//===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and /// FreeBSD-specific code. /// //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_platform.h" #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD #include "hwasan.h" #include "hwasan_dynamic_shadow.h" #include "hwasan_interface_internal.h" #include "hwasan_mapping.h" #include "hwasan_report.h" #include "hwasan_thread.h" #include "hwasan_thread_list.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_procmaps.h" // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID. // // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF // Not currently tested. // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON // Integration tests downstream exist. // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF // Tested with check-hwasan on x86_64-linux. // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON // Tested with check-hwasan on aarch64-linux-android. #if !SANITIZER_ANDROID SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL uptr __hwasan_tls; #endif namespace __hwasan { // With the zero shadow base we can not actually map pages starting from 0. // This constant is somewhat arbitrary. constexpr uptr kZeroBaseShadowStart = 0; constexpr uptr kZeroBaseMaxShadowStart = 1 << 18; static void ProtectGap(uptr addr, uptr size) { __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart, kZeroBaseMaxShadowStart); } uptr kLowMemStart; uptr kLowMemEnd; uptr kLowShadowEnd; uptr kLowShadowStart; uptr kHighShadowStart; uptr kHighShadowEnd; uptr kHighMemStart; uptr kHighMemEnd; static void PrintRange(uptr start, uptr end, const char *name) { Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name); } static void PrintAddressSpaceLayout() { PrintRange(kHighMemStart, kHighMemEnd, "HighMem"); if (kHighShadowEnd + 1 < kHighMemStart) PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap"); else CHECK_EQ(kHighShadowEnd + 1, kHighMemStart); PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow"); if (kLowShadowEnd + 1 < kHighShadowStart) PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap"); else CHECK_EQ(kLowMemEnd + 1, kHighShadowStart); PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow"); if (kLowMemEnd + 1 < kLowShadowStart) PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap"); else CHECK_EQ(kLowMemEnd + 1, kLowShadowStart); PrintRange(kLowMemStart, kLowMemEnd, "LowMem"); CHECK_EQ(0, kLowMemStart); } static uptr GetHighMemEnd() { // HighMem covers the upper part of the address space. uptr max_address = GetMaxUserVirtualAddress(); // Adjust max address to make sure that kHighMemEnd and kHighMemStart are // properly aligned: max_address |= (GetMmapGranularity() << kShadowScale) - 1; return max_address; } static void InitializeShadowBaseAddress(uptr shadow_size_bytes) { __hwasan_shadow_memory_dynamic_address = FindDynamicShadowStart(shadow_size_bytes); } void InitPrctl() { #define PR_SET_TAGGED_ADDR_CTRL 55 #define PR_GET_TAGGED_ADDR_CTRL 56 #define PR_TAGGED_ADDR_ENABLE (1UL << 0) // Check we're running on a kernel that can use the tagged address ABI. if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) == (uptr)-1 && errno == EINVAL) { #if SANITIZER_ANDROID // Some older Android kernels have the tagged pointer ABI on // unconditionally, and hence don't have the tagged-addr prctl while still // allow the ABI. // If targeting Android and the prctl is not around we assume this is the // case. return; #else Printf( "FATAL: " "HWAddressSanitizer requires a kernel with tagged address ABI.\n"); Die(); #endif } // Turn on the tagged address ABI. if (internal_prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE, 0, 0, 0) == (uptr)-1 || !internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0)) { Printf( "FATAL: HWAddressSanitizer failed to enable tagged address syscall " "ABI.\nSuggest check `sysctl abi.tagged_addr_disabled` " "configuration.\n"); Die(); } #undef PR_SET_TAGGED_ADDR_CTRL #undef PR_GET_TAGGED_ADDR_CTRL #undef PR_TAGGED_ADDR_ENABLE } bool InitShadow() { // Define the entire memory range. kHighMemEnd = GetHighMemEnd(); // Determine shadow memory base offset. InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd)); // Place the low memory first. kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1; kLowMemStart = 0; // Define the low shadow based on the already placed low memory. kLowShadowEnd = MemToShadow(kLowMemEnd); kLowShadowStart = __hwasan_shadow_memory_dynamic_address; // High shadow takes whatever memory is left up there (making sure it is not // interfering with low memory in the fixed case). kHighShadowEnd = MemToShadow(kHighMemEnd); kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1; // High memory starts where allocated shadow allows. kHighMemStart = ShadowToMem(kHighShadowStart); // Check the sanity of the defined memory ranges (there might be gaps). CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0); CHECK_GT(kHighMemStart, kHighShadowEnd); CHECK_GT(kHighShadowEnd, kHighShadowStart); CHECK_GT(kHighShadowStart, kLowMemEnd); CHECK_GT(kLowMemEnd, kLowMemStart); CHECK_GT(kLowShadowEnd, kLowShadowStart); CHECK_GT(kLowShadowStart, kLowMemEnd); if (Verbosity()) PrintAddressSpaceLayout(); // Reserve shadow memory. ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow"); ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow"); // Protect all the gaps. ProtectGap(0, Min(kLowMemStart, kLowShadowStart)); if (kLowMemEnd + 1 < kLowShadowStart) ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1); if (kLowShadowEnd + 1 < kHighShadowStart) ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1); if (kHighShadowEnd + 1 < kHighMemStart) ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1); return true; } void InitThreads() { CHECK(__hwasan_shadow_memory_dynamic_address); uptr guard_page_size = GetMmapGranularity(); uptr thread_space_start = __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment); uptr thread_space_end = __hwasan_shadow_memory_dynamic_address - guard_page_size; ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1, "hwasan threads", /*madvise_shadow*/ false); ProtectGap(thread_space_end, __hwasan_shadow_memory_dynamic_address - thread_space_end); InitThreadList(thread_space_start, thread_space_end - thread_space_start); } bool MemIsApp(uptr p) { CHECK(GetTagFromPointer(p) == 0); return p >= kHighMemStart || (p >= kLowMemStart && p <= kLowMemEnd); } static void HwasanAtExit(void) { if (common_flags()->print_module_map) DumpProcessMap(); if (flags()->print_stats && (flags()->atexit || hwasan_report_count > 0)) ReportStats(); if (hwasan_report_count > 0) { // ReportAtExitStatistics(); if (common_flags()->exitcode) internal__exit(common_flags()->exitcode); } } void InstallAtExitHandler() { atexit(HwasanAtExit); } // ---------------------- TSD ---------------- {{{1 extern "C" void __hwasan_thread_enter() { hwasanThreadList().CreateCurrentThread()->InitRandomState(); } extern "C" void __hwasan_thread_exit() { Thread *t = GetCurrentThread(); // Make sure that signal handler can not see a stale current thread pointer. atomic_signal_fence(memory_order_seq_cst); if (t) hwasanThreadList().ReleaseThread(t); } #if HWASAN_WITH_INTERCEPTORS static pthread_key_t tsd_key; static bool tsd_key_inited = false; void HwasanTSDThreadInit() { if (tsd_key_inited) CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)GetPthreadDestructorIterations())); } void HwasanTSDDtor(void *tsd) { uptr iterations = (uptr)tsd; if (iterations > 1) { CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1))); return; } __hwasan_thread_exit(); } void HwasanTSDInit() { CHECK(!tsd_key_inited); tsd_key_inited = true; CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor)); } #else void HwasanTSDInit() {} void HwasanTSDThreadInit() {} #endif #if SANITIZER_ANDROID uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); } #else uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; } #endif #if SANITIZER_ANDROID void AndroidTestTlsSlot() { uptr kMagicValue = 0x010203040A0B0C0D; uptr *tls_ptr = GetCurrentThreadLongPtr(); uptr old_value = *tls_ptr; *tls_ptr = kMagicValue; dlerror(); if (*(uptr *)get_android_tls_ptr() != kMagicValue) { Printf( "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used " "for dlerror().\n"); Die(); } *tls_ptr = old_value; } #else void AndroidTestTlsSlot() {} #endif Thread *GetCurrentThread() { uptr *ThreadLongPtr = GetCurrentThreadLongPtr(); if (UNLIKELY(*ThreadLongPtr == 0)) return nullptr; auto *R = (StackAllocationsRingBuffer *)ThreadLongPtr; return hwasanThreadList().GetThreadByBufferAddress((uptr)R->Next()); } struct AccessInfo { uptr addr; uptr size; bool is_store; bool is_load; bool recover; }; static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) { // Access type is passed in a platform dependent way (see below) and encoded // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is // recoverable. Valid values of Y are 0 to 4, which are interpreted as // log2(access_size), and 0xF, which means that access size is passed via // platform dependent register (see below). #if defined(__aarch64__) // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF, // access size is stored in X1 register. Access address is always in X0 // register. uptr pc = (uptr)info->si_addr; const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff; if ((code & 0xff00) != 0x900) return AccessInfo{}; // Not ours. const bool is_store = code & 0x10; const bool recover = code & 0x20; const uptr addr = uc->uc_mcontext.regs[0]; const unsigned size_log = code & 0xf; if (size_log > 4 && size_log != 0xf) return AccessInfo{}; // Not ours. const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log; #elif defined(__x86_64__) // Access type is encoded in the instruction following INT3 as // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in // RSI register. Access address is always in RDI register. uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP]; uint8_t *nop = (uint8_t*)pc; if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 || *(nop + 3) < 0x40) return AccessInfo{}; // Not ours. const unsigned code = *(nop + 3); const bool is_store = code & 0x10; const bool recover = code & 0x20; const uptr addr = uc->uc_mcontext.gregs[REG_RDI]; const unsigned size_log = code & 0xf; if (size_log > 4 && size_log != 0xf) return AccessInfo{}; // Not ours. const uptr size = size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log; #else # error Unsupported architecture #endif return AccessInfo{addr, size, is_store, !is_store, recover}; } static void HandleTagMismatch(AccessInfo ai, uptr pc, uptr frame, ucontext_t *uc, uptr *registers_frame = nullptr) { InternalMmapVector stack_buffer(1); BufferedStackTrace *stack = stack_buffer.data(); stack->Reset(); stack->Unwind(pc, frame, uc, common_flags()->fast_unwind_on_fatal); // The second stack frame contains the failure __hwasan_check function, as // we have a stack frame for the registers saved in __hwasan_tag_mismatch that // we wish to ignore. This (currently) only occurs on AArch64, as x64 // implementations use SIGTRAP to implement the failure, and thus do not go // through the stack saver. if (registers_frame && stack->trace && stack->size > 0) { stack->trace++; stack->size--; } bool fatal = flags()->halt_on_error || !ai.recover; ReportTagMismatch(stack, ai.addr, ai.size, ai.is_store, fatal, registers_frame); } static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) { AccessInfo ai = GetAccessInfo(info, uc); if (!ai.is_store && !ai.is_load) return false; SignalContext sig{info, uc}; HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc); #if defined(__aarch64__) uc->uc_mcontext.pc += 4; #elif defined(__x86_64__) #else # error Unsupported architecture #endif return true; } static void OnStackUnwind(const SignalContext &sig, const void *, BufferedStackTrace *stack) { stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, common_flags()->fast_unwind_on_fatal); } void HwasanOnDeadlySignal(int signo, void *info, void *context) { // Probably a tag mismatch. if (signo == SIGTRAP) if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t*)context)) return; HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr); } } // namespace __hwasan // Entry point for interoperability between __hwasan_tag_mismatch (ASM) and the // rest of the mismatch handling code (C++). void __hwasan_tag_mismatch4(uptr addr, uptr access_info, uptr *registers_frame, size_t outsize) { __hwasan::AccessInfo ai; ai.is_store = access_info & 0x10; ai.is_load = !ai.is_store; ai.recover = access_info & 0x20; ai.addr = addr; if ((access_info & 0xf) == 0xf) ai.size = outsize; else ai.size = 1 << (access_info & 0xf); __hwasan::HandleTagMismatch(ai, (uptr)__builtin_return_address(0), (uptr)__builtin_frame_address(0), nullptr, registers_frame); __builtin_unreachable(); } #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD