//===-- sanitizer_flat_map.h ------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Part of the Sanitizer Allocator. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_FLAT_MAP_H #define SANITIZER_FLAT_MAP_H #include "sanitizer_atomic.h" #include "sanitizer_common.h" #include "sanitizer_internal_defs.h" #include "sanitizer_local_address_space_view.h" #include "sanitizer_mutex.h" namespace __sanitizer { // Maps integers in rage [0, kSize) to values. template class FlatMap { public: using AddressSpaceView = AddressSpaceViewTy; void Init() { internal_memset(map_, 0, sizeof(map_)); } constexpr uptr size() const { return kSize; } bool contains(uptr idx) const { CHECK_LT(idx, kSize); return true; } T &operator[](uptr idx) { DCHECK_LT(idx, kSize); return map_[idx]; } const T &operator[](uptr idx) const { DCHECK_LT(idx, kSize); return map_[idx]; } private: T map_[kSize]; }; // TwoLevelMap maps integers in range [0, kSize1*kSize2) to values. // It is implemented as a two-dimensional array: array of kSize1 pointers // to kSize2-byte arrays. The secondary arrays are mmaped on demand. // Each value is initially zero and can be set to something else only once. // Setting and getting values from multiple threads is safe w/o extra locking. template class TwoLevelMap { static_assert(IsPowerOfTwo(kSize2), "Use a power of two for performance."); public: using AddressSpaceView = AddressSpaceViewTy; void Init() { mu_.Init(); internal_memset(map1_, 0, sizeof(map1_)); } void TestOnlyUnmap() { for (uptr i = 0; i < kSize1; i++) { T *p = Get(i); if (!p) continue; UnmapOrDie(p, kSize2); } Init(); } uptr MemoryUsage() const { uptr res = 0; for (uptr i = 0; i < kSize1; i++) { T *p = Get(i); if (!p) continue; res += MmapSize(); } return res; } constexpr uptr size() const { return kSize1 * kSize2; } constexpr uptr size1() const { return kSize1; } constexpr uptr size2() const { return kSize2; } bool contains(uptr idx) const { CHECK_LT(idx, kSize1 * kSize2); return Get(idx / kSize2); } const T &operator[](uptr idx) const { DCHECK_LT(idx, kSize1 * kSize2); T *map2 = GetOrCreate(idx / kSize2); return *AddressSpaceView::Load(&map2[idx % kSize2]); } T &operator[](uptr idx) { DCHECK_LT(idx, kSize1 * kSize2); T *map2 = GetOrCreate(idx / kSize2); return *AddressSpaceView::LoadWritable(&map2[idx % kSize2]); } private: constexpr uptr MmapSize() const { return RoundUpTo(kSize2 * sizeof(T), GetPageSizeCached()); } T *Get(uptr idx) const { DCHECK_LT(idx, kSize1); return reinterpret_cast( atomic_load(&map1_[idx], memory_order_acquire)); } T *GetOrCreate(uptr idx) const { DCHECK_LT(idx, kSize1); // This code needs to use memory_order_acquire/consume, but we use // memory_order_relaxed for performance reasons (matters for arm64). We // expect memory_order_relaxed to be effectively equivalent to // memory_order_consume in this case for all relevant architectures: all // dependent data is reachable only by dereferencing the resulting pointer. // If relaxed load fails to see stored ptr, the code will fall back to // Create() and reload the value again with locked mutex as a memory // barrier. T *res = reinterpret_cast(atomic_load_relaxed(&map1_[idx])); if (LIKELY(res)) return res; return Create(idx); } NOINLINE T *Create(uptr idx) const { SpinMutexLock l(&mu_); T *res = Get(idx); if (!res) { res = reinterpret_cast(MmapOrDie(MmapSize(), "TwoLevelMap")); atomic_store(&map1_[idx], reinterpret_cast(res), memory_order_release); } return res; } mutable StaticSpinMutex mu_; mutable atomic_uintptr_t map1_[kSize1]; }; template using FlatByteMap = FlatMap; template using TwoLevelByteMap = TwoLevelMap; } // namespace __sanitizer #endif