//=== VLASizeChecker.cpp - Undefined dereference checker --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This defines VLASizeChecker, a builtin check in ExprEngine that // performs checks for declaration of VLA of undefined or zero size. // In addition, VLASizeChecker is responsible for defining the extent // of the MemRegion that represents a VLA. // //===----------------------------------------------------------------------===// #include "clang/AST/CharUnits.h" #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Checkers/Taint.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/raw_ostream.h" #include using namespace clang; using namespace ento; using namespace taint; namespace { class VLASizeChecker : public Checker, check::PreStmt> { const BugType BT{this, "Dangerous variable-length array (VLA) declaration"}; const BugType TaintBT{this, "Dangerous variable-length array (VLA) declaration", categories::TaintedData}; enum VLASize_Kind { VLA_Garbage, VLA_Zero, VLA_Negative, VLA_Overflow }; /// Check a VLA for validity. /// Every dimension of the array and the total size is checked for validity. /// Returns null or a new state where the size is validated. /// 'ArraySize' will contain SVal that refers to the total size (in char) /// of the array. ProgramStateRef checkVLA(CheckerContext &C, ProgramStateRef State, const VariableArrayType *VLA, SVal &ArraySize) const; /// Check a single VLA index size expression for validity. ProgramStateRef checkVLAIndexSize(CheckerContext &C, ProgramStateRef State, const Expr *SizeE) const; void reportBug(VLASize_Kind Kind, const Expr *SizeE, ProgramStateRef State, CheckerContext &C) const; void reportTaintBug(const Expr *SizeE, ProgramStateRef State, CheckerContext &C, SVal TaintedSVal) const; public: void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; void checkPreStmt(const UnaryExprOrTypeTraitExpr *UETTE, CheckerContext &C) const; }; } // end anonymous namespace ProgramStateRef VLASizeChecker::checkVLA(CheckerContext &C, ProgramStateRef State, const VariableArrayType *VLA, SVal &ArraySize) const { assert(VLA && "Function should be called with non-null VLA argument."); const VariableArrayType *VLALast = nullptr; llvm::SmallVector VLASizes; // Walk over the VLAs for every dimension until a non-VLA is found. // There is a VariableArrayType for every dimension (fixed or variable) until // the most inner array that is variably modified. // Dimension sizes are collected into 'VLASizes'. 'VLALast' is set to the // innermost VLA that was encountered. // In "int vla[x][2][y][3]" this will be the array for index "y" (with type // int[3]). 'VLASizes' contains 'x', '2', and 'y'. while (VLA) { const Expr *SizeE = VLA->getSizeExpr(); State = checkVLAIndexSize(C, State, SizeE); if (!State) return nullptr; VLASizes.push_back(SizeE); VLALast = VLA; VLA = C.getASTContext().getAsVariableArrayType(VLA->getElementType()); }; assert(VLALast && "Array should have at least one variably-modified dimension."); ASTContext &Ctx = C.getASTContext(); SValBuilder &SVB = C.getSValBuilder(); CanQualType SizeTy = Ctx.getSizeType(); uint64_t SizeMax = SVB.getBasicValueFactory().getMaxValue(SizeTy).getZExtValue(); // Get the element size. CharUnits EleSize = Ctx.getTypeSizeInChars(VLALast->getElementType()); NonLoc ArrSize = SVB.makeIntVal(EleSize.getQuantity(), SizeTy).castAs(); // Try to calculate the known real size of the array in KnownSize. uint64_t KnownSize = 0; if (const llvm::APSInt *KV = SVB.getKnownValue(State, ArrSize)) KnownSize = KV->getZExtValue(); for (const Expr *SizeE : VLASizes) { auto SizeD = C.getSVal(SizeE).castAs(); // Convert the array length to size_t. NonLoc IndexLength = SVB.evalCast(SizeD, SizeTy, SizeE->getType()).castAs(); // Multiply the array length by the element size. SVal Mul = SVB.evalBinOpNN(State, BO_Mul, ArrSize, IndexLength, SizeTy); if (auto MulNonLoc = Mul.getAs()) ArrSize = *MulNonLoc; else // Extent could not be determined. return State; if (const llvm::APSInt *IndexLVal = SVB.getKnownValue(State, IndexLength)) { // Check if the array size will overflow. // Size overflow check does not work with symbolic expressions because a // overflow situation can not be detected easily. uint64_t IndexL = IndexLVal->getZExtValue(); // FIXME: See https://reviews.llvm.org/D80903 for discussion of // some difference in assume and getKnownValue that leads to // unexpected behavior. Just bail on IndexL == 0 at this point. if (IndexL == 0) return nullptr; if (KnownSize <= SizeMax / IndexL) { KnownSize *= IndexL; } else { // Array size does not fit into size_t. reportBug(VLA_Overflow, SizeE, State, C); return nullptr; } } else { KnownSize = 0; } } ArraySize = ArrSize; return State; } ProgramStateRef VLASizeChecker::checkVLAIndexSize(CheckerContext &C, ProgramStateRef State, const Expr *SizeE) const { SVal SizeV = C.getSVal(SizeE); if (SizeV.isUndef()) { reportBug(VLA_Garbage, SizeE, State, C); return nullptr; } // See if the size value is known. It can't be undefined because we would have // warned about that already. if (SizeV.isUnknown()) return nullptr; // Check if the size is tainted. if (isTainted(State, SizeV)) { reportTaintBug(SizeE, State, C, SizeV); return nullptr; } // Check if the size is zero. DefinedSVal SizeD = SizeV.castAs(); ProgramStateRef StateNotZero, StateZero; std::tie(StateNotZero, StateZero) = State->assume(SizeD); if (StateZero && !StateNotZero) { reportBug(VLA_Zero, SizeE, StateZero, C); return nullptr; } // From this point on, assume that the size is not zero. State = StateNotZero; // Check if the size is negative. SValBuilder &SVB = C.getSValBuilder(); QualType SizeTy = SizeE->getType(); DefinedOrUnknownSVal Zero = SVB.makeZeroVal(SizeTy); SVal LessThanZeroVal = SVB.evalBinOp(State, BO_LT, SizeD, Zero, SVB.getConditionType()); if (std::optional LessThanZeroDVal = LessThanZeroVal.getAs()) { ConstraintManager &CM = C.getConstraintManager(); ProgramStateRef StatePos, StateNeg; std::tie(StateNeg, StatePos) = CM.assumeDual(State, *LessThanZeroDVal); if (StateNeg && !StatePos) { reportBug(VLA_Negative, SizeE, State, C); return nullptr; } State = StatePos; } return State; } void VLASizeChecker::reportTaintBug(const Expr *SizeE, ProgramStateRef State, CheckerContext &C, SVal TaintedSVal) const { // Generate an error node. ExplodedNode *N = C.generateErrorNode(State); if (!N) return; SmallString<256> buf; llvm::raw_svector_ostream os(buf); os << "Declared variable-length array (VLA) "; os << "has tainted size"; auto report = std::make_unique(TaintBT, os.str(), N); report->addRange(SizeE->getSourceRange()); bugreporter::trackExpressionValue(N, SizeE, *report); // The vla size may be a complex expression where multiple memory locations // are tainted. for (auto Sym : getTaintedSymbols(State, TaintedSVal)) report->markInteresting(Sym); C.emitReport(std::move(report)); } void VLASizeChecker::reportBug(VLASize_Kind Kind, const Expr *SizeE, ProgramStateRef State, CheckerContext &C) const { // Generate an error node. ExplodedNode *N = C.generateErrorNode(State); if (!N) return; SmallString<256> buf; llvm::raw_svector_ostream os(buf); os << "Declared variable-length array (VLA) "; switch (Kind) { case VLA_Garbage: os << "uses a garbage value as its size"; break; case VLA_Zero: os << "has zero size"; break; case VLA_Negative: os << "has negative size"; break; case VLA_Overflow: os << "has too large size"; break; } auto report = std::make_unique(BT, os.str(), N); report->addRange(SizeE->getSourceRange()); bugreporter::trackExpressionValue(N, SizeE, *report); C.emitReport(std::move(report)); } void VLASizeChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { if (!DS->isSingleDecl()) return; ASTContext &Ctx = C.getASTContext(); SValBuilder &SVB = C.getSValBuilder(); ProgramStateRef State = C.getState(); QualType TypeToCheck; const VarDecl *VD = dyn_cast(DS->getSingleDecl()); if (VD) TypeToCheck = VD->getType().getCanonicalType(); else if (const auto *TND = dyn_cast(DS->getSingleDecl())) TypeToCheck = TND->getUnderlyingType().getCanonicalType(); else return; const VariableArrayType *VLA = Ctx.getAsVariableArrayType(TypeToCheck); if (!VLA) return; // Check the VLA sizes for validity. SVal ArraySize; State = checkVLA(C, State, VLA, ArraySize); if (!State) return; if (!isa(ArraySize)) { // Array size could not be determined but state may contain new assumptions. C.addTransition(State); return; } // VLASizeChecker is responsible for defining the extent of the array. if (VD) { State = setDynamicExtent(State, State->getRegion(VD, C.getLocationContext()), ArraySize.castAs(), SVB); } // Remember our assumptions! C.addTransition(State); } void VLASizeChecker::checkPreStmt(const UnaryExprOrTypeTraitExpr *UETTE, CheckerContext &C) const { // Want to check for sizeof. if (UETTE->getKind() != UETT_SizeOf) return; // Ensure a type argument. if (!UETTE->isArgumentType()) return; const VariableArrayType *VLA = C.getASTContext().getAsVariableArrayType( UETTE->getTypeOfArgument().getCanonicalType()); // Ensure that the type is a VLA. if (!VLA) return; ProgramStateRef State = C.getState(); SVal ArraySize; State = checkVLA(C, State, VLA, ArraySize); if (!State) return; C.addTransition(State); } void ento::registerVLASizeChecker(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterVLASizeChecker(const CheckerManager &mgr) { return true; }