//=======- PaddingChecker.cpp ------------------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a checker that checks for padding that could be // removed by re-ordering members. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include using namespace clang; using namespace ento; namespace { class PaddingChecker : public Checker> { private: mutable std::unique_ptr PaddingBug; mutable BugReporter *BR; public: int64_t AllowedPad; void checkASTDecl(const TranslationUnitDecl *TUD, AnalysisManager &MGR, BugReporter &BRArg) const { BR = &BRArg; // The calls to checkAST* from AnalysisConsumer don't // visit template instantiations or lambda classes. We // want to visit those, so we make our own RecursiveASTVisitor. struct LocalVisitor : public RecursiveASTVisitor { const PaddingChecker *Checker; bool shouldVisitTemplateInstantiations() const { return true; } bool shouldVisitImplicitCode() const { return true; } explicit LocalVisitor(const PaddingChecker *Checker) : Checker(Checker) {} bool VisitRecordDecl(const RecordDecl *RD) { Checker->visitRecord(RD); return true; } bool VisitVarDecl(const VarDecl *VD) { Checker->visitVariable(VD); return true; } // TODO: Visit array new and mallocs for arrays. }; LocalVisitor visitor(this); visitor.TraverseDecl(const_cast(TUD)); } /// Look for records of overly padded types. If padding * /// PadMultiplier exceeds AllowedPad, then generate a report. /// PadMultiplier is used to share code with the array padding /// checker. void visitRecord(const RecordDecl *RD, uint64_t PadMultiplier = 1) const { if (shouldSkipDecl(RD)) return; // TODO: Figure out why we are going through declarations and not only // definitions. if (!(RD = RD->getDefinition())) return; // This is the simplest correct case: a class with no fields and one base // class. Other cases are more complicated because of how the base classes // & fields might interact, so we don't bother dealing with them. // TODO: Support other combinations of base classes and fields. if (auto *CXXRD = dyn_cast(RD)) if (CXXRD->field_empty() && CXXRD->getNumBases() == 1) return visitRecord(CXXRD->bases().begin()->getType()->getAsRecordDecl(), PadMultiplier); auto &ASTContext = RD->getASTContext(); const ASTRecordLayout &RL = ASTContext.getASTRecordLayout(RD); assert(llvm::isPowerOf2_64(RL.getAlignment().getQuantity())); CharUnits BaselinePad = calculateBaselinePad(RD, ASTContext, RL); if (BaselinePad.isZero()) return; CharUnits OptimalPad; SmallVector OptimalFieldsOrder; std::tie(OptimalPad, OptimalFieldsOrder) = calculateOptimalPad(RD, ASTContext, RL); CharUnits DiffPad = PadMultiplier * (BaselinePad - OptimalPad); if (DiffPad.getQuantity() <= AllowedPad) { assert(!DiffPad.isNegative() && "DiffPad should not be negative"); // There is not enough excess padding to trigger a warning. return; } reportRecord(RD, BaselinePad, OptimalPad, OptimalFieldsOrder); } /// Look for arrays of overly padded types. If the padding of the /// array type exceeds AllowedPad, then generate a report. void visitVariable(const VarDecl *VD) const { const ArrayType *ArrTy = VD->getType()->getAsArrayTypeUnsafe(); if (ArrTy == nullptr) return; uint64_t Elts = 0; if (const ConstantArrayType *CArrTy = dyn_cast(ArrTy)) Elts = CArrTy->getSize().getZExtValue(); if (Elts == 0) return; const RecordType *RT = ArrTy->getElementType()->getAs(); if (RT == nullptr) return; // TODO: Recurse into the fields to see if they have excess padding. visitRecord(RT->getDecl(), Elts); } bool shouldSkipDecl(const RecordDecl *RD) const { // TODO: Figure out why we are going through declarations and not only // definitions. if (!(RD = RD->getDefinition())) return true; auto Location = RD->getLocation(); // If the construct doesn't have a source file, then it's not something // we want to diagnose. if (!Location.isValid()) return true; SrcMgr::CharacteristicKind Kind = BR->getSourceManager().getFileCharacteristic(Location); // Throw out all records that come from system headers. if (Kind != SrcMgr::C_User) return true; // Not going to attempt to optimize unions. if (RD->isUnion()) return true; if (auto *CXXRD = dyn_cast(RD)) { // Tail padding with base classes ends up being very complicated. // We will skip objects with base classes for now, unless they do not // have fields. // TODO: Handle more base class scenarios. if (!CXXRD->field_empty() && CXXRD->getNumBases() != 0) return true; if (CXXRD->field_empty() && CXXRD->getNumBases() != 1) return true; // Virtual bases are complicated, skipping those for now. if (CXXRD->getNumVBases() != 0) return true; // Can't layout a template, so skip it. We do still layout the // instantiations though. if (CXXRD->getTypeForDecl()->isDependentType()) return true; if (CXXRD->getTypeForDecl()->isInstantiationDependentType()) return true; } // How do you reorder fields if you haven't got any? else if (RD->field_empty()) return true; auto IsTrickyField = [](const FieldDecl *FD) -> bool { // Bitfield layout is hard. if (FD->isBitField()) return true; // Variable length arrays are tricky too. QualType Ty = FD->getType(); if (Ty->isIncompleteArrayType()) return true; return false; }; if (llvm::any_of(RD->fields(), IsTrickyField)) return true; return false; } static CharUnits calculateBaselinePad(const RecordDecl *RD, const ASTContext &ASTContext, const ASTRecordLayout &RL) { CharUnits PaddingSum; CharUnits Offset = ASTContext.toCharUnitsFromBits(RL.getFieldOffset(0)); for (const FieldDecl *FD : RD->fields()) { // Skip field that is a subobject of zero size, marked with // [[no_unique_address]] or an empty bitfield, because its address can be // set the same as the other fields addresses. if (FD->isZeroSize(ASTContext)) continue; // This checker only cares about the padded size of the // field, and not the data size. If the field is a record // with tail padding, then we won't put that number in our // total because reordering fields won't fix that problem. CharUnits FieldSize = ASTContext.getTypeSizeInChars(FD->getType()); auto FieldOffsetBits = RL.getFieldOffset(FD->getFieldIndex()); CharUnits FieldOffset = ASTContext.toCharUnitsFromBits(FieldOffsetBits); PaddingSum += (FieldOffset - Offset); Offset = FieldOffset + FieldSize; } PaddingSum += RL.getSize() - Offset; return PaddingSum; } /// Optimal padding overview: /// 1. Find a close approximation to where we can place our first field. /// This will usually be at offset 0. /// 2. Try to find the best field that can legally be placed at the current /// offset. /// a. "Best" is the largest alignment that is legal, but smallest size. /// This is to account for overly aligned types. /// 3. If no fields can fit, pad by rounding the current offset up to the /// smallest alignment requirement of our fields. Measure and track the // amount of padding added. Go back to 2. /// 4. Increment the current offset by the size of the chosen field. /// 5. Remove the chosen field from the set of future possibilities. /// 6. Go back to 2 if there are still unplaced fields. /// 7. Add tail padding by rounding the current offset up to the structure /// alignment. Track the amount of padding added. static std::pair> calculateOptimalPad(const RecordDecl *RD, const ASTContext &ASTContext, const ASTRecordLayout &RL) { struct FieldInfo { CharUnits Align; CharUnits Size; const FieldDecl *Field; bool operator<(const FieldInfo &RHS) const { // Order from small alignments to large alignments, // then large sizes to small sizes. // then large field indices to small field indices return std::make_tuple(Align, -Size, Field ? -static_cast(Field->getFieldIndex()) : 0) < std::make_tuple( RHS.Align, -RHS.Size, RHS.Field ? -static_cast(RHS.Field->getFieldIndex()) : 0); } }; SmallVector Fields; auto GatherSizesAndAlignments = [](const FieldDecl *FD) { FieldInfo RetVal; RetVal.Field = FD; auto &Ctx = FD->getASTContext(); auto Info = Ctx.getTypeInfoInChars(FD->getType()); RetVal.Size = FD->isZeroSize(Ctx) ? CharUnits::Zero() : Info.Width; RetVal.Align = Info.Align; assert(llvm::isPowerOf2_64(RetVal.Align.getQuantity())); if (auto Max = FD->getMaxAlignment()) RetVal.Align = std::max(Ctx.toCharUnitsFromBits(Max), RetVal.Align); return RetVal; }; std::transform(RD->field_begin(), RD->field_end(), std::back_inserter(Fields), GatherSizesAndAlignments); llvm::sort(Fields); // This lets us skip over vptrs and non-virtual bases, // so that we can just worry about the fields in our object. // Note that this does cause us to miss some cases where we // could pack more bytes in to a base class's tail padding. CharUnits NewOffset = ASTContext.toCharUnitsFromBits(RL.getFieldOffset(0)); CharUnits NewPad; SmallVector OptimalFieldsOrder; while (!Fields.empty()) { unsigned TrailingZeros = llvm::countr_zero((unsigned long long)NewOffset.getQuantity()); // If NewOffset is zero, then countTrailingZeros will be 64. Shifting // 64 will overflow our unsigned long long. Shifting 63 will turn // our long long (and CharUnits internal type) negative. So shift 62. long long CurAlignmentBits = 1ull << (std::min)(TrailingZeros, 62u); CharUnits CurAlignment = CharUnits::fromQuantity(CurAlignmentBits); FieldInfo InsertPoint = {CurAlignment, CharUnits::Zero(), nullptr}; // In the typical case, this will find the last element // of the vector. We won't find a middle element unless // we started on a poorly aligned address or have an overly // aligned field. auto Iter = llvm::upper_bound(Fields, InsertPoint); if (Iter != Fields.begin()) { // We found a field that we can layout with the current alignment. --Iter; NewOffset += Iter->Size; OptimalFieldsOrder.push_back(Iter->Field); Fields.erase(Iter); } else { // We are poorly aligned, and we need to pad in order to layout another // field. Round up to at least the smallest field alignment that we // currently have. CharUnits NextOffset = NewOffset.alignTo(Fields[0].Align); NewPad += NextOffset - NewOffset; NewOffset = NextOffset; } } // Calculate tail padding. CharUnits NewSize = NewOffset.alignTo(RL.getAlignment()); NewPad += NewSize - NewOffset; return {NewPad, std::move(OptimalFieldsOrder)}; } void reportRecord( const RecordDecl *RD, CharUnits BaselinePad, CharUnits OptimalPad, const SmallVector &OptimalFieldsOrder) const { if (!PaddingBug) PaddingBug = std::make_unique(this, "Excessive Padding", "Performance"); SmallString<100> Buf; llvm::raw_svector_ostream Os(Buf); Os << "Excessive padding in '"; Os << QualType::getAsString(RD->getTypeForDecl(), Qualifiers(), LangOptions()) << "'"; if (auto *TSD = dyn_cast(RD)) { // TODO: make this show up better in the console output and in // the HTML. Maybe just make it show up in HTML like the path // diagnostics show. SourceLocation ILoc = TSD->getPointOfInstantiation(); if (ILoc.isValid()) Os << " instantiated here: " << ILoc.printToString(BR->getSourceManager()); } Os << " (" << BaselinePad.getQuantity() << " padding bytes, where " << OptimalPad.getQuantity() << " is optimal). " << "Optimal fields order: "; for (const auto *FD : OptimalFieldsOrder) Os << FD->getName() << ", "; Os << "consider reordering the fields or adding explicit padding " "members."; PathDiagnosticLocation CELoc = PathDiagnosticLocation::create(RD, BR->getSourceManager()); auto Report = std::make_unique(*PaddingBug, Os.str(), CELoc); Report->setDeclWithIssue(RD); Report->addRange(RD->getSourceRange()); BR->emitReport(std::move(Report)); } }; } // namespace void ento::registerPaddingChecker(CheckerManager &Mgr) { auto *Checker = Mgr.registerChecker(); Checker->AllowedPad = Mgr.getAnalyzerOptions() .getCheckerIntegerOption(Checker, "AllowedPad"); if (Checker->AllowedPad < 0) Mgr.reportInvalidCheckerOptionValue( Checker, "AllowedPad", "a non-negative value"); } bool ento::shouldRegisterPaddingChecker(const CheckerManager &mgr) { return true; }