//===-- cc1_main.cpp - Clang CC1 Compiler Frontend ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This is the entry point to the clang -cc1 functionality, which implements the // core compiler functionality along with a number of additional tools for // demonstration and testing purposes. // //===----------------------------------------------------------------------===// #include "clang/Basic/Stack.h" #include "clang/Basic/TargetOptions.h" #include "clang/CodeGen/ObjectFilePCHContainerOperations.h" #include "clang/Config/config.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Options.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/CompilerInvocation.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/TextDiagnosticBuffer.h" #include "clang/Frontend/TextDiagnosticPrinter.h" #include "clang/Frontend/Utils.h" #include "clang/FrontendTool/Utils.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Config/llvm-config.h" #include "llvm/LinkAllPasses.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Option/Arg.h" #include "llvm/Option/ArgList.h" #include "llvm/Option/OptTable.h" #include "llvm/Support/BuryPointer.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/TargetParser/AArch64TargetParser.h" #include "llvm/TargetParser/ARMTargetParser.h" #include "llvm/TargetParser/RISCVISAInfo.h" #include #ifdef CLANG_HAVE_RLIMITS #include #endif using namespace clang; using namespace llvm::opt; //===----------------------------------------------------------------------===// // Main driver //===----------------------------------------------------------------------===// static void LLVMErrorHandler(void *UserData, const char *Message, bool GenCrashDiag) { DiagnosticsEngine &Diags = *static_cast(UserData); Diags.Report(diag::err_fe_error_backend) << Message; // Run the interrupt handlers to make sure any special cleanups get done, in // particular that we remove files registered with RemoveFileOnSignal. llvm::sys::RunInterruptHandlers(); // We cannot recover from llvm errors. When reporting a fatal error, exit // with status 70 to generate crash diagnostics. For BSD systems this is // defined as an internal software error. Otherwise, exit with status 1. llvm::sys::Process::Exit(GenCrashDiag ? 70 : 1); } #ifdef CLANG_HAVE_RLIMITS /// Attempt to ensure that we have at least 8MiB of usable stack space. static void ensureSufficientStack() { struct rlimit rlim; if (getrlimit(RLIMIT_STACK, &rlim) != 0) return; // Increase the soft stack limit to our desired level, if necessary and // possible. if (rlim.rlim_cur != RLIM_INFINITY && rlim.rlim_cur < rlim_t(DesiredStackSize)) { // Try to allocate sufficient stack. if (rlim.rlim_max == RLIM_INFINITY || rlim.rlim_max >= rlim_t(DesiredStackSize)) rlim.rlim_cur = DesiredStackSize; else if (rlim.rlim_cur == rlim.rlim_max) return; else rlim.rlim_cur = rlim.rlim_max; if (setrlimit(RLIMIT_STACK, &rlim) != 0 || rlim.rlim_cur != DesiredStackSize) return; } } #else static void ensureSufficientStack() {} #endif /// Print supported cpus of the given target. static int PrintSupportedCPUs(std::string TargetStr) { std::string Error; const llvm::Target *TheTarget = llvm::TargetRegistry::lookupTarget(TargetStr, Error); if (!TheTarget) { llvm::errs() << Error; return 1; } // the target machine will handle the mcpu printing llvm::TargetOptions Options; std::unique_ptr TheTargetMachine( TheTarget->createTargetMachine(TargetStr, "", "+cpuhelp", Options, std::nullopt)); return 0; } static int PrintSupportedExtensions(std::string TargetStr) { std::string Error; const llvm::Target *TheTarget = llvm::TargetRegistry::lookupTarget(TargetStr, Error); if (!TheTarget) { llvm::errs() << Error; return 1; } llvm::TargetOptions Options; std::unique_ptr TheTargetMachine( TheTarget->createTargetMachine(TargetStr, "", "", Options, std::nullopt)); const llvm::Triple &MachineTriple = TheTargetMachine->getTargetTriple(); const llvm::MCSubtargetInfo *MCInfo = TheTargetMachine->getMCSubtargetInfo(); const llvm::ArrayRef Features = MCInfo->getAllProcessorFeatures(); llvm::StringMap DescMap; for (const llvm::SubtargetFeatureKV &feature : Features) DescMap.insert({feature.Key, feature.Desc}); if (MachineTriple.isRISCV()) llvm::RISCVISAInfo::printSupportedExtensions(DescMap); else if (MachineTriple.isAArch64()) llvm::AArch64::PrintSupportedExtensions(); else if (MachineTriple.isARM()) llvm::ARM::PrintSupportedExtensions(DescMap); else { // The option was already checked in Driver::HandleImmediateArgs, // so we do not expect to get here if we are not a supported architecture. assert(0 && "Unhandled triple for --print-supported-extensions option."); return 1; } return 0; } static int PrintEnabledExtensions(const TargetOptions& TargetOpts) { std::string Error; const llvm::Target *TheTarget = llvm::TargetRegistry::lookupTarget(TargetOpts.Triple, Error); if (!TheTarget) { llvm::errs() << Error; return 1; } // Create a target machine using the input features, the triple information // and a dummy instance of llvm::TargetOptions. Note that this is _not_ the // same as the `clang::TargetOptions` instance we have access to here. llvm::TargetOptions BackendOptions; std::string FeaturesStr = llvm::join(TargetOpts.FeaturesAsWritten, ","); std::unique_ptr TheTargetMachine( TheTarget->createTargetMachine(TargetOpts.Triple, TargetOpts.CPU, FeaturesStr, BackendOptions, std::nullopt)); const llvm::Triple &MachineTriple = TheTargetMachine->getTargetTriple(); const llvm::MCSubtargetInfo *MCInfo = TheTargetMachine->getMCSubtargetInfo(); // Extract the feature names that are enabled for the given target. // We do that by capturing the key from the set of SubtargetFeatureKV entries // provided by MCSubtargetInfo, which match the '-target-feature' values. const std::vector Features = MCInfo->getEnabledProcessorFeatures(); std::set EnabledFeatureNames; for (const llvm::SubtargetFeatureKV &feature : Features) EnabledFeatureNames.insert(feature.Key); if (MachineTriple.isAArch64()) llvm::AArch64::printEnabledExtensions(EnabledFeatureNames); else if (MachineTriple.isRISCV()) { llvm::StringMap DescMap; for (const llvm::SubtargetFeatureKV &feature : Features) DescMap.insert({feature.Key, feature.Desc}); llvm::RISCVISAInfo::printEnabledExtensions(MachineTriple.isArch64Bit(), EnabledFeatureNames, DescMap); } else { // The option was already checked in Driver::HandleImmediateArgs, // so we do not expect to get here if we are not a supported architecture. assert(0 && "Unhandled triple for --print-enabled-extensions option."); return 1; } return 0; } int cc1_main(ArrayRef Argv, const char *Argv0, void *MainAddr) { ensureSufficientStack(); std::unique_ptr Clang(new CompilerInstance()); IntrusiveRefCntPtr DiagID(new DiagnosticIDs()); // Register the support for object-file-wrapped Clang modules. auto PCHOps = Clang->getPCHContainerOperations(); PCHOps->registerWriter(std::make_unique()); PCHOps->registerReader(std::make_unique()); // Initialize targets first, so that --version shows registered targets. llvm::InitializeAllTargets(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllAsmPrinters(); llvm::InitializeAllAsmParsers(); // Buffer diagnostics from argument parsing so that we can output them using a // well formed diagnostic object. IntrusiveRefCntPtr DiagOpts = new DiagnosticOptions(); TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer; DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer); // Setup round-trip remarks for the DiagnosticsEngine used in CreateFromArgs. if (find(Argv, StringRef("-Rround-trip-cc1-args")) != Argv.end()) Diags.setSeverity(diag::remark_cc1_round_trip_generated, diag::Severity::Remark, {}); bool Success = CompilerInvocation::CreateFromArgs(Clang->getInvocation(), Argv, Diags, Argv0); if (!Clang->getFrontendOpts().TimeTracePath.empty()) { llvm::timeTraceProfilerInitialize( Clang->getFrontendOpts().TimeTraceGranularity, Argv0, Clang->getFrontendOpts().TimeTraceVerbose); } // --print-supported-cpus takes priority over the actual compilation. if (Clang->getFrontendOpts().PrintSupportedCPUs) return PrintSupportedCPUs(Clang->getTargetOpts().Triple); // --print-supported-extensions takes priority over the actual compilation. if (Clang->getFrontendOpts().PrintSupportedExtensions) return PrintSupportedExtensions(Clang->getTargetOpts().Triple); // --print-enabled-extensions takes priority over the actual compilation. if (Clang->getFrontendOpts().PrintEnabledExtensions) return PrintEnabledExtensions(Clang->getTargetOpts()); // Infer the builtin include path if unspecified. if (Clang->getHeaderSearchOpts().UseBuiltinIncludes && Clang->getHeaderSearchOpts().ResourceDir.empty()) Clang->getHeaderSearchOpts().ResourceDir = CompilerInvocation::GetResourcesPath(Argv0, MainAddr); // Create the actual diagnostics engine. Clang->createDiagnostics(); if (!Clang->hasDiagnostics()) return 1; // Set an error handler, so that any LLVM backend diagnostics go through our // error handler. llvm::install_fatal_error_handler(LLVMErrorHandler, static_cast(&Clang->getDiagnostics())); DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics()); if (!Success) { Clang->getDiagnosticClient().finish(); return 1; } // Execute the frontend actions. { llvm::TimeTraceScope TimeScope("ExecuteCompiler"); Success = ExecuteCompilerInvocation(Clang.get()); } // If any timers were active but haven't been destroyed yet, print their // results now. This happens in -disable-free mode. llvm::TimerGroup::printAll(llvm::errs()); llvm::TimerGroup::clearAll(); if (llvm::timeTraceProfilerEnabled()) { // It is possible that the compiler instance doesn't own a file manager here // if we're compiling a module unit. Since the file manager are owned by AST // when we're compiling a module unit. So the file manager may be invalid // here. // // It should be fine to create file manager here since the file system // options are stored in the compiler invocation and we can recreate the VFS // from the compiler invocation. if (!Clang->hasFileManager()) Clang->createFileManager(createVFSFromCompilerInvocation( Clang->getInvocation(), Clang->getDiagnostics())); if (auto profilerOutput = Clang->createOutputFile( Clang->getFrontendOpts().TimeTracePath, /*Binary=*/false, /*RemoveFileOnSignal=*/false, /*useTemporary=*/false)) { llvm::timeTraceProfilerWrite(*profilerOutput); profilerOutput.reset(); llvm::timeTraceProfilerCleanup(); Clang->clearOutputFiles(false); } } // Our error handler depends on the Diagnostics object, which we're // potentially about to delete. Uninstall the handler now so that any // later errors use the default handling behavior instead. llvm::remove_fatal_error_handler(); // When running with -disable-free, don't do any destruction or shutdown. if (Clang->getFrontendOpts().DisableFree) { llvm::BuryPointer(std::move(Clang)); return !Success; } return !Success; }