//===-- cc1_main.cpp - Clang CC1 Compiler Frontend ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This is the entry point to the clang -cc1 functionality, which implements the // core compiler functionality along with a number of additional tools for // demonstration and testing purposes. // //===----------------------------------------------------------------------===// #include "clang/Basic/Stack.h" #include "clang/Basic/TargetOptions.h" #include "clang/CodeGen/ObjectFilePCHContainerOperations.h" #include "clang/Config/config.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Options.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/CompilerInvocation.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/TextDiagnosticBuffer.h" #include "clang/Frontend/TextDiagnosticPrinter.h" #include "clang/Frontend/Utils.h" #include "clang/FrontendTool/Utils.h" #include "llvm/ADT/Statistic.h" #include "llvm/Config/llvm-config.h" #include "llvm/LinkAllPasses.h" #include "llvm/Option/Arg.h" #include "llvm/Option/ArgList.h" #include "llvm/Option/OptTable.h" #include "llvm/Support/BuryPointer.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Path.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #ifdef CLANG_HAVE_RLIMITS #include #endif using namespace clang; using namespace llvm::opt; //===----------------------------------------------------------------------===// // Main driver //===----------------------------------------------------------------------===// static void LLVMErrorHandler(void *UserData, const std::string &Message, bool GenCrashDiag) { DiagnosticsEngine &Diags = *static_cast(UserData); Diags.Report(diag::err_fe_error_backend) << Message; // Run the interrupt handlers to make sure any special cleanups get done, in // particular that we remove files registered with RemoveFileOnSignal. llvm::sys::RunInterruptHandlers(); // We cannot recover from llvm errors. When reporting a fatal error, exit // with status 70 to generate crash diagnostics. For BSD systems this is // defined as an internal software error. Otherwise, exit with status 1. exit(GenCrashDiag ? 70 : 1); } #ifdef LINK_POLLY_INTO_TOOLS namespace polly { void initializePollyPasses(llvm::PassRegistry &Registry); } #endif #ifdef CLANG_HAVE_RLIMITS #if defined(__linux__) && defined(__PIE__) static size_t getCurrentStackAllocation() { // If we can't compute the current stack usage, allow for 512K of command // line arguments and environment. size_t Usage = 512 * 1024; if (FILE *StatFile = fopen("/proc/self/stat", "r")) { // We assume that the stack extends from its current address to the end of // the environment space. In reality, there is another string literal (the // program name) after the environment, but this is close enough (we only // need to be within 100K or so). unsigned long StackPtr, EnvEnd; // Disable silly GCC -Wformat warning that complains about length // modifiers on ignored format specifiers. We want to retain these // for documentation purposes even though they have no effect. #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wformat" #endif if (fscanf(StatFile, "%*d %*s %*c %*d %*d %*d %*d %*d %*u %*lu %*lu %*lu %*lu %*lu " "%*lu %*ld %*ld %*ld %*ld %*ld %*ld %*llu %*lu %*ld %*lu %*lu " "%*lu %*lu %lu %*lu %*lu %*lu %*lu %*lu %*llu %*lu %*lu %*d %*d " "%*u %*u %*llu %*lu %*ld %*lu %*lu %*lu %*lu %*lu %*lu %lu %*d", &StackPtr, &EnvEnd) == 2) { #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic pop #endif Usage = StackPtr < EnvEnd ? EnvEnd - StackPtr : StackPtr - EnvEnd; } fclose(StatFile); } return Usage; } #include LLVM_ATTRIBUTE_NOINLINE static void ensureStackAddressSpace() { // Linux kernels prior to 4.1 will sometimes locate the heap of a PIE binary // relatively close to the stack (they are only guaranteed to be 128MiB // apart). This results in crashes if we happen to heap-allocate more than // 128MiB before we reach our stack high-water mark. // // To avoid these crashes, ensure that we have sufficient virtual memory // pages allocated before we start running. size_t Curr = getCurrentStackAllocation(); const int kTargetStack = DesiredStackSize - 256 * 1024; if (Curr < kTargetStack) { volatile char *volatile Alloc = static_cast(alloca(kTargetStack - Curr)); Alloc[0] = 0; Alloc[kTargetStack - Curr - 1] = 0; } } #else static void ensureStackAddressSpace() {} #endif /// Attempt to ensure that we have at least 8MiB of usable stack space. static void ensureSufficientStack() { struct rlimit rlim; if (getrlimit(RLIMIT_STACK, &rlim) != 0) return; // Increase the soft stack limit to our desired level, if necessary and // possible. if (rlim.rlim_cur != RLIM_INFINITY && rlim.rlim_cur < rlim_t(DesiredStackSize)) { // Try to allocate sufficient stack. if (rlim.rlim_max == RLIM_INFINITY || rlim.rlim_max >= rlim_t(DesiredStackSize)) rlim.rlim_cur = DesiredStackSize; else if (rlim.rlim_cur == rlim.rlim_max) return; else rlim.rlim_cur = rlim.rlim_max; if (setrlimit(RLIMIT_STACK, &rlim) != 0 || rlim.rlim_cur != DesiredStackSize) return; } // We should now have a stack of size at least DesiredStackSize. Ensure // that we can actually use that much, if necessary. ensureStackAddressSpace(); } #else static void ensureSufficientStack() {} #endif /// Print supported cpus of the given target. static int PrintSupportedCPUs(std::string TargetStr) { std::string Error; const llvm::Target *TheTarget = llvm::TargetRegistry::lookupTarget(TargetStr, Error); if (!TheTarget) { llvm::errs() << Error; return 1; } // the target machine will handle the mcpu printing llvm::TargetOptions Options; std::unique_ptr TheTargetMachine( TheTarget->createTargetMachine(TargetStr, "", "+cpuHelp", Options, None)); return 0; } int cc1_main(ArrayRef Argv, const char *Argv0, void *MainAddr) { ensureSufficientStack(); std::unique_ptr Clang(new CompilerInstance()); IntrusiveRefCntPtr DiagID(new DiagnosticIDs()); // Register the support for object-file-wrapped Clang modules. auto PCHOps = Clang->getPCHContainerOperations(); PCHOps->registerWriter(std::make_unique()); PCHOps->registerReader(std::make_unique()); // Initialize targets first, so that --version shows registered targets. llvm::InitializeAllTargets(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllAsmPrinters(); llvm::InitializeAllAsmParsers(); #ifdef LINK_POLLY_INTO_TOOLS llvm::PassRegistry &Registry = *llvm::PassRegistry::getPassRegistry(); polly::initializePollyPasses(Registry); #endif // Buffer diagnostics from argument parsing so that we can output them using a // well formed diagnostic object. IntrusiveRefCntPtr DiagOpts = new DiagnosticOptions(); TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer; DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer); bool Success = CompilerInvocation::CreateFromArgs(Clang->getInvocation(), Argv, Diags); if (Clang->getFrontendOpts().TimeTrace) { llvm::timeTraceProfilerInitialize( Clang->getFrontendOpts().TimeTraceGranularity); } // --print-supported-cpus takes priority over the actual compilation. if (Clang->getFrontendOpts().PrintSupportedCPUs) return PrintSupportedCPUs(Clang->getTargetOpts().Triple); // Infer the builtin include path if unspecified. if (Clang->getHeaderSearchOpts().UseBuiltinIncludes && Clang->getHeaderSearchOpts().ResourceDir.empty()) Clang->getHeaderSearchOpts().ResourceDir = CompilerInvocation::GetResourcesPath(Argv0, MainAddr); // Create the actual diagnostics engine. Clang->createDiagnostics(); if (!Clang->hasDiagnostics()) return 1; // Set an error handler, so that any LLVM backend diagnostics go through our // error handler. llvm::install_fatal_error_handler(LLVMErrorHandler, static_cast(&Clang->getDiagnostics())); DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics()); if (!Success) return 1; // Execute the frontend actions. { llvm::TimeTraceScope TimeScope("ExecuteCompiler", StringRef("")); Success = ExecuteCompilerInvocation(Clang.get()); } // If any timers were active but haven't been destroyed yet, print their // results now. This happens in -disable-free mode. llvm::TimerGroup::printAll(llvm::errs()); llvm::TimerGroup::clearAll(); if (llvm::timeTraceProfilerEnabled()) { SmallString<128> Path(Clang->getFrontendOpts().OutputFile); llvm::sys::path::replace_extension(Path, "json"); if (auto profilerOutput = Clang->createOutputFile(Path.str(), /*Binary=*/false, /*RemoveFileOnSignal=*/false, "", /*Extension=*/"json", /*useTemporary=*/false)) { llvm::timeTraceProfilerWrite(*profilerOutput); // FIXME(ibiryukov): make profilerOutput flush in destructor instead. profilerOutput->flush(); llvm::timeTraceProfilerCleanup(); } } // Our error handler depends on the Diagnostics object, which we're // potentially about to delete. Uninstall the handler now so that any // later errors use the default handling behavior instead. llvm::remove_fatal_error_handler(); // When running with -disable-free, don't do any destruction or shutdown. if (Clang->getFrontendOpts().DisableFree) { llvm::BuryPointer(std::move(Clang)); return !Success; } return !Success; }