// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception #include "../int_math.h" #include "DD.h" // Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper // half of the long doubles), even though this file defines complex division for // 128-bit floats. #define DOUBLE_PRECISION #include "../fp_lib.h" #if !defined(CRT_INFINITY) && defined(HUGE_VAL) #define CRT_INFINITY HUGE_VAL #endif // CRT_INFINITY #define makeFinite(x) \ { \ (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \ (x).s.lo = 0.0; \ } long double _Complex __divtc3(long double a, long double b, long double c, long double d) { DD cDD = {.ld = c}; DD dDD = {.ld = d}; int ilogbw = 0; const double logbw = __compiler_rt_logb(__compiler_rt_fmax(crt_fabs(cDD.s.hi), crt_fabs(dDD.s.hi))); if (crt_isfinite(logbw)) { ilogbw = (int)logbw; cDD.s.hi = __compiler_rt_scalbn(cDD.s.hi, -ilogbw); cDD.s.lo = __compiler_rt_scalbn(cDD.s.lo, -ilogbw); dDD.s.hi = __compiler_rt_scalbn(dDD.s.hi, -ilogbw); dDD.s.lo = __compiler_rt_scalbn(dDD.s.lo, -ilogbw); } const long double denom = __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld)); const long double realNumerator = __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld)); const long double imagNumerator = __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld)); DD real = {.ld = __gcc_qdiv(realNumerator, denom)}; DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)}; real.s.hi = __compiler_rt_scalbn(real.s.hi, -ilogbw); real.s.lo = __compiler_rt_scalbn(real.s.lo, -ilogbw); imag.s.hi = __compiler_rt_scalbn(imag.s.hi, -ilogbw); imag.s.lo = __compiler_rt_scalbn(imag.s.lo, -ilogbw); if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) { DD aDD = {.ld = a}; DD bDD = {.ld = b}; DD rDD = {.ld = denom}; if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) { real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi; real.s.lo = 0.0; imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi; imag.s.lo = 0.0; } else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) && crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) { makeFinite(aDD); makeFinite(bDD); real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi); real.s.lo = 0.0; imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi); imag.s.lo = 0.0; } else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) && crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) { makeFinite(cDD); makeFinite(dDD); real.s.hi = crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi)); real.s.lo = 0.0; imag.s.hi = crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi)); imag.s.lo = 0.0; } } long double _Complex z; __real__ z = real.ld; __imag__ z = imag.ld; return z; }