//===-- safestack.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the runtime support for the safe stack protection // mechanism. The runtime manages allocation/deallocation of the unsafe stack // for the main thread, as well as all pthreads that are created/destroyed // during program execution. // //===----------------------------------------------------------------------===// #define SANITIZER_COMMON_NO_REDEFINE_BUILTINS #include "safestack_platform.h" #include "safestack_util.h" #include "sanitizer_common/sanitizer_internal_defs.h" #include #include #include #include "interception/interception.h" // interception.h drags in sanitizer_redefine_builtins.h, which in turn // creates references to __sanitizer_internal_memcpy etc. The interceptors // aren't needed here, so just forward to libc. extern "C" { SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memcpy(void *dest, const void *src, size_t n) { return memcpy(dest, src, n); } SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memmove( void *dest, const void *src, size_t n) { return memmove(dest, src, n); } SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memset(void *s, int c, size_t n) { return memset(s, c, n); } } // extern "C" using namespace safestack; // TODO: To make accessing the unsafe stack pointer faster, we plan to // eventually store it directly in the thread control block data structure on // platforms where this structure is pointed to by %fs or %gs. This is exactly // the same mechanism as currently being used by the traditional stack // protector pass to store the stack guard (see getStackCookieLocation() // function above). Doing so requires changing the tcbhead_t struct in glibc // on Linux and tcb struct in libc on FreeBSD. // // For now, store it in a thread-local variable. extern "C" { __attribute__((visibility( "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr; } namespace { // TODO: The runtime library does not currently protect the safe stack beyond // relying on the system-enforced ASLR. The protection of the (safe) stack can // be provided by three alternative features: // // 1) Protection via hardware segmentation on x86-32 and some x86-64 // architectures: the (safe) stack segment (implicitly accessed via the %ss // segment register) can be separated from the data segment (implicitly // accessed via the %ds segment register). Dereferencing a pointer to the safe // segment would result in a segmentation fault. // // 2) Protection via software fault isolation: memory writes that are not meant // to access the safe stack can be prevented from doing so through runtime // instrumentation. One way to do it is to allocate the safe stack(s) in the // upper half of the userspace and bitmask the corresponding upper bit of the // memory addresses of memory writes that are not meant to access the safe // stack. // // 3) Protection via information hiding on 64 bit architectures: the location // of the safe stack(s) can be randomized through secure mechanisms, and the // leakage of the stack pointer can be prevented. Currently, libc can leak the // stack pointer in several ways (e.g. in longjmp, signal handling, user-level // context switching related functions, etc.). These can be fixed in libc and // in other low-level libraries, by either eliminating the escaping/dumping of // the stack pointer (i.e., %rsp) when that's possible, or by using // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret // we control and protect better, as is already done for setjmp in glibc.) // Furthermore, a static machine code level verifier can be ran after code // generation to make sure that the stack pointer is never written to memory, // or if it is, its written on the safe stack. // // Finally, while the Unsafe Stack pointer is currently stored in a thread // local variable, with libc support it could be stored in the TCB (thread // control block) as well, eliminating another level of indirection and making // such accesses faster. Alternatively, dedicating a separate register for // storing it would also be possible. /// Minimum stack alignment for the unsafe stack. const unsigned kStackAlign = 16; /// Default size of the unsafe stack. This value is only used if the stack /// size rlimit is set to infinity. const unsigned kDefaultUnsafeStackSize = 0x2800000; // Per-thread unsafe stack information. It's not frequently accessed, so there // it can be kept out of the tcb in normal thread-local variables. __thread void *unsafe_stack_start = nullptr; __thread size_t unsafe_stack_size = 0; __thread size_t unsafe_stack_guard = 0; inline void *unsafe_stack_alloc(size_t size, size_t guard) { SFS_CHECK(size + guard >= size); void *addr = Mmap(nullptr, size + guard, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); SFS_CHECK(MAP_FAILED != addr); Mprotect(addr, guard, PROT_NONE); return (char *)addr + guard; } inline void unsafe_stack_setup(void *start, size_t size, size_t guard) { SFS_CHECK((char *)start + size >= (char *)start); SFS_CHECK((char *)start + guard >= (char *)start); void *stack_ptr = (char *)start + size; SFS_CHECK((((size_t)stack_ptr) & (kStackAlign - 1)) == 0); __safestack_unsafe_stack_ptr = stack_ptr; unsafe_stack_start = start; unsafe_stack_size = size; unsafe_stack_guard = guard; } /// Thread data for the cleanup handler pthread_key_t thread_cleanup_key; /// Safe stack per-thread information passed to the thread_start function struct tinfo { void *(*start_routine)(void *); void *start_routine_arg; void *unsafe_stack_start; size_t unsafe_stack_size; size_t unsafe_stack_guard; }; /// Wrap the thread function in order to deallocate the unsafe stack when the /// thread terminates by returning from its main function. void *thread_start(void *arg) { struct tinfo *tinfo = (struct tinfo *)arg; void *(*start_routine)(void *) = tinfo->start_routine; void *start_routine_arg = tinfo->start_routine_arg; // Setup the unsafe stack; this will destroy tinfo content unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size, tinfo->unsafe_stack_guard); // Make sure out thread-specific destructor will be called pthread_setspecific(thread_cleanup_key, (void *)1); return start_routine(start_routine_arg); } /// Linked list used to store exiting threads stack/thread information. struct thread_stack_ll { struct thread_stack_ll *next; void *stack_base; size_t size; pid_t pid; ThreadId tid; }; /// Linked list of unsafe stacks for threads that are exiting. We delay /// unmapping them until the thread exits. thread_stack_ll *thread_stacks = nullptr; pthread_mutex_t thread_stacks_mutex = PTHREAD_MUTEX_INITIALIZER; /// Thread-specific data destructor. We want to free the unsafe stack only after /// this thread is terminated. libc can call functions in safestack-instrumented /// code (like free) after thread-specific data destructors have run. void thread_cleanup_handler(void *_iter) { SFS_CHECK(unsafe_stack_start != nullptr); pthread_setspecific(thread_cleanup_key, NULL); pthread_mutex_lock(&thread_stacks_mutex); // Temporary list to hold the previous threads stacks so we don't hold the // thread_stacks_mutex for long. thread_stack_ll *temp_stacks = thread_stacks; thread_stacks = nullptr; pthread_mutex_unlock(&thread_stacks_mutex); pid_t pid = getpid(); ThreadId tid = GetTid(); // Free stacks for dead threads thread_stack_ll **stackp = &temp_stacks; while (*stackp) { thread_stack_ll *stack = *stackp; if (stack->pid != pid || (-1 == TgKill(stack->pid, stack->tid, 0) && errno == ESRCH)) { Munmap(stack->stack_base, stack->size); *stackp = stack->next; free(stack); } else stackp = &stack->next; } thread_stack_ll *cur_stack = (thread_stack_ll *)malloc(sizeof(thread_stack_ll)); cur_stack->stack_base = (char *)unsafe_stack_start - unsafe_stack_guard; cur_stack->size = unsafe_stack_size + unsafe_stack_guard; cur_stack->pid = pid; cur_stack->tid = tid; pthread_mutex_lock(&thread_stacks_mutex); // Merge thread_stacks with the current thread's stack and any remaining // temp_stacks *stackp = thread_stacks; cur_stack->next = temp_stacks; thread_stacks = cur_stack; pthread_mutex_unlock(&thread_stacks_mutex); unsafe_stack_start = nullptr; } void EnsureInterceptorsInitialized(); /// Intercept thread creation operation to allocate and setup the unsafe stack INTERCEPTOR(int, pthread_create, pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg) { EnsureInterceptorsInitialized(); size_t size = 0; size_t guard = 0; if (attr) { pthread_attr_getstacksize(attr, &size); pthread_attr_getguardsize(attr, &guard); } else { // get pthread default stack size pthread_attr_t tmpattr; pthread_attr_init(&tmpattr); pthread_attr_getstacksize(&tmpattr, &size); pthread_attr_getguardsize(&tmpattr, &guard); pthread_attr_destroy(&tmpattr); } #if SANITIZER_SOLARIS // Solaris pthread_attr_init initializes stacksize to 0 (the default), so // hardcode the actual values as documented in pthread_create(3C). if (size == 0) # if defined(_LP64) size = 2 * 1024 * 1024; # else size = 1024 * 1024; # endif #endif SFS_CHECK(size); size = RoundUpTo(size, kStackAlign); void *addr = unsafe_stack_alloc(size, guard); // Put tinfo at the end of the buffer. guard may be not page aligned. // If that is so then some bytes after addr can be mprotected. struct tinfo *tinfo = (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo)); tinfo->start_routine = start_routine; tinfo->start_routine_arg = arg; tinfo->unsafe_stack_start = addr; tinfo->unsafe_stack_size = size; tinfo->unsafe_stack_guard = guard; return REAL(pthread_create)(thread, attr, thread_start, tinfo); } pthread_mutex_t interceptor_init_mutex = PTHREAD_MUTEX_INITIALIZER; bool interceptors_inited = false; void EnsureInterceptorsInitialized() { MutexLock lock(interceptor_init_mutex); if (interceptors_inited) return; // Initialize pthread interceptors for thread allocation INTERCEPT_FUNCTION(pthread_create); interceptors_inited = true; } } // namespace extern "C" __attribute__((visibility("default"))) #if !SANITIZER_CAN_USE_PREINIT_ARRAY // On ELF platforms, the constructor is invoked using .preinit_array (see below) __attribute__((constructor(0))) #endif void __safestack_init() { // Determine the stack size for the main thread. size_t size = kDefaultUnsafeStackSize; size_t guard = 4096; struct rlimit limit; if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY) size = limit.rlim_cur; // Allocate unsafe stack for main thread void *addr = unsafe_stack_alloc(size, guard); unsafe_stack_setup(addr, size, guard); // Setup the cleanup handler pthread_key_create(&thread_cleanup_key, thread_cleanup_handler); } #if SANITIZER_CAN_USE_PREINIT_ARRAY // On ELF platforms, run safestack initialization before any other constructors. // On other platforms we use the constructor attribute to arrange to run our // initialization early. extern "C" { __attribute__((section(".preinit_array"), used)) void (*__safestack_preinit)(void) = __safestack_init; } #endif extern "C" __attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() { return unsafe_stack_start; } extern "C" __attribute__((visibility("default"))) void *__get_unsafe_stack_top() { return (char*)unsafe_stack_start + unsafe_stack_size; } extern "C" __attribute__((visibility("default"))) void *__get_unsafe_stack_start() { return unsafe_stack_start; } extern "C" __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() { return __safestack_unsafe_stack_ptr; }