//=-- lsan_common.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of LeakSanitizer. // Implementation of common leak checking functionality. // //===----------------------------------------------------------------------===// #include "lsan_common.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_flag_parser.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_procmaps.h" #include "sanitizer_common/sanitizer_report_decorator.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "sanitizer_common/sanitizer_suppressions.h" #include "sanitizer_common/sanitizer_thread_registry.h" #include "sanitizer_common/sanitizer_tls_get_addr.h" extern "C" const char *__lsan_current_stage = "unknown"; #if CAN_SANITIZE_LEAKS namespace __lsan { // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and // also to protect the global list of root regions. BlockingMutex global_mutex(LINKER_INITIALIZED); Flags lsan_flags; void DisableCounterUnderflow() { if (common_flags()->detect_leaks) { Report("Unmatched call to __lsan_enable().\n"); Die(); } } void Flags::SetDefaults() { #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue; #include "lsan_flags.inc" #undef LSAN_FLAG } void RegisterLsanFlags(FlagParser *parser, Flags *f) { #define LSAN_FLAG(Type, Name, DefaultValue, Description) \ RegisterFlag(parser, #Name, Description, &f->Name); #include "lsan_flags.inc" #undef LSAN_FLAG } #define LOG_POINTERS(...) \ do { \ if (flags()->log_pointers) Report(__VA_ARGS__); \ } while (0) #define LOG_THREADS(...) \ do { \ if (flags()->log_threads) Report(__VA_ARGS__); \ } while (0) ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)]; static SuppressionContext *suppression_ctx = nullptr; static const char kSuppressionLeak[] = "leak"; static const char *kSuppressionTypes[] = { kSuppressionLeak }; static const char kStdSuppressions[] = #if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT // definition. "leak:*pthread_exit*\n" #endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT #if SANITIZER_MAC // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173 "leak:*_os_trace*\n" #endif // TLS leak in some glibc versions, described in // https://sourceware.org/bugzilla/show_bug.cgi?id=12650. "leak:*tls_get_addr*\n"; void InitializeSuppressions() { CHECK_EQ(nullptr, suppression_ctx); suppression_ctx = new (suppression_placeholder) SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes)); suppression_ctx->ParseFromFile(flags()->suppressions); if (&__lsan_default_suppressions) suppression_ctx->Parse(__lsan_default_suppressions()); suppression_ctx->Parse(kStdSuppressions); } static SuppressionContext *GetSuppressionContext() { CHECK(suppression_ctx); return suppression_ctx; } static InternalMmapVector *root_regions; InternalMmapVector const *GetRootRegions() { return root_regions; } void InitializeRootRegions() { CHECK(!root_regions); ALIGNED(64) static char placeholder[sizeof(InternalMmapVector)]; root_regions = new (placeholder) InternalMmapVector(); } const char *MaybeCallLsanDefaultOptions() { return (&__lsan_default_options) ? __lsan_default_options() : ""; } void InitCommonLsan() { InitializeRootRegions(); if (common_flags()->detect_leaks) { // Initialization which can fail or print warnings should only be done if // LSan is actually enabled. InitializeSuppressions(); InitializePlatformSpecificModules(); } } class Decorator: public __sanitizer::SanitizerCommonDecorator { public: Decorator() : SanitizerCommonDecorator() { } const char *Error() { return Red(); } const char *Leak() { return Blue(); } }; static inline bool CanBeAHeapPointer(uptr p) { // Since our heap is located in mmap-ed memory, we can assume a sensible lower // bound on heap addresses. const uptr kMinAddress = 4 * 4096; if (p < kMinAddress) return false; #if defined(__x86_64__) // Accept only canonical form user-space addresses. return ((p >> 47) == 0); #elif defined(__mips64) return ((p >> 40) == 0); #elif defined(__aarch64__) unsigned runtimeVMA = (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1); return ((p >> runtimeVMA) == 0); #else return true; #endif } // Scans the memory range, looking for byte patterns that point into allocator // chunks. Marks those chunks with |tag| and adds them to |frontier|. // There are two usage modes for this function: finding reachable chunks // (|tag| = kReachable) and finding indirectly leaked chunks // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill, // so |frontier| = 0. void ScanRangeForPointers(uptr begin, uptr end, Frontier *frontier, const char *region_type, ChunkTag tag) { CHECK(tag == kReachable || tag == kIndirectlyLeaked); const uptr alignment = flags()->pointer_alignment(); LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end); uptr pp = begin; if (pp % alignment) pp = pp + alignment - pp % alignment; for (; pp + sizeof(void *) <= end; pp += alignment) { void *p = *reinterpret_cast(pp); if (!CanBeAHeapPointer(reinterpret_cast(p))) continue; uptr chunk = PointsIntoChunk(p); if (!chunk) continue; // Pointers to self don't count. This matters when tag == kIndirectlyLeaked. if (chunk == begin) continue; LsanMetadata m(chunk); if (m.tag() == kReachable || m.tag() == kIgnored) continue; // Do this check relatively late so we can log only the interesting cases. if (!flags()->use_poisoned && WordIsPoisoned(pp)) { LOG_POINTERS( "%p is poisoned: ignoring %p pointing into chunk %p-%p of size " "%zu.\n", pp, p, chunk, chunk + m.requested_size(), m.requested_size()); continue; } m.set_tag(tag); LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p, chunk, chunk + m.requested_size(), m.requested_size()); if (frontier) frontier->push_back(chunk); } } // Scans a global range for pointers void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) { uptr allocator_begin = 0, allocator_end = 0; GetAllocatorGlobalRange(&allocator_begin, &allocator_end); if (begin <= allocator_begin && allocator_begin < end) { CHECK_LE(allocator_begin, allocator_end); CHECK_LE(allocator_end, end); if (begin < allocator_begin) ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL", kReachable); if (allocator_end < end) ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable); } else { ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable); } } void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) { Frontier *frontier = reinterpret_cast(arg); ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable); } #if SANITIZER_FUCHSIA // Fuchsia handles all threads together with its own callback. static void ProcessThreads(SuspendedThreadsList const &, Frontier *) {} #else // Scans thread data (stacks and TLS) for heap pointers. static void ProcessThreads(SuspendedThreadsList const &suspended_threads, Frontier *frontier) { InternalMmapVector registers(suspended_threads.RegisterCount()); uptr registers_begin = reinterpret_cast(registers.data()); uptr registers_end = reinterpret_cast(registers.data() + registers.size()); for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) { tid_t os_id = static_cast(suspended_threads.GetThreadID(i)); LOG_THREADS("Processing thread %d.\n", os_id); uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end; DTLS *dtls; bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin, &tls_end, &cache_begin, &cache_end, &dtls); if (!thread_found) { // If a thread can't be found in the thread registry, it's probably in the // process of destruction. Log this event and move on. LOG_THREADS("Thread %d not found in registry.\n", os_id); continue; } uptr sp; PtraceRegistersStatus have_registers = suspended_threads.GetRegistersAndSP(i, registers.data(), &sp); if (have_registers != REGISTERS_AVAILABLE) { Report("Unable to get registers from thread %d.\n", os_id); // If unable to get SP, consider the entire stack to be reachable unless // GetRegistersAndSP failed with ESRCH. if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue; sp = stack_begin; } if (flags()->use_registers && have_registers) ScanRangeForPointers(registers_begin, registers_end, frontier, "REGISTERS", kReachable); if (flags()->use_stacks) { LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp); if (sp < stack_begin || sp >= stack_end) { // SP is outside the recorded stack range (e.g. the thread is running a // signal handler on alternate stack, or swapcontext was used). // Again, consider the entire stack range to be reachable. LOG_THREADS("WARNING: stack pointer not in stack range.\n"); uptr page_size = GetPageSizeCached(); int skipped = 0; while (stack_begin < stack_end && !IsAccessibleMemoryRange(stack_begin, 1)) { skipped++; stack_begin += page_size; } LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n", skipped, stack_begin, stack_end); } else { // Shrink the stack range to ignore out-of-scope values. stack_begin = sp; } ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK", kReachable); ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier); } if (flags()->use_tls) { if (tls_begin) { LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end); // If the tls and cache ranges don't overlap, scan full tls range, // otherwise, only scan the non-overlapping portions if (cache_begin == cache_end || tls_end < cache_begin || tls_begin > cache_end) { ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable); } else { if (tls_begin < cache_begin) ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS", kReachable); if (tls_end > cache_end) ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable); } } if (dtls && !DTLSInDestruction(dtls)) { for (uptr j = 0; j < dtls->dtv_size; ++j) { uptr dtls_beg = dtls->dtv[j].beg; uptr dtls_end = dtls_beg + dtls->dtv[j].size; if (dtls_beg < dtls_end) { LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end); ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS", kReachable); } } } else { // We are handling a thread with DTLS under destruction. Log about // this and continue. LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id); } } } } #endif // SANITIZER_FUCHSIA void ScanRootRegion(Frontier *frontier, const RootRegion &root_region, uptr region_begin, uptr region_end, bool is_readable) { uptr intersection_begin = Max(root_region.begin, region_begin); uptr intersection_end = Min(region_end, root_region.begin + root_region.size); if (intersection_begin >= intersection_end) return; LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n", root_region.begin, root_region.begin + root_region.size, region_begin, region_end, is_readable ? "readable" : "unreadable"); if (is_readable) ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT", kReachable); } static void ProcessRootRegion(Frontier *frontier, const RootRegion &root_region) { MemoryMappingLayout proc_maps(/*cache_enabled*/ true); MemoryMappedSegment segment; while (proc_maps.Next(&segment)) { ScanRootRegion(frontier, root_region, segment.start, segment.end, segment.IsReadable()); } } // Scans root regions for heap pointers. static void ProcessRootRegions(Frontier *frontier) { if (!flags()->use_root_regions) return; CHECK(root_regions); for (uptr i = 0; i < root_regions->size(); i++) { ProcessRootRegion(frontier, (*root_regions)[i]); } } static void FloodFillTag(Frontier *frontier, ChunkTag tag) { while (frontier->size()) { uptr next_chunk = frontier->back(); frontier->pop_back(); LsanMetadata m(next_chunk); ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier, "HEAP", tag); } } // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks // which are reachable from it as indirectly leaked. static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) { __lsan_current_stage = "MarkIndirectlyLeakedCb"; chunk = GetUserBegin(chunk); LsanMetadata m(chunk); if (m.allocated() && m.tag() != kReachable) { ScanRangeForPointers(chunk, chunk + m.requested_size(), /* frontier */ nullptr, "HEAP", kIndirectlyLeaked); } } // ForEachChunk callback. If chunk is marked as ignored, adds its address to // frontier. static void CollectIgnoredCb(uptr chunk, void *arg) { CHECK(arg); __lsan_current_stage = "CollectIgnoredCb"; chunk = GetUserBegin(chunk); LsanMetadata m(chunk); if (m.allocated() && m.tag() == kIgnored) { LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", chunk, chunk + m.requested_size(), m.requested_size()); reinterpret_cast(arg)->push_back(chunk); } } static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) { CHECK(stack_id); StackTrace stack = map->Get(stack_id); // The top frame is our malloc/calloc/etc. The next frame is the caller. if (stack.size >= 2) return stack.trace[1]; return 0; } struct InvalidPCParam { Frontier *frontier; StackDepotReverseMap *stack_depot_reverse_map; bool skip_linker_allocations; }; // ForEachChunk callback. If the caller pc is invalid or is within the linker, // mark as reachable. Called by ProcessPlatformSpecificAllocations. static void MarkInvalidPCCb(uptr chunk, void *arg) { CHECK(arg); InvalidPCParam *param = reinterpret_cast(arg); __lsan_current_stage = "MarkInvalidPCCb"; chunk = GetUserBegin(chunk); LsanMetadata m(chunk); if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) { u32 stack_id = m.stack_trace_id(); uptr caller_pc = 0; if (stack_id > 0) caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map); // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark // it as reachable, as we can't properly report its allocation stack anyway. if (caller_pc == 0 || (param->skip_linker_allocations && GetLinker()->containsAddress(caller_pc))) { m.set_tag(kReachable); param->frontier->push_back(chunk); } } } // On Linux, treats all chunks allocated from ld-linux.so as reachable, which // covers dynamically allocated TLS blocks, internal dynamic loader's loaded // modules accounting etc. // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules. // They are allocated with a __libc_memalign() call in allocate_and_init() // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those // blocks, but we can make sure they come from our own allocator by intercepting // __libc_memalign(). On top of that, there is no easy way to reach them. Their // addresses are stored in a dynamically allocated array (the DTV) which is // referenced from the static TLS. Unfortunately, we can't just rely on the DTV // being reachable from the static TLS, and the dynamic TLS being reachable from // the DTV. This is because the initial DTV is allocated before our interception // mechanism kicks in, and thus we don't recognize it as allocated memory. We // can't special-case it either, since we don't know its size. // Our solution is to include in the root set all allocations made from // ld-linux.so (which is where allocate_and_init() is implemented). This is // guaranteed to include all dynamic TLS blocks (and possibly other allocations // which we don't care about). // On all other platforms, this simply checks to ensure that the caller pc is // valid before reporting chunks as leaked. void ProcessPC(Frontier *frontier) { StackDepotReverseMap stack_depot_reverse_map; InvalidPCParam arg; arg.frontier = frontier; arg.stack_depot_reverse_map = &stack_depot_reverse_map; arg.skip_linker_allocations = flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr; ForEachChunk(MarkInvalidPCCb, &arg); } // Sets the appropriate tag on each chunk. static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads, Frontier *frontier) { ForEachChunk(CollectIgnoredCb, frontier); ProcessGlobalRegions(frontier); ProcessThreads(suspended_threads, frontier); ProcessRootRegions(frontier); FloodFillTag(frontier, kReachable); CHECK_EQ(0, frontier->size()); ProcessPC(frontier); // The check here is relatively expensive, so we do this in a separate flood // fill. That way we can skip the check for chunks that are reachable // otherwise. LOG_POINTERS("Processing platform-specific allocations.\n"); ProcessPlatformSpecificAllocations(frontier); FloodFillTag(frontier, kReachable); // Iterate over leaked chunks and mark those that are reachable from other // leaked chunks. LOG_POINTERS("Scanning leaked chunks.\n"); ForEachChunk(MarkIndirectlyLeakedCb, nullptr); } // ForEachChunk callback. Resets the tags to pre-leak-check state. static void ResetTagsCb(uptr chunk, void *arg) { (void)arg; __lsan_current_stage = "ResetTagsCb"; chunk = GetUserBegin(chunk); LsanMetadata m(chunk); if (m.allocated() && m.tag() != kIgnored) m.set_tag(kDirectlyLeaked); } static void PrintStackTraceById(u32 stack_trace_id) { CHECK(stack_trace_id); StackDepotGet(stack_trace_id).Print(); } // ForEachChunk callback. Aggregates information about unreachable chunks into // a LeakReport. static void CollectLeaksCb(uptr chunk, void *arg) { CHECK(arg); LeakReport *leak_report = reinterpret_cast(arg); __lsan_current_stage = "CollectLeaksCb"; chunk = GetUserBegin(chunk); LsanMetadata m(chunk); if (!m.allocated()) return; if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) { u32 resolution = flags()->resolution; u32 stack_trace_id = 0; if (resolution > 0) { StackTrace stack = StackDepotGet(m.stack_trace_id()); stack.size = Min(stack.size, resolution); stack_trace_id = StackDepotPut(stack); } else { stack_trace_id = m.stack_trace_id(); } leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(), m.tag()); } } static void PrintMatchedSuppressions() { InternalMmapVector matched; GetSuppressionContext()->GetMatched(&matched); if (!matched.size()) return; const char *line = "-----------------------------------------------------"; Printf("%s\n", line); Printf("Suppressions used:\n"); Printf(" count bytes template\n"); for (uptr i = 0; i < matched.size(); i++) Printf("%7zu %10zu %s\n", static_cast(atomic_load_relaxed( &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ); Printf("%s\n\n", line); } static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) { const InternalMmapVector &suspended_threads = *(const InternalMmapVector *)arg; if (tctx->status == ThreadStatusRunning) { uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(), tctx->os_id, CompareLess()); if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id) Report("Running thread %d was not suspended. False leaks are possible.\n", tctx->os_id); } } #if SANITIZER_FUCHSIA // Fuchsia provides a libc interface that guarantees all threads are // covered, and SuspendedThreadList is never really used. static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {} #else // !SANITIZER_FUCHSIA static void ReportUnsuspendedThreads( const SuspendedThreadsList &suspended_threads) { InternalMmapVector threads(suspended_threads.ThreadCount()); for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i) threads[i] = suspended_threads.GetThreadID(i); Sort(threads.data(), threads.size()); GetThreadRegistryLocked()->RunCallbackForEachThreadLocked( &ReportIfNotSuspended, &threads); } #endif // !SANITIZER_FUCHSIA static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads, void *arg) { CheckForLeaksParam *param = reinterpret_cast(arg); CHECK(param); CHECK(!param->success); ReportUnsuspendedThreads(suspended_threads); ClassifyAllChunks(suspended_threads, ¶m->frontier); ForEachChunk(CollectLeaksCb, ¶m->leak_report); // Clean up for subsequent leak checks. This assumes we did not overwrite any // kIgnored tags. ForEachChunk(ResetTagsCb, nullptr); param->success = true; } static bool CheckForLeaks() { if (&__lsan_is_turned_off && __lsan_is_turned_off()) return false; EnsureMainThreadIDIsCorrect(); CheckForLeaksParam param; LockStuffAndStopTheWorld(CheckForLeaksCallback, ¶m); if (!param.success) { Report("LeakSanitizer has encountered a fatal error.\n"); Report( "HINT: For debugging, try setting environment variable " "LSAN_OPTIONS=verbosity=1:log_threads=1\n"); Report( "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n"); Die(); } param.leak_report.ApplySuppressions(); uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount(); if (unsuppressed_count > 0) { Decorator d; Printf("\n" "=================================================================" "\n"); Printf("%s", d.Error()); Report("ERROR: LeakSanitizer: detected memory leaks\n"); Printf("%s", d.Default()); param.leak_report.ReportTopLeaks(flags()->max_leaks); } if (common_flags()->print_suppressions) PrintMatchedSuppressions(); if (unsuppressed_count > 0) { param.leak_report.PrintSummary(); return true; } return false; } static bool has_reported_leaks = false; bool HasReportedLeaks() { return has_reported_leaks; } void DoLeakCheck() { BlockingMutexLock l(&global_mutex); static bool already_done; if (already_done) return; already_done = true; has_reported_leaks = CheckForLeaks(); if (has_reported_leaks) HandleLeaks(); } static int DoRecoverableLeakCheck() { BlockingMutexLock l(&global_mutex); bool have_leaks = CheckForLeaks(); return have_leaks ? 1 : 0; } void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); } static Suppression *GetSuppressionForAddr(uptr addr) { Suppression *s = nullptr; // Suppress by module name. SuppressionContext *suppressions = GetSuppressionContext(); if (const char *module_name = Symbolizer::GetOrInit()->GetModuleNameForPc(addr)) if (suppressions->Match(module_name, kSuppressionLeak, &s)) return s; // Suppress by file or function name. SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr); for (SymbolizedStack *cur = frames; cur; cur = cur->next) { if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) || suppressions->Match(cur->info.file, kSuppressionLeak, &s)) { break; } } frames->ClearAll(); return s; } static Suppression *GetSuppressionForStack(u32 stack_trace_id) { StackTrace stack = StackDepotGet(stack_trace_id); for (uptr i = 0; i < stack.size; i++) { Suppression *s = GetSuppressionForAddr( StackTrace::GetPreviousInstructionPc(stack.trace[i])); if (s) return s; } return nullptr; } ///// LeakReport implementation. ///// // A hard limit on the number of distinct leaks, to avoid quadratic complexity // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks // in real-world applications. // FIXME: Get rid of this limit by changing the implementation of LeakReport to // use a hash table. const uptr kMaxLeaksConsidered = 5000; void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id, uptr leaked_size, ChunkTag tag) { CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked); bool is_directly_leaked = (tag == kDirectlyLeaked); uptr i; for (i = 0; i < leaks_.size(); i++) { if (leaks_[i].stack_trace_id == stack_trace_id && leaks_[i].is_directly_leaked == is_directly_leaked) { leaks_[i].hit_count++; leaks_[i].total_size += leaked_size; break; } } if (i == leaks_.size()) { if (leaks_.size() == kMaxLeaksConsidered) return; Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id, is_directly_leaked, /* is_suppressed */ false }; leaks_.push_back(leak); } if (flags()->report_objects) { LeakedObject obj = {leaks_[i].id, chunk, leaked_size}; leaked_objects_.push_back(obj); } } static bool LeakComparator(const Leak &leak1, const Leak &leak2) { if (leak1.is_directly_leaked == leak2.is_directly_leaked) return leak1.total_size > leak2.total_size; else return leak1.is_directly_leaked; } void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) { CHECK(leaks_.size() <= kMaxLeaksConsidered); Printf("\n"); if (leaks_.size() == kMaxLeaksConsidered) Printf("Too many leaks! Only the first %zu leaks encountered will be " "reported.\n", kMaxLeaksConsidered); uptr unsuppressed_count = UnsuppressedLeakCount(); if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count) Printf("The %zu top leak(s):\n", num_leaks_to_report); Sort(leaks_.data(), leaks_.size(), &LeakComparator); uptr leaks_reported = 0; for (uptr i = 0; i < leaks_.size(); i++) { if (leaks_[i].is_suppressed) continue; PrintReportForLeak(i); leaks_reported++; if (leaks_reported == num_leaks_to_report) break; } if (leaks_reported < unsuppressed_count) { uptr remaining = unsuppressed_count - leaks_reported; Printf("Omitting %zu more leak(s).\n", remaining); } } void LeakReport::PrintReportForLeak(uptr index) { Decorator d; Printf("%s", d.Leak()); Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n", leaks_[index].is_directly_leaked ? "Direct" : "Indirect", leaks_[index].total_size, leaks_[index].hit_count); Printf("%s", d.Default()); PrintStackTraceById(leaks_[index].stack_trace_id); if (flags()->report_objects) { Printf("Objects leaked above:\n"); PrintLeakedObjectsForLeak(index); Printf("\n"); } } void LeakReport::PrintLeakedObjectsForLeak(uptr index) { u32 leak_id = leaks_[index].id; for (uptr j = 0; j < leaked_objects_.size(); j++) { if (leaked_objects_[j].leak_id == leak_id) Printf("%p (%zu bytes)\n", leaked_objects_[j].addr, leaked_objects_[j].size); } } void LeakReport::PrintSummary() { CHECK(leaks_.size() <= kMaxLeaksConsidered); uptr bytes = 0, allocations = 0; for (uptr i = 0; i < leaks_.size(); i++) { if (leaks_[i].is_suppressed) continue; bytes += leaks_[i].total_size; allocations += leaks_[i].hit_count; } InternalScopedString summary(kMaxSummaryLength); summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes, allocations); ReportErrorSummary(summary.data()); } void LeakReport::ApplySuppressions() { for (uptr i = 0; i < leaks_.size(); i++) { Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id); if (s) { s->weight += leaks_[i].total_size; atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) + leaks_[i].hit_count); leaks_[i].is_suppressed = true; } } } uptr LeakReport::UnsuppressedLeakCount() { uptr result = 0; for (uptr i = 0; i < leaks_.size(); i++) if (!leaks_[i].is_suppressed) result++; return result; } } // namespace __lsan #else // CAN_SANITIZE_LEAKS namespace __lsan { void InitCommonLsan() { } void DoLeakCheck() { } void DoRecoverableLeakCheckVoid() { } void DisableInThisThread() { } void EnableInThisThread() { } } #endif // CAN_SANITIZE_LEAKS using namespace __lsan; extern "C" { SANITIZER_INTERFACE_ATTRIBUTE void __lsan_ignore_object(const void *p) { #if CAN_SANITIZE_LEAKS if (!common_flags()->detect_leaks) return; // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not // locked. BlockingMutexLock l(&global_mutex); IgnoreObjectResult res = IgnoreObjectLocked(p); if (res == kIgnoreObjectInvalid) VReport(1, "__lsan_ignore_object(): no heap object found at %p", p); if (res == kIgnoreObjectAlreadyIgnored) VReport(1, "__lsan_ignore_object(): " "heap object at %p is already being ignored\n", p); if (res == kIgnoreObjectSuccess) VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p); #endif // CAN_SANITIZE_LEAKS } SANITIZER_INTERFACE_ATTRIBUTE void __lsan_register_root_region(const void *begin, uptr size) { #if CAN_SANITIZE_LEAKS BlockingMutexLock l(&global_mutex); CHECK(root_regions); RootRegion region = {reinterpret_cast(begin), size}; root_regions->push_back(region); VReport(1, "Registered root region at %p of size %llu\n", begin, size); #endif // CAN_SANITIZE_LEAKS } SANITIZER_INTERFACE_ATTRIBUTE void __lsan_unregister_root_region(const void *begin, uptr size) { #if CAN_SANITIZE_LEAKS BlockingMutexLock l(&global_mutex); CHECK(root_regions); bool removed = false; for (uptr i = 0; i < root_regions->size(); i++) { RootRegion region = (*root_regions)[i]; if (region.begin == reinterpret_cast(begin) && region.size == size) { removed = true; uptr last_index = root_regions->size() - 1; (*root_regions)[i] = (*root_regions)[last_index]; root_regions->pop_back(); VReport(1, "Unregistered root region at %p of size %llu\n", begin, size); break; } } if (!removed) { Report( "__lsan_unregister_root_region(): region at %p of size %llu has not " "been registered.\n", begin, size); Die(); } #endif // CAN_SANITIZE_LEAKS } SANITIZER_INTERFACE_ATTRIBUTE void __lsan_disable() { #if CAN_SANITIZE_LEAKS __lsan::DisableInThisThread(); #endif } SANITIZER_INTERFACE_ATTRIBUTE void __lsan_enable() { #if CAN_SANITIZE_LEAKS __lsan::EnableInThisThread(); #endif } SANITIZER_INTERFACE_ATTRIBUTE void __lsan_do_leak_check() { #if CAN_SANITIZE_LEAKS if (common_flags()->detect_leaks) __lsan::DoLeakCheck(); #endif // CAN_SANITIZE_LEAKS } SANITIZER_INTERFACE_ATTRIBUTE int __lsan_do_recoverable_leak_check() { #if CAN_SANITIZE_LEAKS if (common_flags()->detect_leaks) return __lsan::DoRecoverableLeakCheck(); #endif // CAN_SANITIZE_LEAKS return 0; } #if !SANITIZER_SUPPORTS_WEAK_HOOKS SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE const char * __lsan_default_options() { return ""; } SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE int __lsan_is_turned_off() { return 0; } SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE const char *__lsan_default_suppressions() { return ""; } #endif } // extern "C"