//===- ASTReaderDecl.cpp - Decl Deserialization ---------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the ASTReader::readDeclRecord method, which is the // entrypoint for loading a decl. // //===----------------------------------------------------------------------===// #include "ASTCommon.h" #include "ASTReaderInternals.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/AttrIterator.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclOpenMP.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/LambdaCapture.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/OpenMPClause.h" #include "clang/AST/Redeclarable.h" #include "clang/AST/Stmt.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/Type.h" #include "clang/AST/UnresolvedSet.h" #include "clang/Basic/AttrKinds.h" #include "clang/Basic/ExceptionSpecificationType.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/Lambda.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/Linkage.h" #include "clang/Basic/Module.h" #include "clang/Basic/PragmaKinds.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Serialization/ASTBitCodes.h" #include "clang/Serialization/ASTRecordReader.h" #include "clang/Serialization/ContinuousRangeMap.h" #include "clang/Serialization/ModuleFile.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Bitstream/BitstreamReader.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SaveAndRestore.h" #include #include #include #include #include #include using namespace clang; using namespace serialization; //===----------------------------------------------------------------------===// // Declaration deserialization //===----------------------------------------------------------------------===// namespace clang { class ASTDeclReader : public DeclVisitor { ASTReader &Reader; ASTRecordReader &Record; ASTReader::RecordLocation Loc; const DeclID ThisDeclID; const SourceLocation ThisDeclLoc; using RecordData = ASTReader::RecordData; TypeID DeferredTypeID = 0; unsigned AnonymousDeclNumber; GlobalDeclID NamedDeclForTagDecl = 0; IdentifierInfo *TypedefNameForLinkage = nullptr; bool HasPendingBody = false; ///A flag to carry the information for a decl from the entity is /// used. We use it to delay the marking of the canonical decl as used until /// the entire declaration is deserialized and merged. bool IsDeclMarkedUsed = false; uint64_t GetCurrentCursorOffset(); uint64_t ReadLocalOffset() { uint64_t LocalOffset = Record.readInt(); assert(LocalOffset < Loc.Offset && "offset point after current record"); return LocalOffset ? Loc.Offset - LocalOffset : 0; } uint64_t ReadGlobalOffset() { uint64_t Local = ReadLocalOffset(); return Local ? Record.getGlobalBitOffset(Local) : 0; } SourceLocation readSourceLocation() { return Record.readSourceLocation(); } SourceRange readSourceRange() { return Record.readSourceRange(); } TypeSourceInfo *readTypeSourceInfo() { return Record.readTypeSourceInfo(); } serialization::DeclID readDeclID() { return Record.readDeclID(); } std::string readString() { return Record.readString(); } void readDeclIDList(SmallVectorImpl &IDs) { for (unsigned I = 0, Size = Record.readInt(); I != Size; ++I) IDs.push_back(readDeclID()); } Decl *readDecl() { return Record.readDecl(); } template T *readDeclAs() { return Record.readDeclAs(); } serialization::SubmoduleID readSubmoduleID() { if (Record.getIdx() == Record.size()) return 0; return Record.getGlobalSubmoduleID(Record.readInt()); } Module *readModule() { return Record.getSubmodule(readSubmoduleID()); } void ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update); void ReadCXXDefinitionData(struct CXXRecordDecl::DefinitionData &Data, const CXXRecordDecl *D); void MergeDefinitionData(CXXRecordDecl *D, struct CXXRecordDecl::DefinitionData &&NewDD); void ReadObjCDefinitionData(struct ObjCInterfaceDecl::DefinitionData &Data); void MergeDefinitionData(ObjCInterfaceDecl *D, struct ObjCInterfaceDecl::DefinitionData &&NewDD); void ReadObjCDefinitionData(struct ObjCProtocolDecl::DefinitionData &Data); void MergeDefinitionData(ObjCProtocolDecl *D, struct ObjCProtocolDecl::DefinitionData &&NewDD); static DeclContext *getPrimaryDCForAnonymousDecl(DeclContext *LexicalDC); static NamedDecl *getAnonymousDeclForMerging(ASTReader &Reader, DeclContext *DC, unsigned Index); static void setAnonymousDeclForMerging(ASTReader &Reader, DeclContext *DC, unsigned Index, NamedDecl *D); /// Results from loading a RedeclarableDecl. class RedeclarableResult { Decl *MergeWith; GlobalDeclID FirstID; bool IsKeyDecl; public: RedeclarableResult(Decl *MergeWith, GlobalDeclID FirstID, bool IsKeyDecl) : MergeWith(MergeWith), FirstID(FirstID), IsKeyDecl(IsKeyDecl) {} /// Retrieve the first ID. GlobalDeclID getFirstID() const { return FirstID; } /// Is this declaration a key declaration? bool isKeyDecl() const { return IsKeyDecl; } /// Get a known declaration that this should be merged with, if /// any. Decl *getKnownMergeTarget() const { return MergeWith; } }; /// Class used to capture the result of searching for an existing /// declaration of a specific kind and name, along with the ability /// to update the place where this result was found (the declaration /// chain hanging off an identifier or the DeclContext we searched in) /// if requested. class FindExistingResult { ASTReader &Reader; NamedDecl *New = nullptr; NamedDecl *Existing = nullptr; bool AddResult = false; unsigned AnonymousDeclNumber = 0; IdentifierInfo *TypedefNameForLinkage = nullptr; public: FindExistingResult(ASTReader &Reader) : Reader(Reader) {} FindExistingResult(ASTReader &Reader, NamedDecl *New, NamedDecl *Existing, unsigned AnonymousDeclNumber, IdentifierInfo *TypedefNameForLinkage) : Reader(Reader), New(New), Existing(Existing), AddResult(true), AnonymousDeclNumber(AnonymousDeclNumber), TypedefNameForLinkage(TypedefNameForLinkage) {} FindExistingResult(FindExistingResult &&Other) : Reader(Other.Reader), New(Other.New), Existing(Other.Existing), AddResult(Other.AddResult), AnonymousDeclNumber(Other.AnonymousDeclNumber), TypedefNameForLinkage(Other.TypedefNameForLinkage) { Other.AddResult = false; } FindExistingResult &operator=(FindExistingResult &&) = delete; ~FindExistingResult(); /// Suppress the addition of this result into the known set of /// names. void suppress() { AddResult = false; } operator NamedDecl*() const { return Existing; } template operator T*() const { return dyn_cast_or_null(Existing); } }; static DeclContext *getPrimaryContextForMerging(ASTReader &Reader, DeclContext *DC); FindExistingResult findExisting(NamedDecl *D); public: ASTDeclReader(ASTReader &Reader, ASTRecordReader &Record, ASTReader::RecordLocation Loc, DeclID thisDeclID, SourceLocation ThisDeclLoc) : Reader(Reader), Record(Record), Loc(Loc), ThisDeclID(thisDeclID), ThisDeclLoc(ThisDeclLoc) {} template static void AddLazySpecializations(T *D, SmallVectorImpl& IDs) { if (IDs.empty()) return; // FIXME: We should avoid this pattern of getting the ASTContext. ASTContext &C = D->getASTContext(); auto *&LazySpecializations = D->getCommonPtr()->LazySpecializations; if (auto &Old = LazySpecializations) { IDs.insert(IDs.end(), Old + 1, Old + 1 + Old[0]); llvm::sort(IDs); IDs.erase(std::unique(IDs.begin(), IDs.end()), IDs.end()); } auto *Result = new (C) serialization::DeclID[1 + IDs.size()]; *Result = IDs.size(); std::copy(IDs.begin(), IDs.end(), Result + 1); LazySpecializations = Result; } template static Decl *getMostRecentDeclImpl(Redeclarable *D); static Decl *getMostRecentDeclImpl(...); static Decl *getMostRecentDecl(Decl *D); static void mergeInheritableAttributes(ASTReader &Reader, Decl *D, Decl *Previous); template static void attachPreviousDeclImpl(ASTReader &Reader, Redeclarable *D, Decl *Previous, Decl *Canon); static void attachPreviousDeclImpl(ASTReader &Reader, ...); static void attachPreviousDecl(ASTReader &Reader, Decl *D, Decl *Previous, Decl *Canon); template static void attachLatestDeclImpl(Redeclarable *D, Decl *Latest); static void attachLatestDeclImpl(...); static void attachLatestDecl(Decl *D, Decl *latest); template static void markIncompleteDeclChainImpl(Redeclarable *D); static void markIncompleteDeclChainImpl(...); /// Determine whether this declaration has a pending body. bool hasPendingBody() const { return HasPendingBody; } void ReadFunctionDefinition(FunctionDecl *FD); void Visit(Decl *D); void UpdateDecl(Decl *D, SmallVectorImpl &); static void setNextObjCCategory(ObjCCategoryDecl *Cat, ObjCCategoryDecl *Next) { Cat->NextClassCategory = Next; } void VisitDecl(Decl *D); void VisitPragmaCommentDecl(PragmaCommentDecl *D); void VisitPragmaDetectMismatchDecl(PragmaDetectMismatchDecl *D); void VisitTranslationUnitDecl(TranslationUnitDecl *TU); void VisitNamedDecl(NamedDecl *ND); void VisitLabelDecl(LabelDecl *LD); void VisitNamespaceDecl(NamespaceDecl *D); void VisitUsingDirectiveDecl(UsingDirectiveDecl *D); void VisitNamespaceAliasDecl(NamespaceAliasDecl *D); void VisitTypeDecl(TypeDecl *TD); RedeclarableResult VisitTypedefNameDecl(TypedefNameDecl *TD); void VisitTypedefDecl(TypedefDecl *TD); void VisitTypeAliasDecl(TypeAliasDecl *TD); void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D); void VisitUnresolvedUsingIfExistsDecl(UnresolvedUsingIfExistsDecl *D); RedeclarableResult VisitTagDecl(TagDecl *TD); void VisitEnumDecl(EnumDecl *ED); RedeclarableResult VisitRecordDeclImpl(RecordDecl *RD); void VisitRecordDecl(RecordDecl *RD) { VisitRecordDeclImpl(RD); } RedeclarableResult VisitCXXRecordDeclImpl(CXXRecordDecl *D); void VisitCXXRecordDecl(CXXRecordDecl *D) { VisitCXXRecordDeclImpl(D); } RedeclarableResult VisitClassTemplateSpecializationDeclImpl( ClassTemplateSpecializationDecl *D); void VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { VisitClassTemplateSpecializationDeclImpl(D); } void VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D); void VisitClassScopeFunctionSpecializationDecl( ClassScopeFunctionSpecializationDecl *D); RedeclarableResult VisitVarTemplateSpecializationDeclImpl(VarTemplateSpecializationDecl *D); void VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D) { VisitVarTemplateSpecializationDeclImpl(D); } void VisitVarTemplatePartialSpecializationDecl( VarTemplatePartialSpecializationDecl *D); void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D); void VisitValueDecl(ValueDecl *VD); void VisitEnumConstantDecl(EnumConstantDecl *ECD); void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D); void VisitDeclaratorDecl(DeclaratorDecl *DD); void VisitFunctionDecl(FunctionDecl *FD); void VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *GD); void VisitCXXMethodDecl(CXXMethodDecl *D); void VisitCXXConstructorDecl(CXXConstructorDecl *D); void VisitCXXDestructorDecl(CXXDestructorDecl *D); void VisitCXXConversionDecl(CXXConversionDecl *D); void VisitFieldDecl(FieldDecl *FD); void VisitMSPropertyDecl(MSPropertyDecl *FD); void VisitMSGuidDecl(MSGuidDecl *D); void VisitTemplateParamObjectDecl(TemplateParamObjectDecl *D); void VisitIndirectFieldDecl(IndirectFieldDecl *FD); RedeclarableResult VisitVarDeclImpl(VarDecl *D); void VisitVarDecl(VarDecl *VD) { VisitVarDeclImpl(VD); } void VisitImplicitParamDecl(ImplicitParamDecl *PD); void VisitParmVarDecl(ParmVarDecl *PD); void VisitDecompositionDecl(DecompositionDecl *DD); void VisitBindingDecl(BindingDecl *BD); void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D); DeclID VisitTemplateDecl(TemplateDecl *D); void VisitConceptDecl(ConceptDecl *D); void VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D); RedeclarableResult VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D); void VisitClassTemplateDecl(ClassTemplateDecl *D); void VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D); void VisitVarTemplateDecl(VarTemplateDecl *D); void VisitFunctionTemplateDecl(FunctionTemplateDecl *D); void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D); void VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D); void VisitUsingDecl(UsingDecl *D); void VisitUsingEnumDecl(UsingEnumDecl *D); void VisitUsingPackDecl(UsingPackDecl *D); void VisitUsingShadowDecl(UsingShadowDecl *D); void VisitConstructorUsingShadowDecl(ConstructorUsingShadowDecl *D); void VisitLinkageSpecDecl(LinkageSpecDecl *D); void VisitExportDecl(ExportDecl *D); void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD); void VisitImportDecl(ImportDecl *D); void VisitAccessSpecDecl(AccessSpecDecl *D); void VisitFriendDecl(FriendDecl *D); void VisitFriendTemplateDecl(FriendTemplateDecl *D); void VisitStaticAssertDecl(StaticAssertDecl *D); void VisitBlockDecl(BlockDecl *BD); void VisitCapturedDecl(CapturedDecl *CD); void VisitEmptyDecl(EmptyDecl *D); void VisitLifetimeExtendedTemporaryDecl(LifetimeExtendedTemporaryDecl *D); std::pair VisitDeclContext(DeclContext *DC); template RedeclarableResult VisitRedeclarable(Redeclarable *D); template void mergeRedeclarable(Redeclarable *D, RedeclarableResult &Redecl, DeclID TemplatePatternID = 0); template void mergeRedeclarable(Redeclarable *D, T *Existing, RedeclarableResult &Redecl, DeclID TemplatePatternID = 0); template void mergeMergeable(Mergeable *D); void mergeMergeable(LifetimeExtendedTemporaryDecl *D); void mergeTemplatePattern(RedeclarableTemplateDecl *D, RedeclarableTemplateDecl *Existing, DeclID DsID, bool IsKeyDecl); ObjCTypeParamList *ReadObjCTypeParamList(); // FIXME: Reorder according to DeclNodes.td? void VisitObjCMethodDecl(ObjCMethodDecl *D); void VisitObjCTypeParamDecl(ObjCTypeParamDecl *D); void VisitObjCContainerDecl(ObjCContainerDecl *D); void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); void VisitObjCIvarDecl(ObjCIvarDecl *D); void VisitObjCProtocolDecl(ObjCProtocolDecl *D); void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D); void VisitObjCCategoryDecl(ObjCCategoryDecl *D); void VisitObjCImplDecl(ObjCImplDecl *D); void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D); void VisitObjCImplementationDecl(ObjCImplementationDecl *D); void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D); void VisitObjCPropertyDecl(ObjCPropertyDecl *D); void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D); void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D); void VisitOMPAllocateDecl(OMPAllocateDecl *D); void VisitOMPDeclareReductionDecl(OMPDeclareReductionDecl *D); void VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D); void VisitOMPRequiresDecl(OMPRequiresDecl *D); void VisitOMPCapturedExprDecl(OMPCapturedExprDecl *D); }; } // namespace clang namespace { /// Iterator over the redeclarations of a declaration that have already /// been merged into the same redeclaration chain. template class MergedRedeclIterator { DeclT *Start; DeclT *Canonical = nullptr; DeclT *Current = nullptr; public: MergedRedeclIterator() = default; MergedRedeclIterator(DeclT *Start) : Start(Start), Current(Start) {} DeclT *operator*() { return Current; } MergedRedeclIterator &operator++() { if (Current->isFirstDecl()) { Canonical = Current; Current = Current->getMostRecentDecl(); } else Current = Current->getPreviousDecl(); // If we started in the merged portion, we'll reach our start position // eventually. Otherwise, we'll never reach it, but the second declaration // we reached was the canonical declaration, so stop when we see that one // again. if (Current == Start || Current == Canonical) Current = nullptr; return *this; } friend bool operator!=(const MergedRedeclIterator &A, const MergedRedeclIterator &B) { return A.Current != B.Current; } }; } // namespace template static llvm::iterator_range> merged_redecls(DeclT *D) { return llvm::make_range(MergedRedeclIterator(D), MergedRedeclIterator()); } uint64_t ASTDeclReader::GetCurrentCursorOffset() { return Loc.F->DeclsCursor.GetCurrentBitNo() + Loc.F->GlobalBitOffset; } void ASTDeclReader::ReadFunctionDefinition(FunctionDecl *FD) { if (Record.readInt()) { Reader.DefinitionSource[FD] = Loc.F->Kind == ModuleKind::MK_MainFile || Reader.getContext().getLangOpts().BuildingPCHWithObjectFile; } if (auto *CD = dyn_cast(FD)) { CD->setNumCtorInitializers(Record.readInt()); if (CD->getNumCtorInitializers()) CD->CtorInitializers = ReadGlobalOffset(); } // Store the offset of the body so we can lazily load it later. Reader.PendingBodies[FD] = GetCurrentCursorOffset(); HasPendingBody = true; } void ASTDeclReader::Visit(Decl *D) { DeclVisitor::Visit(D); // At this point we have deserialized and merged the decl and it is safe to // update its canonical decl to signal that the entire entity is used. D->getCanonicalDecl()->Used |= IsDeclMarkedUsed; IsDeclMarkedUsed = false; if (auto *DD = dyn_cast(D)) { if (auto *TInfo = DD->getTypeSourceInfo()) Record.readTypeLoc(TInfo->getTypeLoc()); } if (auto *TD = dyn_cast(D)) { // We have a fully initialized TypeDecl. Read its type now. TD->setTypeForDecl(Reader.GetType(DeferredTypeID).getTypePtrOrNull()); // If this is a tag declaration with a typedef name for linkage, it's safe // to load that typedef now. if (NamedDeclForTagDecl) cast(D)->TypedefNameDeclOrQualifier = cast(Reader.GetDecl(NamedDeclForTagDecl)); } else if (auto *ID = dyn_cast(D)) { // if we have a fully initialized TypeDecl, we can safely read its type now. ID->TypeForDecl = Reader.GetType(DeferredTypeID).getTypePtrOrNull(); } else if (auto *FD = dyn_cast(D)) { // FunctionDecl's body was written last after all other Stmts/Exprs. // We only read it if FD doesn't already have a body (e.g., from another // module). // FIXME: Can we diagnose ODR violations somehow? if (Record.readInt()) ReadFunctionDefinition(FD); } } void ASTDeclReader::VisitDecl(Decl *D) { if (D->isTemplateParameter() || D->isTemplateParameterPack() || isa(D) || isa(D)) { // We don't want to deserialize the DeclContext of a template // parameter or of a parameter of a function template immediately. These // entities might be used in the formulation of its DeclContext (for // example, a function parameter can be used in decltype() in trailing // return type of the function). Use the translation unit DeclContext as a // placeholder. GlobalDeclID SemaDCIDForTemplateParmDecl = readDeclID(); GlobalDeclID LexicalDCIDForTemplateParmDecl = readDeclID(); if (!LexicalDCIDForTemplateParmDecl) LexicalDCIDForTemplateParmDecl = SemaDCIDForTemplateParmDecl; Reader.addPendingDeclContextInfo(D, SemaDCIDForTemplateParmDecl, LexicalDCIDForTemplateParmDecl); D->setDeclContext(Reader.getContext().getTranslationUnitDecl()); } else { auto *SemaDC = readDeclAs(); auto *LexicalDC = readDeclAs(); if (!LexicalDC) LexicalDC = SemaDC; DeclContext *MergedSemaDC = Reader.MergedDeclContexts.lookup(SemaDC); // Avoid calling setLexicalDeclContext() directly because it uses // Decl::getASTContext() internally which is unsafe during derialization. D->setDeclContextsImpl(MergedSemaDC ? MergedSemaDC : SemaDC, LexicalDC, Reader.getContext()); } D->setLocation(ThisDeclLoc); D->InvalidDecl = Record.readInt(); if (Record.readInt()) { // hasAttrs AttrVec Attrs; Record.readAttributes(Attrs); // Avoid calling setAttrs() directly because it uses Decl::getASTContext() // internally which is unsafe during derialization. D->setAttrsImpl(Attrs, Reader.getContext()); } D->setImplicit(Record.readInt()); D->Used = Record.readInt(); IsDeclMarkedUsed |= D->Used; D->setReferenced(Record.readInt()); D->setTopLevelDeclInObjCContainer(Record.readInt()); D->setAccess((AccessSpecifier)Record.readInt()); D->FromASTFile = true; bool ModulePrivate = Record.readInt(); // Determine whether this declaration is part of a (sub)module. If so, it // may not yet be visible. if (unsigned SubmoduleID = readSubmoduleID()) { // Store the owning submodule ID in the declaration. D->setModuleOwnershipKind( ModulePrivate ? Decl::ModuleOwnershipKind::ModulePrivate : Decl::ModuleOwnershipKind::VisibleWhenImported); D->setOwningModuleID(SubmoduleID); if (ModulePrivate) { // Module-private declarations are never visible, so there is no work to // do. } else if (Reader.getContext().getLangOpts().ModulesLocalVisibility) { // If local visibility is being tracked, this declaration will become // hidden and visible as the owning module does. } else if (Module *Owner = Reader.getSubmodule(SubmoduleID)) { // Mark the declaration as visible when its owning module becomes visible. if (Owner->NameVisibility == Module::AllVisible) D->setVisibleDespiteOwningModule(); else Reader.HiddenNamesMap[Owner].push_back(D); } } else if (ModulePrivate) { D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); } } void ASTDeclReader::VisitPragmaCommentDecl(PragmaCommentDecl *D) { VisitDecl(D); D->setLocation(readSourceLocation()); D->CommentKind = (PragmaMSCommentKind)Record.readInt(); std::string Arg = readString(); memcpy(D->getTrailingObjects(), Arg.data(), Arg.size()); D->getTrailingObjects()[Arg.size()] = '\0'; } void ASTDeclReader::VisitPragmaDetectMismatchDecl(PragmaDetectMismatchDecl *D) { VisitDecl(D); D->setLocation(readSourceLocation()); std::string Name = readString(); memcpy(D->getTrailingObjects(), Name.data(), Name.size()); D->getTrailingObjects()[Name.size()] = '\0'; D->ValueStart = Name.size() + 1; std::string Value = readString(); memcpy(D->getTrailingObjects() + D->ValueStart, Value.data(), Value.size()); D->getTrailingObjects()[D->ValueStart + Value.size()] = '\0'; } void ASTDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) { llvm_unreachable("Translation units are not serialized"); } void ASTDeclReader::VisitNamedDecl(NamedDecl *ND) { VisitDecl(ND); ND->setDeclName(Record.readDeclarationName()); AnonymousDeclNumber = Record.readInt(); } void ASTDeclReader::VisitTypeDecl(TypeDecl *TD) { VisitNamedDecl(TD); TD->setLocStart(readSourceLocation()); // Delay type reading until after we have fully initialized the decl. DeferredTypeID = Record.getGlobalTypeID(Record.readInt()); } ASTDeclReader::RedeclarableResult ASTDeclReader::VisitTypedefNameDecl(TypedefNameDecl *TD) { RedeclarableResult Redecl = VisitRedeclarable(TD); VisitTypeDecl(TD); TypeSourceInfo *TInfo = readTypeSourceInfo(); if (Record.readInt()) { // isModed QualType modedT = Record.readType(); TD->setModedTypeSourceInfo(TInfo, modedT); } else TD->setTypeSourceInfo(TInfo); // Read and discard the declaration for which this is a typedef name for // linkage, if it exists. We cannot rely on our type to pull in this decl, // because it might have been merged with a type from another module and // thus might not refer to our version of the declaration. readDecl(); return Redecl; } void ASTDeclReader::VisitTypedefDecl(TypedefDecl *TD) { RedeclarableResult Redecl = VisitTypedefNameDecl(TD); mergeRedeclarable(TD, Redecl); } void ASTDeclReader::VisitTypeAliasDecl(TypeAliasDecl *TD) { RedeclarableResult Redecl = VisitTypedefNameDecl(TD); if (auto *Template = readDeclAs()) // Merged when we merge the template. TD->setDescribedAliasTemplate(Template); else mergeRedeclarable(TD, Redecl); } ASTDeclReader::RedeclarableResult ASTDeclReader::VisitTagDecl(TagDecl *TD) { RedeclarableResult Redecl = VisitRedeclarable(TD); VisitTypeDecl(TD); TD->IdentifierNamespace = Record.readInt(); TD->setTagKind((TagDecl::TagKind)Record.readInt()); if (!isa(TD)) TD->setCompleteDefinition(Record.readInt()); TD->setEmbeddedInDeclarator(Record.readInt()); TD->setFreeStanding(Record.readInt()); TD->setCompleteDefinitionRequired(Record.readInt()); TD->setBraceRange(readSourceRange()); switch (Record.readInt()) { case 0: break; case 1: { // ExtInfo auto *Info = new (Reader.getContext()) TagDecl::ExtInfo(); Record.readQualifierInfo(*Info); TD->TypedefNameDeclOrQualifier = Info; break; } case 2: // TypedefNameForAnonDecl NamedDeclForTagDecl = readDeclID(); TypedefNameForLinkage = Record.readIdentifier(); break; default: llvm_unreachable("unexpected tag info kind"); } if (!isa(TD)) mergeRedeclarable(TD, Redecl); return Redecl; } void ASTDeclReader::VisitEnumDecl(EnumDecl *ED) { VisitTagDecl(ED); if (TypeSourceInfo *TI = readTypeSourceInfo()) ED->setIntegerTypeSourceInfo(TI); else ED->setIntegerType(Record.readType()); ED->setPromotionType(Record.readType()); ED->setNumPositiveBits(Record.readInt()); ED->setNumNegativeBits(Record.readInt()); ED->setScoped(Record.readInt()); ED->setScopedUsingClassTag(Record.readInt()); ED->setFixed(Record.readInt()); ED->setHasODRHash(true); ED->ODRHash = Record.readInt(); // If this is a definition subject to the ODR, and we already have a // definition, merge this one into it. if (ED->isCompleteDefinition() && Reader.getContext().getLangOpts().Modules && Reader.getContext().getLangOpts().CPlusPlus) { EnumDecl *&OldDef = Reader.EnumDefinitions[ED->getCanonicalDecl()]; if (!OldDef) { // This is the first time we've seen an imported definition. Look for a // local definition before deciding that we are the first definition. for (auto *D : merged_redecls(ED->getCanonicalDecl())) { if (!D->isFromASTFile() && D->isCompleteDefinition()) { OldDef = D; break; } } } if (OldDef) { Reader.MergedDeclContexts.insert(std::make_pair(ED, OldDef)); ED->setCompleteDefinition(false); Reader.mergeDefinitionVisibility(OldDef, ED); if (OldDef->getODRHash() != ED->getODRHash()) Reader.PendingEnumOdrMergeFailures[OldDef].push_back(ED); } else { OldDef = ED; } } if (auto *InstED = readDeclAs()) { auto TSK = (TemplateSpecializationKind)Record.readInt(); SourceLocation POI = readSourceLocation(); ED->setInstantiationOfMemberEnum(Reader.getContext(), InstED, TSK); ED->getMemberSpecializationInfo()->setPointOfInstantiation(POI); } } ASTDeclReader::RedeclarableResult ASTDeclReader::VisitRecordDeclImpl(RecordDecl *RD) { RedeclarableResult Redecl = VisitTagDecl(RD); RD->setHasFlexibleArrayMember(Record.readInt()); RD->setAnonymousStructOrUnion(Record.readInt()); RD->setHasObjectMember(Record.readInt()); RD->setHasVolatileMember(Record.readInt()); RD->setNonTrivialToPrimitiveDefaultInitialize(Record.readInt()); RD->setNonTrivialToPrimitiveCopy(Record.readInt()); RD->setNonTrivialToPrimitiveDestroy(Record.readInt()); RD->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(Record.readInt()); RD->setHasNonTrivialToPrimitiveDestructCUnion(Record.readInt()); RD->setHasNonTrivialToPrimitiveCopyCUnion(Record.readInt()); RD->setParamDestroyedInCallee(Record.readInt()); RD->setArgPassingRestrictions((RecordDecl::ArgPassingKind)Record.readInt()); return Redecl; } void ASTDeclReader::VisitValueDecl(ValueDecl *VD) { VisitNamedDecl(VD); // For function declarations, defer reading the type in case the function has // a deduced return type that references an entity declared within the // function. if (isa(VD)) DeferredTypeID = Record.getGlobalTypeID(Record.readInt()); else VD->setType(Record.readType()); } void ASTDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) { VisitValueDecl(ECD); if (Record.readInt()) ECD->setInitExpr(Record.readExpr()); ECD->setInitVal(Record.readAPSInt()); mergeMergeable(ECD); } void ASTDeclReader::VisitDeclaratorDecl(DeclaratorDecl *DD) { VisitValueDecl(DD); DD->setInnerLocStart(readSourceLocation()); if (Record.readInt()) { // hasExtInfo auto *Info = new (Reader.getContext()) DeclaratorDecl::ExtInfo(); Record.readQualifierInfo(*Info); Info->TrailingRequiresClause = Record.readExpr(); DD->DeclInfo = Info; } QualType TSIType = Record.readType(); DD->setTypeSourceInfo( TSIType.isNull() ? nullptr : Reader.getContext().CreateTypeSourceInfo(TSIType)); } void ASTDeclReader::VisitFunctionDecl(FunctionDecl *FD) { RedeclarableResult Redecl = VisitRedeclarable(FD); VisitDeclaratorDecl(FD); // Attach a type to this function. Use the real type if possible, but fall // back to the type as written if it involves a deduced return type. if (FD->getTypeSourceInfo() && FD->getTypeSourceInfo()->getType()->castAs() ->getReturnType()->getContainedAutoType()) { // We'll set up the real type in Visit, once we've finished loading the // function. FD->setType(FD->getTypeSourceInfo()->getType()); Reader.PendingFunctionTypes.push_back({FD, DeferredTypeID}); } else { FD->setType(Reader.GetType(DeferredTypeID)); } DeferredTypeID = 0; FD->DNLoc = Record.readDeclarationNameLoc(FD->getDeclName()); FD->IdentifierNamespace = Record.readInt(); // FunctionDecl's body is handled last at ASTDeclReader::Visit, // after everything else is read. FD->setStorageClass(static_cast(Record.readInt())); FD->setInlineSpecified(Record.readInt()); FD->setImplicitlyInline(Record.readInt()); FD->setVirtualAsWritten(Record.readInt()); // We defer calling `FunctionDecl::setPure()` here as for methods of // `CXXTemplateSpecializationDecl`s, we may not have connected up the // definition (which is required for `setPure`). const bool Pure = Record.readInt(); FD->setHasInheritedPrototype(Record.readInt()); FD->setHasWrittenPrototype(Record.readInt()); FD->setDeletedAsWritten(Record.readInt()); FD->setTrivial(Record.readInt()); FD->setTrivialForCall(Record.readInt()); FD->setDefaulted(Record.readInt()); FD->setExplicitlyDefaulted(Record.readInt()); FD->setHasImplicitReturnZero(Record.readInt()); FD->setConstexprKind(static_cast(Record.readInt())); FD->setUsesSEHTry(Record.readInt()); FD->setHasSkippedBody(Record.readInt()); FD->setIsMultiVersion(Record.readInt()); FD->setLateTemplateParsed(Record.readInt()); FD->setCachedLinkage(static_cast(Record.readInt())); FD->EndRangeLoc = readSourceLocation(); FD->ODRHash = Record.readInt(); FD->setHasODRHash(true); if (FD->isDefaulted()) { if (unsigned NumLookups = Record.readInt()) { SmallVector Lookups; for (unsigned I = 0; I != NumLookups; ++I) { NamedDecl *ND = Record.readDeclAs(); AccessSpecifier AS = (AccessSpecifier)Record.readInt(); Lookups.push_back(DeclAccessPair::make(ND, AS)); } FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( Reader.getContext(), Lookups)); } } switch ((FunctionDecl::TemplatedKind)Record.readInt()) { case FunctionDecl::TK_NonTemplate: mergeRedeclarable(FD, Redecl); break; case FunctionDecl::TK_FunctionTemplate: // Merged when we merge the template. FD->setDescribedFunctionTemplate(readDeclAs()); break; case FunctionDecl::TK_MemberSpecialization: { auto *InstFD = readDeclAs(); auto TSK = (TemplateSpecializationKind)Record.readInt(); SourceLocation POI = readSourceLocation(); FD->setInstantiationOfMemberFunction(Reader.getContext(), InstFD, TSK); FD->getMemberSpecializationInfo()->setPointOfInstantiation(POI); mergeRedeclarable(FD, Redecl); break; } case FunctionDecl::TK_FunctionTemplateSpecialization: { auto *Template = readDeclAs(); auto TSK = (TemplateSpecializationKind)Record.readInt(); // Template arguments. SmallVector TemplArgs; Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true); // Template args as written. SmallVector TemplArgLocs; SourceLocation LAngleLoc, RAngleLoc; bool HasTemplateArgumentsAsWritten = Record.readInt(); if (HasTemplateArgumentsAsWritten) { unsigned NumTemplateArgLocs = Record.readInt(); TemplArgLocs.reserve(NumTemplateArgLocs); for (unsigned i = 0; i != NumTemplateArgLocs; ++i) TemplArgLocs.push_back(Record.readTemplateArgumentLoc()); LAngleLoc = readSourceLocation(); RAngleLoc = readSourceLocation(); } SourceLocation POI = readSourceLocation(); ASTContext &C = Reader.getContext(); TemplateArgumentList *TemplArgList = TemplateArgumentList::CreateCopy(C, TemplArgs); TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc); for (unsigned i = 0, e = TemplArgLocs.size(); i != e; ++i) TemplArgsInfo.addArgument(TemplArgLocs[i]); MemberSpecializationInfo *MSInfo = nullptr; if (Record.readInt()) { auto *FD = readDeclAs(); auto TSK = (TemplateSpecializationKind)Record.readInt(); SourceLocation POI = readSourceLocation(); MSInfo = new (C) MemberSpecializationInfo(FD, TSK); MSInfo->setPointOfInstantiation(POI); } FunctionTemplateSpecializationInfo *FTInfo = FunctionTemplateSpecializationInfo::Create( C, FD, Template, TSK, TemplArgList, HasTemplateArgumentsAsWritten ? &TemplArgsInfo : nullptr, POI, MSInfo); FD->TemplateOrSpecialization = FTInfo; if (FD->isCanonicalDecl()) { // if canonical add to template's set. // The template that contains the specializations set. It's not safe to // use getCanonicalDecl on Template since it may still be initializing. auto *CanonTemplate = readDeclAs(); // Get the InsertPos by FindNodeOrInsertPos() instead of calling // InsertNode(FTInfo) directly to avoid the getASTContext() call in // FunctionTemplateSpecializationInfo's Profile(). // We avoid getASTContext because a decl in the parent hierarchy may // be initializing. llvm::FoldingSetNodeID ID; FunctionTemplateSpecializationInfo::Profile(ID, TemplArgs, C); void *InsertPos = nullptr; FunctionTemplateDecl::Common *CommonPtr = CanonTemplate->getCommonPtr(); FunctionTemplateSpecializationInfo *ExistingInfo = CommonPtr->Specializations.FindNodeOrInsertPos(ID, InsertPos); if (InsertPos) CommonPtr->Specializations.InsertNode(FTInfo, InsertPos); else { assert(Reader.getContext().getLangOpts().Modules && "already deserialized this template specialization"); mergeRedeclarable(FD, ExistingInfo->getFunction(), Redecl); } } break; } case FunctionDecl::TK_DependentFunctionTemplateSpecialization: { // Templates. UnresolvedSet<8> TemplDecls; unsigned NumTemplates = Record.readInt(); while (NumTemplates--) TemplDecls.addDecl(readDeclAs()); // Templates args. TemplateArgumentListInfo TemplArgs; unsigned NumArgs = Record.readInt(); while (NumArgs--) TemplArgs.addArgument(Record.readTemplateArgumentLoc()); TemplArgs.setLAngleLoc(readSourceLocation()); TemplArgs.setRAngleLoc(readSourceLocation()); FD->setDependentTemplateSpecialization(Reader.getContext(), TemplDecls, TemplArgs); // These are not merged; we don't need to merge redeclarations of dependent // template friends. break; } } // Defer calling `setPure` until merging above has guaranteed we've set // `DefinitionData` (as this will need to access it). FD->setPure(Pure); // Read in the parameters. unsigned NumParams = Record.readInt(); SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(readDeclAs()); FD->setParams(Reader.getContext(), Params); } void ASTDeclReader::VisitObjCMethodDecl(ObjCMethodDecl *MD) { VisitNamedDecl(MD); if (Record.readInt()) { // Load the body on-demand. Most clients won't care, because method // definitions rarely show up in headers. Reader.PendingBodies[MD] = GetCurrentCursorOffset(); HasPendingBody = true; } MD->setSelfDecl(readDeclAs()); MD->setCmdDecl(readDeclAs()); MD->setInstanceMethod(Record.readInt()); MD->setVariadic(Record.readInt()); MD->setPropertyAccessor(Record.readInt()); MD->setSynthesizedAccessorStub(Record.readInt()); MD->setDefined(Record.readInt()); MD->setOverriding(Record.readInt()); MD->setHasSkippedBody(Record.readInt()); MD->setIsRedeclaration(Record.readInt()); MD->setHasRedeclaration(Record.readInt()); if (MD->hasRedeclaration()) Reader.getContext().setObjCMethodRedeclaration(MD, readDeclAs()); MD->setDeclImplementation((ObjCMethodDecl::ImplementationControl)Record.readInt()); MD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record.readInt()); MD->setRelatedResultType(Record.readInt()); MD->setReturnType(Record.readType()); MD->setReturnTypeSourceInfo(readTypeSourceInfo()); MD->DeclEndLoc = readSourceLocation(); unsigned NumParams = Record.readInt(); SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(readDeclAs()); MD->setSelLocsKind((SelectorLocationsKind)Record.readInt()); unsigned NumStoredSelLocs = Record.readInt(); SmallVector SelLocs; SelLocs.reserve(NumStoredSelLocs); for (unsigned i = 0; i != NumStoredSelLocs; ++i) SelLocs.push_back(readSourceLocation()); MD->setParamsAndSelLocs(Reader.getContext(), Params, SelLocs); } void ASTDeclReader::VisitObjCTypeParamDecl(ObjCTypeParamDecl *D) { VisitTypedefNameDecl(D); D->Variance = Record.readInt(); D->Index = Record.readInt(); D->VarianceLoc = readSourceLocation(); D->ColonLoc = readSourceLocation(); } void ASTDeclReader::VisitObjCContainerDecl(ObjCContainerDecl *CD) { VisitNamedDecl(CD); CD->setAtStartLoc(readSourceLocation()); CD->setAtEndRange(readSourceRange()); } ObjCTypeParamList *ASTDeclReader::ReadObjCTypeParamList() { unsigned numParams = Record.readInt(); if (numParams == 0) return nullptr; SmallVector typeParams; typeParams.reserve(numParams); for (unsigned i = 0; i != numParams; ++i) { auto *typeParam = readDeclAs(); if (!typeParam) return nullptr; typeParams.push_back(typeParam); } SourceLocation lAngleLoc = readSourceLocation(); SourceLocation rAngleLoc = readSourceLocation(); return ObjCTypeParamList::create(Reader.getContext(), lAngleLoc, typeParams, rAngleLoc); } void ASTDeclReader::ReadObjCDefinitionData( struct ObjCInterfaceDecl::DefinitionData &Data) { // Read the superclass. Data.SuperClassTInfo = readTypeSourceInfo(); Data.EndLoc = readSourceLocation(); Data.HasDesignatedInitializers = Record.readInt(); // Read the directly referenced protocols and their SourceLocations. unsigned NumProtocols = Record.readInt(); SmallVector Protocols; Protocols.reserve(NumProtocols); for (unsigned I = 0; I != NumProtocols; ++I) Protocols.push_back(readDeclAs()); SmallVector ProtoLocs; ProtoLocs.reserve(NumProtocols); for (unsigned I = 0; I != NumProtocols; ++I) ProtoLocs.push_back(readSourceLocation()); Data.ReferencedProtocols.set(Protocols.data(), NumProtocols, ProtoLocs.data(), Reader.getContext()); // Read the transitive closure of protocols referenced by this class. NumProtocols = Record.readInt(); Protocols.clear(); Protocols.reserve(NumProtocols); for (unsigned I = 0; I != NumProtocols; ++I) Protocols.push_back(readDeclAs()); Data.AllReferencedProtocols.set(Protocols.data(), NumProtocols, Reader.getContext()); } void ASTDeclReader::MergeDefinitionData(ObjCInterfaceDecl *D, struct ObjCInterfaceDecl::DefinitionData &&NewDD) { // FIXME: odr checking? } void ASTDeclReader::VisitObjCInterfaceDecl(ObjCInterfaceDecl *ID) { RedeclarableResult Redecl = VisitRedeclarable(ID); VisitObjCContainerDecl(ID); DeferredTypeID = Record.getGlobalTypeID(Record.readInt()); mergeRedeclarable(ID, Redecl); ID->TypeParamList = ReadObjCTypeParamList(); if (Record.readInt()) { // Read the definition. ID->allocateDefinitionData(); ReadObjCDefinitionData(ID->data()); ObjCInterfaceDecl *Canon = ID->getCanonicalDecl(); if (Canon->Data.getPointer()) { // If we already have a definition, keep the definition invariant and // merge the data. MergeDefinitionData(Canon, std::move(ID->data())); ID->Data = Canon->Data; } else { // Set the definition data of the canonical declaration, so other // redeclarations will see it. ID->getCanonicalDecl()->Data = ID->Data; // We will rebuild this list lazily. ID->setIvarList(nullptr); } // Note that we have deserialized a definition. Reader.PendingDefinitions.insert(ID); // Note that we've loaded this Objective-C class. Reader.ObjCClassesLoaded.push_back(ID); } else { ID->Data = ID->getCanonicalDecl()->Data; } } void ASTDeclReader::VisitObjCIvarDecl(ObjCIvarDecl *IVD) { VisitFieldDecl(IVD); IVD->setAccessControl((ObjCIvarDecl::AccessControl)Record.readInt()); // This field will be built lazily. IVD->setNextIvar(nullptr); bool synth = Record.readInt(); IVD->setSynthesize(synth); } void ASTDeclReader::ReadObjCDefinitionData( struct ObjCProtocolDecl::DefinitionData &Data) { unsigned NumProtoRefs = Record.readInt(); SmallVector ProtoRefs; ProtoRefs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoRefs.push_back(readDeclAs()); SmallVector ProtoLocs; ProtoLocs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoLocs.push_back(readSourceLocation()); Data.ReferencedProtocols.set(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(), Reader.getContext()); } void ASTDeclReader::MergeDefinitionData(ObjCProtocolDecl *D, struct ObjCProtocolDecl::DefinitionData &&NewDD) { // FIXME: odr checking? } void ASTDeclReader::VisitObjCProtocolDecl(ObjCProtocolDecl *PD) { RedeclarableResult Redecl = VisitRedeclarable(PD); VisitObjCContainerDecl(PD); mergeRedeclarable(PD, Redecl); if (Record.readInt()) { // Read the definition. PD->allocateDefinitionData(); ReadObjCDefinitionData(PD->data()); ObjCProtocolDecl *Canon = PD->getCanonicalDecl(); if (Canon->Data.getPointer()) { // If we already have a definition, keep the definition invariant and // merge the data. MergeDefinitionData(Canon, std::move(PD->data())); PD->Data = Canon->Data; } else { // Set the definition data of the canonical declaration, so other // redeclarations will see it. PD->getCanonicalDecl()->Data = PD->Data; } // Note that we have deserialized a definition. Reader.PendingDefinitions.insert(PD); } else { PD->Data = PD->getCanonicalDecl()->Data; } } void ASTDeclReader::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *FD) { VisitFieldDecl(FD); } void ASTDeclReader::VisitObjCCategoryDecl(ObjCCategoryDecl *CD) { VisitObjCContainerDecl(CD); CD->setCategoryNameLoc(readSourceLocation()); CD->setIvarLBraceLoc(readSourceLocation()); CD->setIvarRBraceLoc(readSourceLocation()); // Note that this category has been deserialized. We do this before // deserializing the interface declaration, so that it will consider this /// category. Reader.CategoriesDeserialized.insert(CD); CD->ClassInterface = readDeclAs(); CD->TypeParamList = ReadObjCTypeParamList(); unsigned NumProtoRefs = Record.readInt(); SmallVector ProtoRefs; ProtoRefs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoRefs.push_back(readDeclAs()); SmallVector ProtoLocs; ProtoLocs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoLocs.push_back(readSourceLocation()); CD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(), Reader.getContext()); // Protocols in the class extension belong to the class. if (NumProtoRefs > 0 && CD->ClassInterface && CD->IsClassExtension()) CD->ClassInterface->mergeClassExtensionProtocolList( (ObjCProtocolDecl *const *)ProtoRefs.data(), NumProtoRefs, Reader.getContext()); } void ASTDeclReader::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) { VisitNamedDecl(CAD); CAD->setClassInterface(readDeclAs()); } void ASTDeclReader::VisitObjCPropertyDecl(ObjCPropertyDecl *D) { VisitNamedDecl(D); D->setAtLoc(readSourceLocation()); D->setLParenLoc(readSourceLocation()); QualType T = Record.readType(); TypeSourceInfo *TSI = readTypeSourceInfo(); D->setType(T, TSI); D->setPropertyAttributes((ObjCPropertyAttribute::Kind)Record.readInt()); D->setPropertyAttributesAsWritten( (ObjCPropertyAttribute::Kind)Record.readInt()); D->setPropertyImplementation( (ObjCPropertyDecl::PropertyControl)Record.readInt()); DeclarationName GetterName = Record.readDeclarationName(); SourceLocation GetterLoc = readSourceLocation(); D->setGetterName(GetterName.getObjCSelector(), GetterLoc); DeclarationName SetterName = Record.readDeclarationName(); SourceLocation SetterLoc = readSourceLocation(); D->setSetterName(SetterName.getObjCSelector(), SetterLoc); D->setGetterMethodDecl(readDeclAs()); D->setSetterMethodDecl(readDeclAs()); D->setPropertyIvarDecl(readDeclAs()); } void ASTDeclReader::VisitObjCImplDecl(ObjCImplDecl *D) { VisitObjCContainerDecl(D); D->setClassInterface(readDeclAs()); } void ASTDeclReader::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { VisitObjCImplDecl(D); D->CategoryNameLoc = readSourceLocation(); } void ASTDeclReader::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { VisitObjCImplDecl(D); D->setSuperClass(readDeclAs()); D->SuperLoc = readSourceLocation(); D->setIvarLBraceLoc(readSourceLocation()); D->setIvarRBraceLoc(readSourceLocation()); D->setHasNonZeroConstructors(Record.readInt()); D->setHasDestructors(Record.readInt()); D->NumIvarInitializers = Record.readInt(); if (D->NumIvarInitializers) D->IvarInitializers = ReadGlobalOffset(); } void ASTDeclReader::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) { VisitDecl(D); D->setAtLoc(readSourceLocation()); D->setPropertyDecl(readDeclAs()); D->PropertyIvarDecl = readDeclAs(); D->IvarLoc = readSourceLocation(); D->setGetterMethodDecl(readDeclAs()); D->setSetterMethodDecl(readDeclAs()); D->setGetterCXXConstructor(Record.readExpr()); D->setSetterCXXAssignment(Record.readExpr()); } void ASTDeclReader::VisitFieldDecl(FieldDecl *FD) { VisitDeclaratorDecl(FD); FD->Mutable = Record.readInt(); if (auto ISK = static_cast(Record.readInt())) { FD->InitStorage.setInt(ISK); FD->InitStorage.setPointer(ISK == FieldDecl::ISK_CapturedVLAType ? Record.readType().getAsOpaquePtr() : Record.readExpr()); } if (auto *BW = Record.readExpr()) FD->setBitWidth(BW); if (!FD->getDeclName()) { if (auto *Tmpl = readDeclAs()) Reader.getContext().setInstantiatedFromUnnamedFieldDecl(FD, Tmpl); } mergeMergeable(FD); } void ASTDeclReader::VisitMSPropertyDecl(MSPropertyDecl *PD) { VisitDeclaratorDecl(PD); PD->GetterId = Record.readIdentifier(); PD->SetterId = Record.readIdentifier(); } void ASTDeclReader::VisitMSGuidDecl(MSGuidDecl *D) { VisitValueDecl(D); D->PartVal.Part1 = Record.readInt(); D->PartVal.Part2 = Record.readInt(); D->PartVal.Part3 = Record.readInt(); for (auto &C : D->PartVal.Part4And5) C = Record.readInt(); // Add this GUID to the AST context's lookup structure, and merge if needed. if (MSGuidDecl *Existing = Reader.getContext().MSGuidDecls.GetOrInsertNode(D)) Reader.getContext().setPrimaryMergedDecl(D, Existing->getCanonicalDecl()); } void ASTDeclReader::VisitTemplateParamObjectDecl(TemplateParamObjectDecl *D) { VisitValueDecl(D); D->Value = Record.readAPValue(); // Add this template parameter object to the AST context's lookup structure, // and merge if needed. if (TemplateParamObjectDecl *Existing = Reader.getContext().TemplateParamObjectDecls.GetOrInsertNode(D)) Reader.getContext().setPrimaryMergedDecl(D, Existing->getCanonicalDecl()); } void ASTDeclReader::VisitIndirectFieldDecl(IndirectFieldDecl *FD) { VisitValueDecl(FD); FD->ChainingSize = Record.readInt(); assert(FD->ChainingSize >= 2 && "Anonymous chaining must be >= 2"); FD->Chaining = new (Reader.getContext())NamedDecl*[FD->ChainingSize]; for (unsigned I = 0; I != FD->ChainingSize; ++I) FD->Chaining[I] = readDeclAs(); mergeMergeable(FD); } ASTDeclReader::RedeclarableResult ASTDeclReader::VisitVarDeclImpl(VarDecl *VD) { RedeclarableResult Redecl = VisitRedeclarable(VD); VisitDeclaratorDecl(VD); VD->VarDeclBits.SClass = (StorageClass)Record.readInt(); VD->VarDeclBits.TSCSpec = Record.readInt(); VD->VarDeclBits.InitStyle = Record.readInt(); VD->VarDeclBits.ARCPseudoStrong = Record.readInt(); if (!isa(VD)) { VD->NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = Record.readInt(); VD->NonParmVarDeclBits.ExceptionVar = Record.readInt(); VD->NonParmVarDeclBits.NRVOVariable = Record.readInt(); VD->NonParmVarDeclBits.CXXForRangeDecl = Record.readInt(); VD->NonParmVarDeclBits.ObjCForDecl = Record.readInt(); VD->NonParmVarDeclBits.IsInline = Record.readInt(); VD->NonParmVarDeclBits.IsInlineSpecified = Record.readInt(); VD->NonParmVarDeclBits.IsConstexpr = Record.readInt(); VD->NonParmVarDeclBits.IsInitCapture = Record.readInt(); VD->NonParmVarDeclBits.PreviousDeclInSameBlockScope = Record.readInt(); VD->NonParmVarDeclBits.ImplicitParamKind = Record.readInt(); VD->NonParmVarDeclBits.EscapingByref = Record.readInt(); } auto VarLinkage = Linkage(Record.readInt()); VD->setCachedLinkage(VarLinkage); // Reconstruct the one piece of the IdentifierNamespace that we need. if (VD->getStorageClass() == SC_Extern && VarLinkage != NoLinkage && VD->getLexicalDeclContext()->isFunctionOrMethod()) VD->setLocalExternDecl(); if (uint64_t Val = Record.readInt()) { VD->setInit(Record.readExpr()); if (Val != 1) { EvaluatedStmt *Eval = VD->ensureEvaluatedStmt(); Eval->HasConstantInitialization = (Val & 2) != 0; Eval->HasConstantDestruction = (Val & 4) != 0; } } if (VD->hasAttr() && VD->getType()->getAsCXXRecordDecl()) { Expr *CopyExpr = Record.readExpr(); if (CopyExpr) Reader.getContext().setBlockVarCopyInit(VD, CopyExpr, Record.readInt()); } if (VD->getStorageDuration() == SD_Static && Record.readInt()) { Reader.DefinitionSource[VD] = Loc.F->Kind == ModuleKind::MK_MainFile || Reader.getContext().getLangOpts().BuildingPCHWithObjectFile; } enum VarKind { VarNotTemplate = 0, VarTemplate, StaticDataMemberSpecialization }; switch ((VarKind)Record.readInt()) { case VarNotTemplate: // Only true variables (not parameters or implicit parameters) can be // merged; the other kinds are not really redeclarable at all. if (!isa(VD) && !isa(VD) && !isa(VD)) mergeRedeclarable(VD, Redecl); break; case VarTemplate: // Merged when we merge the template. VD->setDescribedVarTemplate(readDeclAs()); break; case StaticDataMemberSpecialization: { // HasMemberSpecializationInfo. auto *Tmpl = readDeclAs(); auto TSK = (TemplateSpecializationKind)Record.readInt(); SourceLocation POI = readSourceLocation(); Reader.getContext().setInstantiatedFromStaticDataMember(VD, Tmpl, TSK,POI); mergeRedeclarable(VD, Redecl); break; } } return Redecl; } void ASTDeclReader::VisitImplicitParamDecl(ImplicitParamDecl *PD) { VisitVarDecl(PD); } void ASTDeclReader::VisitParmVarDecl(ParmVarDecl *PD) { VisitVarDecl(PD); unsigned isObjCMethodParam = Record.readInt(); unsigned scopeDepth = Record.readInt(); unsigned scopeIndex = Record.readInt(); unsigned declQualifier = Record.readInt(); if (isObjCMethodParam) { assert(scopeDepth == 0); PD->setObjCMethodScopeInfo(scopeIndex); PD->ParmVarDeclBits.ScopeDepthOrObjCQuals = declQualifier; } else { PD->setScopeInfo(scopeDepth, scopeIndex); } PD->ParmVarDeclBits.IsKNRPromoted = Record.readInt(); PD->ParmVarDeclBits.HasInheritedDefaultArg = Record.readInt(); if (Record.readInt()) // hasUninstantiatedDefaultArg. PD->setUninstantiatedDefaultArg(Record.readExpr()); // FIXME: If this is a redeclaration of a function from another module, handle // inheritance of default arguments. } void ASTDeclReader::VisitDecompositionDecl(DecompositionDecl *DD) { VisitVarDecl(DD); auto **BDs = DD->getTrailingObjects(); for (unsigned I = 0; I != DD->NumBindings; ++I) { BDs[I] = readDeclAs(); BDs[I]->setDecomposedDecl(DD); } } void ASTDeclReader::VisitBindingDecl(BindingDecl *BD) { VisitValueDecl(BD); BD->Binding = Record.readExpr(); } void ASTDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) { VisitDecl(AD); AD->setAsmString(cast(Record.readExpr())); AD->setRParenLoc(readSourceLocation()); } void ASTDeclReader::VisitBlockDecl(BlockDecl *BD) { VisitDecl(BD); BD->setBody(cast_or_null(Record.readStmt())); BD->setSignatureAsWritten(readTypeSourceInfo()); unsigned NumParams = Record.readInt(); SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(readDeclAs()); BD->setParams(Params); BD->setIsVariadic(Record.readInt()); BD->setBlockMissingReturnType(Record.readInt()); BD->setIsConversionFromLambda(Record.readInt()); BD->setDoesNotEscape(Record.readInt()); BD->setCanAvoidCopyToHeap(Record.readInt()); bool capturesCXXThis = Record.readInt(); unsigned numCaptures = Record.readInt(); SmallVector captures; captures.reserve(numCaptures); for (unsigned i = 0; i != numCaptures; ++i) { auto *decl = readDeclAs(); unsigned flags = Record.readInt(); bool byRef = (flags & 1); bool nested = (flags & 2); Expr *copyExpr = ((flags & 4) ? Record.readExpr() : nullptr); captures.push_back(BlockDecl::Capture(decl, byRef, nested, copyExpr)); } BD->setCaptures(Reader.getContext(), captures, capturesCXXThis); } void ASTDeclReader::VisitCapturedDecl(CapturedDecl *CD) { VisitDecl(CD); unsigned ContextParamPos = Record.readInt(); CD->setNothrow(Record.readInt() != 0); // Body is set by VisitCapturedStmt. for (unsigned I = 0; I < CD->NumParams; ++I) { if (I != ContextParamPos) CD->setParam(I, readDeclAs()); else CD->setContextParam(I, readDeclAs()); } } void ASTDeclReader::VisitLinkageSpecDecl(LinkageSpecDecl *D) { VisitDecl(D); D->setLanguage((LinkageSpecDecl::LanguageIDs)Record.readInt()); D->setExternLoc(readSourceLocation()); D->setRBraceLoc(readSourceLocation()); } void ASTDeclReader::VisitExportDecl(ExportDecl *D) { VisitDecl(D); D->RBraceLoc = readSourceLocation(); } void ASTDeclReader::VisitLabelDecl(LabelDecl *D) { VisitNamedDecl(D); D->setLocStart(readSourceLocation()); } void ASTDeclReader::VisitNamespaceDecl(NamespaceDecl *D) { RedeclarableResult Redecl = VisitRedeclarable(D); VisitNamedDecl(D); D->setInline(Record.readInt()); D->LocStart = readSourceLocation(); D->RBraceLoc = readSourceLocation(); // Defer loading the anonymous namespace until we've finished merging // this namespace; loading it might load a later declaration of the // same namespace, and we have an invariant that older declarations // get merged before newer ones try to merge. GlobalDeclID AnonNamespace = 0; if (Redecl.getFirstID() == ThisDeclID) { AnonNamespace = readDeclID(); } else { // Link this namespace back to the first declaration, which has already // been deserialized. D->AnonOrFirstNamespaceAndInline.setPointer(D->getFirstDecl()); } mergeRedeclarable(D, Redecl); if (AnonNamespace) { // Each module has its own anonymous namespace, which is disjoint from // any other module's anonymous namespaces, so don't attach the anonymous // namespace at all. auto *Anon = cast(Reader.GetDecl(AnonNamespace)); if (!Record.isModule()) D->setAnonymousNamespace(Anon); } } void ASTDeclReader::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { RedeclarableResult Redecl = VisitRedeclarable(D); VisitNamedDecl(D); D->NamespaceLoc = readSourceLocation(); D->IdentLoc = readSourceLocation(); D->QualifierLoc = Record.readNestedNameSpecifierLoc(); D->Namespace = readDeclAs(); mergeRedeclarable(D, Redecl); } void ASTDeclReader::VisitUsingDecl(UsingDecl *D) { VisitNamedDecl(D); D->setUsingLoc(readSourceLocation()); D->QualifierLoc = Record.readNestedNameSpecifierLoc(); D->DNLoc = Record.readDeclarationNameLoc(D->getDeclName()); D->FirstUsingShadow.setPointer(readDeclAs()); D->setTypename(Record.readInt()); if (auto *Pattern = readDeclAs()) Reader.getContext().setInstantiatedFromUsingDecl(D, Pattern); mergeMergeable(D); } void ASTDeclReader::VisitUsingEnumDecl(UsingEnumDecl *D) { VisitNamedDecl(D); D->setUsingLoc(readSourceLocation()); D->setEnumLoc(readSourceLocation()); D->Enum = readDeclAs(); D->FirstUsingShadow.setPointer(readDeclAs()); if (auto *Pattern = readDeclAs()) Reader.getContext().setInstantiatedFromUsingEnumDecl(D, Pattern); mergeMergeable(D); } void ASTDeclReader::VisitUsingPackDecl(UsingPackDecl *D) { VisitNamedDecl(D); D->InstantiatedFrom = readDeclAs(); auto **Expansions = D->getTrailingObjects(); for (unsigned I = 0; I != D->NumExpansions; ++I) Expansions[I] = readDeclAs(); mergeMergeable(D); } void ASTDeclReader::VisitUsingShadowDecl(UsingShadowDecl *D) { RedeclarableResult Redecl = VisitRedeclarable(D); VisitNamedDecl(D); D->Underlying = readDeclAs(); D->IdentifierNamespace = Record.readInt(); D->UsingOrNextShadow = readDeclAs(); auto *Pattern = readDeclAs(); if (Pattern) Reader.getContext().setInstantiatedFromUsingShadowDecl(D, Pattern); mergeRedeclarable(D, Redecl); } void ASTDeclReader::VisitConstructorUsingShadowDecl( ConstructorUsingShadowDecl *D) { VisitUsingShadowDecl(D); D->NominatedBaseClassShadowDecl = readDeclAs(); D->ConstructedBaseClassShadowDecl = readDeclAs(); D->IsVirtual = Record.readInt(); } void ASTDeclReader::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { VisitNamedDecl(D); D->UsingLoc = readSourceLocation(); D->NamespaceLoc = readSourceLocation(); D->QualifierLoc = Record.readNestedNameSpecifierLoc(); D->NominatedNamespace = readDeclAs(); D->CommonAncestor = readDeclAs(); } void ASTDeclReader::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { VisitValueDecl(D); D->setUsingLoc(readSourceLocation()); D->QualifierLoc = Record.readNestedNameSpecifierLoc(); D->DNLoc = Record.readDeclarationNameLoc(D->getDeclName()); D->EllipsisLoc = readSourceLocation(); mergeMergeable(D); } void ASTDeclReader::VisitUnresolvedUsingTypenameDecl( UnresolvedUsingTypenameDecl *D) { VisitTypeDecl(D); D->TypenameLocation = readSourceLocation(); D->QualifierLoc = Record.readNestedNameSpecifierLoc(); D->EllipsisLoc = readSourceLocation(); mergeMergeable(D); } void ASTDeclReader::VisitUnresolvedUsingIfExistsDecl( UnresolvedUsingIfExistsDecl *D) { VisitNamedDecl(D); } void ASTDeclReader::ReadCXXDefinitionData( struct CXXRecordDecl::DefinitionData &Data, const CXXRecordDecl *D) { #define FIELD(Name, Width, Merge) \ Data.Name = Record.readInt(); #include "clang/AST/CXXRecordDeclDefinitionBits.def" // Note: the caller has deserialized the IsLambda bit already. Data.ODRHash = Record.readInt(); Data.HasODRHash = true; if (Record.readInt()) { Reader.DefinitionSource[D] = Loc.F->Kind == ModuleKind::MK_MainFile || Reader.getContext().getLangOpts().BuildingPCHWithObjectFile; } Data.NumBases = Record.readInt(); if (Data.NumBases) Data.Bases = ReadGlobalOffset(); Data.NumVBases = Record.readInt(); if (Data.NumVBases) Data.VBases = ReadGlobalOffset(); Record.readUnresolvedSet(Data.Conversions); Data.ComputedVisibleConversions = Record.readInt(); if (Data.ComputedVisibleConversions) Record.readUnresolvedSet(Data.VisibleConversions); assert(Data.Definition && "Data.Definition should be already set!"); Data.FirstFriend = readDeclID(); if (Data.IsLambda) { using Capture = LambdaCapture; auto &Lambda = static_cast(Data); Lambda.Dependent = Record.readInt(); Lambda.IsGenericLambda = Record.readInt(); Lambda.CaptureDefault = Record.readInt(); Lambda.NumCaptures = Record.readInt(); Lambda.NumExplicitCaptures = Record.readInt(); Lambda.HasKnownInternalLinkage = Record.readInt(); Lambda.ManglingNumber = Record.readInt(); D->setDeviceLambdaManglingNumber(Record.readInt()); Lambda.ContextDecl = readDeclID(); Lambda.Captures = (Capture *)Reader.getContext().Allocate( sizeof(Capture) * Lambda.NumCaptures); Capture *ToCapture = Lambda.Captures; Lambda.MethodTyInfo = readTypeSourceInfo(); for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) { SourceLocation Loc = readSourceLocation(); bool IsImplicit = Record.readInt(); auto Kind = static_cast(Record.readInt()); switch (Kind) { case LCK_StarThis: case LCK_This: case LCK_VLAType: *ToCapture++ = Capture(Loc, IsImplicit, Kind, nullptr,SourceLocation()); break; case LCK_ByCopy: case LCK_ByRef: auto *Var = readDeclAs(); SourceLocation EllipsisLoc = readSourceLocation(); *ToCapture++ = Capture(Loc, IsImplicit, Kind, Var, EllipsisLoc); break; } } } } void ASTDeclReader::MergeDefinitionData( CXXRecordDecl *D, struct CXXRecordDecl::DefinitionData &&MergeDD) { assert(D->DefinitionData && "merging class definition into non-definition"); auto &DD = *D->DefinitionData; if (DD.Definition != MergeDD.Definition) { // Track that we merged the definitions. Reader.MergedDeclContexts.insert(std::make_pair(MergeDD.Definition, DD.Definition)); Reader.PendingDefinitions.erase(MergeDD.Definition); MergeDD.Definition->setCompleteDefinition(false); Reader.mergeDefinitionVisibility(DD.Definition, MergeDD.Definition); assert(Reader.Lookups.find(MergeDD.Definition) == Reader.Lookups.end() && "already loaded pending lookups for merged definition"); } auto PFDI = Reader.PendingFakeDefinitionData.find(&DD); if (PFDI != Reader.PendingFakeDefinitionData.end() && PFDI->second == ASTReader::PendingFakeDefinitionKind::Fake) { // We faked up this definition data because we found a class for which we'd // not yet loaded the definition. Replace it with the real thing now. assert(!DD.IsLambda && !MergeDD.IsLambda && "faked up lambda definition?"); PFDI->second = ASTReader::PendingFakeDefinitionKind::FakeLoaded; // Don't change which declaration is the definition; that is required // to be invariant once we select it. auto *Def = DD.Definition; DD = std::move(MergeDD); DD.Definition = Def; return; } bool DetectedOdrViolation = false; #define FIELD(Name, Width, Merge) Merge(Name) #define MERGE_OR(Field) DD.Field |= MergeDD.Field; #define NO_MERGE(Field) \ DetectedOdrViolation |= DD.Field != MergeDD.Field; \ MERGE_OR(Field) #include "clang/AST/CXXRecordDeclDefinitionBits.def" NO_MERGE(IsLambda) #undef NO_MERGE #undef MERGE_OR if (DD.NumBases != MergeDD.NumBases || DD.NumVBases != MergeDD.NumVBases) DetectedOdrViolation = true; // FIXME: Issue a diagnostic if the base classes don't match when we come // to lazily load them. // FIXME: Issue a diagnostic if the list of conversion functions doesn't // match when we come to lazily load them. if (MergeDD.ComputedVisibleConversions && !DD.ComputedVisibleConversions) { DD.VisibleConversions = std::move(MergeDD.VisibleConversions); DD.ComputedVisibleConversions = true; } // FIXME: Issue a diagnostic if FirstFriend doesn't match when we come to // lazily load it. if (DD.IsLambda) { // FIXME: ODR-checking for merging lambdas (this happens, for instance, // when they occur within the body of a function template specialization). } if (D->getODRHash() != MergeDD.ODRHash) { DetectedOdrViolation = true; } if (DetectedOdrViolation) Reader.PendingOdrMergeFailures[DD.Definition].push_back( {MergeDD.Definition, &MergeDD}); } void ASTDeclReader::ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update) { struct CXXRecordDecl::DefinitionData *DD; ASTContext &C = Reader.getContext(); // Determine whether this is a lambda closure type, so that we can // allocate the appropriate DefinitionData structure. bool IsLambda = Record.readInt(); if (IsLambda) DD = new (C) CXXRecordDecl::LambdaDefinitionData(D, nullptr, false, false, LCD_None); else DD = new (C) struct CXXRecordDecl::DefinitionData(D); CXXRecordDecl *Canon = D->getCanonicalDecl(); // Set decl definition data before reading it, so that during deserialization // when we read CXXRecordDecl, it already has definition data and we don't // set fake one. if (!Canon->DefinitionData) Canon->DefinitionData = DD; D->DefinitionData = Canon->DefinitionData; ReadCXXDefinitionData(*DD, D); // We might already have a different definition for this record. This can // happen either because we're reading an update record, or because we've // already done some merging. Either way, just merge into it. if (Canon->DefinitionData != DD) { MergeDefinitionData(Canon, std::move(*DD)); return; } // Mark this declaration as being a definition. D->setCompleteDefinition(true); // If this is not the first declaration or is an update record, we can have // other redeclarations already. Make a note that we need to propagate the // DefinitionData pointer onto them. if (Update || Canon != D) Reader.PendingDefinitions.insert(D); } ASTDeclReader::RedeclarableResult ASTDeclReader::VisitCXXRecordDeclImpl(CXXRecordDecl *D) { RedeclarableResult Redecl = VisitRecordDeclImpl(D); ASTContext &C = Reader.getContext(); enum CXXRecKind { CXXRecNotTemplate = 0, CXXRecTemplate, CXXRecMemberSpecialization }; switch ((CXXRecKind)Record.readInt()) { case CXXRecNotTemplate: // Merged when we merge the folding set entry in the primary template. if (!isa(D)) mergeRedeclarable(D, Redecl); break; case CXXRecTemplate: { // Merged when we merge the template. auto *Template = readDeclAs(); D->TemplateOrInstantiation = Template; if (!Template->getTemplatedDecl()) { // We've not actually loaded the ClassTemplateDecl yet, because we're // currently being loaded as its pattern. Rely on it to set up our // TypeForDecl (see VisitClassTemplateDecl). // // Beware: we do not yet know our canonical declaration, and may still // get merged once the surrounding class template has got off the ground. DeferredTypeID = 0; } break; } case CXXRecMemberSpecialization: { auto *RD = readDeclAs(); auto TSK = (TemplateSpecializationKind)Record.readInt(); SourceLocation POI = readSourceLocation(); MemberSpecializationInfo *MSI = new (C) MemberSpecializationInfo(RD, TSK); MSI->setPointOfInstantiation(POI); D->TemplateOrInstantiation = MSI; mergeRedeclarable(D, Redecl); break; } } bool WasDefinition = Record.readInt(); if (WasDefinition) ReadCXXRecordDefinition(D, /*Update*/false); else // Propagate DefinitionData pointer from the canonical declaration. D->DefinitionData = D->getCanonicalDecl()->DefinitionData; // Lazily load the key function to avoid deserializing every method so we can // compute it. if (WasDefinition) { DeclID KeyFn = readDeclID(); if (KeyFn && D->isCompleteDefinition()) // FIXME: This is wrong for the ARM ABI, where some other module may have // made this function no longer be a key function. We need an update // record or similar for that case. C.KeyFunctions[D] = KeyFn; } return Redecl; } void ASTDeclReader::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { D->setExplicitSpecifier(Record.readExplicitSpec()); D->Ctor = readDeclAs(); VisitFunctionDecl(D); D->setIsCopyDeductionCandidate(Record.readInt()); } void ASTDeclReader::VisitCXXMethodDecl(CXXMethodDecl *D) { VisitFunctionDecl(D); unsigned NumOverridenMethods = Record.readInt(); if (D->isCanonicalDecl()) { while (NumOverridenMethods--) { // Avoid invariant checking of CXXMethodDecl::addOverriddenMethod, // MD may be initializing. if (auto *MD = readDeclAs()) Reader.getContext().addOverriddenMethod(D, MD->getCanonicalDecl()); } } else { // We don't care about which declarations this used to override; we get // the relevant information from the canonical declaration. Record.skipInts(NumOverridenMethods); } } void ASTDeclReader::VisitCXXConstructorDecl(CXXConstructorDecl *D) { // We need the inherited constructor information to merge the declaration, // so we have to read it before we call VisitCXXMethodDecl. D->setExplicitSpecifier(Record.readExplicitSpec()); if (D->isInheritingConstructor()) { auto *Shadow = readDeclAs(); auto *Ctor = readDeclAs(); *D->getTrailingObjects() = InheritedConstructor(Shadow, Ctor); } VisitCXXMethodDecl(D); } void ASTDeclReader::VisitCXXDestructorDecl(CXXDestructorDecl *D) { VisitCXXMethodDecl(D); if (auto *OperatorDelete = readDeclAs()) { CXXDestructorDecl *Canon = D->getCanonicalDecl(); auto *ThisArg = Record.readExpr(); // FIXME: Check consistency if we have an old and new operator delete. if (!Canon->OperatorDelete) { Canon->OperatorDelete = OperatorDelete; Canon->OperatorDeleteThisArg = ThisArg; } } } void ASTDeclReader::VisitCXXConversionDecl(CXXConversionDecl *D) { D->setExplicitSpecifier(Record.readExplicitSpec()); VisitCXXMethodDecl(D); } void ASTDeclReader::VisitImportDecl(ImportDecl *D) { VisitDecl(D); D->ImportedModule = readModule(); D->setImportComplete(Record.readInt()); auto *StoredLocs = D->getTrailingObjects(); for (unsigned I = 0, N = Record.back(); I != N; ++I) StoredLocs[I] = readSourceLocation(); Record.skipInts(1); // The number of stored source locations. } void ASTDeclReader::VisitAccessSpecDecl(AccessSpecDecl *D) { VisitDecl(D); D->setColonLoc(readSourceLocation()); } void ASTDeclReader::VisitFriendDecl(FriendDecl *D) { VisitDecl(D); if (Record.readInt()) // hasFriendDecl D->Friend = readDeclAs(); else D->Friend = readTypeSourceInfo(); for (unsigned i = 0; i != D->NumTPLists; ++i) D->getTrailingObjects()[i] = Record.readTemplateParameterList(); D->NextFriend = readDeclID(); D->UnsupportedFriend = (Record.readInt() != 0); D->FriendLoc = readSourceLocation(); } void ASTDeclReader::VisitFriendTemplateDecl(FriendTemplateDecl *D) { VisitDecl(D); unsigned NumParams = Record.readInt(); D->NumParams = NumParams; D->Params = new TemplateParameterList*[NumParams]; for (unsigned i = 0; i != NumParams; ++i) D->Params[i] = Record.readTemplateParameterList(); if (Record.readInt()) // HasFriendDecl D->Friend = readDeclAs(); else D->Friend = readTypeSourceInfo(); D->FriendLoc = readSourceLocation(); } DeclID ASTDeclReader::VisitTemplateDecl(TemplateDecl *D) { VisitNamedDecl(D); DeclID PatternID = readDeclID(); auto *TemplatedDecl = cast_or_null(Reader.GetDecl(PatternID)); TemplateParameterList *TemplateParams = Record.readTemplateParameterList(); D->init(TemplatedDecl, TemplateParams); return PatternID; } void ASTDeclReader::VisitConceptDecl(ConceptDecl *D) { VisitTemplateDecl(D); D->ConstraintExpr = Record.readExpr(); mergeMergeable(D); } void ASTDeclReader::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) { } ASTDeclReader::RedeclarableResult ASTDeclReader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D) { RedeclarableResult Redecl = VisitRedeclarable(D); // Make sure we've allocated the Common pointer first. We do this before // VisitTemplateDecl so that getCommonPtr() can be used during initialization. RedeclarableTemplateDecl *CanonD = D->getCanonicalDecl(); if (!CanonD->Common) { CanonD->Common = CanonD->newCommon(Reader.getContext()); Reader.PendingDefinitions.insert(CanonD); } D->Common = CanonD->Common; // If this is the first declaration of the template, fill in the information // for the 'common' pointer. if (ThisDeclID == Redecl.getFirstID()) { if (auto *RTD = readDeclAs()) { assert(RTD->getKind() == D->getKind() && "InstantiatedFromMemberTemplate kind mismatch"); D->setInstantiatedFromMemberTemplate(RTD); if (Record.readInt()) D->setMemberSpecialization(); } } DeclID PatternID = VisitTemplateDecl(D); D->IdentifierNamespace = Record.readInt(); mergeRedeclarable(D, Redecl, PatternID); // If we merged the template with a prior declaration chain, merge the common // pointer. // FIXME: Actually merge here, don't just overwrite. D->Common = D->getCanonicalDecl()->Common; return Redecl; } void ASTDeclReader::VisitClassTemplateDecl(ClassTemplateDecl *D) { RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D); if (ThisDeclID == Redecl.getFirstID()) { // This ClassTemplateDecl owns a CommonPtr; read it to keep track of all of // the specializations. SmallVector SpecIDs; readDeclIDList(SpecIDs); ASTDeclReader::AddLazySpecializations(D, SpecIDs); } if (D->getTemplatedDecl()->TemplateOrInstantiation) { // We were loaded before our templated declaration was. We've not set up // its corresponding type yet (see VisitCXXRecordDeclImpl), so reconstruct // it now. Reader.getContext().getInjectedClassNameType( D->getTemplatedDecl(), D->getInjectedClassNameSpecialization()); } } void ASTDeclReader::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { llvm_unreachable("BuiltinTemplates are not serialized"); } /// TODO: Unify with ClassTemplateDecl version? /// May require unifying ClassTemplateDecl and /// VarTemplateDecl beyond TemplateDecl... void ASTDeclReader::VisitVarTemplateDecl(VarTemplateDecl *D) { RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D); if (ThisDeclID == Redecl.getFirstID()) { // This VarTemplateDecl owns a CommonPtr; read it to keep track of all of // the specializations. SmallVector SpecIDs; readDeclIDList(SpecIDs); ASTDeclReader::AddLazySpecializations(D, SpecIDs); } } ASTDeclReader::RedeclarableResult ASTDeclReader::VisitClassTemplateSpecializationDeclImpl( ClassTemplateSpecializationDecl *D) { RedeclarableResult Redecl = VisitCXXRecordDeclImpl(D); ASTContext &C = Reader.getContext(); if (Decl *InstD = readDecl()) { if (auto *CTD = dyn_cast(InstD)) { D->SpecializedTemplate = CTD; } else { SmallVector TemplArgs; Record.readTemplateArgumentList(TemplArgs); TemplateArgumentList *ArgList = TemplateArgumentList::CreateCopy(C, TemplArgs); auto *PS = new (C) ClassTemplateSpecializationDecl:: SpecializedPartialSpecialization(); PS->PartialSpecialization = cast(InstD); PS->TemplateArgs = ArgList; D->SpecializedTemplate = PS; } } SmallVector TemplArgs; Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true); D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs); D->PointOfInstantiation = readSourceLocation(); D->SpecializationKind = (TemplateSpecializationKind)Record.readInt(); bool writtenAsCanonicalDecl = Record.readInt(); if (writtenAsCanonicalDecl) { auto *CanonPattern = readDeclAs(); if (D->isCanonicalDecl()) { // It's kept in the folding set. // Set this as, or find, the canonical declaration for this specialization ClassTemplateSpecializationDecl *CanonSpec; if (auto *Partial = dyn_cast(D)) { CanonSpec = CanonPattern->getCommonPtr()->PartialSpecializations .GetOrInsertNode(Partial); } else { CanonSpec = CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D); } // If there was already a canonical specialization, merge into it. if (CanonSpec != D) { mergeRedeclarable(D, CanonSpec, Redecl); // This declaration might be a definition. Merge with any existing // definition. if (auto *DDD = D->DefinitionData) { if (CanonSpec->DefinitionData) MergeDefinitionData(CanonSpec, std::move(*DDD)); else CanonSpec->DefinitionData = D->DefinitionData; } D->DefinitionData = CanonSpec->DefinitionData; } } } // Explicit info. if (TypeSourceInfo *TyInfo = readTypeSourceInfo()) { auto *ExplicitInfo = new (C) ClassTemplateSpecializationDecl::ExplicitSpecializationInfo; ExplicitInfo->TypeAsWritten = TyInfo; ExplicitInfo->ExternLoc = readSourceLocation(); ExplicitInfo->TemplateKeywordLoc = readSourceLocation(); D->ExplicitInfo = ExplicitInfo; } return Redecl; } void ASTDeclReader::VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D) { // We need to read the template params first because redeclarable is going to // need them for profiling TemplateParameterList *Params = Record.readTemplateParameterList(); D->TemplateParams = Params; D->ArgsAsWritten = Record.readASTTemplateArgumentListInfo(); RedeclarableResult Redecl = VisitClassTemplateSpecializationDeclImpl(D); // These are read/set from/to the first declaration. if (ThisDeclID == Redecl.getFirstID()) { D->InstantiatedFromMember.setPointer( readDeclAs()); D->InstantiatedFromMember.setInt(Record.readInt()); } } void ASTDeclReader::VisitClassScopeFunctionSpecializationDecl( ClassScopeFunctionSpecializationDecl *D) { VisitDecl(D); D->Specialization = readDeclAs(); if (Record.readInt()) D->TemplateArgs = Record.readASTTemplateArgumentListInfo(); } void ASTDeclReader::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D); if (ThisDeclID == Redecl.getFirstID()) { // This FunctionTemplateDecl owns a CommonPtr; read it. SmallVector SpecIDs; readDeclIDList(SpecIDs); ASTDeclReader::AddLazySpecializations(D, SpecIDs); } } /// TODO: Unify with ClassTemplateSpecializationDecl version? /// May require unifying ClassTemplate(Partial)SpecializationDecl and /// VarTemplate(Partial)SpecializationDecl with a new data /// structure Template(Partial)SpecializationDecl, and /// using Template(Partial)SpecializationDecl as input type. ASTDeclReader::RedeclarableResult ASTDeclReader::VisitVarTemplateSpecializationDeclImpl( VarTemplateSpecializationDecl *D) { RedeclarableResult Redecl = VisitVarDeclImpl(D); ASTContext &C = Reader.getContext(); if (Decl *InstD = readDecl()) { if (auto *VTD = dyn_cast(InstD)) { D->SpecializedTemplate = VTD; } else { SmallVector TemplArgs; Record.readTemplateArgumentList(TemplArgs); TemplateArgumentList *ArgList = TemplateArgumentList::CreateCopy( C, TemplArgs); auto *PS = new (C) VarTemplateSpecializationDecl::SpecializedPartialSpecialization(); PS->PartialSpecialization = cast(InstD); PS->TemplateArgs = ArgList; D->SpecializedTemplate = PS; } } // Explicit info. if (TypeSourceInfo *TyInfo = readTypeSourceInfo()) { auto *ExplicitInfo = new (C) VarTemplateSpecializationDecl::ExplicitSpecializationInfo; ExplicitInfo->TypeAsWritten = TyInfo; ExplicitInfo->ExternLoc = readSourceLocation(); ExplicitInfo->TemplateKeywordLoc = readSourceLocation(); D->ExplicitInfo = ExplicitInfo; } SmallVector TemplArgs; Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true); D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs); D->PointOfInstantiation = readSourceLocation(); D->SpecializationKind = (TemplateSpecializationKind)Record.readInt(); D->IsCompleteDefinition = Record.readInt(); bool writtenAsCanonicalDecl = Record.readInt(); if (writtenAsCanonicalDecl) { auto *CanonPattern = readDeclAs(); if (D->isCanonicalDecl()) { // It's kept in the folding set. // FIXME: If it's already present, merge it. if (auto *Partial = dyn_cast(D)) { CanonPattern->getCommonPtr()->PartialSpecializations .GetOrInsertNode(Partial); } else { CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D); } } } return Redecl; } /// TODO: Unify with ClassTemplatePartialSpecializationDecl version? /// May require unifying ClassTemplate(Partial)SpecializationDecl and /// VarTemplate(Partial)SpecializationDecl with a new data /// structure Template(Partial)SpecializationDecl, and /// using Template(Partial)SpecializationDecl as input type. void ASTDeclReader::VisitVarTemplatePartialSpecializationDecl( VarTemplatePartialSpecializationDecl *D) { TemplateParameterList *Params = Record.readTemplateParameterList(); D->TemplateParams = Params; D->ArgsAsWritten = Record.readASTTemplateArgumentListInfo(); RedeclarableResult Redecl = VisitVarTemplateSpecializationDeclImpl(D); // These are read/set from/to the first declaration. if (ThisDeclID == Redecl.getFirstID()) { D->InstantiatedFromMember.setPointer( readDeclAs()); D->InstantiatedFromMember.setInt(Record.readInt()); } } void ASTDeclReader::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) { VisitTypeDecl(D); D->setDeclaredWithTypename(Record.readInt()); if (Record.readBool()) { NestedNameSpecifierLoc NNS = Record.readNestedNameSpecifierLoc(); DeclarationNameInfo DN = Record.readDeclarationNameInfo(); ConceptDecl *NamedConcept = Record.readDeclAs(); const ASTTemplateArgumentListInfo *ArgsAsWritten = nullptr; if (Record.readBool()) ArgsAsWritten = Record.readASTTemplateArgumentListInfo(); Expr *ImmediatelyDeclaredConstraint = Record.readExpr(); D->setTypeConstraint(NNS, DN, /*FoundDecl=*/nullptr, NamedConcept, ArgsAsWritten, ImmediatelyDeclaredConstraint); if ((D->ExpandedParameterPack = Record.readInt())) D->NumExpanded = Record.readInt(); } if (Record.readInt()) D->setDefaultArgument(readTypeSourceInfo()); } void ASTDeclReader::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { VisitDeclaratorDecl(D); // TemplateParmPosition. D->setDepth(Record.readInt()); D->setPosition(Record.readInt()); if (D->hasPlaceholderTypeConstraint()) D->setPlaceholderTypeConstraint(Record.readExpr()); if (D->isExpandedParameterPack()) { auto TypesAndInfos = D->getTrailingObjects>(); for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { new (&TypesAndInfos[I].first) QualType(Record.readType()); TypesAndInfos[I].second = readTypeSourceInfo(); } } else { // Rest of NonTypeTemplateParmDecl. D->ParameterPack = Record.readInt(); if (Record.readInt()) D->setDefaultArgument(Record.readExpr()); } } void ASTDeclReader::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) { VisitTemplateDecl(D); // TemplateParmPosition. D->setDepth(Record.readInt()); D->setPosition(Record.readInt()); if (D->isExpandedParameterPack()) { auto **Data = D->getTrailingObjects(); for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); I != N; ++I) Data[I] = Record.readTemplateParameterList(); } else { // Rest of TemplateTemplateParmDecl. D->ParameterPack = Record.readInt(); if (Record.readInt()) D->setDefaultArgument(Reader.getContext(), Record.readTemplateArgumentLoc()); } } void ASTDeclReader::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { VisitRedeclarableTemplateDecl(D); } void ASTDeclReader::VisitStaticAssertDecl(StaticAssertDecl *D) { VisitDecl(D); D->AssertExprAndFailed.setPointer(Record.readExpr()); D->AssertExprAndFailed.setInt(Record.readInt()); D->Message = cast_or_null(Record.readExpr()); D->RParenLoc = readSourceLocation(); } void ASTDeclReader::VisitEmptyDecl(EmptyDecl *D) { VisitDecl(D); } void ASTDeclReader::VisitLifetimeExtendedTemporaryDecl( LifetimeExtendedTemporaryDecl *D) { VisitDecl(D); D->ExtendingDecl = readDeclAs(); D->ExprWithTemporary = Record.readStmt(); if (Record.readInt()) { D->Value = new (D->getASTContext()) APValue(Record.readAPValue()); D->getASTContext().addDestruction(D->Value); } D->ManglingNumber = Record.readInt(); mergeMergeable(D); } std::pair ASTDeclReader::VisitDeclContext(DeclContext *DC) { uint64_t LexicalOffset = ReadLocalOffset(); uint64_t VisibleOffset = ReadLocalOffset(); return std::make_pair(LexicalOffset, VisibleOffset); } template ASTDeclReader::RedeclarableResult ASTDeclReader::VisitRedeclarable(Redeclarable *D) { DeclID FirstDeclID = readDeclID(); Decl *MergeWith = nullptr; bool IsKeyDecl = ThisDeclID == FirstDeclID; bool IsFirstLocalDecl = false; uint64_t RedeclOffset = 0; // 0 indicates that this declaration was the only declaration of its entity, // and is used for space optimization. if (FirstDeclID == 0) { FirstDeclID = ThisDeclID; IsKeyDecl = true; IsFirstLocalDecl = true; } else if (unsigned N = Record.readInt()) { // This declaration was the first local declaration, but may have imported // other declarations. IsKeyDecl = N == 1; IsFirstLocalDecl = true; // We have some declarations that must be before us in our redeclaration // chain. Read them now, and remember that we ought to merge with one of // them. // FIXME: Provide a known merge target to the second and subsequent such // declaration. for (unsigned I = 0; I != N - 1; ++I) MergeWith = readDecl(); RedeclOffset = ReadLocalOffset(); } else { // This declaration was not the first local declaration. Read the first // local declaration now, to trigger the import of other redeclarations. (void)readDecl(); } auto *FirstDecl = cast_or_null(Reader.GetDecl(FirstDeclID)); if (FirstDecl != D) { // We delay loading of the redeclaration chain to avoid deeply nested calls. // We temporarily set the first (canonical) declaration as the previous one // which is the one that matters and mark the real previous DeclID to be // loaded & attached later on. D->RedeclLink = Redeclarable::PreviousDeclLink(FirstDecl); D->First = FirstDecl->getCanonicalDecl(); } auto *DAsT = static_cast(D); // Note that we need to load local redeclarations of this decl and build a // decl chain for them. This must happen *after* we perform the preloading // above; this ensures that the redeclaration chain is built in the correct // order. if (IsFirstLocalDecl) Reader.PendingDeclChains.push_back(std::make_pair(DAsT, RedeclOffset)); return RedeclarableResult(MergeWith, FirstDeclID, IsKeyDecl); } /// Attempts to merge the given declaration (D) with another declaration /// of the same entity. template void ASTDeclReader::mergeRedeclarable(Redeclarable *DBase, RedeclarableResult &Redecl, DeclID TemplatePatternID) { // If modules are not available, there is no reason to perform this merge. if (!Reader.getContext().getLangOpts().Modules) return; // If we're not the canonical declaration, we don't need to merge. if (!DBase->isFirstDecl()) return; auto *D = static_cast(DBase); if (auto *Existing = Redecl.getKnownMergeTarget()) // We already know of an existing declaration we should merge with. mergeRedeclarable(D, cast(Existing), Redecl, TemplatePatternID); else if (FindExistingResult ExistingRes = findExisting(D)) if (T *Existing = ExistingRes) mergeRedeclarable(D, Existing, Redecl, TemplatePatternID); } /// "Cast" to type T, asserting if we don't have an implicit conversion. /// We use this to put code in a template that will only be valid for certain /// instantiations. template static T assert_cast(T t) { return t; } template static T assert_cast(...) { llvm_unreachable("bad assert_cast"); } /// Merge together the pattern declarations from two template /// declarations. void ASTDeclReader::mergeTemplatePattern(RedeclarableTemplateDecl *D, RedeclarableTemplateDecl *Existing, DeclID DsID, bool IsKeyDecl) { auto *DPattern = D->getTemplatedDecl(); auto *ExistingPattern = Existing->getTemplatedDecl(); RedeclarableResult Result(/*MergeWith*/ ExistingPattern, DPattern->getCanonicalDecl()->getGlobalID(), IsKeyDecl); if (auto *DClass = dyn_cast(DPattern)) { // Merge with any existing definition. // FIXME: This is duplicated in several places. Refactor. auto *ExistingClass = cast(ExistingPattern)->getCanonicalDecl(); if (auto *DDD = DClass->DefinitionData) { if (ExistingClass->DefinitionData) { MergeDefinitionData(ExistingClass, std::move(*DDD)); } else { ExistingClass->DefinitionData = DClass->DefinitionData; // We may have skipped this before because we thought that DClass // was the canonical declaration. Reader.PendingDefinitions.insert(DClass); } } DClass->DefinitionData = ExistingClass->DefinitionData; return mergeRedeclarable(DClass, cast(ExistingPattern), Result); } if (auto *DFunction = dyn_cast(DPattern)) return mergeRedeclarable(DFunction, cast(ExistingPattern), Result); if (auto *DVar = dyn_cast(DPattern)) return mergeRedeclarable(DVar, cast(ExistingPattern), Result); if (auto *DAlias = dyn_cast(DPattern)) return mergeRedeclarable(DAlias, cast(ExistingPattern), Result); llvm_unreachable("merged an unknown kind of redeclarable template"); } /// Attempts to merge the given declaration (D) with another declaration /// of the same entity. template void ASTDeclReader::mergeRedeclarable(Redeclarable *DBase, T *Existing, RedeclarableResult &Redecl, DeclID TemplatePatternID) { auto *D = static_cast(DBase); T *ExistingCanon = Existing->getCanonicalDecl(); T *DCanon = D->getCanonicalDecl(); if (ExistingCanon != DCanon) { assert(DCanon->getGlobalID() == Redecl.getFirstID() && "already merged this declaration"); // Have our redeclaration link point back at the canonical declaration // of the existing declaration, so that this declaration has the // appropriate canonical declaration. D->RedeclLink = Redeclarable::PreviousDeclLink(ExistingCanon); D->First = ExistingCanon; ExistingCanon->Used |= D->Used; D->Used = false; // When we merge a namespace, update its pointer to the first namespace. // We cannot have loaded any redeclarations of this declaration yet, so // there's nothing else that needs to be updated. if (auto *Namespace = dyn_cast(D)) Namespace->AnonOrFirstNamespaceAndInline.setPointer( assert_cast(ExistingCanon)); // When we merge a template, merge its pattern. if (auto *DTemplate = dyn_cast(D)) mergeTemplatePattern( DTemplate, assert_cast(ExistingCanon), TemplatePatternID, Redecl.isKeyDecl()); // If this declaration is a key declaration, make a note of that. if (Redecl.isKeyDecl()) Reader.KeyDecls[ExistingCanon].push_back(Redecl.getFirstID()); } } /// ODR-like semantics for C/ObjC allow us to merge tag types and a structural /// check in Sema guarantees the types can be merged (see C11 6.2.7/1 or C89 /// 6.1.2.6/1). Although most merging is done in Sema, we need to guarantee /// that some types are mergeable during deserialization, otherwise name /// lookup fails. This is the case for EnumConstantDecl. static bool allowODRLikeMergeInC(NamedDecl *ND) { if (!ND) return false; // TODO: implement merge for other necessary decls. if (isa(ND)) return true; return false; } /// Attempts to merge LifetimeExtendedTemporaryDecl with /// identical class definitions from two different modules. void ASTDeclReader::mergeMergeable(LifetimeExtendedTemporaryDecl *D) { // If modules are not available, there is no reason to perform this merge. if (!Reader.getContext().getLangOpts().Modules) return; LifetimeExtendedTemporaryDecl *LETDecl = D; LifetimeExtendedTemporaryDecl *&LookupResult = Reader.LETemporaryForMerging[std::make_pair( LETDecl->getExtendingDecl(), LETDecl->getManglingNumber())]; if (LookupResult) Reader.getContext().setPrimaryMergedDecl(LETDecl, LookupResult->getCanonicalDecl()); else LookupResult = LETDecl; } /// Attempts to merge the given declaration (D) with another declaration /// of the same entity, for the case where the entity is not actually /// redeclarable. This happens, for instance, when merging the fields of /// identical class definitions from two different modules. template void ASTDeclReader::mergeMergeable(Mergeable *D) { // If modules are not available, there is no reason to perform this merge. if (!Reader.getContext().getLangOpts().Modules) return; // ODR-based merging is performed in C++ and in some cases (tag types) in C. // Note that C identically-named things in different translation units are // not redeclarations, but may still have compatible types, where ODR-like // semantics may apply. if (!Reader.getContext().getLangOpts().CPlusPlus && !allowODRLikeMergeInC(dyn_cast(static_cast(D)))) return; if (FindExistingResult ExistingRes = findExisting(static_cast(D))) if (T *Existing = ExistingRes) Reader.getContext().setPrimaryMergedDecl(static_cast(D), Existing->getCanonicalDecl()); } void ASTDeclReader::VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D) { Record.readOMPChildren(D->Data); VisitDecl(D); } void ASTDeclReader::VisitOMPAllocateDecl(OMPAllocateDecl *D) { Record.readOMPChildren(D->Data); VisitDecl(D); } void ASTDeclReader::VisitOMPRequiresDecl(OMPRequiresDecl * D) { Record.readOMPChildren(D->Data); VisitDecl(D); } void ASTDeclReader::VisitOMPDeclareReductionDecl(OMPDeclareReductionDecl *D) { VisitValueDecl(D); D->setLocation(readSourceLocation()); Expr *In = Record.readExpr(); Expr *Out = Record.readExpr(); D->setCombinerData(In, Out); Expr *Combiner = Record.readExpr(); D->setCombiner(Combiner); Expr *Orig = Record.readExpr(); Expr *Priv = Record.readExpr(); D->setInitializerData(Orig, Priv); Expr *Init = Record.readExpr(); auto IK = static_cast(Record.readInt()); D->setInitializer(Init, IK); D->PrevDeclInScope = readDeclID(); } void ASTDeclReader::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) { Record.readOMPChildren(D->Data); VisitValueDecl(D); D->VarName = Record.readDeclarationName(); D->PrevDeclInScope = readDeclID(); } void ASTDeclReader::VisitOMPCapturedExprDecl(OMPCapturedExprDecl *D) { VisitVarDecl(D); } //===----------------------------------------------------------------------===// // Attribute Reading //===----------------------------------------------------------------------===// namespace { class AttrReader { ASTRecordReader &Reader; public: AttrReader(ASTRecordReader &Reader) : Reader(Reader) {} uint64_t readInt() { return Reader.readInt(); } SourceRange readSourceRange() { return Reader.readSourceRange(); } SourceLocation readSourceLocation() { return Reader.readSourceLocation(); } Expr *readExpr() { return Reader.readExpr(); } std::string readString() { return Reader.readString(); } TypeSourceInfo *readTypeSourceInfo() { return Reader.readTypeSourceInfo(); } IdentifierInfo *readIdentifier() { return Reader.readIdentifier(); } VersionTuple readVersionTuple() { return Reader.readVersionTuple(); } OMPTraitInfo *readOMPTraitInfo() { return Reader.readOMPTraitInfo(); } template T *GetLocalDeclAs(uint32_t LocalID) { return Reader.GetLocalDeclAs(LocalID); } }; } Attr *ASTRecordReader::readAttr() { AttrReader Record(*this); auto V = Record.readInt(); if (!V) return nullptr; Attr *New = nullptr; // Kind is stored as a 1-based integer because 0 is used to indicate a null // Attr pointer. auto Kind = static_cast(V - 1); ASTContext &Context = getContext(); IdentifierInfo *AttrName = Record.readIdentifier(); IdentifierInfo *ScopeName = Record.readIdentifier(); SourceRange AttrRange = Record.readSourceRange(); SourceLocation ScopeLoc = Record.readSourceLocation(); unsigned ParsedKind = Record.readInt(); unsigned Syntax = Record.readInt(); unsigned SpellingIndex = Record.readInt(); AttributeCommonInfo Info(AttrName, ScopeName, AttrRange, ScopeLoc, AttributeCommonInfo::Kind(ParsedKind), AttributeCommonInfo::Syntax(Syntax), SpellingIndex); #include "clang/Serialization/AttrPCHRead.inc" assert(New && "Unable to decode attribute?"); return New; } /// Reads attributes from the current stream position. void ASTRecordReader::readAttributes(AttrVec &Attrs) { for (unsigned I = 0, E = readInt(); I != E; ++I) Attrs.push_back(readAttr()); } //===----------------------------------------------------------------------===// // ASTReader Implementation //===----------------------------------------------------------------------===// /// Note that we have loaded the declaration with the given /// Index. /// /// This routine notes that this declaration has already been loaded, /// so that future GetDecl calls will return this declaration rather /// than trying to load a new declaration. inline void ASTReader::LoadedDecl(unsigned Index, Decl *D) { assert(!DeclsLoaded[Index] && "Decl loaded twice?"); DeclsLoaded[Index] = D; } /// Determine whether the consumer will be interested in seeing /// this declaration (via HandleTopLevelDecl). /// /// This routine should return true for anything that might affect /// code generation, e.g., inline function definitions, Objective-C /// declarations with metadata, etc. static bool isConsumerInterestedIn(ASTContext &Ctx, Decl *D, bool HasBody) { // An ObjCMethodDecl is never considered as "interesting" because its // implementation container always is. // An ImportDecl or VarDecl imported from a module map module will get // emitted when we import the relevant module. if (isPartOfPerModuleInitializer(D)) { auto *M = D->getImportedOwningModule(); if (M && M->Kind == Module::ModuleMapModule && Ctx.DeclMustBeEmitted(D)) return false; } if (isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D)) return true; if (isa(D) || isa(D) || isa(D) || isa(D) || isa(D)) return !D->getDeclContext()->isFunctionOrMethod(); if (const auto *Var = dyn_cast(D)) return Var->isFileVarDecl() && (Var->isThisDeclarationADefinition() == VarDecl::Definition || OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Var)); if (const auto *Func = dyn_cast(D)) return Func->doesThisDeclarationHaveABody() || HasBody; if (auto *ES = D->getASTContext().getExternalSource()) if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) return true; return false; } /// Get the correct cursor and offset for loading a declaration. ASTReader::RecordLocation ASTReader::DeclCursorForID(DeclID ID, SourceLocation &Loc) { GlobalDeclMapType::iterator I = GlobalDeclMap.find(ID); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); ModuleFile *M = I->second; const DeclOffset &DOffs = M->DeclOffsets[ID - M->BaseDeclID - NUM_PREDEF_DECL_IDS]; Loc = TranslateSourceLocation(*M, DOffs.getLocation()); return RecordLocation(M, DOffs.getBitOffset(M->DeclsBlockStartOffset)); } ASTReader::RecordLocation ASTReader::getLocalBitOffset(uint64_t GlobalOffset) { auto I = GlobalBitOffsetsMap.find(GlobalOffset); assert(I != GlobalBitOffsetsMap.end() && "Corrupted global bit offsets map"); return RecordLocation(I->second, GlobalOffset - I->second->GlobalBitOffset); } uint64_t ASTReader::getGlobalBitOffset(ModuleFile &M, uint64_t LocalOffset) { return LocalOffset + M.GlobalBitOffset; } static bool isSameTemplateParameterList(const ASTContext &C, const TemplateParameterList *X, const TemplateParameterList *Y); /// Determine whether two template parameters are similar enough /// that they may be used in declarations of the same template. static bool isSameTemplateParameter(const NamedDecl *X, const NamedDecl *Y) { if (X->getKind() != Y->getKind()) return false; if (const auto *TX = dyn_cast(X)) { const auto *TY = cast(Y); if (TX->isParameterPack() != TY->isParameterPack()) return false; if (TX->hasTypeConstraint() != TY->hasTypeConstraint()) return false; const TypeConstraint *TXTC = TX->getTypeConstraint(); const TypeConstraint *TYTC = TY->getTypeConstraint(); if (!TXTC != !TYTC) return false; if (TXTC && TYTC) { if (TXTC->getNamedConcept() != TYTC->getNamedConcept()) return false; if (TXTC->hasExplicitTemplateArgs() != TYTC->hasExplicitTemplateArgs()) return false; if (TXTC->hasExplicitTemplateArgs()) { const auto *TXTCArgs = TXTC->getTemplateArgsAsWritten(); const auto *TYTCArgs = TYTC->getTemplateArgsAsWritten(); if (TXTCArgs->NumTemplateArgs != TYTCArgs->NumTemplateArgs) return false; llvm::FoldingSetNodeID XID, YID; for (const auto &ArgLoc : TXTCArgs->arguments()) ArgLoc.getArgument().Profile(XID, X->getASTContext()); for (const auto &ArgLoc : TYTCArgs->arguments()) ArgLoc.getArgument().Profile(YID, Y->getASTContext()); if (XID != YID) return false; } } return true; } if (const auto *TX = dyn_cast(X)) { const auto *TY = cast(Y); return TX->isParameterPack() == TY->isParameterPack() && TX->getASTContext().hasSameType(TX->getType(), TY->getType()); } const auto *TX = cast(X); const auto *TY = cast(Y); return TX->isParameterPack() == TY->isParameterPack() && isSameTemplateParameterList(TX->getASTContext(), TX->getTemplateParameters(), TY->getTemplateParameters()); } static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) { if (auto *NS = X->getAsNamespace()) return NS; if (auto *NAS = X->getAsNamespaceAlias()) return NAS->getNamespace(); return nullptr; } static bool isSameQualifier(const NestedNameSpecifier *X, const NestedNameSpecifier *Y) { if (auto *NSX = getNamespace(X)) { auto *NSY = getNamespace(Y); if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl()) return false; } else if (X->getKind() != Y->getKind()) return false; // FIXME: For namespaces and types, we're permitted to check that the entity // is named via the same tokens. We should probably do so. switch (X->getKind()) { case NestedNameSpecifier::Identifier: if (X->getAsIdentifier() != Y->getAsIdentifier()) return false; break; case NestedNameSpecifier::Namespace: case NestedNameSpecifier::NamespaceAlias: // We've already checked that we named the same namespace. break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: if (X->getAsType()->getCanonicalTypeInternal() != Y->getAsType()->getCanonicalTypeInternal()) return false; break; case NestedNameSpecifier::Global: case NestedNameSpecifier::Super: return true; } // Recurse into earlier portion of NNS, if any. auto *PX = X->getPrefix(); auto *PY = Y->getPrefix(); if (PX && PY) return isSameQualifier(PX, PY); return !PX && !PY; } /// Determine whether two template parameter lists are similar enough /// that they may be used in declarations of the same template. static bool isSameTemplateParameterList(const ASTContext &C, const TemplateParameterList *X, const TemplateParameterList *Y) { if (X->size() != Y->size()) return false; for (unsigned I = 0, N = X->size(); I != N; ++I) if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I))) return false; const Expr *XRC = X->getRequiresClause(); const Expr *YRC = Y->getRequiresClause(); if (!XRC != !YRC) return false; if (XRC) { llvm::FoldingSetNodeID XRCID, YRCID; XRC->Profile(XRCID, C, /*Canonical=*/true); YRC->Profile(YRCID, C, /*Canonical=*/true); if (XRCID != YRCID) return false; } return true; } /// Determine whether the attributes we can overload on are identical for A and /// B. Will ignore any overloadable attrs represented in the type of A and B. static bool hasSameOverloadableAttrs(const FunctionDecl *A, const FunctionDecl *B) { // Note that pass_object_size attributes are represented in the function's // ExtParameterInfo, so we don't need to check them here. llvm::FoldingSetNodeID Cand1ID, Cand2ID; auto AEnableIfAttrs = A->specific_attrs(); auto BEnableIfAttrs = B->specific_attrs(); for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) { Optional Cand1A = std::get<0>(Pair); Optional Cand2A = std::get<1>(Pair); // Return false if the number of enable_if attributes is different. if (!Cand1A || !Cand2A) return false; Cand1ID.clear(); Cand2ID.clear(); (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true); (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true); // Return false if any of the enable_if expressions of A and B are // different. if (Cand1ID != Cand2ID) return false; } return true; } /// Determine whether the two declarations refer to the same entity. static bool isSameEntity(NamedDecl *X, NamedDecl *Y) { assert(X->getDeclName() == Y->getDeclName() && "Declaration name mismatch!"); if (X == Y) return true; // Must be in the same context. // // Note that we can't use DeclContext::Equals here, because the DeclContexts // could be two different declarations of the same function. (We will fix the // semantic DC to refer to the primary definition after merging.) if (!declaresSameEntity(cast(X->getDeclContext()->getRedeclContext()), cast(Y->getDeclContext()->getRedeclContext()))) return false; // Two typedefs refer to the same entity if they have the same underlying // type. if (const auto *TypedefX = dyn_cast(X)) if (const auto *TypedefY = dyn_cast(Y)) return X->getASTContext().hasSameType(TypedefX->getUnderlyingType(), TypedefY->getUnderlyingType()); // Must have the same kind. if (X->getKind() != Y->getKind()) return false; // Objective-C classes and protocols with the same name always match. if (isa(X) || isa(X)) return true; if (isa(X)) { // No need to handle these here: we merge them when adding them to the // template. return false; } // Compatible tags match. if (const auto *TagX = dyn_cast(X)) { const auto *TagY = cast(Y); return (TagX->getTagKind() == TagY->getTagKind()) || ((TagX->getTagKind() == TTK_Struct || TagX->getTagKind() == TTK_Class || TagX->getTagKind() == TTK_Interface) && (TagY->getTagKind() == TTK_Struct || TagY->getTagKind() == TTK_Class || TagY->getTagKind() == TTK_Interface)); } // Functions with the same type and linkage match. // FIXME: This needs to cope with merging of prototyped/non-prototyped // functions, etc. if (const auto *FuncX = dyn_cast(X)) { const auto *FuncY = cast(Y); if (const auto *CtorX = dyn_cast(X)) { const auto *CtorY = cast(Y); if (CtorX->getInheritedConstructor() && !isSameEntity(CtorX->getInheritedConstructor().getConstructor(), CtorY->getInheritedConstructor().getConstructor())) return false; } if (FuncX->isMultiVersion() != FuncY->isMultiVersion()) return false; // Multiversioned functions with different feature strings are represented // as separate declarations. if (FuncX->isMultiVersion()) { const auto *TAX = FuncX->getAttr(); const auto *TAY = FuncY->getAttr(); assert(TAX && TAY && "Multiversion Function without target attribute"); if (TAX->getFeaturesStr() != TAY->getFeaturesStr()) return false; } ASTContext &C = FuncX->getASTContext(); const Expr *XRC = FuncX->getTrailingRequiresClause(); const Expr *YRC = FuncY->getTrailingRequiresClause(); if (!XRC != !YRC) return false; if (XRC) { llvm::FoldingSetNodeID XRCID, YRCID; XRC->Profile(XRCID, C, /*Canonical=*/true); YRC->Profile(YRCID, C, /*Canonical=*/true); if (XRCID != YRCID) return false; } auto GetTypeAsWritten = [](const FunctionDecl *FD) { // Map to the first declaration that we've already merged into this one. // The TSI of redeclarations might not match (due to calling conventions // being inherited onto the type but not the TSI), but the TSI type of // the first declaration of the function should match across modules. FD = FD->getCanonicalDecl(); return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType() : FD->getType(); }; QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY); if (!C.hasSameType(XT, YT)) { // We can get functions with different types on the redecl chain in C++17 // if they have differing exception specifications and at least one of // the excpetion specs is unresolved. auto *XFPT = XT->getAs(); auto *YFPT = YT->getAs(); if (C.getLangOpts().CPlusPlus17 && XFPT && YFPT && (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) || isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) && C.hasSameFunctionTypeIgnoringExceptionSpec(XT, YT)) return true; return false; } return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() && hasSameOverloadableAttrs(FuncX, FuncY); } // Variables with the same type and linkage match. if (const auto *VarX = dyn_cast(X)) { const auto *VarY = cast(Y); if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) { ASTContext &C = VarX->getASTContext(); if (C.hasSameType(VarX->getType(), VarY->getType())) return true; // We can get decls with different types on the redecl chain. Eg. // template struct S { static T Var[]; }; // #1 // template T S::Var[sizeof(T)]; // #2 // Only? happens when completing an incomplete array type. In this case // when comparing #1 and #2 we should go through their element type. const ArrayType *VarXTy = C.getAsArrayType(VarX->getType()); const ArrayType *VarYTy = C.getAsArrayType(VarY->getType()); if (!VarXTy || !VarYTy) return false; if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType()) return C.hasSameType(VarXTy->getElementType(), VarYTy->getElementType()); } return false; } // Namespaces with the same name and inlinedness match. if (const auto *NamespaceX = dyn_cast(X)) { const auto *NamespaceY = cast(Y); return NamespaceX->isInline() == NamespaceY->isInline(); } // Identical template names and kinds match if their template parameter lists // and patterns match. if (const auto *TemplateX = dyn_cast(X)) { const auto *TemplateY = cast(Y); return isSameEntity(TemplateX->getTemplatedDecl(), TemplateY->getTemplatedDecl()) && isSameTemplateParameterList(TemplateX->getASTContext(), TemplateX->getTemplateParameters(), TemplateY->getTemplateParameters()); } // Fields with the same name and the same type match. if (const auto *FDX = dyn_cast(X)) { const auto *FDY = cast(Y); // FIXME: Also check the bitwidth is odr-equivalent, if any. return X->getASTContext().hasSameType(FDX->getType(), FDY->getType()); } // Indirect fields with the same target field match. if (const auto *IFDX = dyn_cast(X)) { const auto *IFDY = cast(Y); return IFDX->getAnonField()->getCanonicalDecl() == IFDY->getAnonField()->getCanonicalDecl(); } // Enumerators with the same name match. if (isa(X)) // FIXME: Also check the value is odr-equivalent. return true; // Using shadow declarations with the same target match. if (const auto *USX = dyn_cast(X)) { const auto *USY = cast(Y); return USX->getTargetDecl() == USY->getTargetDecl(); } // Using declarations with the same qualifier match. (We already know that // the name matches.) if (const auto *UX = dyn_cast(X)) { const auto *UY = cast(Y); return isSameQualifier(UX->getQualifier(), UY->getQualifier()) && UX->hasTypename() == UY->hasTypename() && UX->isAccessDeclaration() == UY->isAccessDeclaration(); } if (const auto *UX = dyn_cast(X)) { const auto *UY = cast(Y); return isSameQualifier(UX->getQualifier(), UY->getQualifier()) && UX->isAccessDeclaration() == UY->isAccessDeclaration(); } if (const auto *UX = dyn_cast(X)) { return isSameQualifier( UX->getQualifier(), cast(Y)->getQualifier()); } // Using-pack declarations are only created by instantiation, and match if // they're instantiated from matching UnresolvedUsing...Decls. if (const auto *UX = dyn_cast(X)) { return declaresSameEntity( UX->getInstantiatedFromUsingDecl(), cast(Y)->getInstantiatedFromUsingDecl()); } // Namespace alias definitions with the same target match. if (const auto *NAX = dyn_cast(X)) { const auto *NAY = cast(Y); return NAX->getNamespace()->Equals(NAY->getNamespace()); } return false; } /// Find the context in which we should search for previous declarations when /// looking for declarations to merge. DeclContext *ASTDeclReader::getPrimaryContextForMerging(ASTReader &Reader, DeclContext *DC) { if (auto *ND = dyn_cast(DC)) return ND->getOriginalNamespace(); if (auto *RD = dyn_cast(DC)) { // Try to dig out the definition. auto *DD = RD->DefinitionData; if (!DD) DD = RD->getCanonicalDecl()->DefinitionData; // If there's no definition yet, then DC's definition is added by an update // record, but we've not yet loaded that update record. In this case, we // commit to DC being the canonical definition now, and will fix this when // we load the update record. if (!DD) { DD = new (Reader.getContext()) struct CXXRecordDecl::DefinitionData(RD); RD->setCompleteDefinition(true); RD->DefinitionData = DD; RD->getCanonicalDecl()->DefinitionData = DD; // Track that we did this horrible thing so that we can fix it later. Reader.PendingFakeDefinitionData.insert( std::make_pair(DD, ASTReader::PendingFakeDefinitionKind::Fake)); } return DD->Definition; } if (auto *ED = dyn_cast(DC)) return ED->getASTContext().getLangOpts().CPlusPlus? ED->getDefinition() : nullptr; // We can see the TU here only if we have no Sema object. In that case, // there's no TU scope to look in, so using the DC alone is sufficient. if (auto *TU = dyn_cast(DC)) return TU; return nullptr; } ASTDeclReader::FindExistingResult::~FindExistingResult() { // Record that we had a typedef name for linkage whether or not we merge // with that declaration. if (TypedefNameForLinkage) { DeclContext *DC = New->getDeclContext()->getRedeclContext(); Reader.ImportedTypedefNamesForLinkage.insert( std::make_pair(std::make_pair(DC, TypedefNameForLinkage), New)); return; } if (!AddResult || Existing) return; DeclarationName Name = New->getDeclName(); DeclContext *DC = New->getDeclContext()->getRedeclContext(); if (needsAnonymousDeclarationNumber(New)) { setAnonymousDeclForMerging(Reader, New->getLexicalDeclContext(), AnonymousDeclNumber, New); } else if (DC->isTranslationUnit() && !Reader.getContext().getLangOpts().CPlusPlus) { if (Reader.getIdResolver().tryAddTopLevelDecl(New, Name)) Reader.PendingFakeLookupResults[Name.getAsIdentifierInfo()] .push_back(New); } else if (DeclContext *MergeDC = getPrimaryContextForMerging(Reader, DC)) { // Add the declaration to its redeclaration context so later merging // lookups will find it. MergeDC->makeDeclVisibleInContextImpl(New, /*Internal*/true); } } /// Find the declaration that should be merged into, given the declaration found /// by name lookup. If we're merging an anonymous declaration within a typedef, /// we need a matching typedef, and we merge with the type inside it. static NamedDecl *getDeclForMerging(NamedDecl *Found, bool IsTypedefNameForLinkage) { if (!IsTypedefNameForLinkage) return Found; // If we found a typedef declaration that gives a name to some other // declaration, then we want that inner declaration. Declarations from // AST files are handled via ImportedTypedefNamesForLinkage. if (Found->isFromASTFile()) return nullptr; if (auto *TND = dyn_cast(Found)) return TND->getAnonDeclWithTypedefName(/*AnyRedecl*/true); return nullptr; } /// Find the declaration to use to populate the anonymous declaration table /// for the given lexical DeclContext. We only care about finding local /// definitions of the context; we'll merge imported ones as we go. DeclContext * ASTDeclReader::getPrimaryDCForAnonymousDecl(DeclContext *LexicalDC) { // For classes, we track the definition as we merge. if (auto *RD = dyn_cast(LexicalDC)) { auto *DD = RD->getCanonicalDecl()->DefinitionData; return DD ? DD->Definition : nullptr; } // For anything else, walk its merged redeclarations looking for a definition. // Note that we can't just call getDefinition here because the redeclaration // chain isn't wired up. for (auto *D : merged_redecls(cast(LexicalDC))) { if (auto *FD = dyn_cast(D)) if (FD->isThisDeclarationADefinition()) return FD; if (auto *MD = dyn_cast(D)) if (MD->isThisDeclarationADefinition()) return MD; } // No merged definition yet. return nullptr; } NamedDecl *ASTDeclReader::getAnonymousDeclForMerging(ASTReader &Reader, DeclContext *DC, unsigned Index) { // If the lexical context has been merged, look into the now-canonical // definition. auto *CanonDC = cast(DC)->getCanonicalDecl(); // If we've seen this before, return the canonical declaration. auto &Previous = Reader.AnonymousDeclarationsForMerging[CanonDC]; if (Index < Previous.size() && Previous[Index]) return Previous[Index]; // If this is the first time, but we have parsed a declaration of the context, // build the anonymous declaration list from the parsed declaration. auto *PrimaryDC = getPrimaryDCForAnonymousDecl(DC); if (PrimaryDC && !cast(PrimaryDC)->isFromASTFile()) { numberAnonymousDeclsWithin(PrimaryDC, [&](NamedDecl *ND, unsigned Number) { if (Previous.size() == Number) Previous.push_back(cast(ND->getCanonicalDecl())); else Previous[Number] = cast(ND->getCanonicalDecl()); }); } return Index < Previous.size() ? Previous[Index] : nullptr; } void ASTDeclReader::setAnonymousDeclForMerging(ASTReader &Reader, DeclContext *DC, unsigned Index, NamedDecl *D) { auto *CanonDC = cast(DC)->getCanonicalDecl(); auto &Previous = Reader.AnonymousDeclarationsForMerging[CanonDC]; if (Index >= Previous.size()) Previous.resize(Index + 1); if (!Previous[Index]) Previous[Index] = D; } ASTDeclReader::FindExistingResult ASTDeclReader::findExisting(NamedDecl *D) { DeclarationName Name = TypedefNameForLinkage ? TypedefNameForLinkage : D->getDeclName(); if (!Name && !needsAnonymousDeclarationNumber(D)) { // Don't bother trying to find unnamed declarations that are in // unmergeable contexts. FindExistingResult Result(Reader, D, /*Existing=*/nullptr, AnonymousDeclNumber, TypedefNameForLinkage); Result.suppress(); return Result; } DeclContext *DC = D->getDeclContext()->getRedeclContext(); if (TypedefNameForLinkage) { auto It = Reader.ImportedTypedefNamesForLinkage.find( std::make_pair(DC, TypedefNameForLinkage)); if (It != Reader.ImportedTypedefNamesForLinkage.end()) if (isSameEntity(It->second, D)) return FindExistingResult(Reader, D, It->second, AnonymousDeclNumber, TypedefNameForLinkage); // Go on to check in other places in case an existing typedef name // was not imported. } if (needsAnonymousDeclarationNumber(D)) { // This is an anonymous declaration that we may need to merge. Look it up // in its context by number. if (auto *Existing = getAnonymousDeclForMerging( Reader, D->getLexicalDeclContext(), AnonymousDeclNumber)) if (isSameEntity(Existing, D)) return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber, TypedefNameForLinkage); } else if (DC->isTranslationUnit() && !Reader.getContext().getLangOpts().CPlusPlus) { IdentifierResolver &IdResolver = Reader.getIdResolver(); // Temporarily consider the identifier to be up-to-date. We don't want to // cause additional lookups here. class UpToDateIdentifierRAII { IdentifierInfo *II; bool WasOutToDate = false; public: explicit UpToDateIdentifierRAII(IdentifierInfo *II) : II(II) { if (II) { WasOutToDate = II->isOutOfDate(); if (WasOutToDate) II->setOutOfDate(false); } } ~UpToDateIdentifierRAII() { if (WasOutToDate) II->setOutOfDate(true); } } UpToDate(Name.getAsIdentifierInfo()); for (IdentifierResolver::iterator I = IdResolver.begin(Name), IEnd = IdResolver.end(); I != IEnd; ++I) { if (NamedDecl *Existing = getDeclForMerging(*I, TypedefNameForLinkage)) if (isSameEntity(Existing, D)) return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber, TypedefNameForLinkage); } } else if (DeclContext *MergeDC = getPrimaryContextForMerging(Reader, DC)) { DeclContext::lookup_result R = MergeDC->noload_lookup(Name); for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { if (NamedDecl *Existing = getDeclForMerging(*I, TypedefNameForLinkage)) if (isSameEntity(Existing, D)) return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber, TypedefNameForLinkage); } } else { // Not in a mergeable context. return FindExistingResult(Reader); } // If this declaration is from a merged context, make a note that we need to // check that the canonical definition of that context contains the decl. // // FIXME: We should do something similar if we merge two definitions of the // same template specialization into the same CXXRecordDecl. auto MergedDCIt = Reader.MergedDeclContexts.find(D->getLexicalDeclContext()); if (MergedDCIt != Reader.MergedDeclContexts.end() && MergedDCIt->second == D->getDeclContext()) Reader.PendingOdrMergeChecks.push_back(D); return FindExistingResult(Reader, D, /*Existing=*/nullptr, AnonymousDeclNumber, TypedefNameForLinkage); } template Decl *ASTDeclReader::getMostRecentDeclImpl(Redeclarable *D) { return D->RedeclLink.getLatestNotUpdated(); } Decl *ASTDeclReader::getMostRecentDeclImpl(...) { llvm_unreachable("getMostRecentDecl on non-redeclarable declaration"); } Decl *ASTDeclReader::getMostRecentDecl(Decl *D) { assert(D); switch (D->getKind()) { #define ABSTRACT_DECL(TYPE) #define DECL(TYPE, BASE) \ case Decl::TYPE: \ return getMostRecentDeclImpl(cast(D)); #include "clang/AST/DeclNodes.inc" } llvm_unreachable("unknown decl kind"); } Decl *ASTReader::getMostRecentExistingDecl(Decl *D) { return ASTDeclReader::getMostRecentDecl(D->getCanonicalDecl()); } void ASTDeclReader::mergeInheritableAttributes(ASTReader &Reader, Decl *D, Decl *Previous) { InheritableAttr *NewAttr = nullptr; ASTContext &Context = Reader.getContext(); const auto *IA = Previous->getAttr(); if (IA && !D->hasAttr()) { NewAttr = cast(IA->clone(Context)); NewAttr->setInherited(true); D->addAttr(NewAttr); } } template void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader, Redeclarable *D, Decl *Previous, Decl *Canon) { D->RedeclLink.setPrevious(cast(Previous)); D->First = cast(Previous)->First; } namespace clang { template<> void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader, Redeclarable *D, Decl *Previous, Decl *Canon) { auto *VD = static_cast(D); auto *PrevVD = cast(Previous); D->RedeclLink.setPrevious(PrevVD); D->First = PrevVD->First; // We should keep at most one definition on the chain. // FIXME: Cache the definition once we've found it. Building a chain with // N definitions currently takes O(N^2) time here. if (VD->isThisDeclarationADefinition() == VarDecl::Definition) { for (VarDecl *CurD = PrevVD; CurD; CurD = CurD->getPreviousDecl()) { if (CurD->isThisDeclarationADefinition() == VarDecl::Definition) { Reader.mergeDefinitionVisibility(CurD, VD); VD->demoteThisDefinitionToDeclaration(); break; } } } } static bool isUndeducedReturnType(QualType T) { auto *DT = T->getContainedDeducedType(); return DT && !DT->isDeduced(); } template<> void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader, Redeclarable *D, Decl *Previous, Decl *Canon) { auto *FD = static_cast(D); auto *PrevFD = cast(Previous); FD->RedeclLink.setPrevious(PrevFD); FD->First = PrevFD->First; // If the previous declaration is an inline function declaration, then this // declaration is too. if (PrevFD->isInlined() != FD->isInlined()) { // FIXME: [dcl.fct.spec]p4: // If a function with external linkage is declared inline in one // translation unit, it shall be declared inline in all translation // units in which it appears. // // Be careful of this case: // // module A: // template struct X { void f(); }; // template inline void X::f() {} // // module B instantiates the declaration of X::f // module C instantiates the definition of X::f // // If module B and C are merged, we do not have a violation of this rule. FD->setImplicitlyInline(true); } auto *FPT = FD->getType()->getAs(); auto *PrevFPT = PrevFD->getType()->getAs(); if (FPT && PrevFPT) { // If we need to propagate an exception specification along the redecl // chain, make a note of that so that we can do so later. bool IsUnresolved = isUnresolvedExceptionSpec(FPT->getExceptionSpecType()); bool WasUnresolved = isUnresolvedExceptionSpec(PrevFPT->getExceptionSpecType()); if (IsUnresolved != WasUnresolved) Reader.PendingExceptionSpecUpdates.insert( {Canon, IsUnresolved ? PrevFD : FD}); // If we need to propagate a deduced return type along the redecl chain, // make a note of that so that we can do it later. bool IsUndeduced = isUndeducedReturnType(FPT->getReturnType()); bool WasUndeduced = isUndeducedReturnType(PrevFPT->getReturnType()); if (IsUndeduced != WasUndeduced) Reader.PendingDeducedTypeUpdates.insert( {cast(Canon), (IsUndeduced ? PrevFPT : FPT)->getReturnType()}); } } } // namespace clang void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader, ...) { llvm_unreachable("attachPreviousDecl on non-redeclarable declaration"); } /// Inherit the default template argument from \p From to \p To. Returns /// \c false if there is no default template for \p From. template static bool inheritDefaultTemplateArgument(ASTContext &Context, ParmDecl *From, Decl *ToD) { auto *To = cast(ToD); if (!From->hasDefaultArgument()) return false; To->setInheritedDefaultArgument(Context, From); return true; } static void inheritDefaultTemplateArguments(ASTContext &Context, TemplateDecl *From, TemplateDecl *To) { auto *FromTP = From->getTemplateParameters(); auto *ToTP = To->getTemplateParameters(); assert(FromTP->size() == ToTP->size() && "merged mismatched templates?"); for (unsigned I = 0, N = FromTP->size(); I != N; ++I) { NamedDecl *FromParam = FromTP->getParam(I); NamedDecl *ToParam = ToTP->getParam(I); if (auto *FTTP = dyn_cast(FromParam)) inheritDefaultTemplateArgument(Context, FTTP, ToParam); else if (auto *FNTTP = dyn_cast(FromParam)) inheritDefaultTemplateArgument(Context, FNTTP, ToParam); else inheritDefaultTemplateArgument( Context, cast(FromParam), ToParam); } } void ASTDeclReader::attachPreviousDecl(ASTReader &Reader, Decl *D, Decl *Previous, Decl *Canon) { assert(D && Previous); switch (D->getKind()) { #define ABSTRACT_DECL(TYPE) #define DECL(TYPE, BASE) \ case Decl::TYPE: \ attachPreviousDeclImpl(Reader, cast(D), Previous, Canon); \ break; #include "clang/AST/DeclNodes.inc" } // If the declaration was visible in one module, a redeclaration of it in // another module remains visible even if it wouldn't be visible by itself. // // FIXME: In this case, the declaration should only be visible if a module // that makes it visible has been imported. D->IdentifierNamespace |= Previous->IdentifierNamespace & (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type); // If the declaration declares a template, it may inherit default arguments // from the previous declaration. if (auto *TD = dyn_cast(D)) inheritDefaultTemplateArguments(Reader.getContext(), cast(Previous), TD); // If any of the declaration in the chain contains an Inheritable attribute, // it needs to be added to all the declarations in the redeclarable chain. // FIXME: Only the logic of merging MSInheritableAttr is present, it should // be extended for all inheritable attributes. mergeInheritableAttributes(Reader, D, Previous); } template void ASTDeclReader::attachLatestDeclImpl(Redeclarable *D, Decl *Latest) { D->RedeclLink.setLatest(cast(Latest)); } void ASTDeclReader::attachLatestDeclImpl(...) { llvm_unreachable("attachLatestDecl on non-redeclarable declaration"); } void ASTDeclReader::attachLatestDecl(Decl *D, Decl *Latest) { assert(D && Latest); switch (D->getKind()) { #define ABSTRACT_DECL(TYPE) #define DECL(TYPE, BASE) \ case Decl::TYPE: \ attachLatestDeclImpl(cast(D), Latest); \ break; #include "clang/AST/DeclNodes.inc" } } template void ASTDeclReader::markIncompleteDeclChainImpl(Redeclarable *D) { D->RedeclLink.markIncomplete(); } void ASTDeclReader::markIncompleteDeclChainImpl(...) { llvm_unreachable("markIncompleteDeclChain on non-redeclarable declaration"); } void ASTReader::markIncompleteDeclChain(Decl *D) { switch (D->getKind()) { #define ABSTRACT_DECL(TYPE) #define DECL(TYPE, BASE) \ case Decl::TYPE: \ ASTDeclReader::markIncompleteDeclChainImpl(cast(D)); \ break; #include "clang/AST/DeclNodes.inc" } } /// Read the declaration at the given offset from the AST file. Decl *ASTReader::ReadDeclRecord(DeclID ID) { unsigned Index = ID - NUM_PREDEF_DECL_IDS; SourceLocation DeclLoc; RecordLocation Loc = DeclCursorForID(ID, DeclLoc); llvm::BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor; // Keep track of where we are in the stream, then jump back there // after reading this declaration. SavedStreamPosition SavedPosition(DeclsCursor); ReadingKindTracker ReadingKind(Read_Decl, *this); // Note that we are loading a declaration record. Deserializing ADecl(this); auto Fail = [](const char *what, llvm::Error &&Err) { llvm::report_fatal_error(Twine("ASTReader::readDeclRecord failed ") + what + ": " + toString(std::move(Err))); }; if (llvm::Error JumpFailed = DeclsCursor.JumpToBit(Loc.Offset)) Fail("jumping", std::move(JumpFailed)); ASTRecordReader Record(*this, *Loc.F); ASTDeclReader Reader(*this, Record, Loc, ID, DeclLoc); Expected MaybeCode = DeclsCursor.ReadCode(); if (!MaybeCode) Fail("reading code", MaybeCode.takeError()); unsigned Code = MaybeCode.get(); ASTContext &Context = getContext(); Decl *D = nullptr; Expected MaybeDeclCode = Record.readRecord(DeclsCursor, Code); if (!MaybeDeclCode) llvm::report_fatal_error( "ASTReader::readDeclRecord failed reading decl code: " + toString(MaybeDeclCode.takeError())); switch ((DeclCode)MaybeDeclCode.get()) { case DECL_CONTEXT_LEXICAL: case DECL_CONTEXT_VISIBLE: llvm_unreachable("Record cannot be de-serialized with readDeclRecord"); case DECL_TYPEDEF: D = TypedefDecl::CreateDeserialized(Context, ID); break; case DECL_TYPEALIAS: D = TypeAliasDecl::CreateDeserialized(Context, ID); break; case DECL_ENUM: D = EnumDecl::CreateDeserialized(Context, ID); break; case DECL_RECORD: D = RecordDecl::CreateDeserialized(Context, ID); break; case DECL_ENUM_CONSTANT: D = EnumConstantDecl::CreateDeserialized(Context, ID); break; case DECL_FUNCTION: D = FunctionDecl::CreateDeserialized(Context, ID); break; case DECL_LINKAGE_SPEC: D = LinkageSpecDecl::CreateDeserialized(Context, ID); break; case DECL_EXPORT: D = ExportDecl::CreateDeserialized(Context, ID); break; case DECL_LABEL: D = LabelDecl::CreateDeserialized(Context, ID); break; case DECL_NAMESPACE: D = NamespaceDecl::CreateDeserialized(Context, ID); break; case DECL_NAMESPACE_ALIAS: D = NamespaceAliasDecl::CreateDeserialized(Context, ID); break; case DECL_USING: D = UsingDecl::CreateDeserialized(Context, ID); break; case DECL_USING_PACK: D = UsingPackDecl::CreateDeserialized(Context, ID, Record.readInt()); break; case DECL_USING_SHADOW: D = UsingShadowDecl::CreateDeserialized(Context, ID); break; case DECL_USING_ENUM: D = UsingEnumDecl::CreateDeserialized(Context, ID); break; case DECL_CONSTRUCTOR_USING_SHADOW: D = ConstructorUsingShadowDecl::CreateDeserialized(Context, ID); break; case DECL_USING_DIRECTIVE: D = UsingDirectiveDecl::CreateDeserialized(Context, ID); break; case DECL_UNRESOLVED_USING_VALUE: D = UnresolvedUsingValueDecl::CreateDeserialized(Context, ID); break; case DECL_UNRESOLVED_USING_TYPENAME: D = UnresolvedUsingTypenameDecl::CreateDeserialized(Context, ID); break; case DECL_UNRESOLVED_USING_IF_EXISTS: D = UnresolvedUsingIfExistsDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_RECORD: D = CXXRecordDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_DEDUCTION_GUIDE: D = CXXDeductionGuideDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_METHOD: D = CXXMethodDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_CONSTRUCTOR: D = CXXConstructorDecl::CreateDeserialized(Context, ID, Record.readInt()); break; case DECL_CXX_DESTRUCTOR: D = CXXDestructorDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_CONVERSION: D = CXXConversionDecl::CreateDeserialized(Context, ID); break; case DECL_ACCESS_SPEC: D = AccessSpecDecl::CreateDeserialized(Context, ID); break; case DECL_FRIEND: D = FriendDecl::CreateDeserialized(Context, ID, Record.readInt()); break; case DECL_FRIEND_TEMPLATE: D = FriendTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_CLASS_TEMPLATE: D = ClassTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_CLASS_TEMPLATE_SPECIALIZATION: D = ClassTemplateSpecializationDecl::CreateDeserialized(Context, ID); break; case DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION: D = ClassTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID); break; case DECL_VAR_TEMPLATE: D = VarTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_VAR_TEMPLATE_SPECIALIZATION: D = VarTemplateSpecializationDecl::CreateDeserialized(Context, ID); break; case DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION: D = VarTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID); break; case DECL_CLASS_SCOPE_FUNCTION_SPECIALIZATION: D = ClassScopeFunctionSpecializationDecl::CreateDeserialized(Context, ID); break; case DECL_FUNCTION_TEMPLATE: D = FunctionTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_TEMPLATE_TYPE_PARM: { bool HasTypeConstraint = Record.readInt(); D = TemplateTypeParmDecl::CreateDeserialized(Context, ID, HasTypeConstraint); break; } case DECL_NON_TYPE_TEMPLATE_PARM: { bool HasTypeConstraint = Record.readInt(); D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID, HasTypeConstraint); break; } case DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK: { bool HasTypeConstraint = Record.readInt(); D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID, Record.readInt(), HasTypeConstraint); break; } case DECL_TEMPLATE_TEMPLATE_PARM: D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID); break; case DECL_EXPANDED_TEMPLATE_TEMPLATE_PARM_PACK: D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID, Record.readInt()); break; case DECL_TYPE_ALIAS_TEMPLATE: D = TypeAliasTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_CONCEPT: D = ConceptDecl::CreateDeserialized(Context, ID); break; case DECL_REQUIRES_EXPR_BODY: D = RequiresExprBodyDecl::CreateDeserialized(Context, ID); break; case DECL_STATIC_ASSERT: D = StaticAssertDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_METHOD: D = ObjCMethodDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_INTERFACE: D = ObjCInterfaceDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_IVAR: D = ObjCIvarDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_PROTOCOL: D = ObjCProtocolDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_AT_DEFS_FIELD: D = ObjCAtDefsFieldDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_CATEGORY: D = ObjCCategoryDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_CATEGORY_IMPL: D = ObjCCategoryImplDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_IMPLEMENTATION: D = ObjCImplementationDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_COMPATIBLE_ALIAS: D = ObjCCompatibleAliasDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_PROPERTY: D = ObjCPropertyDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_PROPERTY_IMPL: D = ObjCPropertyImplDecl::CreateDeserialized(Context, ID); break; case DECL_FIELD: D = FieldDecl::CreateDeserialized(Context, ID); break; case DECL_INDIRECTFIELD: D = IndirectFieldDecl::CreateDeserialized(Context, ID); break; case DECL_VAR: D = VarDecl::CreateDeserialized(Context, ID); break; case DECL_IMPLICIT_PARAM: D = ImplicitParamDecl::CreateDeserialized(Context, ID); break; case DECL_PARM_VAR: D = ParmVarDecl::CreateDeserialized(Context, ID); break; case DECL_DECOMPOSITION: D = DecompositionDecl::CreateDeserialized(Context, ID, Record.readInt()); break; case DECL_BINDING: D = BindingDecl::CreateDeserialized(Context, ID); break; case DECL_FILE_SCOPE_ASM: D = FileScopeAsmDecl::CreateDeserialized(Context, ID); break; case DECL_BLOCK: D = BlockDecl::CreateDeserialized(Context, ID); break; case DECL_MS_PROPERTY: D = MSPropertyDecl::CreateDeserialized(Context, ID); break; case DECL_MS_GUID: D = MSGuidDecl::CreateDeserialized(Context, ID); break; case DECL_TEMPLATE_PARAM_OBJECT: D = TemplateParamObjectDecl::CreateDeserialized(Context, ID); break; case DECL_CAPTURED: D = CapturedDecl::CreateDeserialized(Context, ID, Record.readInt()); break; case DECL_CXX_BASE_SPECIFIERS: Error("attempt to read a C++ base-specifier record as a declaration"); return nullptr; case DECL_CXX_CTOR_INITIALIZERS: Error("attempt to read a C++ ctor initializer record as a declaration"); return nullptr; case DECL_IMPORT: // Note: last entry of the ImportDecl record is the number of stored source // locations. D = ImportDecl::CreateDeserialized(Context, ID, Record.back()); break; case DECL_OMP_THREADPRIVATE: { Record.skipInts(1); unsigned NumChildren = Record.readInt(); Record.skipInts(1); D = OMPThreadPrivateDecl::CreateDeserialized(Context, ID, NumChildren); break; } case DECL_OMP_ALLOCATE: { unsigned NumClauses = Record.readInt(); unsigned NumVars = Record.readInt(); Record.skipInts(1); D = OMPAllocateDecl::CreateDeserialized(Context, ID, NumVars, NumClauses); break; } case DECL_OMP_REQUIRES: { unsigned NumClauses = Record.readInt(); Record.skipInts(2); D = OMPRequiresDecl::CreateDeserialized(Context, ID, NumClauses); break; } case DECL_OMP_DECLARE_REDUCTION: D = OMPDeclareReductionDecl::CreateDeserialized(Context, ID); break; case DECL_OMP_DECLARE_MAPPER: { unsigned NumClauses = Record.readInt(); Record.skipInts(2); D = OMPDeclareMapperDecl::CreateDeserialized(Context, ID, NumClauses); break; } case DECL_OMP_CAPTUREDEXPR: D = OMPCapturedExprDecl::CreateDeserialized(Context, ID); break; case DECL_PRAGMA_COMMENT: D = PragmaCommentDecl::CreateDeserialized(Context, ID, Record.readInt()); break; case DECL_PRAGMA_DETECT_MISMATCH: D = PragmaDetectMismatchDecl::CreateDeserialized(Context, ID, Record.readInt()); break; case DECL_EMPTY: D = EmptyDecl::CreateDeserialized(Context, ID); break; case DECL_LIFETIME_EXTENDED_TEMPORARY: D = LifetimeExtendedTemporaryDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_TYPE_PARAM: D = ObjCTypeParamDecl::CreateDeserialized(Context, ID); break; } assert(D && "Unknown declaration reading AST file"); LoadedDecl(Index, D); // Set the DeclContext before doing any deserialization, to make sure internal // calls to Decl::getASTContext() by Decl's methods will find the // TranslationUnitDecl without crashing. D->setDeclContext(Context.getTranslationUnitDecl()); Reader.Visit(D); // If this declaration is also a declaration context, get the // offsets for its tables of lexical and visible declarations. if (auto *DC = dyn_cast(D)) { std::pair Offsets = Reader.VisitDeclContext(DC); if (Offsets.first && ReadLexicalDeclContextStorage(*Loc.F, DeclsCursor, Offsets.first, DC)) return nullptr; if (Offsets.second && ReadVisibleDeclContextStorage(*Loc.F, DeclsCursor, Offsets.second, ID)) return nullptr; } assert(Record.getIdx() == Record.size()); // Load any relevant update records. PendingUpdateRecords.push_back( PendingUpdateRecord(ID, D, /*JustLoaded=*/true)); // Load the categories after recursive loading is finished. if (auto *Class = dyn_cast(D)) // If we already have a definition when deserializing the ObjCInterfaceDecl, // we put the Decl in PendingDefinitions so we can pull the categories here. if (Class->isThisDeclarationADefinition() || PendingDefinitions.count(Class)) loadObjCCategories(ID, Class); // If we have deserialized a declaration that has a definition the // AST consumer might need to know about, queue it. // We don't pass it to the consumer immediately because we may be in recursive // loading, and some declarations may still be initializing. PotentiallyInterestingDecls.push_back( InterestingDecl(D, Reader.hasPendingBody())); return D; } void ASTReader::PassInterestingDeclsToConsumer() { assert(Consumer); if (PassingDeclsToConsumer) return; // Guard variable to avoid recursively redoing the process of passing // decls to consumer. SaveAndRestore GuardPassingDeclsToConsumer(PassingDeclsToConsumer, true); // Ensure that we've loaded all potentially-interesting declarations // that need to be eagerly loaded. for (auto ID : EagerlyDeserializedDecls) GetDecl(ID); EagerlyDeserializedDecls.clear(); while (!PotentiallyInterestingDecls.empty()) { InterestingDecl D = PotentiallyInterestingDecls.front(); PotentiallyInterestingDecls.pop_front(); if (isConsumerInterestedIn(getContext(), D.getDecl(), D.hasPendingBody())) PassInterestingDeclToConsumer(D.getDecl()); } } void ASTReader::loadDeclUpdateRecords(PendingUpdateRecord &Record) { // The declaration may have been modified by files later in the chain. // If this is the case, read the record containing the updates from each file // and pass it to ASTDeclReader to make the modifications. serialization::GlobalDeclID ID = Record.ID; Decl *D = Record.D; ProcessingUpdatesRAIIObj ProcessingUpdates(*this); DeclUpdateOffsetsMap::iterator UpdI = DeclUpdateOffsets.find(ID); SmallVector PendingLazySpecializationIDs; if (UpdI != DeclUpdateOffsets.end()) { auto UpdateOffsets = std::move(UpdI->second); DeclUpdateOffsets.erase(UpdI); // Check if this decl was interesting to the consumer. If we just loaded // the declaration, then we know it was interesting and we skip the call // to isConsumerInterestedIn because it is unsafe to call in the // current ASTReader state. bool WasInteresting = Record.JustLoaded || isConsumerInterestedIn(getContext(), D, false); for (auto &FileAndOffset : UpdateOffsets) { ModuleFile *F = FileAndOffset.first; uint64_t Offset = FileAndOffset.second; llvm::BitstreamCursor &Cursor = F->DeclsCursor; SavedStreamPosition SavedPosition(Cursor); if (llvm::Error JumpFailed = Cursor.JumpToBit(Offset)) // FIXME don't do a fatal error. llvm::report_fatal_error( "ASTReader::loadDeclUpdateRecords failed jumping: " + toString(std::move(JumpFailed))); Expected MaybeCode = Cursor.ReadCode(); if (!MaybeCode) llvm::report_fatal_error( "ASTReader::loadDeclUpdateRecords failed reading code: " + toString(MaybeCode.takeError())); unsigned Code = MaybeCode.get(); ASTRecordReader Record(*this, *F); if (Expected MaybeRecCode = Record.readRecord(Cursor, Code)) assert(MaybeRecCode.get() == DECL_UPDATES && "Expected DECL_UPDATES record!"); else llvm::report_fatal_error( "ASTReader::loadDeclUpdateRecords failed reading rec code: " + toString(MaybeCode.takeError())); ASTDeclReader Reader(*this, Record, RecordLocation(F, Offset), ID, SourceLocation()); Reader.UpdateDecl(D, PendingLazySpecializationIDs); // We might have made this declaration interesting. If so, remember that // we need to hand it off to the consumer. if (!WasInteresting && isConsumerInterestedIn(getContext(), D, Reader.hasPendingBody())) { PotentiallyInterestingDecls.push_back( InterestingDecl(D, Reader.hasPendingBody())); WasInteresting = true; } } } // Add the lazy specializations to the template. assert((PendingLazySpecializationIDs.empty() || isa(D) || isa(D) || isa(D)) && "Must not have pending specializations"); if (auto *CTD = dyn_cast(D)) ASTDeclReader::AddLazySpecializations(CTD, PendingLazySpecializationIDs); else if (auto *FTD = dyn_cast(D)) ASTDeclReader::AddLazySpecializations(FTD, PendingLazySpecializationIDs); else if (auto *VTD = dyn_cast(D)) ASTDeclReader::AddLazySpecializations(VTD, PendingLazySpecializationIDs); PendingLazySpecializationIDs.clear(); // Load the pending visible updates for this decl context, if it has any. auto I = PendingVisibleUpdates.find(ID); if (I != PendingVisibleUpdates.end()) { auto VisibleUpdates = std::move(I->second); PendingVisibleUpdates.erase(I); auto *DC = cast(D)->getPrimaryContext(); for (const auto &Update : VisibleUpdates) Lookups[DC].Table.add( Update.Mod, Update.Data, reader::ASTDeclContextNameLookupTrait(*this, *Update.Mod)); DC->setHasExternalVisibleStorage(true); } } void ASTReader::loadPendingDeclChain(Decl *FirstLocal, uint64_t LocalOffset) { // Attach FirstLocal to the end of the decl chain. Decl *CanonDecl = FirstLocal->getCanonicalDecl(); if (FirstLocal != CanonDecl) { Decl *PrevMostRecent = ASTDeclReader::getMostRecentDecl(CanonDecl); ASTDeclReader::attachPreviousDecl( *this, FirstLocal, PrevMostRecent ? PrevMostRecent : CanonDecl, CanonDecl); } if (!LocalOffset) { ASTDeclReader::attachLatestDecl(CanonDecl, FirstLocal); return; } // Load the list of other redeclarations from this module file. ModuleFile *M = getOwningModuleFile(FirstLocal); assert(M && "imported decl from no module file"); llvm::BitstreamCursor &Cursor = M->DeclsCursor; SavedStreamPosition SavedPosition(Cursor); if (llvm::Error JumpFailed = Cursor.JumpToBit(LocalOffset)) llvm::report_fatal_error( "ASTReader::loadPendingDeclChain failed jumping: " + toString(std::move(JumpFailed))); RecordData Record; Expected MaybeCode = Cursor.ReadCode(); if (!MaybeCode) llvm::report_fatal_error( "ASTReader::loadPendingDeclChain failed reading code: " + toString(MaybeCode.takeError())); unsigned Code = MaybeCode.get(); if (Expected MaybeRecCode = Cursor.readRecord(Code, Record)) assert(MaybeRecCode.get() == LOCAL_REDECLARATIONS && "expected LOCAL_REDECLARATIONS record!"); else llvm::report_fatal_error( "ASTReader::loadPendingDeclChain failed reading rec code: " + toString(MaybeCode.takeError())); // FIXME: We have several different dispatches on decl kind here; maybe // we should instead generate one loop per kind and dispatch up-front? Decl *MostRecent = FirstLocal; for (unsigned I = 0, N = Record.size(); I != N; ++I) { auto *D = GetLocalDecl(*M, Record[N - I - 1]); ASTDeclReader::attachPreviousDecl(*this, D, MostRecent, CanonDecl); MostRecent = D; } ASTDeclReader::attachLatestDecl(CanonDecl, MostRecent); } namespace { /// Given an ObjC interface, goes through the modules and links to the /// interface all the categories for it. class ObjCCategoriesVisitor { ASTReader &Reader; ObjCInterfaceDecl *Interface; llvm::SmallPtrSetImpl &Deserialized; ObjCCategoryDecl *Tail = nullptr; llvm::DenseMap NameCategoryMap; serialization::GlobalDeclID InterfaceID; unsigned PreviousGeneration; void add(ObjCCategoryDecl *Cat) { // Only process each category once. if (!Deserialized.erase(Cat)) return; // Check for duplicate categories. if (Cat->getDeclName()) { ObjCCategoryDecl *&Existing = NameCategoryMap[Cat->getDeclName()]; if (Existing && Reader.getOwningModuleFile(Existing) != Reader.getOwningModuleFile(Cat)) { // FIXME: We should not warn for duplicates in diamond: // // MT // // / \ // // ML MR // // \ / // // MB // // // If there are duplicates in ML/MR, there will be warning when // creating MB *and* when importing MB. We should not warn when // importing. Reader.Diag(Cat->getLocation(), diag::warn_dup_category_def) << Interface->getDeclName() << Cat->getDeclName(); Reader.Diag(Existing->getLocation(), diag::note_previous_definition); } else if (!Existing) { // Record this category. Existing = Cat; } } // Add this category to the end of the chain. if (Tail) ASTDeclReader::setNextObjCCategory(Tail, Cat); else Interface->setCategoryListRaw(Cat); Tail = Cat; } public: ObjCCategoriesVisitor(ASTReader &Reader, ObjCInterfaceDecl *Interface, llvm::SmallPtrSetImpl &Deserialized, serialization::GlobalDeclID InterfaceID, unsigned PreviousGeneration) : Reader(Reader), Interface(Interface), Deserialized(Deserialized), InterfaceID(InterfaceID), PreviousGeneration(PreviousGeneration) { // Populate the name -> category map with the set of known categories. for (auto *Cat : Interface->known_categories()) { if (Cat->getDeclName()) NameCategoryMap[Cat->getDeclName()] = Cat; // Keep track of the tail of the category list. Tail = Cat; } } bool operator()(ModuleFile &M) { // If we've loaded all of the category information we care about from // this module file, we're done. if (M.Generation <= PreviousGeneration) return true; // Map global ID of the definition down to the local ID used in this // module file. If there is no such mapping, we'll find nothing here // (or in any module it imports). DeclID LocalID = Reader.mapGlobalIDToModuleFileGlobalID(M, InterfaceID); if (!LocalID) return true; // Perform a binary search to find the local redeclarations for this // declaration (if any). const ObjCCategoriesInfo Compare = { LocalID, 0 }; const ObjCCategoriesInfo *Result = std::lower_bound(M.ObjCCategoriesMap, M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap, Compare); if (Result == M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap || Result->DefinitionID != LocalID) { // We didn't find anything. If the class definition is in this module // file, then the module files it depends on cannot have any categories, // so suppress further lookup. return Reader.isDeclIDFromModule(InterfaceID, M); } // We found something. Dig out all of the categories. unsigned Offset = Result->Offset; unsigned N = M.ObjCCategories[Offset]; M.ObjCCategories[Offset++] = 0; // Don't try to deserialize again for (unsigned I = 0; I != N; ++I) add(cast_or_null( Reader.GetLocalDecl(M, M.ObjCCategories[Offset++]))); return true; } }; } // namespace void ASTReader::loadObjCCategories(serialization::GlobalDeclID ID, ObjCInterfaceDecl *D, unsigned PreviousGeneration) { ObjCCategoriesVisitor Visitor(*this, D, CategoriesDeserialized, ID, PreviousGeneration); ModuleMgr.visit(Visitor); } template static void forAllLaterRedecls(DeclT *D, Fn F) { F(D); // Check whether we've already merged D into its redeclaration chain. // MostRecent may or may not be nullptr if D has not been merged. If // not, walk the merged redecl chain and see if it's there. auto *MostRecent = D->getMostRecentDecl(); bool Found = false; for (auto *Redecl = MostRecent; Redecl && !Found; Redecl = Redecl->getPreviousDecl()) Found = (Redecl == D); // If this declaration is merged, apply the functor to all later decls. if (Found) { for (auto *Redecl = MostRecent; Redecl != D; Redecl = Redecl->getPreviousDecl()) F(Redecl); } } void ASTDeclReader::UpdateDecl(Decl *D, llvm::SmallVectorImpl &PendingLazySpecializationIDs) { while (Record.getIdx() < Record.size()) { switch ((DeclUpdateKind)Record.readInt()) { case UPD_CXX_ADDED_IMPLICIT_MEMBER: { auto *RD = cast(D); // FIXME: If we also have an update record for instantiating the // definition of D, we need that to happen before we get here. Decl *MD = Record.readDecl(); assert(MD && "couldn't read decl from update record"); // FIXME: We should call addHiddenDecl instead, to add the member // to its DeclContext. RD->addedMember(MD); break; } case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION: // It will be added to the template's lazy specialization set. PendingLazySpecializationIDs.push_back(readDeclID()); break; case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE: { auto *Anon = readDeclAs(); // Each module has its own anonymous namespace, which is disjoint from // any other module's anonymous namespaces, so don't attach the anonymous // namespace at all. if (!Record.isModule()) { if (auto *TU = dyn_cast(D)) TU->setAnonymousNamespace(Anon); else cast(D)->setAnonymousNamespace(Anon); } break; } case UPD_CXX_ADDED_VAR_DEFINITION: { auto *VD = cast(D); VD->NonParmVarDeclBits.IsInline = Record.readInt(); VD->NonParmVarDeclBits.IsInlineSpecified = Record.readInt(); uint64_t Val = Record.readInt(); if (Val && !VD->getInit()) { VD->setInit(Record.readExpr()); if (Val != 1) { EvaluatedStmt *Eval = VD->ensureEvaluatedStmt(); Eval->HasConstantInitialization = (Val & 2) != 0; Eval->HasConstantDestruction = (Val & 4) != 0; } } break; } case UPD_CXX_POINT_OF_INSTANTIATION: { SourceLocation POI = Record.readSourceLocation(); if (auto *VTSD = dyn_cast(D)) { VTSD->setPointOfInstantiation(POI); } else if (auto *VD = dyn_cast(D)) { VD->getMemberSpecializationInfo()->setPointOfInstantiation(POI); } else { auto *FD = cast(D); if (auto *FTSInfo = FD->TemplateOrSpecialization .dyn_cast()) FTSInfo->setPointOfInstantiation(POI); else FD->TemplateOrSpecialization.get() ->setPointOfInstantiation(POI); } break; } case UPD_CXX_INSTANTIATED_DEFAULT_ARGUMENT: { auto *Param = cast(D); // We have to read the default argument regardless of whether we use it // so that hypothetical further update records aren't messed up. // TODO: Add a function to skip over the next expr record. auto *DefaultArg = Record.readExpr(); // Only apply the update if the parameter still has an uninstantiated // default argument. if (Param->hasUninstantiatedDefaultArg()) Param->setDefaultArg(DefaultArg); break; } case UPD_CXX_INSTANTIATED_DEFAULT_MEMBER_INITIALIZER: { auto *FD = cast(D); auto *DefaultInit = Record.readExpr(); // Only apply the update if the field still has an uninstantiated // default member initializer. if (FD->hasInClassInitializer() && !FD->getInClassInitializer()) { if (DefaultInit) FD->setInClassInitializer(DefaultInit); else // Instantiation failed. We can get here if we serialized an AST for // an invalid program. FD->removeInClassInitializer(); } break; } case UPD_CXX_ADDED_FUNCTION_DEFINITION: { auto *FD = cast(D); if (Reader.PendingBodies[FD]) { // FIXME: Maybe check for ODR violations. // It's safe to stop now because this update record is always last. return; } if (Record.readInt()) { // Maintain AST consistency: any later redeclarations of this function // are inline if this one is. (We might have merged another declaration // into this one.) forAllLaterRedecls(FD, [](FunctionDecl *FD) { FD->setImplicitlyInline(); }); } FD->setInnerLocStart(readSourceLocation()); ReadFunctionDefinition(FD); assert(Record.getIdx() == Record.size() && "lazy body must be last"); break; } case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: { auto *RD = cast(D); auto *OldDD = RD->getCanonicalDecl()->DefinitionData; bool HadRealDefinition = OldDD && (OldDD->Definition != RD || !Reader.PendingFakeDefinitionData.count(OldDD)); RD->setParamDestroyedInCallee(Record.readInt()); RD->setArgPassingRestrictions( (RecordDecl::ArgPassingKind)Record.readInt()); ReadCXXRecordDefinition(RD, /*Update*/true); // Visible update is handled separately. uint64_t LexicalOffset = ReadLocalOffset(); if (!HadRealDefinition && LexicalOffset) { Record.readLexicalDeclContextStorage(LexicalOffset, RD); Reader.PendingFakeDefinitionData.erase(OldDD); } auto TSK = (TemplateSpecializationKind)Record.readInt(); SourceLocation POI = readSourceLocation(); if (MemberSpecializationInfo *MSInfo = RD->getMemberSpecializationInfo()) { MSInfo->setTemplateSpecializationKind(TSK); MSInfo->setPointOfInstantiation(POI); } else { auto *Spec = cast(RD); Spec->setTemplateSpecializationKind(TSK); Spec->setPointOfInstantiation(POI); if (Record.readInt()) { auto *PartialSpec = readDeclAs(); SmallVector TemplArgs; Record.readTemplateArgumentList(TemplArgs); auto *TemplArgList = TemplateArgumentList::CreateCopy( Reader.getContext(), TemplArgs); // FIXME: If we already have a partial specialization set, // check that it matches. if (!Spec->getSpecializedTemplateOrPartial() .is()) Spec->setInstantiationOf(PartialSpec, TemplArgList); } } RD->setTagKind((TagTypeKind)Record.readInt()); RD->setLocation(readSourceLocation()); RD->setLocStart(readSourceLocation()); RD->setBraceRange(readSourceRange()); if (Record.readInt()) { AttrVec Attrs; Record.readAttributes(Attrs); // If the declaration already has attributes, we assume that some other // AST file already loaded them. if (!D->hasAttrs()) D->setAttrsImpl(Attrs, Reader.getContext()); } break; } case UPD_CXX_RESOLVED_DTOR_DELETE: { // Set the 'operator delete' directly to avoid emitting another update // record. auto *Del = readDeclAs(); auto *First = cast(D->getCanonicalDecl()); auto *ThisArg = Record.readExpr(); // FIXME: Check consistency if we have an old and new operator delete. if (!First->OperatorDelete) { First->OperatorDelete = Del; First->OperatorDeleteThisArg = ThisArg; } break; } case UPD_CXX_RESOLVED_EXCEPTION_SPEC: { SmallVector ExceptionStorage; auto ESI = Record.readExceptionSpecInfo(ExceptionStorage); // Update this declaration's exception specification, if needed. auto *FD = cast(D); auto *FPT = FD->getType()->castAs(); // FIXME: If the exception specification is already present, check that it // matches. if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { FD->setType(Reader.getContext().getFunctionType( FPT->getReturnType(), FPT->getParamTypes(), FPT->getExtProtoInfo().withExceptionSpec(ESI))); // When we get to the end of deserializing, see if there are other decls // that we need to propagate this exception specification onto. Reader.PendingExceptionSpecUpdates.insert( std::make_pair(FD->getCanonicalDecl(), FD)); } break; } case UPD_CXX_DEDUCED_RETURN_TYPE: { auto *FD = cast(D); QualType DeducedResultType = Record.readType(); Reader.PendingDeducedTypeUpdates.insert( {FD->getCanonicalDecl(), DeducedResultType}); break; } case UPD_DECL_MARKED_USED: // Maintain AST consistency: any later redeclarations are used too. D->markUsed(Reader.getContext()); break; case UPD_MANGLING_NUMBER: Reader.getContext().setManglingNumber(cast(D), Record.readInt()); break; case UPD_STATIC_LOCAL_NUMBER: Reader.getContext().setStaticLocalNumber(cast(D), Record.readInt()); break; case UPD_DECL_MARKED_OPENMP_THREADPRIVATE: D->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit( Reader.getContext(), readSourceRange(), AttributeCommonInfo::AS_Pragma)); break; case UPD_DECL_MARKED_OPENMP_ALLOCATE: { auto AllocatorKind = static_cast(Record.readInt()); Expr *Allocator = Record.readExpr(); SourceRange SR = readSourceRange(); D->addAttr(OMPAllocateDeclAttr::CreateImplicit( Reader.getContext(), AllocatorKind, Allocator, SR, AttributeCommonInfo::AS_Pragma)); break; } case UPD_DECL_EXPORTED: { unsigned SubmoduleID = readSubmoduleID(); auto *Exported = cast(D); Module *Owner = SubmoduleID ? Reader.getSubmodule(SubmoduleID) : nullptr; Reader.getContext().mergeDefinitionIntoModule(Exported, Owner); Reader.PendingMergedDefinitionsToDeduplicate.insert(Exported); break; } case UPD_DECL_MARKED_OPENMP_DECLARETARGET: { auto MapType = Record.readEnum(); auto DevType = Record.readEnum(); unsigned Level = Record.readInt(); D->addAttr(OMPDeclareTargetDeclAttr::CreateImplicit( Reader.getContext(), MapType, DevType, Level, readSourceRange(), AttributeCommonInfo::AS_Pragma)); break; } case UPD_ADDED_ATTR_TO_RECORD: AttrVec Attrs; Record.readAttributes(Attrs); assert(Attrs.size() == 1); D->addAttr(Attrs[0]); break; } } }