//===--- CallAndMessageChecker.cpp ------------------------------*- C++ -*--==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This defines CallAndMessageChecker, a builtin checker that checks for various // errors of call and objc message expressions. // //===----------------------------------------------------------------------===// #include "clang/AST/ExprCXX.h" #include "clang/AST/ParentMap.h" #include "clang/Basic/TargetInfo.h" #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; namespace { class CallAndMessageChecker : public Checker { mutable std::unique_ptr BT_call_null; mutable std::unique_ptr BT_call_undef; mutable std::unique_ptr BT_cxx_call_null; mutable std::unique_ptr BT_cxx_call_undef; mutable std::unique_ptr BT_call_arg; mutable std::unique_ptr BT_cxx_delete_undef; mutable std::unique_ptr BT_msg_undef; mutable std::unique_ptr BT_objc_prop_undef; mutable std::unique_ptr BT_objc_subscript_undef; mutable std::unique_ptr BT_msg_arg; mutable std::unique_ptr BT_msg_ret; mutable std::unique_ptr BT_call_few_args; public: // These correspond with the checker options. Looking at other checkers such // as MallocChecker and CStringChecker, this is similar as to how they pull // off having a modeling class, but emitting diagnostics under a smaller // checker's name that can be safely disabled without disturbing the // underlaying modeling engine. // The reason behind having *checker options* rather then actual *checkers* // here is that CallAndMessage is among the oldest checkers out there, and can // be responsible for the majority of the reports on any given project. This // is obviously not ideal, but changing checker name has the consequence of // changing the issue hashes associated with the reports, and databases // relying on this (CodeChecker, for instance) would suffer greatly. // If we ever end up making changes to the issue hash generation algorithm, or // the warning messages here, we should totally jump on the opportunity to // convert these to actual checkers. enum CheckKind { CK_FunctionPointer, CK_ParameterCount, CK_CXXThisMethodCall, CK_CXXDeallocationArg, CK_ArgInitializedness, CK_ArgPointeeInitializedness, CK_NilReceiver, CK_UndefReceiver, CK_NumCheckKinds }; bool ChecksEnabled[CK_NumCheckKinds] = {false}; // The original core.CallAndMessage checker name. This should rather be an // array, as seen in MallocChecker and CStringChecker. CheckerNameRef OriginalName; void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const; /// Fill in the return value that results from messaging nil based on the /// return type and architecture and diagnose if the return value will be /// garbage. void checkObjCMessageNil(const ObjCMethodCall &msg, CheckerContext &C) const; void checkPreCall(const CallEvent &Call, CheckerContext &C) const; ProgramStateRef checkFunctionPointerCall(const CallExpr *CE, CheckerContext &C, ProgramStateRef State) const; ProgramStateRef checkCXXMethodCall(const CXXInstanceCall *CC, CheckerContext &C, ProgramStateRef State) const; ProgramStateRef checkParameterCount(const CallEvent &Call, CheckerContext &C, ProgramStateRef State) const; ProgramStateRef checkCXXDeallocation(const CXXDeallocatorCall *DC, CheckerContext &C, ProgramStateRef State) const; ProgramStateRef checkArgInitializedness(const CallEvent &Call, CheckerContext &C, ProgramStateRef State) const; private: bool PreVisitProcessArg(CheckerContext &C, SVal V, SourceRange ArgRange, const Expr *ArgEx, int ArgumentNumber, bool CheckUninitFields, const CallEvent &Call, std::unique_ptr &BT, const ParmVarDecl *ParamDecl) const; static void emitBadCall(BugType *BT, CheckerContext &C, const Expr *BadE); void emitNilReceiverBug(CheckerContext &C, const ObjCMethodCall &msg, ExplodedNode *N) const; void HandleNilReceiver(CheckerContext &C, ProgramStateRef state, const ObjCMethodCall &msg) const; void LazyInit_BT(const char *desc, std::unique_ptr &BT) const { if (!BT) BT.reset(new BugType(OriginalName, desc)); } bool uninitRefOrPointer(CheckerContext &C, SVal V, SourceRange ArgRange, const Expr *ArgEx, std::unique_ptr &BT, const ParmVarDecl *ParamDecl, const char *BD, int ArgumentNumber) const; }; } // end anonymous namespace void CallAndMessageChecker::emitBadCall(BugType *BT, CheckerContext &C, const Expr *BadE) { ExplodedNode *N = C.generateErrorNode(); if (!N) return; auto R = std::make_unique(*BT, BT->getDescription(), N); if (BadE) { R->addRange(BadE->getSourceRange()); if (BadE->isGLValue()) BadE = bugreporter::getDerefExpr(BadE); bugreporter::trackExpressionValue(N, BadE, *R); } C.emitReport(std::move(R)); } static void describeUninitializedArgumentInCall(const CallEvent &Call, int ArgumentNumber, llvm::raw_svector_ostream &Os) { switch (Call.getKind()) { case CE_ObjCMessage: { const ObjCMethodCall &Msg = cast(Call); switch (Msg.getMessageKind()) { case OCM_Message: Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1) << " argument in message expression is an uninitialized value"; return; case OCM_PropertyAccess: assert(Msg.isSetter() && "Getters have no args"); Os << "Argument for property setter is an uninitialized value"; return; case OCM_Subscript: if (Msg.isSetter() && (ArgumentNumber == 0)) Os << "Argument for subscript setter is an uninitialized value"; else Os << "Subscript index is an uninitialized value"; return; } llvm_unreachable("Unknown message kind."); } case CE_Block: Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1) << " block call argument is an uninitialized value"; return; default: Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1) << " function call argument is an uninitialized value"; return; } } bool CallAndMessageChecker::uninitRefOrPointer( CheckerContext &C, SVal V, SourceRange ArgRange, const Expr *ArgEx, std::unique_ptr &BT, const ParmVarDecl *ParamDecl, const char *BD, int ArgumentNumber) const { // The pointee being uninitialized is a sign of code smell, not a bug, no need // to sink here. if (!ChecksEnabled[CK_ArgPointeeInitializedness]) return false; // No parameter declaration available, i.e. variadic function argument. if(!ParamDecl) return false; // If parameter is declared as pointer to const in function declaration, // then check if corresponding argument in function call is // pointing to undefined symbol value (uninitialized memory). SmallString<200> Buf; llvm::raw_svector_ostream Os(Buf); if (ParamDecl->getType()->isPointerType()) { Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1) << " function call argument is a pointer to uninitialized value"; } else if (ParamDecl->getType()->isReferenceType()) { Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1) << " function call argument is an uninitialized value"; } else return false; if(!ParamDecl->getType()->getPointeeType().isConstQualified()) return false; if (const MemRegion *SValMemRegion = V.getAsRegion()) { const ProgramStateRef State = C.getState(); const SVal PSV = State->getSVal(SValMemRegion, C.getASTContext().CharTy); if (PSV.isUndef()) { if (ExplodedNode *N = C.generateErrorNode()) { LazyInit_BT(BD, BT); auto R = std::make_unique(*BT, Os.str(), N); R->addRange(ArgRange); if (ArgEx) bugreporter::trackExpressionValue(N, ArgEx, *R); C.emitReport(std::move(R)); } return true; } } return false; } namespace { class FindUninitializedField { public: SmallVector FieldChain; private: StoreManager &StoreMgr; MemRegionManager &MrMgr; Store store; public: FindUninitializedField(StoreManager &storeMgr, MemRegionManager &mrMgr, Store s) : StoreMgr(storeMgr), MrMgr(mrMgr), store(s) {} bool Find(const TypedValueRegion *R) { QualType T = R->getValueType(); if (const RecordType *RT = T->getAsStructureType()) { const RecordDecl *RD = RT->getDecl()->getDefinition(); assert(RD && "Referred record has no definition"); for (const auto *I : RD->fields()) { const FieldRegion *FR = MrMgr.getFieldRegion(I, R); FieldChain.push_back(I); T = I->getType(); if (T->getAsStructureType()) { if (Find(FR)) return true; } else { SVal V = StoreMgr.getBinding(store, loc::MemRegionVal(FR)); if (V.isUndef()) return true; } FieldChain.pop_back(); } } return false; } }; } // namespace bool CallAndMessageChecker::PreVisitProcessArg(CheckerContext &C, SVal V, SourceRange ArgRange, const Expr *ArgEx, int ArgumentNumber, bool CheckUninitFields, const CallEvent &Call, std::unique_ptr &BT, const ParmVarDecl *ParamDecl ) const { const char *BD = "Uninitialized argument value"; if (uninitRefOrPointer(C, V, ArgRange, ArgEx, BT, ParamDecl, BD, ArgumentNumber)) return true; if (V.isUndef()) { if (!ChecksEnabled[CK_ArgInitializedness]) { C.addSink(); return true; } if (ExplodedNode *N = C.generateErrorNode()) { LazyInit_BT(BD, BT); // Generate a report for this bug. SmallString<200> Buf; llvm::raw_svector_ostream Os(Buf); describeUninitializedArgumentInCall(Call, ArgumentNumber, Os); auto R = std::make_unique(*BT, Os.str(), N); R->addRange(ArgRange); if (ArgEx) bugreporter::trackExpressionValue(N, ArgEx, *R); C.emitReport(std::move(R)); } return true; } if (!CheckUninitFields) return false; if (auto LV = V.getAs()) { const LazyCompoundValData *D = LV->getCVData(); FindUninitializedField F(C.getState()->getStateManager().getStoreManager(), C.getSValBuilder().getRegionManager(), D->getStore()); if (F.Find(D->getRegion())) { if (!ChecksEnabled[CK_ArgInitializedness]) { C.addSink(); return true; } if (ExplodedNode *N = C.generateErrorNode()) { LazyInit_BT(BD, BT); SmallString<512> Str; llvm::raw_svector_ostream os(Str); os << "Passed-by-value struct argument contains uninitialized data"; if (F.FieldChain.size() == 1) os << " (e.g., field: '" << *F.FieldChain[0] << "')"; else { os << " (e.g., via the field chain: '"; bool first = true; for (SmallVectorImpl::iterator DI = F.FieldChain.begin(), DE = F.FieldChain.end(); DI!=DE;++DI){ if (first) first = false; else os << '.'; os << **DI; } os << "')"; } // Generate a report for this bug. auto R = std::make_unique(*BT, os.str(), N); R->addRange(ArgRange); if (ArgEx) bugreporter::trackExpressionValue(N, ArgEx, *R); // FIXME: enhance track back for uninitialized value for arbitrary // memregions C.emitReport(std::move(R)); } return true; } } return false; } ProgramStateRef CallAndMessageChecker::checkFunctionPointerCall( const CallExpr *CE, CheckerContext &C, ProgramStateRef State) const { const Expr *Callee = CE->getCallee()->IgnoreParens(); const LocationContext *LCtx = C.getLocationContext(); SVal L = State->getSVal(Callee, LCtx); if (L.isUndef()) { if (!ChecksEnabled[CK_FunctionPointer]) { C.addSink(State); return nullptr; } if (!BT_call_undef) BT_call_undef.reset(new BugType( OriginalName, "Called function pointer is an uninitialized pointer value")); emitBadCall(BT_call_undef.get(), C, Callee); return nullptr; } ProgramStateRef StNonNull, StNull; std::tie(StNonNull, StNull) = State->assume(L.castAs()); if (StNull && !StNonNull) { if (!ChecksEnabled[CK_FunctionPointer]) { C.addSink(StNull); return nullptr; } if (!BT_call_null) BT_call_null.reset(new BugType( OriginalName, "Called function pointer is null (null dereference)")); emitBadCall(BT_call_null.get(), C, Callee); return nullptr; } return StNonNull; } ProgramStateRef CallAndMessageChecker::checkParameterCount( const CallEvent &Call, CheckerContext &C, ProgramStateRef State) const { // If we have a function or block declaration, we can make sure we pass // enough parameters. unsigned Params = Call.parameters().size(); if (Call.getNumArgs() >= Params) return State; if (!ChecksEnabled[CK_ParameterCount]) { C.addSink(State); return nullptr; } ExplodedNode *N = C.generateErrorNode(); if (!N) return nullptr; LazyInit_BT("Function call with too few arguments", BT_call_few_args); SmallString<512> Str; llvm::raw_svector_ostream os(Str); if (isa(Call)) { os << "Function "; } else { assert(isa(Call)); os << "Block "; } os << "taking " << Params << " argument" << (Params == 1 ? "" : "s") << " is called with fewer (" << Call.getNumArgs() << ")"; C.emitReport( std::make_unique(*BT_call_few_args, os.str(), N)); return nullptr; } ProgramStateRef CallAndMessageChecker::checkCXXMethodCall( const CXXInstanceCall *CC, CheckerContext &C, ProgramStateRef State) const { SVal V = CC->getCXXThisVal(); if (V.isUndef()) { if (!ChecksEnabled[CK_CXXThisMethodCall]) { C.addSink(State); return nullptr; } if (!BT_cxx_call_undef) BT_cxx_call_undef.reset(new BugType( OriginalName, "Called C++ object pointer is uninitialized")); emitBadCall(BT_cxx_call_undef.get(), C, CC->getCXXThisExpr()); return nullptr; } ProgramStateRef StNonNull, StNull; std::tie(StNonNull, StNull) = State->assume(V.castAs()); if (StNull && !StNonNull) { if (!ChecksEnabled[CK_CXXThisMethodCall]) { C.addSink(StNull); return nullptr; } if (!BT_cxx_call_null) BT_cxx_call_null.reset( new BugType(OriginalName, "Called C++ object pointer is null")); emitBadCall(BT_cxx_call_null.get(), C, CC->getCXXThisExpr()); return nullptr; } return StNonNull; } ProgramStateRef CallAndMessageChecker::checkCXXDeallocation(const CXXDeallocatorCall *DC, CheckerContext &C, ProgramStateRef State) const { const CXXDeleteExpr *DE = DC->getOriginExpr(); assert(DE); SVal Arg = C.getSVal(DE->getArgument()); if (!Arg.isUndef()) return State; if (!ChecksEnabled[CK_CXXDeallocationArg]) { C.addSink(State); return nullptr; } StringRef Desc; ExplodedNode *N = C.generateErrorNode(); if (!N) return nullptr; if (!BT_cxx_delete_undef) BT_cxx_delete_undef.reset( new BugType(OriginalName, "Uninitialized argument value")); if (DE->isArrayFormAsWritten()) Desc = "Argument to 'delete[]' is uninitialized"; else Desc = "Argument to 'delete' is uninitialized"; auto R = std::make_unique(*BT_cxx_delete_undef, Desc, N); bugreporter::trackExpressionValue(N, DE, *R); C.emitReport(std::move(R)); return nullptr; } ProgramStateRef CallAndMessageChecker::checkArgInitializedness( const CallEvent &Call, CheckerContext &C, ProgramStateRef State) const { const Decl *D = Call.getDecl(); // Don't check for uninitialized field values in arguments if the // caller has a body that is available and we have the chance to inline it. // This is a hack, but is a reasonable compromise betweens sometimes warning // and sometimes not depending on if we decide to inline a function. const bool checkUninitFields = !(C.getAnalysisManager().shouldInlineCall() && (D && D->getBody())); std::unique_ptr *BT; if (isa(Call)) BT = &BT_msg_arg; else BT = &BT_call_arg; const FunctionDecl *FD = dyn_cast_or_null(D); for (unsigned i = 0, e = Call.getNumArgs(); i != e; ++i) { const ParmVarDecl *ParamDecl = nullptr; if (FD && i < FD->getNumParams()) ParamDecl = FD->getParamDecl(i); if (PreVisitProcessArg(C, Call.getArgSVal(i), Call.getArgSourceRange(i), Call.getArgExpr(i), i, checkUninitFields, Call, *BT, ParamDecl)) return nullptr; } return State; } void CallAndMessageChecker::checkPreCall(const CallEvent &Call, CheckerContext &C) const { ProgramStateRef State = C.getState(); if (const CallExpr *CE = dyn_cast_or_null(Call.getOriginExpr())) State = checkFunctionPointerCall(CE, C, State); if (!State) return; if (Call.getDecl()) State = checkParameterCount(Call, C, State); if (!State) return; if (const auto *CC = dyn_cast(&Call)) State = checkCXXMethodCall(CC, C, State); if (!State) return; if (const auto *DC = dyn_cast(&Call)) State = checkCXXDeallocation(DC, C, State); if (!State) return; State = checkArgInitializedness(Call, C, State); // If we make it here, record our assumptions about the callee. C.addTransition(State); } void CallAndMessageChecker::checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const { SVal recVal = msg.getReceiverSVal(); if (recVal.isUndef()) { if (!ChecksEnabled[CK_UndefReceiver]) { C.addSink(); return; } if (ExplodedNode *N = C.generateErrorNode()) { BugType *BT = nullptr; switch (msg.getMessageKind()) { case OCM_Message: if (!BT_msg_undef) BT_msg_undef.reset(new BugType(OriginalName, "Receiver in message expression " "is an uninitialized value")); BT = BT_msg_undef.get(); break; case OCM_PropertyAccess: if (!BT_objc_prop_undef) BT_objc_prop_undef.reset(new BugType( OriginalName, "Property access on an uninitialized object pointer")); BT = BT_objc_prop_undef.get(); break; case OCM_Subscript: if (!BT_objc_subscript_undef) BT_objc_subscript_undef.reset(new BugType( OriginalName, "Subscript access on an uninitialized object pointer")); BT = BT_objc_subscript_undef.get(); break; } assert(BT && "Unknown message kind."); auto R = std::make_unique(*BT, BT->getDescription(), N); const ObjCMessageExpr *ME = msg.getOriginExpr(); R->addRange(ME->getReceiverRange()); // FIXME: getTrackNullOrUndefValueVisitor can't handle "super" yet. if (const Expr *ReceiverE = ME->getInstanceReceiver()) bugreporter::trackExpressionValue(N, ReceiverE, *R); C.emitReport(std::move(R)); } return; } } void CallAndMessageChecker::checkObjCMessageNil(const ObjCMethodCall &msg, CheckerContext &C) const { HandleNilReceiver(C, C.getState(), msg); } void CallAndMessageChecker::emitNilReceiverBug(CheckerContext &C, const ObjCMethodCall &msg, ExplodedNode *N) const { if (!ChecksEnabled[CK_NilReceiver]) { C.addSink(); return; } if (!BT_msg_ret) BT_msg_ret.reset( new BugType(OriginalName, "Receiver in message expression is 'nil'")); const ObjCMessageExpr *ME = msg.getOriginExpr(); QualType ResTy = msg.getResultType(); SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << "The receiver of message '"; ME->getSelector().print(os); os << "' is nil"; if (ResTy->isReferenceType()) { os << ", which results in forming a null reference"; } else { os << " and returns a value of type '"; msg.getResultType().print(os, C.getLangOpts()); os << "' that will be garbage"; } auto report = std::make_unique(*BT_msg_ret, os.str(), N); report->addRange(ME->getReceiverRange()); // FIXME: This won't track "self" in messages to super. if (const Expr *receiver = ME->getInstanceReceiver()) { bugreporter::trackExpressionValue(N, receiver, *report); } C.emitReport(std::move(report)); } static bool supportsNilWithFloatRet(const llvm::Triple &triple) { return (triple.getVendor() == llvm::Triple::Apple && (triple.isiOS() || triple.isWatchOS() || !triple.isMacOSXVersionLT(10,5))); } void CallAndMessageChecker::HandleNilReceiver(CheckerContext &C, ProgramStateRef state, const ObjCMethodCall &Msg) const { ASTContext &Ctx = C.getASTContext(); static CheckerProgramPointTag Tag(this, "NilReceiver"); // Check the return type of the message expression. A message to nil will // return different values depending on the return type and the architecture. QualType RetTy = Msg.getResultType(); CanQualType CanRetTy = Ctx.getCanonicalType(RetTy); const LocationContext *LCtx = C.getLocationContext(); if (CanRetTy->isStructureOrClassType()) { // Structure returns are safe since the compiler zeroes them out. SVal V = C.getSValBuilder().makeZeroVal(RetTy); C.addTransition(state->BindExpr(Msg.getOriginExpr(), LCtx, V), &Tag); return; } // Other cases: check if sizeof(return type) > sizeof(void*) if (CanRetTy != Ctx.VoidTy && C.getLocationContext()->getParentMap() .isConsumedExpr(Msg.getOriginExpr())) { // Compute: sizeof(void *) and sizeof(return type) const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy); const uint64_t returnTypeSize = Ctx.getTypeSize(CanRetTy); if (CanRetTy.getTypePtr()->isReferenceType()|| (voidPtrSize < returnTypeSize && !(supportsNilWithFloatRet(Ctx.getTargetInfo().getTriple()) && (Ctx.FloatTy == CanRetTy || Ctx.DoubleTy == CanRetTy || Ctx.LongDoubleTy == CanRetTy || Ctx.LongLongTy == CanRetTy || Ctx.UnsignedLongLongTy == CanRetTy)))) { if (ExplodedNode *N = C.generateErrorNode(state, &Tag)) emitNilReceiverBug(C, Msg, N); return; } // Handle the safe cases where the return value is 0 if the // receiver is nil. // // FIXME: For now take the conservative approach that we only // return null values if we *know* that the receiver is nil. // This is because we can have surprises like: // // ... = [[NSScreens screens] objectAtIndex:0]; // // What can happen is that [... screens] could return nil, but // it most likely isn't nil. We should assume the semantics // of this case unless we have *a lot* more knowledge. // SVal V = C.getSValBuilder().makeZeroVal(RetTy); C.addTransition(state->BindExpr(Msg.getOriginExpr(), LCtx, V), &Tag); return; } C.addTransition(state); } void ento::registerCallAndMessageModeling(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterCallAndMessageModeling(const CheckerManager &mgr) { return true; } void ento::registerCallAndMessageChecker(CheckerManager &mgr) { CallAndMessageChecker *checker = mgr.getChecker(); checker->OriginalName = mgr.getCurrentCheckerName(); #define QUERY_CHECKER_OPTION(OPTION) \ checker->ChecksEnabled[CallAndMessageChecker::CK_##OPTION] = \ mgr.getAnalyzerOptions().getCheckerBooleanOption( \ mgr.getCurrentCheckerName(), #OPTION); QUERY_CHECKER_OPTION(FunctionPointer) QUERY_CHECKER_OPTION(ParameterCount) QUERY_CHECKER_OPTION(CXXThisMethodCall) QUERY_CHECKER_OPTION(CXXDeallocationArg) QUERY_CHECKER_OPTION(ArgInitializedness) QUERY_CHECKER_OPTION(ArgPointeeInitializedness) QUERY_CHECKER_OPTION(NilReceiver) QUERY_CHECKER_OPTION(UndefReceiver) } bool ento::shouldRegisterCallAndMessageChecker(const CheckerManager &mgr) { return true; }