//===- FuzzerUtilFuchsia.cpp - Misc utils for Fuchsia. --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Misc utils implementation using Fuchsia/Zircon APIs. //===----------------------------------------------------------------------===// #include "FuzzerPlatform.h" #if LIBFUZZER_FUCHSIA #include "FuzzerInternal.h" #include "FuzzerUtil.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fuzzer { // Given that Fuchsia doesn't have the POSIX signals that libFuzzer was written // around, the general approach is to spin up dedicated threads to watch for // each requested condition (alarm, interrupt, crash). Of these, the crash // handler is the most involved, as it requires resuming the crashed thread in // order to invoke the sanitizers to get the needed state. // Forward declaration of assembly trampoline needed to resume crashed threads. // This appears to have external linkage to C++, which is why it's not in the // anonymous namespace. The assembly definition inside MakeTrampoline() // actually defines the symbol with internal linkage only. void CrashTrampolineAsm() __asm__("CrashTrampolineAsm"); namespace { // The signal handler thread uses Zircon exceptions to resume crashed threads // into libFuzzer's POSIX signal handlers. The associated event is used to // signal when the thread is running, and when it should stop. std::thread SignalHandler; zx_handle_t SignalHandlerEvent = ZX_HANDLE_INVALID; // Helper function to handle Zircon syscall failures. void ExitOnErr(zx_status_t Status, const char *Syscall) { if (Status != ZX_OK) { Printf("libFuzzer: %s failed: %s\n", Syscall, _zx_status_get_string(Status)); exit(1); } } void AlarmHandler(int Seconds) { while (true) { SleepSeconds(Seconds); Fuzzer::StaticAlarmCallback(); } } // For the crash handler, we need to call Fuzzer::StaticCrashSignalCallback // without POSIX signal handlers. To achieve this, we use an assembly function // to add the necessary CFI unwinding information and a C function to bridge // from that back into C++. // FIXME: This works as a short-term solution, but this code really shouldn't be // architecture dependent. A better long term solution is to implement remote // unwinding and expose the necessary APIs through sanitizer_common and/or ASAN // to allow the exception handling thread to gather the crash state directly. // // Alternatively, Fuchsia may in future actually implement basic signal // handling for the machine trap signals. #if defined(__x86_64__) #define FOREACH_REGISTER(OP_REG, OP_NUM) \ OP_REG(rax) \ OP_REG(rbx) \ OP_REG(rcx) \ OP_REG(rdx) \ OP_REG(rsi) \ OP_REG(rdi) \ OP_REG(rbp) \ OP_REG(rsp) \ OP_REG(r8) \ OP_REG(r9) \ OP_REG(r10) \ OP_REG(r11) \ OP_REG(r12) \ OP_REG(r13) \ OP_REG(r14) \ OP_REG(r15) \ OP_REG(rip) #elif defined(__aarch64__) #define FOREACH_REGISTER(OP_REG, OP_NUM) \ OP_NUM(0) \ OP_NUM(1) \ OP_NUM(2) \ OP_NUM(3) \ OP_NUM(4) \ OP_NUM(5) \ OP_NUM(6) \ OP_NUM(7) \ OP_NUM(8) \ OP_NUM(9) \ OP_NUM(10) \ OP_NUM(11) \ OP_NUM(12) \ OP_NUM(13) \ OP_NUM(14) \ OP_NUM(15) \ OP_NUM(16) \ OP_NUM(17) \ OP_NUM(18) \ OP_NUM(19) \ OP_NUM(20) \ OP_NUM(21) \ OP_NUM(22) \ OP_NUM(23) \ OP_NUM(24) \ OP_NUM(25) \ OP_NUM(26) \ OP_NUM(27) \ OP_NUM(28) \ OP_NUM(29) \ OP_REG(sp) #elif defined(__riscv) #define FOREACH_REGISTER(OP_REG, OP_NUM) \ OP_REG(ra) \ OP_REG(sp) \ OP_REG(gp) \ OP_REG(tp) \ OP_REG(t0) \ OP_REG(t1) \ OP_REG(t2) \ OP_REG(s0) \ OP_REG(s1) \ OP_REG(a0) \ OP_REG(a1) \ OP_REG(a2) \ OP_REG(a3) \ OP_REG(a4) \ OP_REG(a5) \ OP_REG(a6) \ OP_REG(a7) \ OP_REG(s2) \ OP_REG(s3) \ OP_REG(s4) \ OP_REG(s5) \ OP_REG(s6) \ OP_REG(s7) \ OP_REG(s8) \ OP_REG(s9) \ OP_REG(s10) \ OP_REG(s11) \ OP_REG(t3) \ OP_REG(t4) \ OP_REG(t5) \ OP_REG(t6) \ #else #error "Unsupported architecture for fuzzing on Fuchsia" #endif // Produces a CFI directive for the named or numbered register. // The value used refers to an assembler immediate operand with the same name // as the register (see ASM_OPERAND_REG). #define CFI_OFFSET_REG(reg) ".cfi_offset " #reg ", %c[" #reg "]\n" #define CFI_OFFSET_NUM(num) CFI_OFFSET_REG(x##num) // Produces an assembler immediate operand for the named or numbered register. // This operand contains the offset of the register relative to the CFA. #define ASM_OPERAND_REG(reg) \ [reg] "i"(offsetof(zx_thread_state_general_regs_t, reg)), #define ASM_OPERAND_NUM(num) \ [x##num] "i"(offsetof(zx_thread_state_general_regs_t, r[num])), // Trampoline to bridge from the assembly below to the static C++ crash // callback. __attribute__((noreturn)) static void StaticCrashHandler() { Fuzzer::StaticCrashSignalCallback(); for (;;) { _Exit(1); } } // This trampoline function has the necessary CFI information to unwind // and get a backtrace: // * The stack contains a copy of all the registers at the point of crash, // the code has CFI directives specifying how to restore them. // * A call to StaticCrashHandler, which will print the stacktrace and exit // the fuzzer, generating a crash artifact. // // The __attribute__((used)) is necessary because the function // is never called; it's just a container around the assembly to allow it to // use operands for compile-time computed constants. __attribute__((used)) void MakeTrampoline() { __asm__( ".cfi_endproc\n" ".pushsection .text.CrashTrampolineAsm\n" ".type CrashTrampolineAsm,STT_FUNC\n" "CrashTrampolineAsm:\n" ".cfi_startproc simple\n" ".cfi_signal_frame\n" #if defined(__x86_64__) ".cfi_return_column rip\n" ".cfi_def_cfa rsp, 0\n" FOREACH_REGISTER(CFI_OFFSET_REG, CFI_OFFSET_NUM) "call %c[StaticCrashHandler]\n" "ud2\n" #elif defined(__aarch64__) ".cfi_return_column 33\n" ".cfi_def_cfa sp, 0\n" FOREACH_REGISTER(CFI_OFFSET_REG, CFI_OFFSET_NUM) ".cfi_offset 33, %c[pc]\n" ".cfi_offset 30, %c[lr]\n" "bl %c[StaticCrashHandler]\n" "brk 1\n" #elif defined(__riscv) ".cfi_return_column 64\n" ".cfi_def_cfa sp, 0\n" ".cfi_offset 64, %[pc]\n" FOREACH_REGISTER(CFI_OFFSET_REG, CFI_OFFSET_NUM) "call %c[StaticCrashHandler]\n" "unimp\n" #else #error "Unsupported architecture for fuzzing on Fuchsia" #endif ".cfi_endproc\n" ".size CrashTrampolineAsm, . - CrashTrampolineAsm\n" ".popsection\n" ".cfi_startproc\n" : // No outputs : FOREACH_REGISTER(ASM_OPERAND_REG, ASM_OPERAND_NUM) #if defined(__aarch64__) || defined(__riscv) ASM_OPERAND_REG(pc) #endif #if defined(__aarch64__) ASM_OPERAND_REG(lr) #endif [StaticCrashHandler] "i"(StaticCrashHandler)); } void CrashHandler() { assert(SignalHandlerEvent != ZX_HANDLE_INVALID); // This structure is used to ensure we close handles to objects we create in // this handler. struct ScopedHandle { ~ScopedHandle() { _zx_handle_close(Handle); } zx_handle_t Handle = ZX_HANDLE_INVALID; }; // Create the exception channel. We need to claim to be a "debugger" so the // kernel will allow us to modify and resume dying threads (see below). Once // the channel is set, we can signal the main thread to continue and wait // for the exception to arrive. ScopedHandle Channel; zx_handle_t Self = _zx_process_self(); ExitOnErr(_zx_task_create_exception_channel( Self, ZX_EXCEPTION_CHANNEL_DEBUGGER, &Channel.Handle), "_zx_task_create_exception_channel"); ExitOnErr(_zx_object_signal(SignalHandlerEvent, 0, ZX_USER_SIGNAL_0), "_zx_object_signal"); // This thread lives as long as the process in order to keep handling // crashes. In practice, the first crashed thread to reach the end of the // StaticCrashHandler will end the process. while (true) { zx_wait_item_t WaitItems[] = { { .handle = SignalHandlerEvent, .waitfor = ZX_SIGNAL_HANDLE_CLOSED, .pending = 0, }, { .handle = Channel.Handle, .waitfor = ZX_CHANNEL_READABLE | ZX_CHANNEL_PEER_CLOSED, .pending = 0, }, }; auto Status = _zx_object_wait_many( WaitItems, sizeof(WaitItems) / sizeof(WaitItems[0]), ZX_TIME_INFINITE); if (Status != ZX_OK || (WaitItems[1].pending & ZX_CHANNEL_READABLE) == 0) { break; } zx_exception_info_t ExceptionInfo; ScopedHandle Exception; ExitOnErr(_zx_channel_read(Channel.Handle, 0, &ExceptionInfo, &Exception.Handle, sizeof(ExceptionInfo), 1, nullptr, nullptr), "_zx_channel_read"); // Ignore informational synthetic exceptions. if (ZX_EXCP_THREAD_STARTING == ExceptionInfo.type || ZX_EXCP_THREAD_EXITING == ExceptionInfo.type || ZX_EXCP_PROCESS_STARTING == ExceptionInfo.type) { continue; } // At this point, we want to get the state of the crashing thread, but // libFuzzer and the sanitizers assume this will happen from that same // thread via a POSIX signal handler. "Resurrecting" the thread in the // middle of the appropriate callback is as simple as forcibly setting the // instruction pointer/program counter, provided we NEVER EVER return from // that function (since otherwise our stack will not be valid). ScopedHandle Thread; ExitOnErr(_zx_exception_get_thread(Exception.Handle, &Thread.Handle), "_zx_exception_get_thread"); zx_thread_state_general_regs_t GeneralRegisters; ExitOnErr(_zx_thread_read_state(Thread.Handle, ZX_THREAD_STATE_GENERAL_REGS, &GeneralRegisters, sizeof(GeneralRegisters)), "_zx_thread_read_state"); // To unwind properly, we need to push the crashing thread's register state // onto the stack and jump into a trampoline with CFI instructions on how // to restore it. #if defined(__x86_64__) uintptr_t StackPtr = (GeneralRegisters.rsp - (128 + sizeof(GeneralRegisters))) & -(uintptr_t)16; __unsanitized_memcpy(reinterpret_cast(StackPtr), &GeneralRegisters, sizeof(GeneralRegisters)); GeneralRegisters.rsp = StackPtr; GeneralRegisters.rip = reinterpret_cast(CrashTrampolineAsm); #elif defined(__aarch64__) || defined(__riscv) uintptr_t StackPtr = (GeneralRegisters.sp - sizeof(GeneralRegisters)) & -(uintptr_t)16; __unsanitized_memcpy(reinterpret_cast(StackPtr), &GeneralRegisters, sizeof(GeneralRegisters)); GeneralRegisters.sp = StackPtr; GeneralRegisters.pc = reinterpret_cast(CrashTrampolineAsm); #else #error "Unsupported architecture for fuzzing on Fuchsia" #endif // Now force the crashing thread's state. ExitOnErr( _zx_thread_write_state(Thread.Handle, ZX_THREAD_STATE_GENERAL_REGS, &GeneralRegisters, sizeof(GeneralRegisters)), "_zx_thread_write_state"); // Set the exception to HANDLED so it resumes the thread on close. uint32_t ExceptionState = ZX_EXCEPTION_STATE_HANDLED; ExitOnErr(_zx_object_set_property(Exception.Handle, ZX_PROP_EXCEPTION_STATE, &ExceptionState, sizeof(ExceptionState)), "zx_object_set_property"); } } void StopSignalHandler() { _zx_handle_close(SignalHandlerEvent); if (SignalHandler.joinable()) { SignalHandler.join(); } } } // namespace // Platform specific functions. void SetSignalHandler(const FuzzingOptions &Options) { // Make sure information from libFuzzer and the sanitizers are easy to // reassemble. `__sanitizer_log_write` has the added benefit of ensuring the // DSO map is always available for the symbolizer. // A uint64_t fits in 20 chars, so 64 is plenty. char Buf[64]; memset(Buf, 0, sizeof(Buf)); snprintf(Buf, sizeof(Buf), "==%lu== INFO: libFuzzer starting.\n", GetPid()); if (EF->__sanitizer_log_write) __sanitizer_log_write(Buf, sizeof(Buf)); Printf("%s", Buf); // Set up alarm handler if needed. if (Options.HandleAlrm && Options.UnitTimeoutSec > 0) { std::thread T(AlarmHandler, Options.UnitTimeoutSec / 2 + 1); T.detach(); } // Options.HandleInt and Options.HandleTerm are not supported on Fuchsia // Early exit if no crash handler needed. if (!Options.HandleSegv && !Options.HandleBus && !Options.HandleIll && !Options.HandleFpe && !Options.HandleAbrt) return; // Set up the crash handler and wait until it is ready before proceeding. ExitOnErr(_zx_event_create(0, &SignalHandlerEvent), "_zx_event_create"); SignalHandler = std::thread(CrashHandler); zx_status_t Status = _zx_object_wait_one(SignalHandlerEvent, ZX_USER_SIGNAL_0, ZX_TIME_INFINITE, nullptr); ExitOnErr(Status, "_zx_object_wait_one"); std::atexit(StopSignalHandler); } void SleepSeconds(int Seconds) { _zx_nanosleep(_zx_deadline_after(ZX_SEC(Seconds))); } unsigned long GetPid() { zx_status_t rc; zx_info_handle_basic_t Info; if ((rc = _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &Info, sizeof(Info), NULL, NULL)) != ZX_OK) { Printf("libFuzzer: unable to get info about self: %s\n", _zx_status_get_string(rc)); exit(1); } return Info.koid; } size_t GetPeakRSSMb() { zx_status_t rc; zx_info_task_stats_t Info; if ((rc = _zx_object_get_info(_zx_process_self(), ZX_INFO_TASK_STATS, &Info, sizeof(Info), NULL, NULL)) != ZX_OK) { Printf("libFuzzer: unable to get info about self: %s\n", _zx_status_get_string(rc)); exit(1); } return (Info.mem_private_bytes + Info.mem_shared_bytes) >> 20; } template class RunOnDestruction { public: explicit RunOnDestruction(Fn fn) : fn_(fn) {} ~RunOnDestruction() { fn_(); } private: Fn fn_; }; template RunOnDestruction at_scope_exit(Fn fn) { return RunOnDestruction(fn); } static fdio_spawn_action_t clone_fd_action(int localFd, int targetFd) { return { .action = FDIO_SPAWN_ACTION_CLONE_FD, .fd = { .local_fd = localFd, .target_fd = targetFd, }, }; } int ExecuteCommand(const Command &Cmd) { zx_status_t rc; // Convert arguments to C array auto Args = Cmd.getArguments(); size_t Argc = Args.size(); assert(Argc != 0); std::unique_ptr Argv(new const char *[Argc + 1]); for (size_t i = 0; i < Argc; ++i) Argv[i] = Args[i].c_str(); Argv[Argc] = nullptr; // Determine output. On Fuchsia, the fuzzer is typically run as a component // that lacks a mutable working directory. Fortunately, when this is the case // a mutable output directory must be specified using "-artifact_prefix=...", // so write the log file(s) there. // However, we don't want to apply this logic for absolute paths. int FdOut = STDOUT_FILENO; bool discardStdout = false; bool discardStderr = false; if (Cmd.hasOutputFile()) { std::string Path = Cmd.getOutputFile(); if (Path == getDevNull()) { // On Fuchsia, there's no "/dev/null" like-file, so we // just don't copy the FDs into the spawned process. discardStdout = true; } else { bool IsAbsolutePath = Path.length() > 1 && Path[0] == '/'; if (!IsAbsolutePath && Cmd.hasFlag("artifact_prefix")) Path = Cmd.getFlagValue("artifact_prefix") + "/" + Path; FdOut = open(Path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0); if (FdOut == -1) { Printf("libFuzzer: failed to open %s: %s\n", Path.c_str(), strerror(errno)); return ZX_ERR_IO; } } } auto CloseFdOut = at_scope_exit([FdOut]() { if (FdOut != STDOUT_FILENO) close(FdOut); }); // Determine stderr int FdErr = STDERR_FILENO; if (Cmd.isOutAndErrCombined()) { FdErr = FdOut; if (discardStdout) discardStderr = true; } // Clone the file descriptors into the new process std::vector SpawnActions; SpawnActions.push_back(clone_fd_action(STDIN_FILENO, STDIN_FILENO)); if (!discardStdout) SpawnActions.push_back(clone_fd_action(FdOut, STDOUT_FILENO)); if (!discardStderr) SpawnActions.push_back(clone_fd_action(FdErr, STDERR_FILENO)); // Start the process. char ErrorMsg[FDIO_SPAWN_ERR_MSG_MAX_LENGTH]; zx_handle_t ProcessHandle = ZX_HANDLE_INVALID; rc = fdio_spawn_etc(ZX_HANDLE_INVALID, FDIO_SPAWN_CLONE_ALL & (~FDIO_SPAWN_CLONE_STDIO), Argv[0], Argv.get(), nullptr, SpawnActions.size(), SpawnActions.data(), &ProcessHandle, ErrorMsg); if (rc != ZX_OK) { Printf("libFuzzer: failed to launch '%s': %s, %s\n", Argv[0], ErrorMsg, _zx_status_get_string(rc)); return rc; } auto CloseHandle = at_scope_exit([&]() { _zx_handle_close(ProcessHandle); }); // Now join the process and return the exit status. if ((rc = _zx_object_wait_one(ProcessHandle, ZX_PROCESS_TERMINATED, ZX_TIME_INFINITE, nullptr)) != ZX_OK) { Printf("libFuzzer: failed to join '%s': %s\n", Argv[0], _zx_status_get_string(rc)); return rc; } zx_info_process_t Info; if ((rc = _zx_object_get_info(ProcessHandle, ZX_INFO_PROCESS, &Info, sizeof(Info), nullptr, nullptr)) != ZX_OK) { Printf("libFuzzer: unable to get return code from '%s': %s\n", Argv[0], _zx_status_get_string(rc)); return rc; } return static_cast(Info.return_code); } bool ExecuteCommand(const Command &BaseCmd, std::string *CmdOutput) { auto LogFilePath = TempPath("SimPopenOut", ".txt"); Command Cmd(BaseCmd); Cmd.setOutputFile(LogFilePath); int Ret = ExecuteCommand(Cmd); *CmdOutput = FileToString(LogFilePath); RemoveFile(LogFilePath); return Ret == 0; } const void *SearchMemory(const void *Data, size_t DataLen, const void *Patt, size_t PattLen) { return memmem(Data, DataLen, Patt, PattLen); } // In fuchsia, accessing /dev/null is not supported. There's nothing // similar to a file that discards everything that is written to it. // The way of doing something similar in fuchsia is by using // fdio_null_create and binding that to a file descriptor. void DiscardOutput(int Fd) { fdio_t *fdio_null = fdio_null_create(); if (fdio_null == nullptr) return; int nullfd = fdio_bind_to_fd(fdio_null, -1, 0); if (nullfd < 0) return; dup2(nullfd, Fd); } size_t PageSize() { static size_t PageSizeCached = _zx_system_get_page_size(); return PageSizeCached; } void SetThreadName(std::thread &thread, const std::string &name) { // TODO ? } } // namespace fuzzer #endif // LIBFUZZER_FUCHSIA