//=-- lsan_allocator.cpp --------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of LeakSanitizer. // See lsan_allocator.h for details. // //===----------------------------------------------------------------------===// #include "lsan_allocator.h" #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_allocator_checks.h" #include "sanitizer_common/sanitizer_allocator_interface.h" #include "sanitizer_common/sanitizer_allocator_report.h" #include "sanitizer_common/sanitizer_errno.h" #include "sanitizer_common/sanitizer_internal_defs.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "lsan_common.h" extern "C" void *memset(void *ptr, int value, uptr num); namespace __lsan { #if defined(__i386__) || defined(__arm__) static const uptr kMaxAllowedMallocSize = 1ULL << 30; #elif defined(__mips64) || defined(__aarch64__) static const uptr kMaxAllowedMallocSize = 4ULL << 30; #else static const uptr kMaxAllowedMallocSize = 8ULL << 30; #endif static Allocator allocator; static uptr max_malloc_size; void InitializeAllocator() { SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); allocator.InitLinkerInitialized( common_flags()->allocator_release_to_os_interval_ms); if (common_flags()->max_allocation_size_mb) max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20, kMaxAllowedMallocSize); else max_malloc_size = kMaxAllowedMallocSize; } void AllocatorThreadFinish() { allocator.SwallowCache(GetAllocatorCache()); } static ChunkMetadata *Metadata(const void *p) { return reinterpret_cast(allocator.GetMetaData(p)); } static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) { if (!p) return; ChunkMetadata *m = Metadata(p); CHECK(m); m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked; m->stack_trace_id = StackDepotPut(stack); m->requested_size = size; atomic_store(reinterpret_cast(m), 1, memory_order_relaxed); } static void RegisterDeallocation(void *p) { if (!p) return; ChunkMetadata *m = Metadata(p); CHECK(m); atomic_store(reinterpret_cast(m), 0, memory_order_relaxed); } static void *ReportAllocationSizeTooBig(uptr size, const StackTrace &stack) { if (AllocatorMayReturnNull()) { Report("WARNING: LeakSanitizer failed to allocate 0x%zx bytes\n", size); return nullptr; } ReportAllocationSizeTooBig(size, max_malloc_size, &stack); } void *Allocate(const StackTrace &stack, uptr size, uptr alignment, bool cleared) { if (size == 0) size = 1; if (size > max_malloc_size) return ReportAllocationSizeTooBig(size, stack); if (UNLIKELY(IsRssLimitExceeded())) { if (AllocatorMayReturnNull()) return nullptr; ReportRssLimitExceeded(&stack); } void *p = allocator.Allocate(GetAllocatorCache(), size, alignment); if (UNLIKELY(!p)) { SetAllocatorOutOfMemory(); if (AllocatorMayReturnNull()) return nullptr; ReportOutOfMemory(size, &stack); } // Do not rely on the allocator to clear the memory (it's slow). if (cleared && allocator.FromPrimary(p)) memset(p, 0, size); RegisterAllocation(stack, p, size); RunMallocHooks(p, size); return p; } static void *Calloc(uptr nmemb, uptr size, const StackTrace &stack) { if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { if (AllocatorMayReturnNull()) return nullptr; ReportCallocOverflow(nmemb, size, &stack); } size *= nmemb; return Allocate(stack, size, 1, true); } void Deallocate(void *p) { RunFreeHooks(p); RegisterDeallocation(p); allocator.Deallocate(GetAllocatorCache(), p); } void *Reallocate(const StackTrace &stack, void *p, uptr new_size, uptr alignment) { if (new_size > max_malloc_size) { ReportAllocationSizeTooBig(new_size, stack); return nullptr; } RegisterDeallocation(p); void *new_p = allocator.Reallocate(GetAllocatorCache(), p, new_size, alignment); if (new_p) RegisterAllocation(stack, new_p, new_size); else if (new_size != 0) RegisterAllocation(stack, p, new_size); return new_p; } void GetAllocatorCacheRange(uptr *begin, uptr *end) { *begin = (uptr)GetAllocatorCache(); *end = *begin + sizeof(AllocatorCache); } uptr GetMallocUsableSize(const void *p) { if (!p) return 0; ChunkMetadata *m = Metadata(p); if (!m) return 0; return m->requested_size; } int lsan_posix_memalign(void **memptr, uptr alignment, uptr size, const StackTrace &stack) { if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { if (AllocatorMayReturnNull()) return errno_EINVAL; ReportInvalidPosixMemalignAlignment(alignment, &stack); } void *ptr = Allocate(stack, size, alignment, kAlwaysClearMemory); if (UNLIKELY(!ptr)) // OOM error is already taken care of by Allocate. return errno_ENOMEM; CHECK(IsAligned((uptr)ptr, alignment)); *memptr = ptr; return 0; } void *lsan_aligned_alloc(uptr alignment, uptr size, const StackTrace &stack) { if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { errno = errno_EINVAL; if (AllocatorMayReturnNull()) return nullptr; ReportInvalidAlignedAllocAlignment(size, alignment, &stack); } return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory)); } void *lsan_memalign(uptr alignment, uptr size, const StackTrace &stack) { if (UNLIKELY(!IsPowerOfTwo(alignment))) { errno = errno_EINVAL; if (AllocatorMayReturnNull()) return nullptr; ReportInvalidAllocationAlignment(alignment, &stack); } return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory)); } void *lsan_malloc(uptr size, const StackTrace &stack) { return SetErrnoOnNull(Allocate(stack, size, 1, kAlwaysClearMemory)); } void lsan_free(void *p) { Deallocate(p); } void *lsan_realloc(void *p, uptr size, const StackTrace &stack) { return SetErrnoOnNull(Reallocate(stack, p, size, 1)); } void *lsan_reallocarray(void *ptr, uptr nmemb, uptr size, const StackTrace &stack) { if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { errno = errno_ENOMEM; if (AllocatorMayReturnNull()) return nullptr; ReportReallocArrayOverflow(nmemb, size, &stack); } return lsan_realloc(ptr, nmemb * size, stack); } void *lsan_calloc(uptr nmemb, uptr size, const StackTrace &stack) { return SetErrnoOnNull(Calloc(nmemb, size, stack)); } void *lsan_valloc(uptr size, const StackTrace &stack) { return SetErrnoOnNull( Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory)); } void *lsan_pvalloc(uptr size, const StackTrace &stack) { uptr PageSize = GetPageSizeCached(); if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { errno = errno_ENOMEM; if (AllocatorMayReturnNull()) return nullptr; ReportPvallocOverflow(size, &stack); } // pvalloc(0) should allocate one page. size = size ? RoundUpTo(size, PageSize) : PageSize; return SetErrnoOnNull(Allocate(stack, size, PageSize, kAlwaysClearMemory)); } uptr lsan_mz_size(const void *p) { return GetMallocUsableSize(p); } ///// Interface to the common LSan module. ///// void LockAllocator() { allocator.ForceLock(); } void UnlockAllocator() { allocator.ForceUnlock(); } void GetAllocatorGlobalRange(uptr *begin, uptr *end) { *begin = (uptr)&allocator; *end = *begin + sizeof(allocator); } uptr PointsIntoChunk(void* p) { uptr addr = reinterpret_cast(p); uptr chunk = reinterpret_cast(allocator.GetBlockBeginFastLocked(p)); if (!chunk) return 0; // LargeMmapAllocator considers pointers to the meta-region of a chunk to be // valid, but we don't want that. if (addr < chunk) return 0; ChunkMetadata *m = Metadata(reinterpret_cast(chunk)); CHECK(m); if (!m->allocated) return 0; if (addr < chunk + m->requested_size) return chunk; if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr)) return chunk; return 0; } uptr GetUserBegin(uptr chunk) { return chunk; } LsanMetadata::LsanMetadata(uptr chunk) { metadata_ = Metadata(reinterpret_cast(chunk)); CHECK(metadata_); } bool LsanMetadata::allocated() const { return reinterpret_cast(metadata_)->allocated; } ChunkTag LsanMetadata::tag() const { return reinterpret_cast(metadata_)->tag; } void LsanMetadata::set_tag(ChunkTag value) { reinterpret_cast(metadata_)->tag = value; } uptr LsanMetadata::requested_size() const { return reinterpret_cast(metadata_)->requested_size; } u32 LsanMetadata::stack_trace_id() const { return reinterpret_cast(metadata_)->stack_trace_id; } void ForEachChunk(ForEachChunkCallback callback, void *arg) { allocator.ForEachChunk(callback, arg); } IgnoreObjectResult IgnoreObjectLocked(const void *p) { void *chunk = allocator.GetBlockBegin(p); if (!chunk || p < chunk) return kIgnoreObjectInvalid; ChunkMetadata *m = Metadata(chunk); CHECK(m); if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) { if (m->tag == kIgnored) return kIgnoreObjectAlreadyIgnored; m->tag = kIgnored; return kIgnoreObjectSuccess; } else { return kIgnoreObjectInvalid; } } void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) { // This function can be used to treat memory reachable from `tctx` as live. // This is useful for threads that have been created but not yet started. // This is currently a no-op because the LSan `pthread_create()` interceptor // blocks until the child thread starts which keeps the thread's `arg` pointer // live. } } // namespace __lsan using namespace __lsan; extern "C" { SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_current_allocated_bytes() { uptr stats[AllocatorStatCount]; allocator.GetStats(stats); return stats[AllocatorStatAllocated]; } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_heap_size() { uptr stats[AllocatorStatCount]; allocator.GetStats(stats); return stats[AllocatorStatMapped]; } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_free_bytes() { return 0; } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_unmapped_bytes() { return 0; } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } SANITIZER_INTERFACE_ATTRIBUTE int __sanitizer_get_ownership(const void *p) { return Metadata(p) != nullptr; } SANITIZER_INTERFACE_ATTRIBUTE uptr __sanitizer_get_allocated_size(const void *p) { return GetMallocUsableSize(p); } } // extern "C"