//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines ArrayBoundCheckerV2, which is a path-sensitive check // which looks for an out-of-bound array element access. // //===----------------------------------------------------------------------===// #include "clang/AST/CharUnits.h" #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Checkers/Taint.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/raw_ostream.h" #include using namespace clang; using namespace ento; using namespace taint; namespace { class ArrayBoundCheckerV2 : public Checker { mutable std::unique_ptr BT; enum OOB_Kind { OOB_Precedes, OOB_Excedes, OOB_Tainted }; void reportOOB(CheckerContext &C, ProgramStateRef errorState, OOB_Kind kind, std::unique_ptr Visitor = nullptr) const; public: void checkLocation(SVal l, bool isLoad, const Stmt*S, CheckerContext &C) const; }; // FIXME: Eventually replace RegionRawOffset with this class. class RegionRawOffsetV2 { private: const SubRegion *baseRegion; SVal byteOffset; RegionRawOffsetV2() : baseRegion(nullptr), byteOffset(UnknownVal()) {} public: RegionRawOffsetV2(const SubRegion* base, SVal offset) : baseRegion(base), byteOffset(offset) {} NonLoc getByteOffset() const { return byteOffset.castAs(); } const SubRegion *getRegion() const { return baseRegion; } static RegionRawOffsetV2 computeOffset(ProgramStateRef state, SValBuilder &svalBuilder, SVal location); void dump() const; void dumpToStream(raw_ostream &os) const; }; } static SVal computeExtentBegin(SValBuilder &svalBuilder, const MemRegion *region) { const MemSpaceRegion *SR = region->getMemorySpace(); if (SR->getKind() == MemRegion::UnknownSpaceRegionKind) return UnknownVal(); else return svalBuilder.makeZeroArrayIndex(); } // TODO: once the constraint manager is smart enough to handle non simplified // symbolic expressions remove this function. Note that this can not be used in // the constraint manager as is, since this does not handle overflows. It is // safe to assume, however, that memory offsets will not overflow. static std::pair getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent, SValBuilder &svalBuilder) { std::optional SymVal = offset.getAs(); if (SymVal && SymVal->isExpression()) { if (const SymIntExpr *SIE = dyn_cast(SymVal->getSymbol())) { llvm::APSInt constant = APSIntType(extent.getValue()).convert(SIE->getRHS()); switch (SIE->getOpcode()) { case BO_Mul: // The constant should never be 0 here, since it the result of scaling // based on the size of a type which is never 0. if ((extent.getValue() % constant) != 0) return std::pair(offset, extent); else return getSimplifiedOffsets( nonloc::SymbolVal(SIE->getLHS()), svalBuilder.makeIntVal(extent.getValue() / constant), svalBuilder); case BO_Add: return getSimplifiedOffsets( nonloc::SymbolVal(SIE->getLHS()), svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder); default: break; } } } return std::pair(offset, extent); } void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad, const Stmt* LoadS, CheckerContext &checkerContext) const { // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping // some new logic here that reasons directly about memory region extents. // Once that logic is more mature, we can bring it back to assumeInBound() // for all clients to use. // // The algorithm we are using here for bounds checking is to see if the // memory access is within the extent of the base region. Since we // have some flexibility in defining the base region, we can achieve // various levels of conservatism in our buffer overflow checking. ProgramStateRef state = checkerContext.getState(); SValBuilder &svalBuilder = checkerContext.getSValBuilder(); const RegionRawOffsetV2 &rawOffset = RegionRawOffsetV2::computeOffset(state, svalBuilder, location); if (!rawOffset.getRegion()) return; NonLoc rawOffsetVal = rawOffset.getByteOffset(); // CHECK LOWER BOUND: Is byteOffset < extent begin? // If so, we are doing a load/store // before the first valid offset in the memory region. SVal extentBegin = computeExtentBegin(svalBuilder, rawOffset.getRegion()); if (std::optional NV = extentBegin.getAs()) { if (auto ConcreteNV = NV->getAs()) { std::pair simplifiedOffsets = getSimplifiedOffsets(rawOffset.getByteOffset(), *ConcreteNV, svalBuilder); rawOffsetVal = simplifiedOffsets.first; *NV = simplifiedOffsets.second; } SVal lowerBound = svalBuilder.evalBinOpNN(state, BO_LT, rawOffsetVal, *NV, svalBuilder.getConditionType()); std::optional lowerBoundToCheck = lowerBound.getAs(); if (!lowerBoundToCheck) return; ProgramStateRef state_precedesLowerBound, state_withinLowerBound; std::tie(state_precedesLowerBound, state_withinLowerBound) = state->assume(*lowerBoundToCheck); // Are we constrained enough to definitely precede the lower bound? if (state_precedesLowerBound && !state_withinLowerBound) { reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes); return; } // Otherwise, assume the constraint of the lower bound. assert(state_withinLowerBound); state = state_withinLowerBound; } do { // CHECK UPPER BOUND: Is byteOffset >= size(baseRegion)? If so, // we are doing a load/store after the last valid offset. const MemRegion *MR = rawOffset.getRegion(); DefinedOrUnknownSVal Size = getDynamicExtent(state, MR, svalBuilder); if (!isa(Size)) break; if (auto ConcreteSize = Size.getAs()) { std::pair simplifiedOffsets = getSimplifiedOffsets(rawOffset.getByteOffset(), *ConcreteSize, svalBuilder); rawOffsetVal = simplifiedOffsets.first; Size = simplifiedOffsets.second; } SVal upperbound = svalBuilder.evalBinOpNN(state, BO_GE, rawOffsetVal, Size.castAs(), svalBuilder.getConditionType()); std::optional upperboundToCheck = upperbound.getAs(); if (!upperboundToCheck) break; ProgramStateRef state_exceedsUpperBound, state_withinUpperBound; std::tie(state_exceedsUpperBound, state_withinUpperBound) = state->assume(*upperboundToCheck); // If we are under constrained and the index variables are tainted, report. if (state_exceedsUpperBound && state_withinUpperBound) { SVal ByteOffset = rawOffset.getByteOffset(); if (isTainted(state, ByteOffset)) { reportOOB(checkerContext, state_exceedsUpperBound, OOB_Tainted, std::make_unique(ByteOffset)); return; } } else if (state_exceedsUpperBound) { // If we are constrained enough to definitely exceed the upper bound, // report. assert(!state_withinUpperBound); reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes); return; } assert(state_withinUpperBound); state = state_withinUpperBound; } while (false); checkerContext.addTransition(state); } void ArrayBoundCheckerV2::reportOOB( CheckerContext &checkerContext, ProgramStateRef errorState, OOB_Kind kind, std::unique_ptr Visitor) const { ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState); if (!errorNode) return; if (!BT) BT.reset(new BuiltinBug(this, "Out-of-bound access")); // FIXME: This diagnostics are preliminary. We should get far better // diagnostics for explaining buffer overruns. SmallString<256> buf; llvm::raw_svector_ostream os(buf); os << "Out of bound memory access "; switch (kind) { case OOB_Precedes: os << "(accessed memory precedes memory block)"; break; case OOB_Excedes: os << "(access exceeds upper limit of memory block)"; break; case OOB_Tainted: os << "(index is tainted)"; break; } auto BR = std::make_unique(*BT, os.str(), errorNode); BR->addVisitor(std::move(Visitor)); checkerContext.emitReport(std::move(BR)); } #ifndef NDEBUG LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const { dumpToStream(llvm::errs()); } void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const { os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}'; } #endif // Lazily computes a value to be used by 'computeOffset'. If 'val' // is unknown or undefined, we lazily substitute '0'. Otherwise, // return 'val'. static inline SVal getValue(SVal val, SValBuilder &svalBuilder) { return val.isUndef() ? svalBuilder.makeZeroArrayIndex() : val; } // Scale a base value by a scaling factor, and return the scaled // value as an SVal. Used by 'computeOffset'. static inline SVal scaleValue(ProgramStateRef state, NonLoc baseVal, CharUnits scaling, SValBuilder &sb) { return sb.evalBinOpNN(state, BO_Mul, baseVal, sb.makeArrayIndex(scaling.getQuantity()), sb.getArrayIndexType()); } // Add an SVal to another, treating unknown and undefined values as // summing to UnknownVal. Used by 'computeOffset'. static SVal addValue(ProgramStateRef state, SVal x, SVal y, SValBuilder &svalBuilder) { // We treat UnknownVals and UndefinedVals the same here because we // only care about computing offsets. if (x.isUnknownOrUndef() || y.isUnknownOrUndef()) return UnknownVal(); return svalBuilder.evalBinOpNN(state, BO_Add, x.castAs(), y.castAs(), svalBuilder.getArrayIndexType()); } /// Compute a raw byte offset from a base region. Used for array bounds /// checking. RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(ProgramStateRef state, SValBuilder &svalBuilder, SVal location) { const MemRegion *region = location.getAsRegion(); SVal offset = UndefinedVal(); while (region) { switch (region->getKind()) { default: { if (const SubRegion *subReg = dyn_cast(region)) { offset = getValue(offset, svalBuilder); if (!offset.isUnknownOrUndef()) return RegionRawOffsetV2(subReg, offset); } return RegionRawOffsetV2(); } case MemRegion::ElementRegionKind: { const ElementRegion *elemReg = cast(region); SVal index = elemReg->getIndex(); if (!isa(index)) return RegionRawOffsetV2(); QualType elemType = elemReg->getElementType(); // If the element is an incomplete type, go no further. ASTContext &astContext = svalBuilder.getContext(); if (elemType->isIncompleteType()) return RegionRawOffsetV2(); // Update the offset. offset = addValue(state, getValue(offset, svalBuilder), scaleValue(state, index.castAs(), astContext.getTypeSizeInChars(elemType), svalBuilder), svalBuilder); if (offset.isUnknownOrUndef()) return RegionRawOffsetV2(); region = elemReg->getSuperRegion(); continue; } } } return RegionRawOffsetV2(); } void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) { return true; }