//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines ArrayBoundCheckerV2, which is a path-sensitive check // which looks for an out-of-bound array element access. // //===----------------------------------------------------------------------===// #include "clang/AST/CharUnits.h" #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Checkers/Taint.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/raw_ostream.h" #include using namespace clang; using namespace ento; using namespace taint; namespace { class ArrayBoundCheckerV2 : public Checker { mutable std::unique_ptr BT; mutable std::unique_ptr TaintBT; enum OOB_Kind { OOB_Precedes, OOB_Excedes }; void reportOOB(CheckerContext &C, ProgramStateRef errorState, OOB_Kind kind) const; void reportTaintOOB(CheckerContext &C, ProgramStateRef errorState, SVal TaintedSVal) const; static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC); public: void checkLocation(SVal l, bool isLoad, const Stmt *S, CheckerContext &C) const; }; // FIXME: Eventually replace RegionRawOffset with this class. class RegionRawOffsetV2 { private: const SubRegion *baseRegion; NonLoc byteOffset; public: RegionRawOffsetV2(const SubRegion *base, NonLoc offset) : baseRegion(base), byteOffset(offset) { assert(base); } NonLoc getByteOffset() const { return byteOffset; } const SubRegion *getRegion() const { return baseRegion; } static std::optional computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location); void dump() const; void dumpToStream(raw_ostream &os) const; }; } // TODO: once the constraint manager is smart enough to handle non simplified // symbolic expressions remove this function. Note that this can not be used in // the constraint manager as is, since this does not handle overflows. It is // safe to assume, however, that memory offsets will not overflow. // NOTE: callers of this function need to be aware of the effects of overflows // and signed<->unsigned conversions! static std::pair getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent, SValBuilder &svalBuilder) { std::optional SymVal = offset.getAs(); if (SymVal && SymVal->isExpression()) { if (const SymIntExpr *SIE = dyn_cast(SymVal->getSymbol())) { llvm::APSInt constant = APSIntType(extent.getValue()).convert(SIE->getRHS()); switch (SIE->getOpcode()) { case BO_Mul: // The constant should never be 0 here, since it the result of scaling // based on the size of a type which is never 0. if ((extent.getValue() % constant) != 0) return std::pair(offset, extent); else return getSimplifiedOffsets( nonloc::SymbolVal(SIE->getLHS()), svalBuilder.makeIntVal(extent.getValue() / constant), svalBuilder); case BO_Add: return getSimplifiedOffsets( nonloc::SymbolVal(SIE->getLHS()), svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder); default: break; } } } return std::pair(offset, extent); } // Evaluate the comparison Value < Threshold with the help of the custom // simplification algorithm defined for this checker. Return a pair of states, // where the first one corresponds to "value below threshold" and the second // corresponds to "value at or above threshold". Returns {nullptr, nullptr} in // the case when the evaluation fails. static std::pair compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold, SValBuilder &SVB) { if (auto ConcreteThreshold = Threshold.getAs()) { std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB); } if (auto ConcreteThreshold = Threshold.getAs()) { QualType T = Value.getType(SVB.getContext()); if (T->isUnsignedIntegerType() && ConcreteThreshold->getValue().isNegative()) { // In this case we reduced the bound check to a comparison of the form // (symbol or value with unsigned type) < (negative number) // which is always false. We are handling these cases separately because // evalBinOpNN can perform a signed->unsigned conversion that turns the // negative number into a huge positive value and leads to wildly // inaccurate conclusions. return {nullptr, State}; } } auto BelowThreshold = SVB.evalBinOpNN(State, BO_LT, Value, Threshold, SVB.getConditionType()).getAs(); if (BelowThreshold) return State->assume(*BelowThreshold); return {nullptr, nullptr}; } void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad, const Stmt* LoadS, CheckerContext &checkerContext) const { // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping // some new logic here that reasons directly about memory region extents. // Once that logic is more mature, we can bring it back to assumeInBound() // for all clients to use. // // The algorithm we are using here for bounds checking is to see if the // memory access is within the extent of the base region. Since we // have some flexibility in defining the base region, we can achieve // various levels of conservatism in our buffer overflow checking. // The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as // #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX) // and incomplete analysis of these leads to false positives. As even // accurate reports would be confusing for the users, just disable reports // from these macros: if (isFromCtypeMacro(LoadS, checkerContext.getASTContext())) return; ProgramStateRef state = checkerContext.getState(); SValBuilder &svalBuilder = checkerContext.getSValBuilder(); const std::optional &RawOffset = RegionRawOffsetV2::computeOffset(state, svalBuilder, location); if (!RawOffset) return; NonLoc ByteOffset = RawOffset->getByteOffset(); // CHECK LOWER BOUND const MemSpaceRegion *SR = RawOffset->getRegion()->getMemorySpace(); if (!llvm::isa(SR)) { // A pointer to UnknownSpaceRegion may point to the middle of // an allocated region. auto [state_precedesLowerBound, state_withinLowerBound] = compareValueToThreshold(state, ByteOffset, svalBuilder.makeZeroArrayIndex(), svalBuilder); if (state_precedesLowerBound && !state_withinLowerBound) { // We know that the index definitely precedes the lower bound. reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes); return; } if (state_withinLowerBound) state = state_withinLowerBound; } // CHECK UPPER BOUND DefinedOrUnknownSVal Size = getDynamicExtent(state, RawOffset->getRegion(), svalBuilder); if (auto KnownSize = Size.getAs()) { auto [state_withinUpperBound, state_exceedsUpperBound] = compareValueToThreshold(state, ByteOffset, *KnownSize, svalBuilder); if (state_exceedsUpperBound) { if (!state_withinUpperBound) { // We know that the index definitely exceeds the upper bound. reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes); return; } if (isTainted(state, ByteOffset)) { // Both cases are possible, but the index is tainted, so report. reportTaintOOB(checkerContext, state_exceedsUpperBound, ByteOffset); return; } } if (state_withinUpperBound) state = state_withinUpperBound; } checkerContext.addTransition(state); } void ArrayBoundCheckerV2::reportTaintOOB(CheckerContext &checkerContext, ProgramStateRef errorState, SVal TaintedSVal) const { ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState); if (!errorNode) return; if (!TaintBT) TaintBT.reset( new BugType(this, "Out-of-bound access", categories::TaintedData)); SmallString<256> buf; llvm::raw_svector_ostream os(buf); os << "Out of bound memory access (index is tainted)"; auto BR = std::make_unique(*TaintBT, os.str(), errorNode); // Track back the propagation of taintedness. for (SymbolRef Sym : getTaintedSymbols(errorState, TaintedSVal)) { BR->markInteresting(Sym); } checkerContext.emitReport(std::move(BR)); } void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext, ProgramStateRef errorState, OOB_Kind kind) const { ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState); if (!errorNode) return; if (!BT) BT.reset(new BuiltinBug(this, "Out-of-bound access")); // FIXME: This diagnostics are preliminary. We should get far better // diagnostics for explaining buffer overruns. SmallString<256> buf; llvm::raw_svector_ostream os(buf); os << "Out of bound memory access "; switch (kind) { case OOB_Precedes: os << "(accessed memory precedes memory block)"; break; case OOB_Excedes: os << "(access exceeds upper limit of memory block)"; break; } auto BR = std::make_unique(*BT, os.str(), errorNode); checkerContext.emitReport(std::move(BR)); } bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) { SourceLocation Loc = S->getBeginLoc(); if (!Loc.isMacroID()) return false; StringRef MacroName = Lexer::getImmediateMacroName( Loc, ACtx.getSourceManager(), ACtx.getLangOpts()); if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's') return false; return ((MacroName == "isalnum") || (MacroName == "isalpha") || (MacroName == "isblank") || (MacroName == "isdigit") || (MacroName == "isgraph") || (MacroName == "islower") || (MacroName == "isnctrl") || (MacroName == "isprint") || (MacroName == "ispunct") || (MacroName == "isspace") || (MacroName == "isupper") || (MacroName == "isxdigit")); } #ifndef NDEBUG LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const { dumpToStream(llvm::errs()); } void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const { os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}'; } #endif /// For a given Location that can be represented as a symbolic expression /// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block /// Arr and the distance of Location from the beginning of Arr (expressed in a /// NonLoc that specifies the number of CharUnits). Returns nullopt when these /// cannot be determined. std::optional RegionRawOffsetV2::computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location) { QualType T = SVB.getArrayIndexType(); auto Calc = [&SVB, State, T](BinaryOperatorKind Op, NonLoc LHS, NonLoc RHS) { // We will use this utility to add and multiply values. return SVB.evalBinOpNN(State, Op, LHS, RHS, T).getAs(); }; const MemRegion *Region = Location.getAsRegion(); NonLoc Offset = SVB.makeZeroArrayIndex(); while (Region) { if (const auto *ERegion = dyn_cast(Region)) { if (const auto Index = ERegion->getIndex().getAs()) { QualType ElemType = ERegion->getElementType(); // If the element is an incomplete type, go no further. if (ElemType->isIncompleteType()) return std::nullopt; // Perform Offset += Index * sizeof(ElemType); then continue the offset // calculations with SuperRegion: NonLoc Size = SVB.makeArrayIndex( SVB.getContext().getTypeSizeInChars(ElemType).getQuantity()); if (auto Delta = Calc(BO_Mul, *Index, Size)) { if (auto NewOffset = Calc(BO_Add, Offset, *Delta)) { Offset = *NewOffset; Region = ERegion->getSuperRegion(); continue; } } } } else if (const auto *SRegion = dyn_cast(Region)) { // NOTE: The dyn_cast<>() is expected to succeed, it'd be very surprising // to see a MemSpaceRegion at this point. // FIXME: We may return with {, 0} even if we didn't handle any // ElementRegion layers. I think that this behavior was introduced // accidentally by 8a4c760c204546aba566e302f299f7ed2e00e287 in 2011, so // it may be useful to review it in the future. return RegionRawOffsetV2(SRegion, Offset); } return std::nullopt; } return std::nullopt; } void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) { return true; }