//===- FuzzerUtil.cpp - Misc utils ----------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Misc utils. //===----------------------------------------------------------------------===// #include "FuzzerUtil.h" #include "FuzzerIO.h" #include "FuzzerInternal.h" #include <cassert> #include <chrono> #include <cstring> #include <errno.h> #include <mutex> #include <signal.h> #include <sstream> #include <stdio.h> #include <sys/types.h> #include <thread> namespace fuzzer { void PrintHexArray(const uint8_t *Data, size_t Size, const char *PrintAfter) { for (size_t i = 0; i < Size; i++) Printf("0x%x,", (unsigned)Data[i]); Printf("%s", PrintAfter); } void Print(const Unit &v, const char *PrintAfter) { PrintHexArray(v.data(), v.size(), PrintAfter); } void PrintASCIIByte(uint8_t Byte) { if (Byte == '\\') Printf("\\\\"); else if (Byte == '"') Printf("\\\""); else if (Byte >= 32 && Byte < 127) Printf("%c", Byte); else Printf("\\%03o", Byte); } void PrintASCII(const uint8_t *Data, size_t Size, const char *PrintAfter) { for (size_t i = 0; i < Size; i++) PrintASCIIByte(Data[i]); Printf("%s", PrintAfter); } void PrintASCII(const Unit &U, const char *PrintAfter) { PrintASCII(U.data(), U.size(), PrintAfter); } bool ToASCII(uint8_t *Data, size_t Size) { bool Changed = false; for (size_t i = 0; i < Size; i++) { uint8_t &X = Data[i]; auto NewX = X; NewX &= 127; if (!isspace(NewX) && !isprint(NewX)) NewX = ' '; Changed |= NewX != X; X = NewX; } return Changed; } bool IsASCII(const Unit &U) { return IsASCII(U.data(), U.size()); } bool IsASCII(const uint8_t *Data, size_t Size) { for (size_t i = 0; i < Size; i++) if (!(isprint(Data[i]) || isspace(Data[i]))) return false; return true; } bool ParseOneDictionaryEntry(const std::string &Str, Unit *U) { U->clear(); if (Str.empty()) return false; size_t L = 0, R = Str.size() - 1; // We are parsing the range [L,R]. // Skip spaces from both sides. while (L < R && isspace(Str[L])) L++; while (R > L && isspace(Str[R])) R--; if (R - L < 2) return false; // Check the closing " if (Str[R] != '"') return false; R--; // Find the opening " while (L < R && Str[L] != '"') L++; if (L >= R) return false; assert(Str[L] == '\"'); L++; assert(L <= R); for (size_t Pos = L; Pos <= R; Pos++) { uint8_t V = (uint8_t)Str[Pos]; if (!isprint(V) && !isspace(V)) return false; if (V =='\\') { // Handle '\\' if (Pos + 1 <= R && (Str[Pos + 1] == '\\' || Str[Pos + 1] == '"')) { U->push_back(Str[Pos + 1]); Pos++; continue; } // Handle '\xAB' if (Pos + 3 <= R && Str[Pos + 1] == 'x' && isxdigit(Str[Pos + 2]) && isxdigit(Str[Pos + 3])) { char Hex[] = "0xAA"; Hex[2] = Str[Pos + 2]; Hex[3] = Str[Pos + 3]; U->push_back(static_cast<uint8_t>(strtol(Hex, nullptr, 16))); Pos += 3; continue; } return false; // Invalid escape. } else { // Any other character. U->push_back(V); } } return true; } bool ParseDictionaryFile(const std::string &Text, std::vector<Unit> *Units) { if (Text.empty()) { Printf("ParseDictionaryFile: file does not exist or is empty\n"); return false; } std::istringstream ISS(Text); Units->clear(); Unit U; int LineNo = 0; std::string S; while (std::getline(ISS, S, '\n')) { LineNo++; size_t Pos = 0; while (Pos < S.size() && isspace(S[Pos])) Pos++; // Skip spaces. if (Pos == S.size()) continue; // Empty line. if (S[Pos] == '#') continue; // Comment line. if (ParseOneDictionaryEntry(S, &U)) { Units->push_back(U); } else { Printf("ParseDictionaryFile: error in line %d\n\t\t%s\n", LineNo, S.c_str()); return false; } } return true; } // Code duplicated (and tested) in llvm/include/llvm/Support/Base64.h std::string Base64(const Unit &U) { static const char Table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; std::string Buffer; Buffer.resize(((U.size() + 2) / 3) * 4); size_t i = 0, j = 0; for (size_t n = U.size() / 3 * 3; i < n; i += 3, j += 4) { uint32_t x = ((unsigned char)U[i] << 16) | ((unsigned char)U[i + 1] << 8) | (unsigned char)U[i + 2]; Buffer[j + 0] = Table[(x >> 18) & 63]; Buffer[j + 1] = Table[(x >> 12) & 63]; Buffer[j + 2] = Table[(x >> 6) & 63]; Buffer[j + 3] = Table[x & 63]; } if (i + 1 == U.size()) { uint32_t x = ((unsigned char)U[i] << 16); Buffer[j + 0] = Table[(x >> 18) & 63]; Buffer[j + 1] = Table[(x >> 12) & 63]; Buffer[j + 2] = '='; Buffer[j + 3] = '='; } else if (i + 2 == U.size()) { uint32_t x = ((unsigned char)U[i] << 16) | ((unsigned char)U[i + 1] << 8); Buffer[j + 0] = Table[(x >> 18) & 63]; Buffer[j + 1] = Table[(x >> 12) & 63]; Buffer[j + 2] = Table[(x >> 6) & 63]; Buffer[j + 3] = '='; } return Buffer; } static std::mutex SymbolizeMutex; std::string DescribePC(const char *SymbolizedFMT, uintptr_t PC) { std::unique_lock<std::mutex> l(SymbolizeMutex, std::try_to_lock); if (!EF->__sanitizer_symbolize_pc || !l.owns_lock()) return "<can not symbolize>"; char PcDescr[1024] = {}; EF->__sanitizer_symbolize_pc(reinterpret_cast<void*>(PC), SymbolizedFMT, PcDescr, sizeof(PcDescr)); PcDescr[sizeof(PcDescr) - 1] = 0; // Just in case. return PcDescr; } void PrintPC(const char *SymbolizedFMT, const char *FallbackFMT, uintptr_t PC) { if (EF->__sanitizer_symbolize_pc) Printf("%s", DescribePC(SymbolizedFMT, PC).c_str()); else Printf(FallbackFMT, PC); } void PrintStackTrace() { std::unique_lock<std::mutex> l(SymbolizeMutex, std::try_to_lock); if (EF->__sanitizer_print_stack_trace && l.owns_lock()) EF->__sanitizer_print_stack_trace(); } void PrintMemoryProfile() { std::unique_lock<std::mutex> l(SymbolizeMutex, std::try_to_lock); if (EF->__sanitizer_print_memory_profile && l.owns_lock()) EF->__sanitizer_print_memory_profile(95, 8); } unsigned NumberOfCpuCores() { unsigned N = std::thread::hardware_concurrency(); if (!N) { Printf("WARNING: std::thread::hardware_concurrency not well defined for " "your platform. Assuming CPU count of 1.\n"); N = 1; } return N; } uint64_t SimpleFastHash(const void *Data, size_t Size, uint64_t Initial) { uint64_t Res = Initial; const uint8_t *Bytes = static_cast<const uint8_t *>(Data); for (size_t i = 0; i < Size; i++) Res = Res * 11 + Bytes[i]; return Res; } } // namespace fuzzer