disable echo in the new terminal, disable CR. struct termios termflags; tcgetattr(master_fd, &termflags); termflags.c_oflag &= ~ONLCR; termflags.c_lflag &= ~ECHO; tcsetattr(master_fd, TCSANOW, &termflags); // On success, do not close master_fd on scope exit. fd_t fd = master_fd; master_fd = kInvalidFd; return fd; } fd_t internal_spawn(const char *argv[], const char *envp[], pid_t *pid) { // The client program may close its stdin and/or stdout and/or stderr thus // allowing open/posix_openpt to reuse file descriptors 0, 1 or 2. In this // case the communication is broken if either the parent or the child tries to // close or duplicate these descriptors. We temporarily reserve these // descriptors here to prevent this. fd_t low_fds[3]; size_t count = 0; for (; count < 3; count++) { low_fds[count] = posix_openpt(O_RDWR); if (low_fds[count] >= STDERR_FILENO) break; } fd_t fd = internal_spawn_impl(argv, envp, pid); for (; count > 0; count--) { internal_close(low_fds[count]); } return fd; } uptr internal_rename(const char *oldpath, const char *newpath) { return rename(oldpath, newpath); } uptr internal_ftruncate(fd_t fd, uptr size) { return ftruncate(fd, size); } uptr internal_execve(const char *filename, char *const argv[], char *const envp[]) { return execve(filename, argv, envp); } uptr internal_waitpid(int pid, int *status, int options) { return waitpid(pid, status, options); } // ----------------- sanitizer_common.h bool FileExists(const char *filename) { if (ShouldMockFailureToOpen(filename)) return false; struct stat st; if (stat(filename, &st)) return false; // Sanity check: filename is a regular file. return S_ISREG(st.st_mode); } tid_t GetTid() { tid_t tid; pthread_threadid_np(nullptr, &tid); return tid; } void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom) { CHECK(stack_top); CHECK(stack_bottom); uptr stacksize = pthread_get_stacksize_np(pthread_self()); // pthread_get_stacksize_np() returns an incorrect stack size for the main // thread on Mavericks. See // https://github.com/google/sanitizers/issues/261 if ((GetMacosAlignedVersion() >= MacosVersion(10, 9)) && at_initialization && stacksize == (1 << 19)) { struct rlimit rl; CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0); // Most often rl.rlim_cur will be the desired 8M. if (rl.rlim_cur < kMaxThreadStackSize) { stacksize = rl.rlim_cur; } else { stacksize = kMaxThreadStackSize; } } void *stackaddr = pthread_get_stackaddr_np(pthread_self()); *stack_top = (uptr)stackaddr; *stack_bottom = *stack_top - stacksize; } char **GetEnviron() { #if !SANITIZER_IOS char ***env_ptr = _NSGetEnviron(); if (!env_ptr) { Report("_NSGetEnviron() returned NULL. Please make sure __asan_init() is " "called after libSystem_initializer().\n"); CHECK(env_ptr); } char **environ = *env_ptr; #endif CHECK(environ); return environ; } const char *GetEnv(const char *name) { char **env = GetEnviron(); uptr name_len = internal_strlen(name); while (*env != 0) { uptr len = internal_strlen(*env); if (len > name_len) { const char *p = *env; if (!internal_memcmp(p, name, name_len) && p[name_len] == '=') { // Match. return *env + name_len + 1; // String starting after =. } } env++; } return 0; } uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { CHECK_LE(kMaxPathLength, buf_len); // On OS X the executable path is saved to the stack by dyld. Reading it // from there is much faster than calling dladdr, especially for large // binaries with symbols. InternalScopedString exe_path(kMaxPathLength); uint32_t size = exe_path.size(); if (_NSGetExecutablePath(exe_path.data(), &size) == 0 && realpath(exe_path.data(), buf) != 0) { return internal_strlen(buf); } return 0; } uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) { return ReadBinaryName(buf, buf_len); } void ReExec() { UNIMPLEMENTED(); } void CheckASLR() { // Do nothing } void CheckMPROTECT() { // Do nothing } uptr GetPageSize() { return sysconf(_SC_PAGESIZE); } extern "C" unsigned malloc_num_zones; extern "C" malloc_zone_t **malloc_zones; malloc_zone_t sanitizer_zone; // We need to make sure that sanitizer_zone is registered as malloc_zones[0]. If // libmalloc tries to set up a different zone as malloc_zones[0], it will call // mprotect(malloc_zones, ..., PROT_READ). This interceptor will catch that and // make sure we are still the first (default) zone. void MprotectMallocZones(void *addr, int prot) { if (addr == malloc_zones && prot == PROT_READ) { if (malloc_num_zones > 1 && malloc_zones[0] != &sanitizer_zone) { for (unsigned i = 1; i < malloc_num_zones; i++) { if (malloc_zones[i] == &sanitizer_zone) { // Swap malloc_zones[0] and malloc_zones[i]. malloc_zones[i] = malloc_zones[0]; malloc_zones[0] = &sanitizer_zone; break; } } } } } BlockingMutex::BlockingMutex() { internal_memset(this, 0, sizeof(*this)); } void BlockingMutex::Lock() { CHECK(sizeof(OSSpinLock) <= sizeof(opaque_storage_)); CHECK_EQ(OS_SPINLOCK_INIT, 0); CHECK_EQ(owner_, 0); OSSpinLockLock((OSSpinLock*)&opaque_storage_); } void BlockingMutex::Unlock() { OSSpinLockUnlock((OSSpinLock*)&opaque_storage_); } void BlockingMutex::CheckLocked() { CHECK_NE(*(OSSpinLock*)&opaque_storage_, 0); } u64 NanoTime() { timeval tv; internal_memset(&tv, 0, sizeof(tv)); gettimeofday(&tv, 0); return (u64)tv.tv_sec * 1000*1000*1000 + tv.tv_usec * 1000; } // This needs to be called during initialization to avoid being racy. u64 MonotonicNanoTime() { static mach_timebase_info_data_t timebase_info; if (timebase_info.denom == 0) mach_timebase_info(&timebase_info); return (mach_absolute_time() * timebase_info.numer) / timebase_info.denom; } uptr GetTlsSize() { return 0; } void InitTlsSize() { } uptr TlsBaseAddr() { uptr segbase = 0; #if defined(__x86_64__) asm("movq %%gs:0,%0" : "=r"(segbase)); #elif defined(__i386__) asm("movl %%gs:0,%0" : "=r"(segbase)); #endif return segbase; } // The size of the tls on darwin does not appear to be well documented, // however the vm memory map suggests that it is 1024 uptrs in size, // with a size of 0x2000 bytes on x86_64 and 0x1000 bytes on i386. uptr TlsSize() { #if defined(__x86_64__) || defined(__i386__) return 1024 * sizeof(uptr); #else return 0; #endif } void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size) { #if !SANITIZER_GO uptr stack_top, stack_bottom; GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); *stk_addr = stack_bottom; *stk_size = stack_top - stack_bottom; *tls_addr = TlsBaseAddr(); *tls_size = TlsSize(); #else *stk_addr = 0; *stk_size = 0; *tls_addr = 0; *tls_size = 0; #endif } void ListOfModules::init() { clearOrInit(); MemoryMappingLayout memory_mapping(false); memory_mapping.DumpListOfModules(&modules_); } void ListOfModules::fallbackInit() { clear(); } static HandleSignalMode GetHandleSignalModeImpl(int signum) { switch (signum) { case SIGABRT: return common_flags()->handle_abort; case SIGILL: return common_flags()->handle_sigill; case SIGTRAP: return common_flags()->handle_sigtrap; case SIGFPE: return common_flags()->handle_sigfpe; case SIGSEGV: return common_flags()->handle_segv; case SIGBUS: return common_flags()->handle_sigbus; } return kHandleSignalNo; } HandleSignalMode GetHandleSignalMode(int signum) { // Handling fatal signals on watchOS and tvOS devices is disallowed. if ((SANITIZER_WATCHOS || SANITIZER_TVOS) && !(SANITIZER_IOSSIM)) return kHandleSignalNo; HandleSignalMode result = GetHandleSignalModeImpl(signum); if (result == kHandleSignalYes && !common_flags()->allow_user_segv_handler) return kHandleSignalExclusive; return result; } // Offset example: // XNU 17 -- macOS 10.13 -- iOS 11 -- tvOS 11 -- watchOS 4 constexpr u16 GetOSMajorKernelOffset() { if (TARGET_OS_OSX) return 4; if (TARGET_OS_IOS || TARGET_OS_TV) return 6; if (TARGET_OS_WATCH) return 13; } using VersStr = char[64]; static uptr ApproximateOSVersionViaKernelVersion(VersStr vers) { u16 kernel_major = GetDarwinKernelVersion().major; u16 offset = GetOSMajorKernelOffset(); CHECK_GE(kernel_major, offset); u16 os_major = kernel_major - offset; const char *format = "%d.0"; if (TARGET_OS_OSX) { if (os_major >= 16) { // macOS 11+ os_major -= 5; } else { // macOS 10.15 and below format = "10.%d"; } } return internal_snprintf(vers, sizeof(VersStr), format, os_major); } static void GetOSVersion(VersStr vers) { uptr len = sizeof(VersStr); if (SANITIZER_IOSSIM) { const char *vers_env = GetEnv("SIMULATOR_RUNTIME_VERSION"); if (!vers_env) { Report("ERROR: Running in simulator but SIMULATOR_RUNTIME_VERSION env " "var is not set.\n"); Die(); } len = internal_strlcpy(vers, vers_env, len); } else { int res = internal_sysctlbyname("kern.osproductversion", vers, &len, nullptr, 0); // XNU 17 (macOS 10.13) and below do not provide the sysctl // `kern.osproductversion` entry (res != 0). bool no_os_version = res != 0; // For launchd, sanitizer initialization runs before sysctl is setup // (res == 0 && len != strlen(vers), vers is not a valid version). However, // the kernel version `kern.osrelease` is available. bool launchd = (res == 0 && internal_strlen(vers) < 3); if (launchd) CHECK_EQ(internal_getpid(), 1); if (no_os_version || launchd) { len = ApproximateOSVersionViaKernelVersion(vers); } } CHECK_LT(len, sizeof(VersStr)); } void ParseVersion(const char *vers, u16 *major, u16 *minor) { // Format: .[.]\0 CHECK_GE(internal_strlen(vers), 3); const char *p = vers; *major = internal_simple_strtoll(p, &p, /*base=*/10); CHECK_EQ(*p, '.'); p += 1; *minor = internal_simple_strtoll(p, &p, /*base=*/10); } // Aligned versions example: // macOS 10.15 -- iOS 13 -- tvOS 13 -- watchOS 6 static void MapToMacos(u16 *major, u16 *minor) { if (TARGET_OS_OSX) return; if (TARGET_OS_IOS || TARGET_OS_TV) *major += 2; else if (TARGET_OS_WATCH) *major += 9; else UNREACHABLE("unsupported platform"); if (*major >= 16) { // macOS 11+ *major -= 5; } else { // macOS 10.15 and below *minor = *major; *major = 10; } } static MacosVersion GetMacosAlignedVersionInternal() { VersStr vers = {}; GetOSVersion(vers); u16 major, minor; ParseVersion(vers, &major, &minor); MapToMacos(&major, &minor); return MacosVersion(major, minor); } static_assert(sizeof(MacosVersion) == sizeof(atomic_uint32_t::Type), "MacosVersion cache size"); static atomic_uint32_t cached_macos_version; MacosVersion GetMacosAlignedVersion() { atomic_uint32_t::Type result = atomic_load(&cached_macos_version, memory_order_acquire); if (!result) { MacosVersion version = GetMacosAlignedVersionInternal(); result = *reinterpret_cast(&version); atomic_store(&cached_macos_version, result, memory_order_release); } return *reinterpret_cast(&result); } DarwinKernelVersion GetDarwinKernelVersion() { VersStr vers = {}; uptr len = sizeof(VersStr); int res = internal_sysctlbyname("kern.osrelease", vers, &len, nullptr, 0); CHECK_EQ(res, 0); CHECK_LT(len, sizeof(VersStr)); u16 major, minor; ParseVersion(vers, &major, &minor); return DarwinKernelVersion(major, minor); } uptr GetRSS() { struct task_basic_info info; unsigned count = TASK_BASIC_INFO_COUNT; kern_return_t result = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&info, &count); if (UNLIKELY(result != KERN_SUCCESS)) { Report("Cannot get task info. Error: %d\n", result); Die(); } return info.resident_size; } void *internal_start_thread(void *(*func)(void *arg), void *arg) { // Start the thread with signals blocked, otherwise it can steal user signals. __sanitizer_sigset_t set, old; internal_sigfillset(&set); internal_sigprocmask(SIG_SETMASK, &set, &old); pthread_t th; pthread_create(&th, 0, func, arg); internal_sigprocmask(SIG_SETMASK, &old, 0); return th; } void internal_join_thread(void *th) { pthread_join((pthread_t)th, 0); } #if !SANITIZER_GO static BlockingMutex syslog_lock(LINKER_INITIALIZED); #endif void WriteOneLineToSyslog(const char *s) { #if !SANITIZER_GO syslog_lock.CheckLocked(); asl_log(nullptr, nullptr, ASL_LEVEL_ERR, "%s", s); #endif } void LogMessageOnPrintf(const char *str) { // Log all printf output to CrashLog. if (common_flags()->abort_on_error) CRAppendCrashLogMessage(str); } void LogFullErrorReport(const char *buffer) { #if !SANITIZER_GO // Log with os_trace. This will make it into the crash log. #if SANITIZER_OS_TRACE if (GetMacosAlignedVersion() >= MacosVersion(10, 10)) { // os_trace requires the message (format parameter) to be a string literal. if (internal_strncmp(SanitizerToolName, "AddressSanitizer", sizeof("AddressSanitizer") - 1) == 0) os_trace("Address Sanitizer reported a failure."); else if (internal_strncmp(SanitizerToolName, "UndefinedBehaviorSanitizer", sizeof("UndefinedBehaviorSanitizer") - 1) == 0) os_trace("Undefined Behavior Sanitizer reported a failure."); else if (internal_strncmp(SanitizerToolName, "ThreadSanitizer", sizeof("ThreadSanitizer") - 1) == 0) os_trace("Thread Sanitizer reported a failure."); else os_trace("Sanitizer tool reported a failure."); if (common_flags()->log_to_syslog) os_trace("Consult syslog for more information."); } #endif // Log to syslog. // The logging on OS X may call pthread_create so we need the threading // environment to be fully initialized. Also, this should never be called when // holding the thread registry lock since that may result in a deadlock. If // the reporting thread holds the thread registry mutex, and asl_log waits // for GCD to dispatch a new thread, the process will deadlock, because the // pthread_create wrapper needs to acquire the lock as well. BlockingMutexLock l(&syslog_lock); if (common_flags()->log_to_syslog) WriteToSyslog(buffer); // The report is added to CrashLog as part of logging all of Printf output. #endif } SignalContext::WriteFlag SignalContext::GetWriteFlag() const { #if defined(__x86_64__) || defined(__i386__) ucontext_t *ucontext = static_cast(context); return ucontext->uc_mcontext->__es.__err & 2 /*T_PF_WRITE*/ ? WRITE : READ; #else return UNKNOWN; #endif } bool SignalContext::IsTrueFaultingAddress() const { auto si = static_cast(siginfo); // "Real" SIGSEGV codes (e.g., SEGV_MAPERR, SEGV_MAPERR) are non-zero. return si->si_signo == SIGSEGV && si->si_code != 0; } #if defined(__aarch64__) && defined(arm_thread_state64_get_sp) #define AARCH64_GET_REG(r) \ (uptr)ptrauth_strip( \ (void *)arm_thread_state64_get_##r(ucontext->uc_mcontext->__ss), 0) #else #define AARCH64_GET_REG(r) ucontext->uc_mcontext->__ss.__##r #endif static void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) { ucontext_t *ucontext = (ucontext_t*)context; # if defined(__aarch64__) *pc = AARCH64_GET_REG(pc); # if defined(__IPHONE_8_0) && __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_8_0 *bp = AARCH64_GET_REG(fp); # else *bp = AARCH64_GET_REG(lr); # endif *sp = AARCH64_GET_REG(sp); # elif defined(__x86_64__) *pc = ucontext->uc_mcontext->__ss.__rip; *bp = ucontext->uc_mcontext->__ss.__rbp; *sp = ucontext->uc_mcontext->__ss.__rsp; # elif defined(__arm__) *pc = ucontext->uc_mcontext->__ss.__pc; *bp = ucontext->uc_mcontext->__ss.__r[7]; *sp = ucontext->uc_mcontext->__ss.__sp; # elif defined(__i386__) *pc = ucontext->uc_mcontext->__ss.__eip; *bp = ucontext->uc_mcontext->__ss.__ebp; *sp = ucontext->uc_mcontext->__ss.__esp; # else # error "Unknown architecture" # endif } void SignalContext::InitPcSpBp() { addr = (uptr)ptrauth_strip((void *)addr, 0); GetPcSpBp(context, &pc, &sp, &bp); } // ASan/TSan use mmap in a way that creates “deallocation gaps” which triggers // EXC_GUARD exceptions on macOS 10.15+ (XNU 19.0+). static void DisableMmapExcGuardExceptions() { using task_exc_guard_behavior_t = uint32_t; using task_set_exc_guard_behavior_t = kern_return_t(task_t task, task_exc_guard_behavior_t behavior); auto *set_behavior = (task_set_exc_guard_behavior_t *)dlsym( RTLD_DEFAULT, "task_set_exc_guard_behavior"); if (set_behavior == nullptr) return; const task_exc_guard_behavior_t task_exc_guard_none = 0; set_behavior(mach_task_self(), task_exc_guard_none); } void InitializePlatformEarly() { // Only use xnu_fast_mmap when on x86_64 and the kernel supports it. use_xnu_fast_mmap = #if defined(__x86_64__) GetDarwinKernelVersion() >= DarwinKernelVersion(17, 5); #else false; #endif if (GetDarwinKernelVersion() >= DarwinKernelVersion(19, 0)) DisableMmapExcGuardExceptions(); } #if !SANITIZER_GO static const char kDyldInsertLibraries[] = "DYLD_INSERT_LIBRARIES"; LowLevelAllocator allocator_for_env; // Change the value of the env var |name|, leaking the original value. // If |name_value| is NULL, the variable is deleted from the environment, // otherwise the corresponding "NAME=value" string is replaced with // |name_value|. void LeakyResetEnv(const char *name, const char *name_value) { char **env = GetEnviron(); uptr name_len = internal_strlen(name); while (*env != 0) { uptr len = internal_strlen(*env); if (len > name_len) { const char *p = *env; if (!internal_memcmp(p, name, name_len) && p[name_len] == '=') { // Match. if (name_value) { // Replace the old value with the new one. *env = const_cast(name_value); } else { // Shift the subsequent pointers back. char **del = env; do { del[0] = del[1]; } while (*del++); } } } env++; } } SANITIZER_WEAK_CXX_DEFAULT_IMPL bool ReexecDisabled() { return false; } static bool DyldNeedsEnvVariable() { // If running on OS X 10.11+ or iOS 9.0+, dyld will interpose even if // DYLD_INSERT_LIBRARIES is not set. return GetMacosAlignedVersion() < MacosVersion(10, 11); } void MaybeReexec() { // FIXME: This should really live in some "InitializePlatform" method. MonotonicNanoTime(); if (ReexecDisabled()) return; // Make sure the dynamic runtime library is preloaded so that the // wrappers work. If it is not, set DYLD_INSERT_LIBRARIES and re-exec // ourselves. Dl_info info; RAW_CHECK(dladdr((void*)((uptr)&__sanitizer_report_error_summary), &info)); char *dyld_insert_libraries = const_cast(GetEnv(kDyldInsertLibraries)); uptr old_env_len = dyld_insert_libraries ? internal_strlen(dyld_insert_libraries) : 0; uptr fname_len = internal_strlen(info.dli_fname); const char *dylib_name = StripModuleName(info.dli_fname); uptr dylib_name_len = internal_strlen(dylib_name); bool lib_is_in_env = dyld_insert_libraries && internal_strstr(dyld_insert_libraries, dylib_name); if (DyldNeedsEnvVariable() && !lib_is_in_env) { // DYLD_INSERT_LIBRARIES is not set or does not contain the runtime // library. InternalScopedString program_name(1024); uint32_t buf_size = program_name.size(); _NSGetExecutablePath(program_name.data(), &buf_size); char *new_env = const_cast(info.dli_fname); if (dyld_insert_libraries) { // Append the runtime dylib name to the existing value of // DYLD_INSERT_LIBRARIES. new_env = (char*)allocator_for_env.Allocate(old_env_len + fname_len + 2); internal_strncpy(new_env, dyld_insert_libraries, old_env_len); new_env[old_env_len] = ':'; // Copy fname_len and add a trailing zero. internal_strncpy(new_env + old_env_len + 1, info.dli_fname, fname_len + 1); // Ok to use setenv() since the wrappers don't depend on the value of // asan_inited. setenv(kDyldInsertLibraries, new_env, /*overwrite*/1); } else { // Set DYLD_INSERT_LIBRARIES equal to the runtime dylib name. setenv(kDyldInsertLibraries, info.dli_fname, /*overwrite*/0); } VReport(1, "exec()-ing the program with\n"); VReport(1, "%s=%s\n", kDyldInsertLibraries, new_env); VReport(1, "to enable wrappers.\n"); execv(program_name.data(), *_NSGetArgv()); // We get here only if execv() failed. Report("ERROR: The process is launched without DYLD_INSERT_LIBRARIES, " "which is required for the sanitizer to work. We tried to set the " "environment variable and re-execute itself, but execv() failed, " "possibly because of sandbox restrictions. Make sure to launch the " "executable with:\n%s=%s\n", kDyldInsertLibraries, new_env); RAW_CHECK("execv failed" && 0); } // Verify that interceptors really work. We'll use dlsym to locate // "pthread_create", if interceptors are working, it should really point to // "wrap_pthread_create" within our own dylib. Dl_info info_pthread_create; void *dlopen_addr = dlsym(RTLD_DEFAULT, "pthread_create"); RAW_CHECK(dladdr(dlopen_addr, &info_pthread_create)); if (internal_strcmp(info.dli_fname, info_pthread_create.dli_fname) != 0) { Report( "ERROR: Interceptors are not working. This may be because %s is " "loaded too late (e.g. via dlopen). Please launch the executable " "with:\n%s=%s\n", SanitizerToolName, kDyldInsertLibraries, info.dli_fname); RAW_CHECK("interceptors not installed" && 0); } if (!lib_is_in_env) return; if (!common_flags()->strip_env) return; // DYLD_INSERT_LIBRARIES is set and contains the runtime library. Let's remove // the dylib from the environment variable, because interceptors are installed // and we don't want our children to inherit the variable. uptr env_name_len = internal_strlen(kDyldInsertLibraries); // Allocate memory to hold the previous env var name, its value, the '=' // sign and the '\0' char. char *new_env = (char*)allocator_for_env.Allocate( old_env_len + 2 + env_name_len); RAW_CHECK(new_env); internal_memset(new_env, '\0', old_env_len + 2 + env_name_len); internal_strncpy(new_env, kDyldInsertLibraries, env_name_len); new_env[env_name_len] = '='; char *new_env_pos = new_env + env_name_len + 1; // Iterate over colon-separated pieces of |dyld_insert_libraries|. char *piece_start = dyld_insert_libraries; char *piece_end = NULL; char *old_env_end = dyld_insert_libraries + old_env_len; do { if (piece_start[0] == ':') piece_start++; piece_end = internal_strchr(piece_start, ':'); if (!piece_end) piece_end = dyld_insert_libraries + old_env_len; if ((uptr)(piece_start - dyld_insert_libraries) > old_env_len) break; uptr piece_len = piece_end - piece_start; char *filename_start = (char *)internal_memrchr(piece_start, '/', piece_len); uptr filename_len = piece_len; if (filename_start) { filename_start += 1; filename_len = piece_len - (filename_start - piece_start); } else { filename_start = piece_start; } // If the current piece isn't the runtime library name, // append it to new_env. if ((dylib_name_len != filename_len) || (internal_memcmp(filename_start, dylib_name, dylib_name_len) != 0)) { if (new_env_pos != new_env + env_name_len + 1) { new_env_pos[0] = ':'; new_env_pos++; } internal_strncpy(new_env_pos, piece_start, piece_len); new_env_pos += piece_len; } // Move on to the next piece. piece_start = piece_end; } while (piece_start < old_env_end); // Can't use setenv() here, because it requires the allocator to be // initialized. // FIXME: instead of filtering DYLD_INSERT_LIBRARIES here, do it in // a separate function called after InitializeAllocator(). if (new_env_pos == new_env + env_name_len + 1) new_env = NULL; LeakyResetEnv(kDyldInsertLibraries, new_env); } #endif // SANITIZER_GO char **GetArgv() { return *_NSGetArgv(); } #if SANITIZER_IOS && !SANITIZER_IOSSIM // The task_vm_info struct is normally provided by the macOS SDK, but we need // fields only available in 10.12+. Declare the struct manually to be able to // build against older SDKs. struct __sanitizer_task_vm_info { mach_vm_size_t virtual_size; integer_t region_count; integer_t page_size; mach_vm_size_t resident_size; mach_vm_size_t resident_size_peak; mach_vm_size_t device; mach_vm_size_t device_peak; mach_vm_size_t internal; mach_vm_size_t internal_peak; mach_vm_size_t external; mach_vm_size_t external_peak; mach_vm_size_t reusable; mach_vm_size_t reusable_peak; mach_vm_size_t purgeable_volatile_pmap; mach_vm_size_t purgeable_volatile_resident; mach_vm_size_t purgeable_volatile_virtual; mach_vm_size_t compressed; mach_vm_size_t compressed_peak; mach_vm_size_t compressed_lifetime; mach_vm_size_t phys_footprint; mach_vm_address_t min_address; mach_vm_address_t max_address; }; #define __SANITIZER_TASK_VM_INFO_COUNT ((mach_msg_type_number_t) \ (sizeof(__sanitizer_task_vm_info) / sizeof(natural_t))) static uptr GetTaskInfoMaxAddress() { __sanitizer_task_vm_info vm_info = {} /* zero initialize */; mach_msg_type_number_t count = __SANITIZER_TASK_VM_INFO_COUNT; int err = task_info(mach_task_self(), TASK_VM_INFO, (int *)&vm_info, &count); return err ? 0 : vm_info.max_address; } uptr GetMaxUserVirtualAddress() { static uptr max_vm = GetTaskInfoMaxAddress(); if (max_vm != 0) return max_vm - 1; // xnu cannot provide vm address limit # if SANITIZER_WORDSIZE == 32 return 0xffe00000 - 1; # else return 0x200000000 - 1; # endif } #else // !SANITIZER_IOS uptr GetMaxUserVirtualAddress() { # if SANITIZER_WORDSIZE == 64 return (1ULL << 47) - 1; // 0x00007fffffffffffUL; # else // SANITIZER_WORDSIZE == 32 static_assert(SANITIZER_WORDSIZE == 32, "Wrong wordsize"); return (1ULL << 32) - 1; // 0xffffffff; # endif } #endif uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, uptr min_shadow_base_alignment, uptr &high_mem_end) { const uptr granularity = GetMmapGranularity(); const uptr alignment = Max(granularity << shadow_scale, 1ULL << min_shadow_base_alignment); const uptr left_padding = Max(granularity, 1ULL << min_shadow_base_alignment); uptr space_size = shadow_size_bytes + left_padding; uptr largest_gap_found = 0; uptr max_occupied_addr = 0; VReport(2, "FindDynamicShadowStart, space_size = %p\n", space_size); uptr shadow_start = FindAvailableMemoryRange(space_size, alignment, granularity, &largest_gap_found, &max_occupied_addr); // If the shadow doesn't fit, restrict the address space to make it fit. if (shadow_start == 0) { VReport( 2, "Shadow doesn't fit, largest_gap_found = %p, max_occupied_addr = %p\n", largest_gap_found, max_occupied_addr); uptr new_max_vm = RoundDownTo(largest_gap_found << shadow_scale, alignment); if (new_max_vm < max_occupied_addr) { Report("Unable to find a memory range for dynamic shadow.\n"); Report( "space_size = %p, largest_gap_found = %p, max_occupied_addr = %p, " "new_max_vm = %p\n", space_size, largest_gap_found, max_occupied_addr, new_max_vm); CHECK(0 && "cannot place shadow"); } RestrictMemoryToMaxAddress(new_max_vm); high_mem_end = new_max_vm - 1; space_size = (high_mem_end >> shadow_scale) + left_padding; VReport(2, "FindDynamicShadowStart, space_size = %p\n", space_size); shadow_start = FindAvailableMemoryRange(space_size, alignment, granularity, nullptr, nullptr); if (shadow_start == 0) { Report("Unable to find a memory range after restricting VM.\n"); CHECK(0 && "cannot place shadow after restricting vm"); } } CHECK_NE((uptr)0, shadow_start); CHECK(IsAligned(shadow_start, alignment)); return shadow_start; } uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, uptr *largest_gap_found, uptr *max_occupied_addr) { typedef vm_region_submap_short_info_data_64_t RegionInfo; enum { kRegionInfoSize = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64 }; // Start searching for available memory region past PAGEZERO, which is // 4KB on 32-bit and 4GB on 64-bit. mach_vm_address_t start_address = (SANITIZER_WORDSIZE == 32) ? 0x000000001000 : 0x000100000000; mach_vm_address_t address = start_address; mach_vm_address_t free_begin = start_address; kern_return_t kr = KERN_SUCCESS; if (largest_gap_found) *largest_gap_found = 0; if (max_occupied_addr) *max_occupied_addr = 0; while (kr == KERN_SUCCESS) { mach_vm_size_t vmsize = 0; natural_t depth = 0; RegionInfo vminfo; mach_msg_type_number_t count = kRegionInfoSize; kr = mach_vm_region_recurse(mach_task_self(), &address, &vmsize, &depth, (vm_region_info_t)&vminfo, &count); if (kr == KERN_INVALID_ADDRESS) { // No more regions beyond "address", consider the gap at the end of VM. address = GetMaxVirtualAddress() + 1; vmsize = 0; } else { if (max_occupied_addr) *max_occupied_addr = address + vmsize; } if (free_begin != address) { // We found a free region [free_begin..address-1]. uptr gap_start = RoundUpTo((uptr)free_begin + left_padding, alignment); uptr gap_end = RoundDownTo((uptr)address, alignment); uptr gap_size = gap_end > gap_start ? gap_end - gap_start : 0; if (size < gap_size) { return gap_start; } if (largest_gap_found && *largest_gap_found < gap_size) { *largest_gap_found = gap_size; } } // Move to the next region. address += vmsize; free_begin = address; } // We looked at all free regions and could not find one large enough. return 0; } // FIXME implement on this platform. void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { } void SignalContext::DumpAllRegisters(void *context) { Report("Register values:\n"); ucontext_t *ucontext = (ucontext_t*)context; # define DUMPREG64(r) \ Printf("%s = 0x%016llx ", #r, ucontext->uc_mcontext->__ss.__ ## r); # define DUMPREGA64(r) \ Printf(" %s = 0x%016llx ", #r, AARCH64_GET_REG(r)); # define DUMPREG32(r) \ Printf("%s = 0x%08x ", #r, ucontext->uc_mcontext->__ss.__ ## r); # define DUMPREG_(r) Printf(" "); DUMPREG(r); # define DUMPREG__(r) Printf(" "); DUMPREG(r); # define DUMPREG___(r) Printf(" "); DUMPREG(r); # if defined(__x86_64__) # define DUMPREG(r) DUMPREG64(r) DUMPREG(rax); DUMPREG(rbx); DUMPREG(rcx); DUMPREG(rdx); Printf("\n"); DUMPREG(rdi); DUMPREG(rsi); DUMPREG(rbp); DUMPREG(rsp); Printf("\n"); DUMPREG_(r8); DUMPREG_(r9); DUMPREG(r10); DUMPREG(r11); Printf("\n"); DUMPREG(r12); DUMPREG(r13); DUMPREG(r14); DUMPREG(r15); Printf("\n"); # elif defined(__i386__) # define DUMPREG(r) DUMPREG32(r) DUMPREG(eax); DUMPREG(ebx); DUMPREG(ecx); DUMPREG(edx); Printf("\n"); DUMPREG(edi); DUMPREG(esi); DUMPREG(ebp); DUMPREG(esp); Printf("\n"); # elif defined(__aarch64__) # define DUMPREG(r) DUMPREG64(r) DUMPREG_(x[0]); DUMPREG_(x[1]); DUMPREG_(x[2]); DUMPREG_(x[3]); Printf("\n"); DUMPREG_(x[4]); DUMPREG_(x[5]); DUMPREG_(x[6]); DUMPREG_(x[7]); Printf("\n"); DUMPREG_(x[8]); DUMPREG_(x[9]); DUMPREG(x[10]); DUMPREG(x[11]); Printf("\n"); DUMPREG(x[12]); DUMPREG(x[13]); DUMPREG(x[14]); DUMPREG(x[15]); Printf("\n"); DUMPREG(x[16]); DUMPREG(x[17]); DUMPREG(x[18]); DUMPREG(x[19]); Printf("\n"); DUMPREG(x[20]); DUMPREG(x[21]); DUMPREG(x[22]); DUMPREG(x[23]); Printf("\n"); DUMPREG(x[24]); DUMPREG(x[25]); DUMPREG(x[26]); DUMPREG(x[27]); Printf("\n"); DUMPREG(x[28]); DUMPREGA64(fp); DUMPREGA64(lr); DUMPREGA64(sp); Printf("\n"); # elif defined(__arm__) # define DUMPREG(r) DUMPREG32(r) DUMPREG_(r[0]); DUMPREG_(r[1]); DUMPREG_(r[2]); DUMPREG_(r[3]); Printf("\n"); DUMPREG_(r[4]); DUMPREG_(r[5]); DUMPREG_(r[6]); DUMPREG_(r[7]); Printf("\n"); DUMPREG_(r[8]); DUMPREG_(r[9]); DUMPREG(r[10]); DUMPREG(r[11]); Printf("\n"); DUMPREG(r[12]); DUMPREG___(sp); DUMPREG___(lr); DUMPREG___(pc); Printf("\n"); # else # error "Unknown architecture" # endif # undef DUMPREG64 # undef DUMPREG32 # undef DUMPREG_ # undef DUMPREG__ # undef DUMPREG___ # undef DUMPREG } static inline bool CompareBaseAddress(const LoadedModule &a, const LoadedModule &b) { return a.base_address() < b.base_address(); } void FormatUUID(char *out, uptr size, const u8 *uuid) { internal_snprintf(out, size, "<%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-" "%02X%02X%02X%02X%02X%02X>", uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]); } void DumpProcessMap() { Printf("Process module map:\n"); MemoryMappingLayout memory_mapping(false); InternalMmapVector modules; modules.reserve(128); memory_mapping.DumpListOfModules(&modules); Sort(modules.data(), modules.size(), CompareBaseAddress); for (uptr i = 0; i < modules.size(); ++i) { char uuid_str[128]; FormatUUID(uuid_str, sizeof(uuid_str), modules[i].uuid()); Printf("0x%zx-0x%zx %s (%s) %s\n", modules[i].base_address(), modules[i].max_executable_address(), modules[i].full_name(), ModuleArchToString(modules[i].arch()), uuid_str); } Printf("End of module map.\n"); } void CheckNoDeepBind(const char *filename, int flag) { // Do nothing. } bool GetRandom(void *buffer, uptr length, bool blocking) { if (!buffer || !length || length > 256) return false; // arc4random never fails. REAL(arc4random_buf)(buffer, length); return true; } u32 GetNumberOfCPUs() { return (u32)sysconf(_SC_NPROCESSORS_ONLN); } void InitializePlatformCommonFlags(CommonFlags *cf) {} } // namespace __sanitizer #endif // SANITIZER_MAC