//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception //===----------------------------------------------------------------------===// // // This file implements a semantic tree transformation that takes a given // AST and rebuilds it, possibly transforming some nodes in the process. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H #define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H #include "CoroutineStmtBuilder.h" #include "TypeLocBuilder.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprConcepts.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/OpenMPClause.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtOpenACC.h" #include "clang/AST/StmtOpenMP.h" #include "clang/Basic/DiagnosticParse.h" #include "clang/Basic/OpenMPKinds.h" #include "clang/Sema/Designator.h" #include "clang/Sema/EnterExpressionEvaluationContext.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaDiagnostic.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/SemaObjC.h" #include "clang/Sema/SemaOpenACC.h" #include "clang/Sema/SemaOpenMP.h" #include "clang/Sema/SemaPseudoObject.h" #include "clang/Sema/SemaSYCL.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/ErrorHandling.h" #include #include using namespace llvm::omp; namespace clang { using namespace sema; /// A semantic tree transformation that allows one to transform one /// abstract syntax tree into another. /// /// A new tree transformation is defined by creating a new subclass \c X of /// \c TreeTransform and then overriding certain operations to provide /// behavior specific to that transformation. For example, template /// instantiation is implemented as a tree transformation where the /// transformation of TemplateTypeParmType nodes involves substituting the /// template arguments for their corresponding template parameters; a similar /// transformation is performed for non-type template parameters and /// template template parameters. /// /// This tree-transformation template uses static polymorphism to allow /// subclasses to customize any of its operations. Thus, a subclass can /// override any of the transformation or rebuild operators by providing an /// operation with the same signature as the default implementation. The /// overriding function should not be virtual. /// /// Semantic tree transformations are split into two stages, either of which /// can be replaced by a subclass. The "transform" step transforms an AST node /// or the parts of an AST node using the various transformation functions, /// then passes the pieces on to the "rebuild" step, which constructs a new AST /// node of the appropriate kind from the pieces. The default transformation /// routines recursively transform the operands to composite AST nodes (e.g., /// the pointee type of a PointerType node) and, if any of those operand nodes /// were changed by the transformation, invokes the rebuild operation to create /// a new AST node. /// /// Subclasses can customize the transformation at various levels. The /// most coarse-grained transformations involve replacing TransformType(), /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(), /// TransformTemplateName(), or TransformTemplateArgument() with entirely /// new implementations. /// /// For more fine-grained transformations, subclasses can replace any of the /// \c TransformXXX functions (where XXX is the name of an AST node, e.g., /// PointerType, StmtExpr) to alter the transformation. As mentioned previously, /// replacing TransformTemplateTypeParmType() allows template instantiation /// to substitute template arguments for their corresponding template /// parameters. Additionally, subclasses can override the \c RebuildXXX /// functions to control how AST nodes are rebuilt when their operands change. /// By default, \c TreeTransform will invoke semantic analysis to rebuild /// AST nodes. However, certain other tree transformations (e.g, cloning) may /// be able to use more efficient rebuild steps. /// /// There are a handful of other functions that can be overridden, allowing one /// to avoid traversing nodes that don't need any transformation /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their /// operands have not changed (\c AlwaysRebuild()), and customize the /// default locations and entity names used for type-checking /// (\c getBaseLocation(), \c getBaseEntity()). template class TreeTransform { /// Private RAII object that helps us forget and then re-remember /// the template argument corresponding to a partially-substituted parameter /// pack. class ForgetPartiallySubstitutedPackRAII { Derived &Self; TemplateArgument Old; public: ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) { Old = Self.ForgetPartiallySubstitutedPack(); } ~ForgetPartiallySubstitutedPackRAII() { Self.RememberPartiallySubstitutedPack(Old); } }; protected: Sema &SemaRef; /// The set of local declarations that have been transformed, for /// cases where we are forced to build new declarations within the transformer /// rather than in the subclass (e.g., lambda closure types). llvm::DenseMap TransformedLocalDecls; public: /// Initializes a new tree transformer. TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { } /// Retrieves a reference to the derived class. Derived &getDerived() { return static_cast(*this); } /// Retrieves a reference to the derived class. const Derived &getDerived() const { return static_cast(*this); } static inline ExprResult Owned(Expr *E) { return E; } static inline StmtResult Owned(Stmt *S) { return S; } /// Retrieves a reference to the semantic analysis object used for /// this tree transform. Sema &getSema() const { return SemaRef; } /// Whether the transformation should always rebuild AST nodes, even /// if none of the children have changed. /// /// Subclasses may override this function to specify when the transformation /// should rebuild all AST nodes. /// /// We must always rebuild all AST nodes when performing variadic template /// pack expansion, in order to avoid violating the AST invariant that each /// statement node appears at most once in its containing declaration. bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; } /// Whether the transformation is forming an expression or statement that /// replaces the original. In this case, we'll reuse mangling numbers from /// existing lambdas. bool ReplacingOriginal() { return false; } /// Wether CXXConstructExpr can be skipped when they are implicit. /// They will be reconstructed when used if needed. /// This is useful when the user that cause rebuilding of the /// CXXConstructExpr is outside of the expression at which the TreeTransform /// started. bool AllowSkippingCXXConstructExpr() { return true; } /// Returns the location of the entity being transformed, if that /// information was not available elsewhere in the AST. /// /// By default, returns no source-location information. Subclasses can /// provide an alternative implementation that provides better location /// information. SourceLocation getBaseLocation() { return SourceLocation(); } /// Returns the name of the entity being transformed, if that /// information was not available elsewhere in the AST. /// /// By default, returns an empty name. Subclasses can provide an alternative /// implementation with a more precise name. DeclarationName getBaseEntity() { return DeclarationName(); } /// Sets the "base" location and entity when that /// information is known based on another transformation. /// /// By default, the source location and entity are ignored. Subclasses can /// override this function to provide a customized implementation. void setBase(SourceLocation Loc, DeclarationName Entity) { } /// RAII object that temporarily sets the base location and entity /// used for reporting diagnostics in types. class TemporaryBase { TreeTransform &Self; SourceLocation OldLocation; DeclarationName OldEntity; public: TemporaryBase(TreeTransform &Self, SourceLocation Location, DeclarationName Entity) : Self(Self) { OldLocation = Self.getDerived().getBaseLocation(); OldEntity = Self.getDerived().getBaseEntity(); if (Location.isValid()) Self.getDerived().setBase(Location, Entity); } ~TemporaryBase() { Self.getDerived().setBase(OldLocation, OldEntity); } }; /// Determine whether the given type \p T has already been /// transformed. /// /// Subclasses can provide an alternative implementation of this routine /// to short-circuit evaluation when it is known that a given type will /// not change. For example, template instantiation need not traverse /// non-dependent types. bool AlreadyTransformed(QualType T) { return T.isNull(); } /// Transform a template parameter depth level. /// /// During a transformation that transforms template parameters, this maps /// an old template parameter depth to a new depth. unsigned TransformTemplateDepth(unsigned Depth) { return Depth; } /// Determine whether the given call argument should be dropped, e.g., /// because it is a default argument. /// /// Subclasses can provide an alternative implementation of this routine to /// determine which kinds of call arguments get dropped. By default, /// CXXDefaultArgument nodes are dropped (prior to transformation). bool DropCallArgument(Expr *E) { return E->isDefaultArgument(); } /// Determine whether we should expand a pack expansion with the /// given set of parameter packs into separate arguments by repeatedly /// transforming the pattern. /// /// By default, the transformer never tries to expand pack expansions. /// Subclasses can override this routine to provide different behavior. /// /// \param EllipsisLoc The location of the ellipsis that identifies the /// pack expansion. /// /// \param PatternRange The source range that covers the entire pattern of /// the pack expansion. /// /// \param Unexpanded The set of unexpanded parameter packs within the /// pattern. /// /// \param ShouldExpand Will be set to \c true if the transformer should /// expand the corresponding pack expansions into separate arguments. When /// set, \c NumExpansions must also be set. /// /// \param RetainExpansion Whether the caller should add an unexpanded /// pack expansion after all of the expanded arguments. This is used /// when extending explicitly-specified template argument packs per /// C++0x [temp.arg.explicit]p9. /// /// \param NumExpansions The number of separate arguments that will be in /// the expanded form of the corresponding pack expansion. This is both an /// input and an output parameter, which can be set by the caller if the /// number of expansions is known a priori (e.g., due to a prior substitution) /// and will be set by the callee when the number of expansions is known. /// The callee must set this value when \c ShouldExpand is \c true; it may /// set this value in other cases. /// /// \returns true if an error occurred (e.g., because the parameter packs /// are to be instantiated with arguments of different lengths), false /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) /// must be set. bool TryExpandParameterPacks(SourceLocation EllipsisLoc, SourceRange PatternRange, ArrayRef Unexpanded, bool &ShouldExpand, bool &RetainExpansion, std::optional &NumExpansions) { ShouldExpand = false; return false; } /// "Forget" about the partially-substituted pack template argument, /// when performing an instantiation that must preserve the parameter pack /// use. /// /// This routine is meant to be overridden by the template instantiator. TemplateArgument ForgetPartiallySubstitutedPack() { return TemplateArgument(); } /// "Remember" the partially-substituted pack template argument /// after performing an instantiation that must preserve the parameter pack /// use. /// /// This routine is meant to be overridden by the template instantiator. void RememberPartiallySubstitutedPack(TemplateArgument Arg) { } /// Note to the derived class when a function parameter pack is /// being expanded. void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { } /// Transforms the given type into another type. /// /// By default, this routine transforms a type by creating a /// TypeSourceInfo for it and delegating to the appropriate /// function. This is expensive, but we don't mind, because /// this method is deprecated anyway; all users should be /// switched to storing TypeSourceInfos. /// /// \returns the transformed type. QualType TransformType(QualType T); /// Transforms the given type-with-location into a new /// type-with-location. /// /// By default, this routine transforms a type by delegating to the /// appropriate TransformXXXType to build a new type. Subclasses /// may override this function (to take over all type /// transformations) or some set of the TransformXXXType functions /// to alter the transformation. TypeSourceInfo *TransformType(TypeSourceInfo *DI); /// Transform the given type-with-location into a new /// type, collecting location information in the given builder /// as necessary. /// QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL); /// Transform a type that is permitted to produce a /// DeducedTemplateSpecializationType. /// /// This is used in the (relatively rare) contexts where it is acceptable /// for transformation to produce a class template type with deduced /// template arguments. /// @{ QualType TransformTypeWithDeducedTST(QualType T); TypeSourceInfo *TransformTypeWithDeducedTST(TypeSourceInfo *DI); /// @} /// The reason why the value of a statement is not discarded, if any. enum StmtDiscardKind { SDK_Discarded, SDK_NotDiscarded, SDK_StmtExprResult, }; /// Transform the given statement. /// /// By default, this routine transforms a statement by delegating to the /// appropriate TransformXXXStmt function to transform a specific kind of /// statement or the TransformExpr() function to transform an expression. /// Subclasses may override this function to transform statements using some /// other mechanism. /// /// \returns the transformed statement. StmtResult TransformStmt(Stmt *S, StmtDiscardKind SDK = SDK_Discarded); /// Transform the given statement. /// /// By default, this routine transforms a statement by delegating to the /// appropriate TransformOMPXXXClause function to transform a specific kind /// of clause. Subclasses may override this function to transform statements /// using some other mechanism. /// /// \returns the transformed OpenMP clause. OMPClause *TransformOMPClause(OMPClause *S); /// Transform the given attribute. /// /// By default, this routine transforms a statement by delegating to the /// appropriate TransformXXXAttr function to transform a specific kind /// of attribute. Subclasses may override this function to transform /// attributed statements/types using some other mechanism. /// /// \returns the transformed attribute const Attr *TransformAttr(const Attr *S); // Transform the given statement attribute. // // Delegates to the appropriate TransformXXXAttr function to transform a // specific kind of statement attribute. Unlike the non-statement taking // version of this, this implements all attributes, not just pragmas. const Attr *TransformStmtAttr(const Stmt *OrigS, const Stmt *InstS, const Attr *A); // Transform the specified attribute. // // Subclasses should override the transformation of attributes with a pragma // spelling to transform expressions stored within the attribute. // // \returns the transformed attribute. #define ATTR(X) \ const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; } #include "clang/Basic/AttrList.inc" // Transform the specified attribute. // // Subclasses should override the transformation of attributes to do // transformation and checking of statement attributes. By default, this // delegates to the non-statement taking version. // // \returns the transformed attribute. #define ATTR(X) \ const X##Attr *TransformStmt##X##Attr(const Stmt *, const Stmt *, \ const X##Attr *A) { \ return getDerived().Transform##X##Attr(A); \ } #include "clang/Basic/AttrList.inc" /// Transform the given expression. /// /// By default, this routine transforms an expression by delegating to the /// appropriate TransformXXXExpr function to build a new expression. /// Subclasses may override this function to transform expressions using some /// other mechanism. /// /// \returns the transformed expression. ExprResult TransformExpr(Expr *E); /// Transform the given initializer. /// /// By default, this routine transforms an initializer by stripping off the /// semantic nodes added by initialization, then passing the result to /// TransformExpr or TransformExprs. /// /// \returns the transformed initializer. ExprResult TransformInitializer(Expr *Init, bool NotCopyInit); /// Transform the given list of expressions. /// /// This routine transforms a list of expressions by invoking /// \c TransformExpr() for each subexpression. However, it also provides /// support for variadic templates by expanding any pack expansions (if the /// derived class permits such expansion) along the way. When pack expansions /// are present, the number of outputs may not equal the number of inputs. /// /// \param Inputs The set of expressions to be transformed. /// /// \param NumInputs The number of expressions in \c Inputs. /// /// \param IsCall If \c true, then this transform is being performed on /// function-call arguments, and any arguments that should be dropped, will /// be. /// /// \param Outputs The transformed input expressions will be added to this /// vector. /// /// \param ArgChanged If non-NULL, will be set \c true if any argument changed /// due to transformation. /// /// \returns true if an error occurred, false otherwise. bool TransformExprs(Expr *const *Inputs, unsigned NumInputs, bool IsCall, SmallVectorImpl &Outputs, bool *ArgChanged = nullptr); /// Transform the given declaration, which is referenced from a type /// or expression. /// /// By default, acts as the identity function on declarations, unless the /// transformer has had to transform the declaration itself. Subclasses /// may override this function to provide alternate behavior. Decl *TransformDecl(SourceLocation Loc, Decl *D) { llvm::DenseMap::iterator Known = TransformedLocalDecls.find(D); if (Known != TransformedLocalDecls.end()) return Known->second; return D; } /// Transform the specified condition. /// /// By default, this transforms the variable and expression and rebuilds /// the condition. Sema::ConditionResult TransformCondition(SourceLocation Loc, VarDecl *Var, Expr *Expr, Sema::ConditionKind Kind); /// Transform the attributes associated with the given declaration and /// place them on the new declaration. /// /// By default, this operation does nothing. Subclasses may override this /// behavior to transform attributes. void transformAttrs(Decl *Old, Decl *New) { } /// Note that a local declaration has been transformed by this /// transformer. /// /// Local declarations are typically transformed via a call to /// TransformDefinition. However, in some cases (e.g., lambda expressions), /// the transformer itself has to transform the declarations. This routine /// can be overridden by a subclass that keeps track of such mappings. void transformedLocalDecl(Decl *Old, ArrayRef New) { assert(New.size() == 1 && "must override transformedLocalDecl if performing pack expansion"); TransformedLocalDecls[Old] = New.front(); } /// Transform the definition of the given declaration. /// /// By default, invokes TransformDecl() to transform the declaration. /// Subclasses may override this function to provide alternate behavior. Decl *TransformDefinition(SourceLocation Loc, Decl *D) { return getDerived().TransformDecl(Loc, D); } /// Transform the given declaration, which was the first part of a /// nested-name-specifier in a member access expression. /// /// This specific declaration transformation only applies to the first /// identifier in a nested-name-specifier of a member access expression, e.g., /// the \c T in \c x->T::member /// /// By default, invokes TransformDecl() to transform the declaration. /// Subclasses may override this function to provide alternate behavior. NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) { return cast_or_null(getDerived().TransformDecl(Loc, D)); } /// Transform the set of declarations in an OverloadExpr. bool TransformOverloadExprDecls(OverloadExpr *Old, bool RequiresADL, LookupResult &R); /// Transform the given nested-name-specifier with source-location /// information. /// /// By default, transforms all of the types and declarations within the /// nested-name-specifier. Subclasses may override this function to provide /// alternate behavior. NestedNameSpecifierLoc TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, QualType ObjectType = QualType(), NamedDecl *FirstQualifierInScope = nullptr); /// Transform the given declaration name. /// /// By default, transforms the types of conversion function, constructor, /// and destructor names and then (if needed) rebuilds the declaration name. /// Identifiers and selectors are returned unmodified. Subclasses may /// override this function to provide alternate behavior. DeclarationNameInfo TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo); bool TransformRequiresExprRequirements( ArrayRef Reqs, llvm::SmallVectorImpl &Transformed); concepts::TypeRequirement * TransformTypeRequirement(concepts::TypeRequirement *Req); concepts::ExprRequirement * TransformExprRequirement(concepts::ExprRequirement *Req); concepts::NestedRequirement * TransformNestedRequirement(concepts::NestedRequirement *Req); /// Transform the given template name. /// /// \param SS The nested-name-specifier that qualifies the template /// name. This nested-name-specifier must already have been transformed. /// /// \param Name The template name to transform. /// /// \param NameLoc The source location of the template name. /// /// \param ObjectType If we're translating a template name within a member /// access expression, this is the type of the object whose member template /// is being referenced. /// /// \param FirstQualifierInScope If the first part of a nested-name-specifier /// also refers to a name within the current (lexical) scope, this is the /// declaration it refers to. /// /// By default, transforms the template name by transforming the declarations /// and nested-name-specifiers that occur within the template name. /// Subclasses may override this function to provide alternate behavior. TemplateName TransformTemplateName(CXXScopeSpec &SS, TemplateName Name, SourceLocation NameLoc, QualType ObjectType = QualType(), NamedDecl *FirstQualifierInScope = nullptr, bool AllowInjectedClassName = false); /// Transform the given template argument. /// /// By default, this operation transforms the type, expression, or /// declaration stored within the template argument and constructs a /// new template argument from the transformed result. Subclasses may /// override this function to provide alternate behavior. /// /// Returns true if there was an error. bool TransformTemplateArgument(const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output, bool Uneval = false); /// Transform the given set of template arguments. /// /// By default, this operation transforms all of the template arguments /// in the input set using \c TransformTemplateArgument(), and appends /// the transformed arguments to the output list. /// /// Note that this overload of \c TransformTemplateArguments() is merely /// a convenience function. Subclasses that wish to override this behavior /// should override the iterator-based member template version. /// /// \param Inputs The set of template arguments to be transformed. /// /// \param NumInputs The number of template arguments in \p Inputs. /// /// \param Outputs The set of transformed template arguments output by this /// routine. /// /// Returns true if an error occurred. bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs, unsigned NumInputs, TemplateArgumentListInfo &Outputs, bool Uneval = false) { return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs, Uneval); } /// Transform the given set of template arguments. /// /// By default, this operation transforms all of the template arguments /// in the input set using \c TransformTemplateArgument(), and appends /// the transformed arguments to the output list. /// /// \param First An iterator to the first template argument. /// /// \param Last An iterator one step past the last template argument. /// /// \param Outputs The set of transformed template arguments output by this /// routine. /// /// Returns true if an error occurred. template bool TransformTemplateArguments(InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs, bool Uneval = false); /// Fakes up a TemplateArgumentLoc for a given TemplateArgument. void InventTemplateArgumentLoc(const TemplateArgument &Arg, TemplateArgumentLoc &ArgLoc); /// Fakes up a TypeSourceInfo for a type. TypeSourceInfo *InventTypeSourceInfo(QualType T) { return SemaRef.Context.getTrivialTypeSourceInfo(T, getDerived().getBaseLocation()); } #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T); #include "clang/AST/TypeLocNodes.def" QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, TemplateTypeParmTypeLoc TL, bool SuppressObjCLifetime); QualType TransformSubstTemplateTypeParmPackType(TypeLocBuilder &TLB, SubstTemplateTypeParmPackTypeLoc TL, bool SuppressObjCLifetime); template QualType TransformFunctionProtoType(TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext, Qualifiers ThisTypeQuals, Fn TransformExceptionSpec); template QualType TransformAttributedType(TypeLocBuilder &TLB, AttributedTypeLoc TL, Fn TransformModifiedType); bool TransformExceptionSpec(SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI, SmallVectorImpl &Exceptions, bool &Changed); StmtResult TransformSEHHandler(Stmt *Handler); QualType TransformTemplateSpecializationType(TypeLocBuilder &TLB, TemplateSpecializationTypeLoc TL, TemplateName Template); QualType TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, TemplateName Template, CXXScopeSpec &SS); QualType TransformDependentTemplateSpecializationType( TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, NestedNameSpecifierLoc QualifierLoc); /// Transforms the parameters of a function type into the /// given vectors. /// /// The result vectors should be kept in sync; null entries in the /// variables vector are acceptable. /// /// LastParamTransformed, if non-null, will be set to the index of the last /// parameter on which transfromation was started. In the event of an error, /// this will contain the parameter which failed to instantiate. /// /// Return true on error. bool TransformFunctionTypeParams( SourceLocation Loc, ArrayRef Params, const QualType *ParamTypes, const FunctionProtoType::ExtParameterInfo *ParamInfos, SmallVectorImpl &PTypes, SmallVectorImpl *PVars, Sema::ExtParameterInfoBuilder &PInfos, unsigned *LastParamTransformed); bool TransformFunctionTypeParams( SourceLocation Loc, ArrayRef Params, const QualType *ParamTypes, const FunctionProtoType::ExtParameterInfo *ParamInfos, SmallVectorImpl &PTypes, SmallVectorImpl *PVars, Sema::ExtParameterInfoBuilder &PInfos) { return getDerived().TransformFunctionTypeParams( Loc, Params, ParamTypes, ParamInfos, PTypes, PVars, PInfos, nullptr); } /// Transforms the parameters of a requires expresison into the given vectors. /// /// The result vectors should be kept in sync; null entries in the /// variables vector are acceptable. /// /// Returns an unset ExprResult on success. Returns an ExprResult the 'not /// satisfied' RequiresExpr if subsitution failed, OR an ExprError, both of /// which are cases where transformation shouldn't continue. ExprResult TransformRequiresTypeParams( SourceLocation KWLoc, SourceLocation RBraceLoc, const RequiresExpr *RE, RequiresExprBodyDecl *Body, ArrayRef Params, SmallVectorImpl &PTypes, SmallVectorImpl &TransParams, Sema::ExtParameterInfoBuilder &PInfos) { if (getDerived().TransformFunctionTypeParams( KWLoc, Params, /*ParamTypes=*/nullptr, /*ParamInfos=*/nullptr, PTypes, &TransParams, PInfos)) return ExprError(); return ExprResult{}; } /// Transforms a single function-type parameter. Return null /// on error. /// /// \param indexAdjustment - A number to add to the parameter's /// scope index; can be negative ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm, int indexAdjustment, std::optional NumExpansions, bool ExpectParameterPack); /// Transform the body of a lambda-expression. StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body); /// Alternative implementation of TransformLambdaBody that skips transforming /// the body. StmtResult SkipLambdaBody(LambdaExpr *E, Stmt *Body); CXXRecordDecl::LambdaDependencyKind ComputeLambdaDependency(LambdaScopeInfo *LSI) { return static_cast( LSI->Lambda->getLambdaDependencyKind()); } QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL); StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr); ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E); TemplateParameterList *TransformTemplateParameterList( TemplateParameterList *TPL) { return TPL; } ExprResult TransformAddressOfOperand(Expr *E); ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E, bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI); ExprResult TransformParenDependentScopeDeclRefExpr( ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI); ExprResult TransformUnresolvedLookupExpr(UnresolvedLookupExpr *E, bool IsAddressOfOperand); StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S); // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous // amount of stack usage with clang. #define STMT(Node, Parent) \ LLVM_ATTRIBUTE_NOINLINE \ StmtResult Transform##Node(Node *S); #define VALUESTMT(Node, Parent) \ LLVM_ATTRIBUTE_NOINLINE \ StmtResult Transform##Node(Node *S, StmtDiscardKind SDK); #define EXPR(Node, Parent) \ LLVM_ATTRIBUTE_NOINLINE \ ExprResult Transform##Node(Node *E); #define ABSTRACT_STMT(Stmt) #include "clang/AST/StmtNodes.inc" #define GEN_CLANG_CLAUSE_CLASS #define CLAUSE_CLASS(Enum, Str, Class) \ LLVM_ATTRIBUTE_NOINLINE \ OMPClause *Transform##Class(Class *S); #include "llvm/Frontend/OpenMP/OMP.inc" /// Build a new qualified type given its unqualified type and type location. /// /// By default, this routine adds type qualifiers only to types that can /// have qualifiers, and silently suppresses those qualifiers that are not /// permitted. Subclasses may override this routine to provide different /// behavior. QualType RebuildQualifiedType(QualType T, QualifiedTypeLoc TL); /// Build a new pointer type given its pointee type. /// /// By default, performs semantic analysis when building the pointer type. /// Subclasses may override this routine to provide different behavior. QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil); /// Build a new block pointer type given its pointee type. /// /// By default, performs semantic analysis when building the block pointer /// type. Subclasses may override this routine to provide different behavior. QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil); /// Build a new reference type given the type it references. /// /// By default, performs semantic analysis when building the /// reference type. Subclasses may override this routine to provide /// different behavior. /// /// \param LValue whether the type was written with an lvalue sigil /// or an rvalue sigil. QualType RebuildReferenceType(QualType ReferentType, bool LValue, SourceLocation Sigil); /// Build a new member pointer type given the pointee type and the /// class type it refers into. /// /// By default, performs semantic analysis when building the member pointer /// type. Subclasses may override this routine to provide different behavior. QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType, SourceLocation Sigil); QualType RebuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc); /// Build an Objective-C object type. /// /// By default, performs semantic analysis when building the object type. /// Subclasses may override this routine to provide different behavior. QualType RebuildObjCObjectType(QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc, ArrayRef TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc); /// Build a new Objective-C object pointer type given the pointee type. /// /// By default, directly builds the pointer type, with no additional semantic /// analysis. QualType RebuildObjCObjectPointerType(QualType PointeeType, SourceLocation Star); /// Build a new array type given the element type, size /// modifier, size of the array (if known), size expression, and index type /// qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. /// Also by default, all of the other Rebuild*Array QualType RebuildArrayType(QualType ElementType, ArraySizeModifier SizeMod, const llvm::APInt *Size, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// Build a new constant array type given the element type, size /// modifier, (known) size of the array, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildConstantArrayType(QualType ElementType, ArraySizeModifier SizeMod, const llvm::APInt &Size, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// Build a new incomplete array type given the element type, size /// modifier, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildIncompleteArrayType(QualType ElementType, ArraySizeModifier SizeMod, unsigned IndexTypeQuals, SourceRange BracketsRange); /// Build a new variable-length array type given the element type, /// size modifier, size expression, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildVariableArrayType(QualType ElementType, ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// Build a new dependent-sized array type given the element type, /// size modifier, size expression, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDependentSizedArrayType(QualType ElementType, ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// Build a new vector type given the element type and /// number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildVectorType(QualType ElementType, unsigned NumElements, VectorKind VecKind); /// Build a new potentially dependently-sized extended vector type /// given the element type and number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDependentVectorType(QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc, VectorKind); /// Build a new extended vector type given the element type and /// number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements, SourceLocation AttributeLoc); /// Build a new potentially dependently-sized extended vector type /// given the element type and number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDependentSizedExtVectorType(QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc); /// Build a new matrix type given the element type and dimensions. QualType RebuildConstantMatrixType(QualType ElementType, unsigned NumRows, unsigned NumColumns); /// Build a new matrix type given the type and dependently-defined /// dimensions. QualType RebuildDependentSizedMatrixType(QualType ElementType, Expr *RowExpr, Expr *ColumnExpr, SourceLocation AttributeLoc); /// Build a new DependentAddressSpaceType or return the pointee /// type variable with the correct address space (retrieved from /// AddrSpaceExpr) applied to it. The former will be returned in cases /// where the address space remains dependent. /// /// By default, performs semantic analysis when building the type with address /// space applied. Subclasses may override this routine to provide different /// behavior. QualType RebuildDependentAddressSpaceType(QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttributeLoc); /// Build a new function type. /// /// By default, performs semantic analysis when building the function type. /// Subclasses may override this routine to provide different behavior. QualType RebuildFunctionProtoType(QualType T, MutableArrayRef ParamTypes, const FunctionProtoType::ExtProtoInfo &EPI); /// Build a new unprototyped function type. QualType RebuildFunctionNoProtoType(QualType ResultType); /// Rebuild an unresolved typename type, given the decl that /// the UnresolvedUsingTypenameDecl was transformed to. QualType RebuildUnresolvedUsingType(SourceLocation NameLoc, Decl *D); /// Build a new type found via an alias. QualType RebuildUsingType(UsingShadowDecl *Found, QualType Underlying) { return SemaRef.Context.getUsingType(Found, Underlying); } /// Build a new typedef type. QualType RebuildTypedefType(TypedefNameDecl *Typedef) { return SemaRef.Context.getTypeDeclType(Typedef); } /// Build a new MacroDefined type. QualType RebuildMacroQualifiedType(QualType T, const IdentifierInfo *MacroII) { return SemaRef.Context.getMacroQualifiedType(T, MacroII); } /// Build a new class/struct/union type. QualType RebuildRecordType(RecordDecl *Record) { return SemaRef.Context.getTypeDeclType(Record); } /// Build a new Enum type. QualType RebuildEnumType(EnumDecl *Enum) { return SemaRef.Context.getTypeDeclType(Enum); } /// Build a new typeof(expr) type. /// /// By default, performs semantic analysis when building the typeof type. /// Subclasses may override this routine to provide different behavior. QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc, TypeOfKind Kind); /// Build a new typeof(type) type. /// /// By default, builds a new TypeOfType with the given underlying type. QualType RebuildTypeOfType(QualType Underlying, TypeOfKind Kind); /// Build a new unary transform type. QualType RebuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc); /// Build a new C++11 decltype type. /// /// By default, performs semantic analysis when building the decltype type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc); QualType RebuildPackIndexingType(QualType Pattern, Expr *IndexExpr, SourceLocation Loc, SourceLocation EllipsisLoc, bool FullySubstituted, ArrayRef Expansions = {}); /// Build a new C++11 auto type. /// /// By default, builds a new AutoType with the given deduced type. QualType RebuildAutoType(QualType Deduced, AutoTypeKeyword Keyword, ConceptDecl *TypeConstraintConcept, ArrayRef TypeConstraintArgs) { // Note, IsDependent is always false here: we implicitly convert an 'auto' // which has been deduced to a dependent type into an undeduced 'auto', so // that we'll retry deduction after the transformation. return SemaRef.Context.getAutoType(Deduced, Keyword, /*IsDependent*/ false, /*IsPack=*/false, TypeConstraintConcept, TypeConstraintArgs); } /// By default, builds a new DeducedTemplateSpecializationType with the given /// deduced type. QualType RebuildDeducedTemplateSpecializationType(TemplateName Template, QualType Deduced) { return SemaRef.Context.getDeducedTemplateSpecializationType( Template, Deduced, /*IsDependent*/ false); } /// Build a new template specialization type. /// /// By default, performs semantic analysis when building the template /// specialization type. Subclasses may override this routine to provide /// different behavior. QualType RebuildTemplateSpecializationType(TemplateName Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &Args); /// Build a new parenthesized type. /// /// By default, builds a new ParenType type from the inner type. /// Subclasses may override this routine to provide different behavior. QualType RebuildParenType(QualType InnerType) { return SemaRef.BuildParenType(InnerType); } /// Build a new qualified name type. /// /// By default, builds a new ElaboratedType type from the keyword, /// the nested-name-specifier and the named type. /// Subclasses may override this routine to provide different behavior. QualType RebuildElaboratedType(SourceLocation KeywordLoc, ElaboratedTypeKeyword Keyword, NestedNameSpecifierLoc QualifierLoc, QualType Named) { return SemaRef.Context.getElaboratedType(Keyword, QualifierLoc.getNestedNameSpecifier(), Named); } /// Build a new typename type that refers to a template-id. /// /// By default, builds a new DependentNameType type from the /// nested-name-specifier and the given type. Subclasses may override /// this routine to provide different behavior. QualType RebuildDependentTemplateSpecializationType( ElaboratedTypeKeyword Keyword, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const IdentifierInfo *Name, SourceLocation NameLoc, TemplateArgumentListInfo &Args, bool AllowInjectedClassName) { // Rebuild the template name. // TODO: avoid TemplateName abstraction CXXScopeSpec SS; SS.Adopt(QualifierLoc); TemplateName InstName = getDerived().RebuildTemplateName( SS, TemplateKWLoc, *Name, NameLoc, QualType(), nullptr, AllowInjectedClassName); if (InstName.isNull()) return QualType(); // If it's still dependent, make a dependent specialization. if (InstName.getAsDependentTemplateName()) return SemaRef.Context.getDependentTemplateSpecializationType( Keyword, QualifierLoc.getNestedNameSpecifier(), Name, Args.arguments()); // Otherwise, make an elaborated type wrapping a non-dependent // specialization. QualType T = getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args); if (T.isNull()) return QualType(); return SemaRef.Context.getElaboratedType( Keyword, QualifierLoc.getNestedNameSpecifier(), T); } /// Build a new typename type that refers to an identifier. /// /// By default, performs semantic analysis when building the typename type /// (or elaborated type). Subclasses may override this routine to provide /// different behavior. QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo *Id, SourceLocation IdLoc, bool DeducedTSTContext) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (QualifierLoc.getNestedNameSpecifier()->isDependent()) { // If the name is still dependent, just build a new dependent name type. if (!SemaRef.computeDeclContext(SS)) return SemaRef.Context.getDependentNameType(Keyword, QualifierLoc.getNestedNameSpecifier(), Id); } if (Keyword == ElaboratedTypeKeyword::None || Keyword == ElaboratedTypeKeyword::Typename) { return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, *Id, IdLoc, DeducedTSTContext); } TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword); // We had a dependent elaborated-type-specifier that has been transformed // into a non-dependent elaborated-type-specifier. Find the tag we're // referring to. LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); DeclContext *DC = SemaRef.computeDeclContext(SS, false); if (!DC) return QualType(); if (SemaRef.RequireCompleteDeclContext(SS, DC)) return QualType(); TagDecl *Tag = nullptr; SemaRef.LookupQualifiedName(Result, DC); switch (Result.getResultKind()) { case LookupResult::NotFound: case LookupResult::NotFoundInCurrentInstantiation: break; case LookupResult::Found: Tag = Result.getAsSingle(); break; case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: llvm_unreachable("Tag lookup cannot find non-tags"); case LookupResult::Ambiguous: // Let the LookupResult structure handle ambiguities. return QualType(); } if (!Tag) { // Check where the name exists but isn't a tag type and use that to emit // better diagnostics. LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); SemaRef.LookupQualifiedName(Result, DC); switch (Result.getResultKind()) { case LookupResult::Found: case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: { NamedDecl *SomeDecl = Result.getRepresentativeDecl(); Sema::NonTagKind NTK = SemaRef.getNonTagTypeDeclKind(SomeDecl, Kind); SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << SomeDecl << NTK << llvm::to_underlying(Kind); SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at); break; } default: SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope) << llvm::to_underlying(Kind) << Id << DC << QualifierLoc.getSourceRange(); break; } return QualType(); } if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false, IdLoc, Id)) { SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id; SemaRef.Diag(Tag->getLocation(), diag::note_previous_use); return QualType(); } // Build the elaborated-type-specifier type. QualType T = SemaRef.Context.getTypeDeclType(Tag); return SemaRef.Context.getElaboratedType(Keyword, QualifierLoc.getNestedNameSpecifier(), T); } /// Build a new pack expansion type. /// /// By default, builds a new PackExpansionType type from the given pattern. /// Subclasses may override this routine to provide different behavior. QualType RebuildPackExpansionType(QualType Pattern, SourceRange PatternRange, SourceLocation EllipsisLoc, std::optional NumExpansions) { return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc, NumExpansions); } /// Build a new atomic type given its value type. /// /// By default, performs semantic analysis when building the atomic type. /// Subclasses may override this routine to provide different behavior. QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc); /// Build a new pipe type given its value type. QualType RebuildPipeType(QualType ValueType, SourceLocation KWLoc, bool isReadPipe); /// Build a bit-precise int given its value type. QualType RebuildBitIntType(bool IsUnsigned, unsigned NumBits, SourceLocation Loc); /// Build a dependent bit-precise int given its value type. QualType RebuildDependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr, SourceLocation Loc); /// Build a new template name given a nested name specifier, a flag /// indicating whether the "template" keyword was provided, and the template /// that the template name refers to. /// /// By default, builds the new template name directly. Subclasses may override /// this routine to provide different behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, bool TemplateKW, TemplateDecl *Template); /// Build a new template name given a nested name specifier and the /// name that is referred to as a template. /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const IdentifierInfo &Name, SourceLocation NameLoc, QualType ObjectType, NamedDecl *FirstQualifierInScope, bool AllowInjectedClassName); /// Build a new template name given a nested name specifier and the /// overloaded operator name that is referred to as a template. /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, OverloadedOperatorKind Operator, SourceLocation NameLoc, QualType ObjectType, bool AllowInjectedClassName); /// Build a new template name given a template template parameter pack /// and the /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(const TemplateArgument &ArgPack, Decl *AssociatedDecl, unsigned Index, bool Final) { return getSema().Context.getSubstTemplateTemplateParmPack( ArgPack, AssociatedDecl, Index, Final); } /// Build a new compound statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc, MultiStmtArg Statements, SourceLocation RBraceLoc, bool IsStmtExpr) { return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements, IsStmtExpr); } /// Build a new case statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCaseStmt(SourceLocation CaseLoc, Expr *LHS, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation ColonLoc) { return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS, ColonLoc); } /// Attach the body to a new case statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) { getSema().ActOnCaseStmtBody(S, Body); return S; } /// Build a new default statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt) { return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt, /*CurScope=*/nullptr); } /// Build a new label statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L, SourceLocation ColonLoc, Stmt *SubStmt) { return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt); } /// Build a new attributed statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildAttributedStmt(SourceLocation AttrLoc, ArrayRef Attrs, Stmt *SubStmt) { if (SemaRef.CheckRebuiltStmtAttributes(Attrs)) return StmtError(); return SemaRef.BuildAttributedStmt(AttrLoc, Attrs, SubStmt); } /// Build a new "if" statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildIfStmt(SourceLocation IfLoc, IfStatementKind Kind, SourceLocation LParenLoc, Sema::ConditionResult Cond, SourceLocation RParenLoc, Stmt *Init, Stmt *Then, SourceLocation ElseLoc, Stmt *Else) { return getSema().ActOnIfStmt(IfLoc, Kind, LParenLoc, Init, Cond, RParenLoc, Then, ElseLoc, Else); } /// Start building a new switch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc, SourceLocation LParenLoc, Stmt *Init, Sema::ConditionResult Cond, SourceLocation RParenLoc) { return getSema().ActOnStartOfSwitchStmt(SwitchLoc, LParenLoc, Init, Cond, RParenLoc); } /// Attach the body to the switch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body) { return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body); } /// Build a new while statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc, Sema::ConditionResult Cond, SourceLocation RParenLoc, Stmt *Body) { return getSema().ActOnWhileStmt(WhileLoc, LParenLoc, Cond, RParenLoc, Body); } /// Build a new do-while statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation LParenLoc, Expr *Cond, SourceLocation RParenLoc) { return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc, Cond, RParenLoc); } /// Build a new for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *Init, Sema::ConditionResult Cond, Sema::FullExprArg Inc, SourceLocation RParenLoc, Stmt *Body) { return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond, Inc, RParenLoc, Body); } /// Build a new goto statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *Label) { return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label); } /// Build a new indirect goto statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *Target) { return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target); } /// Build a new return statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) { return getSema().BuildReturnStmt(ReturnLoc, Result); } /// Build a new declaration statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDeclStmt(MutableArrayRef Decls, SourceLocation StartLoc, SourceLocation EndLoc) { Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls); return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc); } /// Build a new inline asm statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg Constraints, MultiExprArg Exprs, Expr *AsmString, MultiExprArg Clobbers, unsigned NumLabels, SourceLocation RParenLoc) { return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, Clobbers, NumLabels, RParenLoc); } /// Build a new MS style inline asm statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef AsmToks, StringRef AsmString, unsigned NumOutputs, unsigned NumInputs, ArrayRef Constraints, ArrayRef Clobbers, ArrayRef Exprs, SourceLocation EndLoc) { return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString, NumOutputs, NumInputs, Constraints, Clobbers, Exprs, EndLoc); } /// Build a new co_return statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCoreturnStmt(SourceLocation CoreturnLoc, Expr *Result, bool IsImplicit) { return getSema().BuildCoreturnStmt(CoreturnLoc, Result, IsImplicit); } /// Build a new co_await expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, UnresolvedLookupExpr *OpCoawaitLookup, bool IsImplicit) { // This function rebuilds a coawait-expr given its operator. // For an explicit coawait-expr, the rebuild involves the full set // of transformations performed by BuildUnresolvedCoawaitExpr(), // including calling await_transform(). // For an implicit coawait-expr, we need to rebuild the "operator // coawait" but not await_transform(), so use BuildResolvedCoawaitExpr(). // This mirrors how the implicit CoawaitExpr is originally created // in Sema::ActOnCoroutineBodyStart(). if (IsImplicit) { ExprResult Suspend = getSema().BuildOperatorCoawaitCall( CoawaitLoc, Operand, OpCoawaitLookup); if (Suspend.isInvalid()) return ExprError(); return getSema().BuildResolvedCoawaitExpr(CoawaitLoc, Operand, Suspend.get(), true); } return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Operand, OpCoawaitLookup); } /// Build a new co_await expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc, Expr *Result, UnresolvedLookupExpr *Lookup) { return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Result, Lookup); } /// Build a new co_yield expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCoyieldExpr(SourceLocation CoyieldLoc, Expr *Result) { return getSema().BuildCoyieldExpr(CoyieldLoc, Result); } StmtResult RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { return getSema().BuildCoroutineBodyStmt(Args); } /// Build a new Objective-C \@try statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc, Stmt *TryBody, MultiStmtArg CatchStmts, Stmt *Finally) { return getSema().ObjC().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts, Finally); } /// Rebuild an Objective-C exception declaration. /// /// By default, performs semantic analysis to build the new declaration. /// Subclasses may override this routine to provide different behavior. VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl, TypeSourceInfo *TInfo, QualType T) { return getSema().ObjC().BuildObjCExceptionDecl( TInfo, T, ExceptionDecl->getInnerLocStart(), ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier()); } /// Build a new Objective-C \@catch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParenLoc, VarDecl *Var, Stmt *Body) { return getSema().ObjC().ActOnObjCAtCatchStmt(AtLoc, RParenLoc, Var, Body); } /// Build a new Objective-C \@finally statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { return getSema().ObjC().ActOnObjCAtFinallyStmt(AtLoc, Body); } /// Build a new Objective-C \@throw statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Operand) { return getSema().ObjC().BuildObjCAtThrowStmt(AtLoc, Operand); } /// Build a new OpenMP Canonical loop. /// /// Ensures that the outermost loop in @p LoopStmt is wrapped by a /// OMPCanonicalLoop. StmtResult RebuildOMPCanonicalLoop(Stmt *LoopStmt) { return getSema().OpenMP().ActOnOpenMPCanonicalLoop(LoopStmt); } /// Build a new OpenMP executable directive. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildOMPExecutableDirective( OpenMPDirectiveKind Kind, DeclarationNameInfo DirName, OpenMPDirectiveKind CancelRegion, ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, OpenMPDirectiveKind PrevMappedDirective = OMPD_unknown) { return getSema().OpenMP().ActOnOpenMPExecutableDirective( Kind, DirName, CancelRegion, Clauses, AStmt, StartLoc, EndLoc, PrevMappedDirective); } /// Build a new OpenMP 'if' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPIfClause(OpenMPDirectiveKind NameModifier, Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation NameModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPIfClause( NameModifier, Condition, StartLoc, LParenLoc, NameModifierLoc, ColonLoc, EndLoc); } /// Build a new OpenMP 'final' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPFinalClause(Condition, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'num_threads' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'safelen' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'simdlen' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPSimdlenClause(Expr *Len, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPSimdlenClause(Len, StartLoc, LParenLoc, EndLoc); } OMPClause *RebuildOMPSizesClause(ArrayRef Sizes, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPSizesClause(Sizes, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'full' clause. OMPClause *RebuildOMPFullClause(SourceLocation StartLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPFullClause(StartLoc, EndLoc); } /// Build a new OpenMP 'partial' clause. OMPClause *RebuildOMPPartialClause(Expr *Factor, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPPartialClause(Factor, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'allocator' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPAllocatorClause(Expr *A, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPAllocatorClause(A, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'collapse' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'default' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDefaultClause(DefaultKind Kind, SourceLocation KindKwLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDefaultClause( Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'proc_bind' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPProcBindClause(ProcBindKind Kind, SourceLocation KindKwLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPProcBindClause( Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'schedule' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPScheduleClause( OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPScheduleClause( M1, M2, Kind, ChunkSize, StartLoc, LParenLoc, M1Loc, M2Loc, KindLoc, CommaLoc, EndLoc); } /// Build a new OpenMP 'ordered' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc, SourceLocation LParenLoc, Expr *Num) { return getSema().OpenMP().ActOnOpenMPOrderedClause(StartLoc, EndLoc, LParenLoc, Num); } /// Build a new OpenMP 'private' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPPrivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'firstprivate' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPFirstprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'lastprivate' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPLastprivateClause(ArrayRef VarList, OpenMPLastprivateModifier LPKind, SourceLocation LPKindLoc, SourceLocation ColonLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPLastprivateClause( VarList, LPKind, LPKindLoc, ColonLoc, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'shared' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPSharedClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'reduction' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPReductionClause( ArrayRef VarList, OpenMPReductionClauseModifier Modifier, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions) { return getSema().OpenMP().ActOnOpenMPReductionClause( VarList, Modifier, StartLoc, LParenLoc, ModifierLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, ReductionId, UnresolvedReductions); } /// Build a new OpenMP 'task_reduction' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPTaskReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions) { return getSema().OpenMP().ActOnOpenMPTaskReductionClause( VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, ReductionId, UnresolvedReductions); } /// Build a new OpenMP 'in_reduction' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause * RebuildOMPInReductionClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions) { return getSema().OpenMP().ActOnOpenMPInReductionClause( VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, ReductionId, UnresolvedReductions); } /// Build a new OpenMP 'linear' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPLinearClause( ArrayRef VarList, Expr *Step, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation StepModifierLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPLinearClause( VarList, Step, StartLoc, LParenLoc, Modifier, ModifierLoc, ColonLoc, StepModifierLoc, EndLoc); } /// Build a new OpenMP 'aligned' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPAlignedClause(ArrayRef VarList, Expr *Alignment, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPAlignedClause( VarList, Alignment, StartLoc, LParenLoc, ColonLoc, EndLoc); } /// Build a new OpenMP 'copyin' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPCopyinClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'copyprivate' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPCopyprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'flush' pseudo clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPFlushClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'depobj' pseudo clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDepobjClause(Expr *Depobj, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDepobjClause(Depobj, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'depend' pseudo clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDependClause(OMPDependClause::DependDataTy Data, Expr *DepModifier, ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDependClause( Data, DepModifier, VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'device' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier, Expr *Device, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ModifierLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDeviceClause( Modifier, Device, StartLoc, LParenLoc, ModifierLoc, EndLoc); } /// Build a new OpenMP 'map' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPMapClause( Expr *IteratorModifier, ArrayRef MapTypeModifiers, ArrayRef MapTypeModifiersLoc, CXXScopeSpec MapperIdScopeSpec, DeclarationNameInfo MapperId, OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef VarList, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers) { return getSema().OpenMP().ActOnOpenMPMapClause( IteratorModifier, MapTypeModifiers, MapTypeModifiersLoc, MapperIdScopeSpec, MapperId, MapType, IsMapTypeImplicit, MapLoc, ColonLoc, VarList, Locs, /*NoDiagnose=*/false, UnresolvedMappers); } /// Build a new OpenMP 'allocate' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPAllocateClause(Expr *Allocate, ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPAllocateClause( Allocate, VarList, StartLoc, LParenLoc, ColonLoc, EndLoc); } /// Build a new OpenMP 'num_teams' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPNumTeamsClause(NumTeams, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'thread_limit' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPThreadLimitClause(Expr *ThreadLimit, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPThreadLimitClause( ThreadLimit, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'priority' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPPriorityClause(Expr *Priority, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPPriorityClause(Priority, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'grainsize' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPGrainsizeClause(OpenMPGrainsizeClauseModifier Modifier, Expr *Device, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ModifierLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPGrainsizeClause( Modifier, Device, StartLoc, LParenLoc, ModifierLoc, EndLoc); } /// Build a new OpenMP 'num_tasks' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPNumTasksClause(OpenMPNumTasksClauseModifier Modifier, Expr *NumTasks, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ModifierLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPNumTasksClause( Modifier, NumTasks, StartLoc, LParenLoc, ModifierLoc, EndLoc); } /// Build a new OpenMP 'hint' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPHintClause(Expr *Hint, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPHintClause(Hint, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'detach' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDetachClause(Expr *Evt, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDetachClause(Evt, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'dist_schedule' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause * RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDistScheduleClause( Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc); } /// Build a new OpenMP 'to' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause * RebuildOMPToClause(ArrayRef MotionModifiers, ArrayRef MotionModifiersLoc, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, SourceLocation ColonLoc, ArrayRef VarList, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers) { return getSema().OpenMP().ActOnOpenMPToClause( MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId, ColonLoc, VarList, Locs, UnresolvedMappers); } /// Build a new OpenMP 'from' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause * RebuildOMPFromClause(ArrayRef MotionModifiers, ArrayRef MotionModifiersLoc, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, SourceLocation ColonLoc, ArrayRef VarList, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers) { return getSema().OpenMP().ActOnOpenMPFromClause( MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId, ColonLoc, VarList, Locs, UnresolvedMappers); } /// Build a new OpenMP 'use_device_ptr' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPUseDevicePtrClause(ArrayRef VarList, const OMPVarListLocTy &Locs) { return getSema().OpenMP().ActOnOpenMPUseDevicePtrClause(VarList, Locs); } /// Build a new OpenMP 'use_device_addr' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPUseDeviceAddrClause(ArrayRef VarList, const OMPVarListLocTy &Locs) { return getSema().OpenMP().ActOnOpenMPUseDeviceAddrClause(VarList, Locs); } /// Build a new OpenMP 'is_device_ptr' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPIsDevicePtrClause(ArrayRef VarList, const OMPVarListLocTy &Locs) { return getSema().OpenMP().ActOnOpenMPIsDevicePtrClause(VarList, Locs); } /// Build a new OpenMP 'has_device_addr' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPHasDeviceAddrClause(ArrayRef VarList, const OMPVarListLocTy &Locs) { return getSema().OpenMP().ActOnOpenMPHasDeviceAddrClause(VarList, Locs); } /// Build a new OpenMP 'defaultmap' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc, SourceLocation KindLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDefaultmapClause( M, Kind, StartLoc, LParenLoc, MLoc, KindLoc, EndLoc); } /// Build a new OpenMP 'nontemporal' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPNontemporalClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPNontemporalClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'inclusive' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPInclusiveClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPInclusiveClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'exclusive' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPExclusiveClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPExclusiveClause(VarList, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'uses_allocators' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPUsesAllocatorsClause( ArrayRef Data, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPUsesAllocatorClause( StartLoc, LParenLoc, EndLoc, Data); } /// Build a new OpenMP 'affinity' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPAffinityClause(SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, Expr *Modifier, ArrayRef Locators) { return getSema().OpenMP().ActOnOpenMPAffinityClause( StartLoc, LParenLoc, ColonLoc, EndLoc, Modifier, Locators); } /// Build a new OpenMP 'order' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPOrderClause( OpenMPOrderClauseKind Kind, SourceLocation KindKwLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc, OpenMPOrderClauseModifier Modifier, SourceLocation ModifierKwLoc) { return getSema().OpenMP().ActOnOpenMPOrderClause( Modifier, Kind, StartLoc, LParenLoc, ModifierKwLoc, KindKwLoc, EndLoc); } /// Build a new OpenMP 'init' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPInitClause(Expr *InteropVar, OMPInteropInfo &InteropInfo, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation VarLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPInitClause( InteropVar, InteropInfo, StartLoc, LParenLoc, VarLoc, EndLoc); } /// Build a new OpenMP 'use' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPUseClause(Expr *InteropVar, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation VarLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPUseClause(InteropVar, StartLoc, LParenLoc, VarLoc, EndLoc); } /// Build a new OpenMP 'destroy' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation VarLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDestroyClause( InteropVar, StartLoc, LParenLoc, VarLoc, EndLoc); } /// Build a new OpenMP 'novariants' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPNovariantsClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPNovariantsClause(Condition, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'nocontext' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPNocontextClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPNocontextClause(Condition, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'filter' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPFilterClause(Expr *ThreadID, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPFilterClause(ThreadID, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'bind' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPBindClause(OpenMPBindClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPBindClause(Kind, KindLoc, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'ompx_dyn_cgroup_mem' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPXDynCGroupMemClause(Expr *Size, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPXDynCGroupMemClause(Size, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'ompx_attribute' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPXAttributeClause(ArrayRef Attrs, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPXAttributeClause(Attrs, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'ompx_bare' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPXBareClause(SourceLocation StartLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPXBareClause(StartLoc, EndLoc); } /// Build a new OpenMP 'align' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPAlignClause(Expr *A, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPAlignClause(A, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'at' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPAtClause(OpenMPAtClauseKind Kind, SourceLocation KwLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPAtClause(Kind, KwLoc, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'severity' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPSeverityClause(OpenMPSeverityClauseKind Kind, SourceLocation KwLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPSeverityClause(Kind, KwLoc, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'message' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPMessageClause(Expr *MS, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPMessageClause(MS, StartLoc, LParenLoc, EndLoc); } /// Build a new OpenMP 'doacross' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause * RebuildOMPDoacrossClause(OpenMPDoacrossClauseModifier DepType, SourceLocation DepLoc, SourceLocation ColonLoc, ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().OpenMP().ActOnOpenMPDoacrossClause( DepType, DepLoc, ColonLoc, VarList, StartLoc, LParenLoc, EndLoc); } /// Rebuild the operand to an Objective-C \@synchronized statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *object) { return getSema().ObjC().ActOnObjCAtSynchronizedOperand(atLoc, object); } /// Build a new Objective-C \@synchronized statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *Object, Stmt *Body) { return getSema().ObjC().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body); } /// Build a new Objective-C \@autoreleasepool statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { return getSema().ObjC().ActOnObjCAutoreleasePoolStmt(AtLoc, Body); } /// Build a new Objective-C fast enumeration statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc, Stmt *Element, Expr *Collection, SourceLocation RParenLoc, Stmt *Body) { StmtResult ForEachStmt = getSema().ObjC().ActOnObjCForCollectionStmt( ForLoc, Element, Collection, RParenLoc); if (ForEachStmt.isInvalid()) return StmtError(); return getSema().ObjC().FinishObjCForCollectionStmt(ForEachStmt.get(), Body); } /// Build a new C++ exception declaration. /// /// By default, performs semantic analysis to build the new decaration. /// Subclasses may override this routine to provide different behavior. VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, TypeSourceInfo *Declarator, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id) { VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator, StartLoc, IdLoc, Id); if (Var) getSema().CurContext->addDecl(Var); return Var; } /// Build a new C++ catch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc, VarDecl *ExceptionDecl, Stmt *Handler) { return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl, Handler)); } /// Build a new C++ try statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef Handlers) { return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers); } /// Build a new C++0x range-based for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXForRangeStmt( SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *Init, SourceLocation ColonLoc, Stmt *Range, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVar, SourceLocation RParenLoc, ArrayRef LifetimeExtendTemps) { // If we've just learned that the range is actually an Objective-C // collection, treat this as an Objective-C fast enumeration loop. if (DeclStmt *RangeStmt = dyn_cast(Range)) { if (RangeStmt->isSingleDecl()) { if (VarDecl *RangeVar = dyn_cast(RangeStmt->getSingleDecl())) { if (RangeVar->isInvalidDecl()) return StmtError(); Expr *RangeExpr = RangeVar->getInit(); if (!RangeExpr->isTypeDependent() && RangeExpr->getType()->isObjCObjectPointerType()) { // FIXME: Support init-statements in Objective-C++20 ranged for // statement. if (Init) { return SemaRef.Diag(Init->getBeginLoc(), diag::err_objc_for_range_init_stmt) << Init->getSourceRange(); } return getSema().ObjC().ActOnObjCForCollectionStmt( ForLoc, LoopVar, RangeExpr, RParenLoc); } } } } return getSema().BuildCXXForRangeStmt( ForLoc, CoawaitLoc, Init, ColonLoc, Range, Begin, End, Cond, Inc, LoopVar, RParenLoc, Sema::BFRK_Rebuild, LifetimeExtendTemps); } /// Build a new C++0x range-based for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested) { return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, QualifierLoc, NameInfo, Nested); } /// Attach body to a C++0x range-based for statement. /// /// By default, performs semantic analysis to finish the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) { return getSema().FinishCXXForRangeStmt(ForRange, Body); } StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler) { return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler); } StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, Stmt *Block) { return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block); } StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) { return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block); } ExprResult RebuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, SourceLocation LParen, SourceLocation RParen, TypeSourceInfo *TSI) { return getSema().SYCL().BuildUniqueStableNameExpr(OpLoc, LParen, RParen, TSI); } /// Build a new predefined expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildPredefinedExpr(SourceLocation Loc, PredefinedIdentKind IK) { return getSema().BuildPredefinedExpr(Loc, IK); } /// Build a new expression that references a declaration. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool RequiresADL) { return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL); } /// Build a new expression that references a declaration. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc, ValueDecl *VD, const DeclarationNameInfo &NameInfo, NamedDecl *Found, TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD, Found, TemplateArgs); } /// Build a new expression in parentheses. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen, SourceLocation RParen) { return getSema().ActOnParenExpr(LParen, RParen, SubExpr); } /// Build a new pseudo-destructor expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base, SourceLocation OperatorLoc, bool isArrow, CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage Destroyed); /// Build a new unary operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryOperator(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *SubExpr) { return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr); } /// Build a new builtin offsetof expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc, TypeSourceInfo *Type, ArrayRef Components, SourceLocation RParenLoc) { return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components, RParenLoc); } /// Build a new sizeof, alignof or vec_step expression with a /// type argument. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R) { return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R); } /// Build a new sizeof, alignof or vec step expression with an /// expression argument. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R) { ExprResult Result = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind); if (Result.isInvalid()) return ExprError(); return Result; } /// Build a new array subscript expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildArraySubscriptExpr(Expr *LHS, SourceLocation LBracketLoc, Expr *RHS, SourceLocation RBracketLoc) { return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS, LBracketLoc, RHS, RBracketLoc); } /// Build a new matrix subscript expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, Expr *ColumnIdx, SourceLocation RBracketLoc) { return getSema().CreateBuiltinMatrixSubscriptExpr(Base, RowIdx, ColumnIdx, RBracketLoc); } /// Build a new array section expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildArraySectionExpr(bool IsOMPArraySection, Expr *Base, SourceLocation LBracketLoc, Expr *LowerBound, SourceLocation ColonLocFirst, SourceLocation ColonLocSecond, Expr *Length, Expr *Stride, SourceLocation RBracketLoc) { if (IsOMPArraySection) return getSema().OpenMP().ActOnOMPArraySectionExpr( Base, LBracketLoc, LowerBound, ColonLocFirst, ColonLocSecond, Length, Stride, RBracketLoc); assert(Stride == nullptr && !ColonLocSecond.isValid() && "Stride/second colon not allowed for OpenACC"); return getSema().OpenACC().ActOnArraySectionExpr( Base, LBracketLoc, LowerBound, ColonLocFirst, Length, RBracketLoc); } /// Build a new array shaping expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, SourceLocation RParenLoc, ArrayRef Dims, ArrayRef BracketsRanges) { return getSema().OpenMP().ActOnOMPArrayShapingExpr( Base, LParenLoc, RParenLoc, Dims, BracketsRanges); } /// Build a new iterator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildOMPIteratorExpr(SourceLocation IteratorKwLoc, SourceLocation LLoc, SourceLocation RLoc, ArrayRef Data) { return getSema().OpenMP().ActOnOMPIteratorExpr( /*Scope=*/nullptr, IteratorKwLoc, LLoc, RLoc, Data); } /// Build a new call expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig = nullptr) { return getSema().ActOnCallExpr( /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc, ExecConfig); } ExprResult RebuildCxxSubscriptExpr(Expr *Callee, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc) { return getSema().ActOnArraySubscriptExpr( /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc); } /// Build a new member access expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc, bool isArrow, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &MemberNameInfo, ValueDecl *Member, NamedDecl *FoundDecl, const TemplateArgumentListInfo *ExplicitTemplateArgs, NamedDecl *FirstQualifierInScope) { ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base, isArrow); if (!Member->getDeclName()) { // We have a reference to an unnamed field. This is always the // base of an anonymous struct/union member access, i.e. the // field is always of record type. assert(Member->getType()->isRecordType() && "unnamed member not of record type?"); BaseResult = getSema().PerformObjectMemberConversion(BaseResult.get(), QualifierLoc.getNestedNameSpecifier(), FoundDecl, Member); if (BaseResult.isInvalid()) return ExprError(); Base = BaseResult.get(); // `TranformMaterializeTemporaryExpr()` removes materialized temporaries // from the AST, so we need to re-insert them if needed (since // `BuildFieldRefereneExpr()` doesn't do this). if (!isArrow && Base->isPRValue()) { BaseResult = getSema().TemporaryMaterializationConversion(Base); if (BaseResult.isInvalid()) return ExprError(); Base = BaseResult.get(); } CXXScopeSpec EmptySS; return getSema().BuildFieldReferenceExpr( Base, isArrow, OpLoc, EmptySS, cast(Member), DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), MemberNameInfo); } CXXScopeSpec SS; SS.Adopt(QualifierLoc); Base = BaseResult.get(); if (Base->containsErrors()) return ExprError(); QualType BaseType = Base->getType(); if (isArrow && !BaseType->isPointerType()) return ExprError(); // FIXME: this involves duplicating earlier analysis in a lot of // cases; we should avoid this when possible. LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName); R.addDecl(FoundDecl); R.resolveKind(); if (getSema().isUnevaluatedContext() && Base->isImplicitCXXThis() && isa(Member)) { if (auto *ThisClass = cast(Base) ->getType() ->getPointeeType() ->getAsCXXRecordDecl()) { auto *Class = cast(Member->getDeclContext()); // In unevaluated contexts, an expression supposed to be a member access // might reference a member in an unrelated class. if (!ThisClass->Equals(Class) && !ThisClass->isDerivedFrom(Class)) return getSema().BuildDeclRefExpr(Member, Member->getType(), VK_LValue, Member->getLocation()); } } return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow, SS, TemplateKWLoc, FirstQualifierInScope, R, ExplicitTemplateArgs, /*S*/nullptr); } /// Build a new binary operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildBinaryOperator(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHS, Expr *RHS) { return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS); } /// Build a new rewritten operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXRewrittenBinaryOperator( SourceLocation OpLoc, BinaryOperatorKind Opcode, const UnresolvedSetImpl &UnqualLookups, Expr *LHS, Expr *RHS) { return getSema().CreateOverloadedBinOp(OpLoc, Opcode, UnqualLookups, LHS, RHS, /*RequiresADL*/false); } /// Build a new conditional operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildConditionalOperator(Expr *Cond, SourceLocation QuestionLoc, Expr *LHS, SourceLocation ColonLoc, Expr *RHS) { return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond, LHS, RHS); } /// Build a new C-style cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *SubExpr) { return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, SubExpr); } /// Build a new compound literal expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *Init) { return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Init); } /// Build a new extended vector element access expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildExtVectorElementExpr(Expr *Base, SourceLocation OpLoc, bool IsArrow, SourceLocation AccessorLoc, IdentifierInfo &Accessor) { CXXScopeSpec SS; DeclarationNameInfo NameInfo(&Accessor, AccessorLoc); return getSema().BuildMemberReferenceExpr( Base, Base->getType(), OpLoc, IsArrow, SS, SourceLocation(), /*FirstQualifierInScope*/ nullptr, NameInfo, /* TemplateArgs */ nullptr, /*S*/ nullptr); } /// Build a new initializer list expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildInitList(SourceLocation LBraceLoc, MultiExprArg Inits, SourceLocation RBraceLoc) { return SemaRef.BuildInitList(LBraceLoc, Inits, RBraceLoc); } /// Build a new designated initializer expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDesignatedInitExpr(Designation &Desig, MultiExprArg ArrayExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init) { ExprResult Result = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax, Init); if (Result.isInvalid()) return ExprError(); return Result; } /// Build a new value-initialized expression. /// /// By default, builds the implicit value initialization without performing /// any semantic analysis. Subclasses may override this routine to provide /// different behavior. ExprResult RebuildImplicitValueInitExpr(QualType T) { return new (SemaRef.Context) ImplicitValueInitExpr(T); } /// Build a new \c va_arg expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc, Expr *SubExpr, TypeSourceInfo *TInfo, SourceLocation RParenLoc) { return getSema().BuildVAArgExpr(BuiltinLoc, SubExpr, TInfo, RParenLoc); } /// Build a new expression list in parentheses. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildParenListExpr(SourceLocation LParenLoc, MultiExprArg SubExprs, SourceLocation RParenLoc) { return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs); } /// Build a new address-of-label expression. /// /// By default, performs semantic analysis, using the name of the label /// rather than attempting to map the label statement itself. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc, SourceLocation LabelLoc, LabelDecl *Label) { return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label); } /// Build a new GNU statement expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt, SourceLocation RParenLoc, unsigned TemplateDepth) { return getSema().BuildStmtExpr(LParenLoc, SubStmt, RParenLoc, TemplateDepth); } /// Build a new __builtin_choose_expr expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc, Expr *Cond, Expr *LHS, Expr *RHS, SourceLocation RParenLoc) { return SemaRef.ActOnChooseExpr(BuiltinLoc, Cond, LHS, RHS, RParenLoc); } /// Build a new generic selection expression with an expression predicate. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef Types, ArrayRef Exprs) { return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, /*PredicateIsExpr=*/true, ControllingExpr, Types, Exprs); } /// Build a new generic selection expression with a type predicate. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, TypeSourceInfo *ControllingType, ArrayRef Types, ArrayRef Exprs) { return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, /*PredicateIsExpr=*/false, ControllingType, Types, Exprs); } /// Build a new overloaded operator call expression. /// /// By default, performs semantic analysis to build the new expression. /// The semantic analysis provides the behavior of template instantiation, /// copying with transformations that turn what looks like an overloaded /// operator call into a use of a builtin operator, performing /// argument-dependent lookup, etc. Subclasses may override this routine to /// provide different behavior. ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, SourceLocation OpLoc, SourceLocation CalleeLoc, bool RequiresADL, const UnresolvedSetImpl &Functions, Expr *First, Expr *Second); /// Build a new C++ "named" cast expression, such as static_cast or /// reinterpret_cast. /// /// By default, this routine dispatches to one of the more-specific routines /// for a particular named case, e.g., RebuildCXXStaticCastExpr(). /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc, Stmt::StmtClass Class, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { switch (Class) { case Stmt::CXXStaticCastExprClass: return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXDynamicCastExprClass: return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXReinterpretCastExprClass: return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXConstCastExprClass: return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXAddrspaceCastExprClass: return getDerived().RebuildCXXAddrspaceCastExpr( OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); default: llvm_unreachable("Invalid C++ named cast"); } } /// Build a new C++ static_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// Build a new C++ dynamic_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// Build a new C++ reinterpret_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// Build a new C++ const_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } ExprResult RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast( OpLoc, tok::kw_addrspace_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// Build a new C++ functional-style cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, SourceLocation LParenLoc, Expr *Sub, SourceLocation RParenLoc, bool ListInitialization) { // If Sub is a ParenListExpr, then Sub is the syntatic form of a // CXXParenListInitExpr. Pass its expanded arguments so that the // CXXParenListInitExpr can be rebuilt. if (auto *PLE = dyn_cast(Sub)) return getSema().BuildCXXTypeConstructExpr( TInfo, LParenLoc, MultiExprArg(PLE->getExprs(), PLE->getNumExprs()), RParenLoc, ListInitialization); return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc, MultiExprArg(&Sub, 1), RParenLoc, ListInitialization); } /// Build a new C++ __builtin_bit_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI, Expr *Sub, SourceLocation RParenLoc) { return getSema().BuildBuiltinBitCastExpr(KWLoc, TSI, Sub, RParenLoc); } /// Build a new C++ typeid(type) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// Build a new C++ typeid(expr) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// Build a new C++ __uuidof(type) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc); } /// Build a new C++ __uuidof(expr) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc); } /// Build a new C++ "this" expression. /// /// By default, performs semantic analysis to build a new "this" expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc, QualType ThisType, bool isImplicit) { if (getSema().CheckCXXThisType(ThisLoc, ThisType)) return ExprError(); return getSema().BuildCXXThisExpr(ThisLoc, ThisType, isImplicit); } /// Build a new C++ throw expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub, bool IsThrownVariableInScope) { return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope); } /// Build a new C++ default-argument expression. /// /// By default, builds a new default-argument expression, which does not /// require any semantic analysis. Subclasses may override this routine to /// provide different behavior. ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param, Expr *RewrittenExpr) { return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param, RewrittenExpr, getSema().CurContext); } /// Build a new C++11 default-initialization expression. /// /// By default, builds a new default field initialization expression, which /// does not require any semantic analysis. Subclasses may override this /// routine to provide different behavior. ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { return getSema().BuildCXXDefaultInitExpr(Loc, Field); } /// Build a new C++ zero-initialization expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo, SourceLocation LParenLoc, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, std::nullopt, RParenLoc, /*ListInitialization=*/false); } /// Build a new C++ "new" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNewExpr(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocatedType, TypeSourceInfo *AllocatedTypeInfo, std::optional ArraySize, SourceRange DirectInitRange, Expr *Initializer) { return getSema().BuildCXXNew(StartLoc, UseGlobal, PlacementLParen, PlacementArgs, PlacementRParen, TypeIdParens, AllocatedType, AllocatedTypeInfo, ArraySize, DirectInitRange, Initializer); } /// Build a new C++ "delete" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc, bool IsGlobalDelete, bool IsArrayForm, Expr *Operand) { return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm, Operand); } /// Build a new type trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildTypeTrait(TypeTrait Trait, SourceLocation StartLoc, ArrayRef Args, SourceLocation RParenLoc) { return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc); } /// Build a new array type trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait, SourceLocation StartLoc, TypeSourceInfo *TSInfo, Expr *DimExpr, SourceLocation RParenLoc) { return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc); } /// Build a new expression trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildExpressionTrait(ExpressionTrait Trait, SourceLocation StartLoc, Expr *Queried, SourceLocation RParenLoc) { return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc); } /// Build a new (previously unresolved) declaration reference /// expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDependentScopeDeclRefExpr( NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (TemplateArgs || TemplateKWLoc.isValid()) return getSema().BuildQualifiedTemplateIdExpr( SS, TemplateKWLoc, NameInfo, TemplateArgs, IsAddressOfOperand); return getSema().BuildQualifiedDeclarationNameExpr( SS, NameInfo, IsAddressOfOperand, RecoveryTSI); } /// Build a new template-id expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, bool RequiresADL, const TemplateArgumentListInfo *TemplateArgs) { return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL, TemplateArgs); } /// Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXConstructExpr( QualType T, SourceLocation Loc, CXXConstructorDecl *Constructor, bool IsElidable, MultiExprArg Args, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool RequiresZeroInit, CXXConstructionKind ConstructKind, SourceRange ParenRange) { // Reconstruct the constructor we originally found, which might be // different if this is a call to an inherited constructor. CXXConstructorDecl *FoundCtor = Constructor; if (Constructor->isInheritingConstructor()) FoundCtor = Constructor->getInheritedConstructor().getConstructor(); SmallVector ConvertedArgs; if (getSema().CompleteConstructorCall(FoundCtor, T, Args, Loc, ConvertedArgs)) return ExprError(); return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable, ConvertedArgs, HadMultipleCandidates, ListInitialization, StdInitListInitialization, RequiresZeroInit, ConstructKind, ParenRange); } /// Build a new implicit construction via inherited constructor /// expression. ExprResult RebuildCXXInheritedCtorInitExpr(QualType T, SourceLocation Loc, CXXConstructorDecl *Constructor, bool ConstructsVBase, bool InheritedFromVBase) { return new (getSema().Context) CXXInheritedCtorInitExpr( Loc, T, Constructor, ConstructsVBase, InheritedFromVBase); } /// Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo, SourceLocation LParenOrBraceLoc, MultiExprArg Args, SourceLocation RParenOrBraceLoc, bool ListInitialization) { return getSema().BuildCXXTypeConstructExpr( TSInfo, LParenOrBraceLoc, Args, RParenOrBraceLoc, ListInitialization); } /// Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, bool ListInitialization) { return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args, RParenLoc, ListInitialization); } /// Build a new member reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, OperatorLoc, IsArrow, SS, TemplateKWLoc, FirstQualifierInScope, MemberNameInfo, TemplateArgs, /*S*/nullptr); } /// Build a new member reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType, SourceLocation OperatorLoc, bool IsArrow, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, OperatorLoc, IsArrow, SS, TemplateKWLoc, FirstQualifierInScope, R, TemplateArgs, /*S*/nullptr); } /// Build a new noexcept expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) { return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd()); } /// Build a new expression to compute the length of a parameter pack. ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack, SourceLocation PackLoc, SourceLocation RParenLoc, std::optional Length, ArrayRef PartialArgs) { return SizeOfPackExpr::Create(SemaRef.Context, OperatorLoc, Pack, PackLoc, RParenLoc, Length, PartialArgs); } ExprResult RebuildPackIndexingExpr(SourceLocation EllipsisLoc, SourceLocation RSquareLoc, Expr *PackIdExpression, Expr *IndexExpr, ArrayRef ExpandedExprs, bool EmptyPack = false) { return getSema().BuildPackIndexingExpr(PackIdExpression, EllipsisLoc, IndexExpr, RSquareLoc, ExpandedExprs, EmptyPack); } /// Build a new expression representing a call to a source location /// builtin. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy, SourceLocation BuiltinLoc, SourceLocation RPLoc, DeclContext *ParentContext) { return getSema().BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext); } /// Build a new Objective-C boxed expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc, DeclarationNameInfo ConceptNameInfo, NamedDecl *FoundDecl, ConceptDecl *NamedConcept, TemplateArgumentListInfo *TALI) { CXXScopeSpec SS; SS.Adopt(NNS); ExprResult Result = getSema().CheckConceptTemplateId(SS, TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, TALI); if (Result.isInvalid()) return ExprError(); return Result; } /// \brief Build a new requires expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildRequiresExpr(SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body, SourceLocation LParenLoc, ArrayRef LocalParameters, SourceLocation RParenLoc, ArrayRef Requirements, SourceLocation ClosingBraceLoc) { return RequiresExpr::Create(SemaRef.Context, RequiresKWLoc, Body, LParenLoc, LocalParameters, RParenLoc, Requirements, ClosingBraceLoc); } concepts::TypeRequirement * RebuildTypeRequirement( concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { return SemaRef.BuildTypeRequirement(SubstDiag); } concepts::TypeRequirement *RebuildTypeRequirement(TypeSourceInfo *T) { return SemaRef.BuildTypeRequirement(T); } concepts::ExprRequirement * RebuildExprRequirement( concepts::Requirement::SubstitutionDiagnostic *SubstDiag, bool IsSimple, SourceLocation NoexceptLoc, concepts::ExprRequirement::ReturnTypeRequirement Ret) { return SemaRef.BuildExprRequirement(SubstDiag, IsSimple, NoexceptLoc, std::move(Ret)); } concepts::ExprRequirement * RebuildExprRequirement(Expr *E, bool IsSimple, SourceLocation NoexceptLoc, concepts::ExprRequirement::ReturnTypeRequirement Ret) { return SemaRef.BuildExprRequirement(E, IsSimple, NoexceptLoc, std::move(Ret)); } concepts::NestedRequirement * RebuildNestedRequirement(StringRef InvalidConstraintEntity, const ASTConstraintSatisfaction &Satisfaction) { return SemaRef.BuildNestedRequirement(InvalidConstraintEntity, Satisfaction); } concepts::NestedRequirement *RebuildNestedRequirement(Expr *Constraint) { return SemaRef.BuildNestedRequirement(Constraint); } /// \brief Build a new Objective-C boxed expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { return getSema().ObjC().BuildObjCBoxedExpr(SR, ValueExpr); } /// Build a new Objective-C array literal. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCArrayLiteral(SourceRange Range, Expr **Elements, unsigned NumElements) { return getSema().ObjC().BuildObjCArrayLiteral( Range, MultiExprArg(Elements, NumElements)); } ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB, Expr *Base, Expr *Key, ObjCMethodDecl *getterMethod, ObjCMethodDecl *setterMethod) { return getSema().ObjC().BuildObjCSubscriptExpression( RB, Base, Key, getterMethod, setterMethod); } /// Build a new Objective-C dictionary literal. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCDictionaryLiteral(SourceRange Range, MutableArrayRef Elements) { return getSema().ObjC().BuildObjCDictionaryLiteral(Range, Elements); } /// Build a new Objective-C \@encode expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc, TypeSourceInfo *EncodeTypeInfo, SourceLocation RParenLoc) { return SemaRef.ObjC().BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc); } /// Build a new Objective-C class message. ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo, Selector Sel, ArrayRef SelectorLocs, ObjCMethodDecl *Method, SourceLocation LBracLoc, MultiExprArg Args, SourceLocation RBracLoc) { return SemaRef.ObjC().BuildClassMessage( ReceiverTypeInfo, ReceiverTypeInfo->getType(), /*SuperLoc=*/SourceLocation(), Sel, Method, LBracLoc, SelectorLocs, RBracLoc, Args); } /// Build a new Objective-C instance message. ExprResult RebuildObjCMessageExpr(Expr *Receiver, Selector Sel, ArrayRef SelectorLocs, ObjCMethodDecl *Method, SourceLocation LBracLoc, MultiExprArg Args, SourceLocation RBracLoc) { return SemaRef.ObjC().BuildInstanceMessage(Receiver, Receiver->getType(), /*SuperLoc=*/SourceLocation(), Sel, Method, LBracLoc, SelectorLocs, RBracLoc, Args); } /// Build a new Objective-C instance/class message to 'super'. ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc, Selector Sel, ArrayRef SelectorLocs, QualType SuperType, ObjCMethodDecl *Method, SourceLocation LBracLoc, MultiExprArg Args, SourceLocation RBracLoc) { return Method->isInstanceMethod() ? SemaRef.ObjC().BuildInstanceMessage( nullptr, SuperType, SuperLoc, Sel, Method, LBracLoc, SelectorLocs, RBracLoc, Args) : SemaRef.ObjC().BuildClassMessage(nullptr, SuperType, SuperLoc, Sel, Method, LBracLoc, SelectorLocs, RBracLoc, Args); } /// Build a new Objective-C ivar reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar, SourceLocation IvarLoc, bool IsArrow, bool IsFreeIvar) { CXXScopeSpec SS; DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc); ExprResult Result = getSema().BuildMemberReferenceExpr( BaseArg, BaseArg->getType(), /*FIXME:*/ IvarLoc, IsArrow, SS, SourceLocation(), /*FirstQualifierInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr, /*S=*/nullptr); if (IsFreeIvar && Result.isUsable()) cast(Result.get())->setIsFreeIvar(IsFreeIvar); return Result; } /// Build a new Objective-C property reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg, ObjCPropertyDecl *Property, SourceLocation PropertyLoc) { CXXScopeSpec SS; DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc); return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), /*FIXME:*/PropertyLoc, /*IsArrow=*/false, SS, SourceLocation(), /*FirstQualifierInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr, /*S=*/nullptr); } /// Build a new Objective-C property reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T, ObjCMethodDecl *Getter, ObjCMethodDecl *Setter, SourceLocation PropertyLoc) { // Since these expressions can only be value-dependent, we do not // need to perform semantic analysis again. return Owned( new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T, VK_LValue, OK_ObjCProperty, PropertyLoc, Base)); } /// Build a new Objective-C "isa" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc, SourceLocation OpLoc, bool IsArrow) { CXXScopeSpec SS; DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc); return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), OpLoc, IsArrow, SS, SourceLocation(), /*FirstQualifierInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr, /*S=*/nullptr); } /// Build a new shuffle vector expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs, SourceLocation RParenLoc) { // Find the declaration for __builtin_shufflevector const IdentifierInfo &Name = SemaRef.Context.Idents.get("__builtin_shufflevector"); TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl(); DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name)); assert(!Lookup.empty() && "No __builtin_shufflevector?"); // Build a reference to the __builtin_shufflevector builtin FunctionDecl *Builtin = cast(Lookup.front()); Expr *Callee = new (SemaRef.Context) DeclRefExpr(SemaRef.Context, Builtin, false, SemaRef.Context.BuiltinFnTy, VK_PRValue, BuiltinLoc); QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType()); Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy, CK_BuiltinFnToFnPtr).get(); // Build the CallExpr ExprResult TheCall = CallExpr::Create( SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(), Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc, FPOptionsOverride()); // Type-check the __builtin_shufflevector expression. return SemaRef.BuiltinShuffleVector(cast(TheCall.get())); } /// Build a new convert vector expression. ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc, Expr *SrcExpr, TypeSourceInfo *DstTInfo, SourceLocation RParenLoc) { return SemaRef.ConvertVectorExpr(SrcExpr, DstTInfo, BuiltinLoc, RParenLoc); } /// Build a new template argument pack expansion. /// /// By default, performs semantic analysis to build a new pack expansion /// for a template argument. Subclasses may override this routine to provide /// different behavior. TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern, SourceLocation EllipsisLoc, std::optional NumExpansions) { switch (Pattern.getArgument().getKind()) { case TemplateArgument::Expression: { ExprResult Result = getSema().CheckPackExpansion(Pattern.getSourceExpression(), EllipsisLoc, NumExpansions); if (Result.isInvalid()) return TemplateArgumentLoc(); return TemplateArgumentLoc(Result.get(), Result.get()); } case TemplateArgument::Template: return TemplateArgumentLoc( SemaRef.Context, TemplateArgument(Pattern.getArgument().getAsTemplate(), NumExpansions), Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(), EllipsisLoc); case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::StructuralValue: case TemplateArgument::Pack: case TemplateArgument::TemplateExpansion: case TemplateArgument::NullPtr: llvm_unreachable("Pack expansion pattern has no parameter packs"); case TemplateArgument::Type: if (TypeSourceInfo *Expansion = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(), EllipsisLoc, NumExpansions)) return TemplateArgumentLoc(TemplateArgument(Expansion->getType()), Expansion); break; } return TemplateArgumentLoc(); } /// Build a new expression pack expansion. /// /// By default, performs semantic analysis to build a new pack expansion /// for an expression. Subclasses may override this routine to provide /// different behavior. ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, std::optional NumExpansions) { return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions); } /// Build a new C++1z fold-expression. /// /// By default, performs semantic analysis in order to build a new fold /// expression. ExprResult RebuildCXXFoldExpr(UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, Expr *LHS, BinaryOperatorKind Operator, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc, std::optional NumExpansions) { return getSema().BuildCXXFoldExpr(ULE, LParenLoc, LHS, Operator, EllipsisLoc, RHS, RParenLoc, NumExpansions); } /// Build an empty C++1z fold-expression with the given operator. /// /// By default, produces the fallback value for the fold-expression, or /// produce an error if there is no fallback value. ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc, BinaryOperatorKind Operator) { return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator); } /// Build a new atomic operation expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs, AtomicExpr::AtomicOp Op, SourceLocation RParenLoc) { // Use this for all of the locations, since we don't know the difference // between the call and the expr at this point. SourceRange Range{BuiltinLoc, RParenLoc}; return getSema().BuildAtomicExpr(Range, Range, RParenLoc, SubExprs, Op, Sema::AtomicArgumentOrder::AST); } ExprResult RebuildRecoveryExpr(SourceLocation BeginLoc, SourceLocation EndLoc, ArrayRef SubExprs, QualType Type) { return getSema().CreateRecoveryExpr(BeginLoc, EndLoc, SubExprs, Type); } StmtResult RebuildOpenACCComputeConstruct(OpenACCDirectiveKind K, SourceLocation BeginLoc, SourceLocation DirLoc, SourceLocation EndLoc, ArrayRef Clauses, StmtResult StrBlock) { return getSema().OpenACC().ActOnEndStmtDirective(K, BeginLoc, DirLoc, EndLoc, Clauses, StrBlock); } StmtResult RebuildOpenACCLoopConstruct(SourceLocation BeginLoc, SourceLocation DirLoc, SourceLocation EndLoc, ArrayRef Clauses, StmtResult Loop) { return getSema().OpenACC().ActOnEndStmtDirective( OpenACCDirectiveKind::Loop, BeginLoc, DirLoc, EndLoc, Clauses, Loop); } private: TypeLoc TransformTypeInObjectScope(TypeLoc TL, QualType ObjectType, NamedDecl *FirstQualifierInScope, CXXScopeSpec &SS); TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo, QualType ObjectType, NamedDecl *FirstQualifierInScope, CXXScopeSpec &SS); TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType, NamedDecl *FirstQualifierInScope, CXXScopeSpec &SS); QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL, bool DeducibleTSTContext); llvm::SmallVector TransformOpenACCClauseList(OpenACCDirectiveKind DirKind, ArrayRef OldClauses); OpenACCClause * TransformOpenACCClause(ArrayRef ExistingClauses, OpenACCDirectiveKind DirKind, const OpenACCClause *OldClause); }; template StmtResult TreeTransform::TransformStmt(Stmt *S, StmtDiscardKind SDK) { if (!S) return S; switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; // Transform individual statement nodes // Pass SDK into statements that can produce a value #define STMT(Node, Parent) \ case Stmt::Node##Class: return getDerived().Transform##Node(cast(S)); #define VALUESTMT(Node, Parent) \ case Stmt::Node##Class: \ return getDerived().Transform##Node(cast(S), SDK); #define ABSTRACT_STMT(Node) #define EXPR(Node, Parent) #include "clang/AST/StmtNodes.inc" // Transform expressions by calling TransformExpr. #define STMT(Node, Parent) #define ABSTRACT_STMT(Stmt) #define EXPR(Node, Parent) case Stmt::Node##Class: #include "clang/AST/StmtNodes.inc" { ExprResult E = getDerived().TransformExpr(cast(S)); if (SDK == SDK_StmtExprResult) E = getSema().ActOnStmtExprResult(E); return getSema().ActOnExprStmt(E, SDK == SDK_Discarded); } } return S; } template OMPClause *TreeTransform::TransformOMPClause(OMPClause *S) { if (!S) return S; switch (S->getClauseKind()) { default: break; // Transform individual clause nodes #define GEN_CLANG_CLAUSE_CLASS #define CLAUSE_CLASS(Enum, Str, Class) \ case Enum: \ return getDerived().Transform##Class(cast(S)); #include "llvm/Frontend/OpenMP/OMP.inc" } return S; } template ExprResult TreeTransform::TransformExpr(Expr *E) { if (!E) return E; switch (E->getStmtClass()) { case Stmt::NoStmtClass: break; #define STMT(Node, Parent) case Stmt::Node##Class: break; #define ABSTRACT_STMT(Stmt) #define EXPR(Node, Parent) \ case Stmt::Node##Class: return getDerived().Transform##Node(cast(E)); #include "clang/AST/StmtNodes.inc" } return E; } template ExprResult TreeTransform::TransformInitializer(Expr *Init, bool NotCopyInit) { // Initializers are instantiated like expressions, except that various outer // layers are stripped. if (!Init) return Init; if (auto *FE = dyn_cast(Init)) Init = FE->getSubExpr(); if (auto *AIL = dyn_cast(Init)) { OpaqueValueExpr *OVE = AIL->getCommonExpr(); Init = OVE->getSourceExpr(); } if (MaterializeTemporaryExpr *MTE = dyn_cast(Init)) Init = MTE->getSubExpr(); while (CXXBindTemporaryExpr *Binder = dyn_cast(Init)) Init = Binder->getSubExpr(); if (ImplicitCastExpr *ICE = dyn_cast(Init)) Init = ICE->getSubExprAsWritten(); if (CXXStdInitializerListExpr *ILE = dyn_cast(Init)) return TransformInitializer(ILE->getSubExpr(), NotCopyInit); // If this is copy-initialization, we only need to reconstruct // InitListExprs. Other forms of copy-initialization will be a no-op if // the initializer is already the right type. CXXConstructExpr *Construct = dyn_cast(Init); if (!NotCopyInit && !(Construct && Construct->isListInitialization())) return getDerived().TransformExpr(Init); // Revert value-initialization back to empty parens. if (CXXScalarValueInitExpr *VIE = dyn_cast(Init)) { SourceRange Parens = VIE->getSourceRange(); return getDerived().RebuildParenListExpr(Parens.getBegin(), std::nullopt, Parens.getEnd()); } // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization. if (isa(Init)) return getDerived().RebuildParenListExpr(SourceLocation(), std::nullopt, SourceLocation()); // Revert initialization by constructor back to a parenthesized or braced list // of expressions. Any other form of initializer can just be reused directly. if (!Construct || isa(Construct)) return getDerived().TransformExpr(Init); // If the initialization implicitly converted an initializer list to a // std::initializer_list object, unwrap the std::initializer_list too. if (Construct && Construct->isStdInitListInitialization()) return TransformInitializer(Construct->getArg(0), NotCopyInit); // Enter a list-init context if this was list initialization. EnterExpressionEvaluationContext Context( getSema(), EnterExpressionEvaluationContext::InitList, Construct->isListInitialization()); getSema().keepInLifetimeExtendingContext(); SmallVector NewArgs; bool ArgChanged = false; if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(), /*IsCall*/true, NewArgs, &ArgChanged)) return ExprError(); // If this was list initialization, revert to syntactic list form. if (Construct->isListInitialization()) return getDerived().RebuildInitList(Construct->getBeginLoc(), NewArgs, Construct->getEndLoc()); // Build a ParenListExpr to represent anything else. SourceRange Parens = Construct->getParenOrBraceRange(); if (Parens.isInvalid()) { // This was a variable declaration's initialization for which no initializer // was specified. assert(NewArgs.empty() && "no parens or braces but have direct init with arguments?"); return ExprEmpty(); } return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs, Parens.getEnd()); } template bool TreeTransform::TransformExprs(Expr *const *Inputs, unsigned NumInputs, bool IsCall, SmallVectorImpl &Outputs, bool *ArgChanged) { for (unsigned I = 0; I != NumInputs; ++I) { // If requested, drop call arguments that need to be dropped. if (IsCall && getDerived().DropCallArgument(Inputs[I])) { if (ArgChanged) *ArgChanged = true; break; } if (PackExpansionExpr *Expansion = dyn_cast(Inputs[I])) { Expr *Pattern = Expansion->getPattern(); SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; std::optional OrigNumExpansions = Expansion->getNumExpansions(); std::optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return true; if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); ExprResult OutPattern = getDerived().TransformExpr(Pattern); if (OutPattern.isInvalid()) return true; ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(), Expansion->getEllipsisLoc(), NumExpansions); if (Out.isInvalid()) return true; if (ArgChanged) *ArgChanged = true; Outputs.push_back(Out.get()); continue; } // Record right away that the argument was changed. This needs // to happen even if the array expands to nothing. if (ArgChanged) *ArgChanged = true; // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; if (Out.get()->containsUnexpandedParameterPack()) { Out = getDerived().RebuildPackExpansion( Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); if (Out.isInvalid()) return true; } Outputs.push_back(Out.get()); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; Out = getDerived().RebuildPackExpansion( Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); if (Out.isInvalid()) return true; Outputs.push_back(Out.get()); } continue; } ExprResult Result = IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false) : getDerived().TransformExpr(Inputs[I]); if (Result.isInvalid()) return true; if (Result.get() != Inputs[I] && ArgChanged) *ArgChanged = true; Outputs.push_back(Result.get()); } return false; } template Sema::ConditionResult TreeTransform::TransformCondition( SourceLocation Loc, VarDecl *Var, Expr *Expr, Sema::ConditionKind Kind) { if (Var) { VarDecl *ConditionVar = cast_or_null( getDerived().TransformDefinition(Var->getLocation(), Var)); if (!ConditionVar) return Sema::ConditionError(); return getSema().ActOnConditionVariable(ConditionVar, Loc, Kind); } if (Expr) { ExprResult CondExpr = getDerived().TransformExpr(Expr); if (CondExpr.isInvalid()) return Sema::ConditionError(); return getSema().ActOnCondition(nullptr, Loc, CondExpr.get(), Kind, /*MissingOK=*/true); } return Sema::ConditionResult(); } template NestedNameSpecifierLoc TreeTransform::TransformNestedNameSpecifierLoc( NestedNameSpecifierLoc NNS, QualType ObjectType, NamedDecl *FirstQualifierInScope) { SmallVector Qualifiers; auto insertNNS = [&Qualifiers](NestedNameSpecifierLoc NNS) { for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier; Qualifier = Qualifier.getPrefix()) Qualifiers.push_back(Qualifier); }; insertNNS(NNS); CXXScopeSpec SS; while (!Qualifiers.empty()) { NestedNameSpecifierLoc Q = Qualifiers.pop_back_val(); NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier(); switch (QNNS->getKind()) { case NestedNameSpecifier::Identifier: { Sema::NestedNameSpecInfo IdInfo(QNNS->getAsIdentifier(), Q.getLocalBeginLoc(), Q.getLocalEndLoc(), ObjectType); if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr, IdInfo, false, SS, FirstQualifierInScope, false)) return NestedNameSpecifierLoc(); break; } case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = cast_or_null(getDerived().TransformDecl( Q.getLocalBeginLoc(), QNNS->getAsNamespace())); SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias = cast_or_null(getDerived().TransformDecl( Q.getLocalBeginLoc(), QNNS->getAsNamespaceAlias())); SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); break; } case NestedNameSpecifier::Global: // There is no meaningful transformation that one could perform on the // global scope. SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc()); break; case NestedNameSpecifier::Super: { CXXRecordDecl *RD = cast_or_null(getDerived().TransformDecl( SourceLocation(), QNNS->getAsRecordDecl())); SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc()); break; } case NestedNameSpecifier::TypeSpecWithTemplate: case NestedNameSpecifier::TypeSpec: { TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType, FirstQualifierInScope, SS); if (!TL) return NestedNameSpecifierLoc(); QualType T = TL.getType(); if (T->isDependentType() || T->isRecordType() || (SemaRef.getLangOpts().CPlusPlus11 && T->isEnumeralType())) { if (T->isEnumeralType()) SemaRef.Diag(TL.getBeginLoc(), diag::warn_cxx98_compat_enum_nested_name_spec); if (const auto ETL = TL.getAs()) { SS.Adopt(ETL.getQualifierLoc()); TL = ETL.getNamedTypeLoc(); } SS.Extend(SemaRef.Context, TL.getTemplateKeywordLoc(), TL, Q.getLocalEndLoc()); break; } // If the nested-name-specifier is an invalid type def, don't emit an // error because a previous error should have already been emitted. TypedefTypeLoc TTL = TL.getAsAdjusted(); if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) { SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag) << T << SS.getRange(); } return NestedNameSpecifierLoc(); } } // The qualifier-in-scope and object type only apply to the leftmost entity. FirstQualifierInScope = nullptr; ObjectType = QualType(); } // Don't rebuild the nested-name-specifier if we don't have to. if (SS.getScopeRep() == NNS.getNestedNameSpecifier() && !getDerived().AlwaysRebuild()) return NNS; // If we can re-use the source-location data from the original // nested-name-specifier, do so. if (SS.location_size() == NNS.getDataLength() && memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0) return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData()); // Allocate new nested-name-specifier location information. return SS.getWithLocInContext(SemaRef.Context); } template DeclarationNameInfo TreeTransform ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) { DeclarationName Name = NameInfo.getName(); if (!Name) return DeclarationNameInfo(); switch (Name.getNameKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXOperatorName: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXUsingDirective: return NameInfo; case DeclarationName::CXXDeductionGuideName: { TemplateDecl *OldTemplate = Name.getCXXDeductionGuideTemplate(); TemplateDecl *NewTemplate = cast_or_null( getDerived().TransformDecl(NameInfo.getLoc(), OldTemplate)); if (!NewTemplate) return DeclarationNameInfo(); DeclarationNameInfo NewNameInfo(NameInfo); NewNameInfo.setName( SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(NewTemplate)); return NewNameInfo; } case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: { TypeSourceInfo *NewTInfo; CanQualType NewCanTy; if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) { NewTInfo = getDerived().TransformType(OldTInfo); if (!NewTInfo) return DeclarationNameInfo(); NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType()); } else { NewTInfo = nullptr; TemporaryBase Rebase(*this, NameInfo.getLoc(), Name); QualType NewT = getDerived().TransformType(Name.getCXXNameType()); if (NewT.isNull()) return DeclarationNameInfo(); NewCanTy = SemaRef.Context.getCanonicalType(NewT); } DeclarationName NewName = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(), NewCanTy); DeclarationNameInfo NewNameInfo(NameInfo); NewNameInfo.setName(NewName); NewNameInfo.setNamedTypeInfo(NewTInfo); return NewNameInfo; } } llvm_unreachable("Unknown name kind."); } template TemplateName TreeTransform::TransformTemplateName(CXXScopeSpec &SS, TemplateName Name, SourceLocation NameLoc, QualType ObjectType, NamedDecl *FirstQualifierInScope, bool AllowInjectedClassName) { if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) { TemplateDecl *Template = QTN->getUnderlyingTemplate().getAsTemplateDecl(); assert(Template && "qualified template name must refer to a template"); TemplateDecl *TransTemplate = cast_or_null(getDerived().TransformDecl(NameLoc, Template)); if (!TransTemplate) return TemplateName(); if (!getDerived().AlwaysRebuild() && SS.getScopeRep() == QTN->getQualifier() && TransTemplate == Template) return Name; return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(), TransTemplate); } if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) { if (SS.getScopeRep()) { // These apply to the scope specifier, not the template. ObjectType = QualType(); FirstQualifierInScope = nullptr; } if (!getDerived().AlwaysRebuild() && SS.getScopeRep() == DTN->getQualifier() && ObjectType.isNull()) return Name; // FIXME: Preserve the location of the "template" keyword. SourceLocation TemplateKWLoc = NameLoc; if (DTN->isIdentifier()) { return getDerived().RebuildTemplateName(SS, TemplateKWLoc, *DTN->getIdentifier(), NameLoc, ObjectType, FirstQualifierInScope, AllowInjectedClassName); } return getDerived().RebuildTemplateName(SS, TemplateKWLoc, DTN->getOperator(), NameLoc, ObjectType, AllowInjectedClassName); } // FIXME: Try to preserve more of the TemplateName. if (TemplateDecl *Template = Name.getAsTemplateDecl()) { TemplateDecl *TransTemplate = cast_or_null(getDerived().TransformDecl(NameLoc, Template)); if (!TransTemplate) return TemplateName(); return getDerived().RebuildTemplateName(SS, /*TemplateKeyword=*/false, TransTemplate); } if (SubstTemplateTemplateParmPackStorage *SubstPack = Name.getAsSubstTemplateTemplateParmPack()) { return getDerived().RebuildTemplateName( SubstPack->getArgumentPack(), SubstPack->getAssociatedDecl(), SubstPack->getIndex(), SubstPack->getFinal()); } // These should be getting filtered out before they reach the AST. llvm_unreachable("overloaded function decl survived to here"); } template void TreeTransform::InventTemplateArgumentLoc( const TemplateArgument &Arg, TemplateArgumentLoc &Output) { Output = getSema().getTrivialTemplateArgumentLoc( Arg, QualType(), getDerived().getBaseLocation()); } template bool TreeTransform::TransformTemplateArgument( const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output, bool Uneval) { const TemplateArgument &Arg = Input.getArgument(); switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Pack: llvm_unreachable("Unexpected TemplateArgument"); case TemplateArgument::Integral: case TemplateArgument::NullPtr: case TemplateArgument::Declaration: case TemplateArgument::StructuralValue: { // Transform a resolved template argument straight to a resolved template // argument. We get here when substituting into an already-substituted // template type argument during concept satisfaction checking. QualType T = Arg.getNonTypeTemplateArgumentType(); QualType NewT = getDerived().TransformType(T); if (NewT.isNull()) return true; ValueDecl *D = Arg.getKind() == TemplateArgument::Declaration ? Arg.getAsDecl() : nullptr; ValueDecl *NewD = D ? cast_or_null(getDerived().TransformDecl( getDerived().getBaseLocation(), D)) : nullptr; if (D && !NewD) return true; if (NewT == T && D == NewD) Output = Input; else if (Arg.getKind() == TemplateArgument::Integral) Output = TemplateArgumentLoc( TemplateArgument(getSema().Context, Arg.getAsIntegral(), NewT), TemplateArgumentLocInfo()); else if (Arg.getKind() == TemplateArgument::NullPtr) Output = TemplateArgumentLoc(TemplateArgument(NewT, /*IsNullPtr=*/true), TemplateArgumentLocInfo()); else if (Arg.getKind() == TemplateArgument::Declaration) Output = TemplateArgumentLoc(TemplateArgument(NewD, NewT), TemplateArgumentLocInfo()); else if (Arg.getKind() == TemplateArgument::StructuralValue) Output = TemplateArgumentLoc( TemplateArgument(getSema().Context, NewT, Arg.getAsStructuralValue()), TemplateArgumentLocInfo()); else llvm_unreachable("unexpected template argument kind"); return false; } case TemplateArgument::Type: { TypeSourceInfo *DI = Input.getTypeSourceInfo(); if (!DI) DI = InventTypeSourceInfo(Input.getArgument().getAsType()); DI = getDerived().TransformType(DI); if (!DI) return true; Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); return false; } case TemplateArgument::Template: { NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc(); if (QualifierLoc) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc); if (!QualifierLoc) return true; } CXXScopeSpec SS; SS.Adopt(QualifierLoc); TemplateName Template = getDerived().TransformTemplateName( SS, Arg.getAsTemplate(), Input.getTemplateNameLoc()); if (Template.isNull()) return true; Output = TemplateArgumentLoc(SemaRef.Context, TemplateArgument(Template), QualifierLoc, Input.getTemplateNameLoc()); return false; } case TemplateArgument::TemplateExpansion: llvm_unreachable("Caller should expand pack expansions"); case TemplateArgument::Expression: { // Template argument expressions are constant expressions. EnterExpressionEvaluationContext Unevaluated( getSema(), Uneval ? Sema::ExpressionEvaluationContext::Unevaluated : Sema::ExpressionEvaluationContext::ConstantEvaluated, Sema::ReuseLambdaContextDecl, /*ExprContext=*/ Sema::ExpressionEvaluationContextRecord::EK_TemplateArgument); Expr *InputExpr = Input.getSourceExpression(); if (!InputExpr) InputExpr = Input.getArgument().getAsExpr(); ExprResult E = getDerived().TransformExpr(InputExpr); E = SemaRef.ActOnConstantExpression(E); if (E.isInvalid()) return true; Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get()); return false; } } // Work around bogus GCC warning return true; } /// Iterator adaptor that invents template argument location information /// for each of the template arguments in its underlying iterator. template class TemplateArgumentLocInventIterator { TreeTransform &Self; InputIterator Iter; public: typedef TemplateArgumentLoc value_type; typedef TemplateArgumentLoc reference; typedef typename std::iterator_traits::difference_type difference_type; typedef std::input_iterator_tag iterator_category; class pointer { TemplateArgumentLoc Arg; public: explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } const TemplateArgumentLoc *operator->() const { return &Arg; } }; explicit TemplateArgumentLocInventIterator(TreeTransform &Self, InputIterator Iter) : Self(Self), Iter(Iter) { } TemplateArgumentLocInventIterator &operator++() { ++Iter; return *this; } TemplateArgumentLocInventIterator operator++(int) { TemplateArgumentLocInventIterator Old(*this); ++(*this); return Old; } reference operator*() const { TemplateArgumentLoc Result; Self.InventTemplateArgumentLoc(*Iter, Result); return Result; } pointer operator->() const { return pointer(**this); } friend bool operator==(const TemplateArgumentLocInventIterator &X, const TemplateArgumentLocInventIterator &Y) { return X.Iter == Y.Iter; } friend bool operator!=(const TemplateArgumentLocInventIterator &X, const TemplateArgumentLocInventIterator &Y) { return X.Iter != Y.Iter; } }; template template bool TreeTransform::TransformTemplateArguments( InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs, bool Uneval) { for (; First != Last; ++First) { TemplateArgumentLoc Out; TemplateArgumentLoc In = *First; if (In.getArgument().getKind() == TemplateArgument::Pack) { // Unpack argument packs, which we translate them into separate // arguments. // FIXME: We could do much better if we could guarantee that the // TemplateArgumentLocInfo for the pack expansion would be usable for // all of the template arguments in the argument pack. typedef TemplateArgumentLocInventIterator PackLocIterator; if (TransformTemplateArguments(PackLocIterator(*this, In.getArgument().pack_begin()), PackLocIterator(*this, In.getArgument().pack_end()), Outputs, Uneval)) return true; continue; } if (In.getArgument().isPackExpansion()) { // We have a pack expansion, for which we will be substituting into // the pattern. SourceLocation Ellipsis; std::optional OrigNumExpansions; TemplateArgumentLoc Pattern = getSema().getTemplateArgumentPackExpansionPattern( In, Ellipsis, OrigNumExpansions); SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; std::optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(Ellipsis, Pattern.getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return true; if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. TemplateArgumentLoc OutPattern; Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); if (getDerived().TransformTemplateArgument(Pattern, OutPattern, Uneval)) return true; Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis, NumExpansions); if (Out.getArgument().isNull()) return true; Outputs.addArgument(Out); continue; } // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval)) return true; if (Out.getArgument().containsUnexpandedParameterPack()) { Out = getDerived().RebuildPackExpansion(Out, Ellipsis, OrigNumExpansions); if (Out.getArgument().isNull()) return true; } Outputs.addArgument(Out); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval)) return true; Out = getDerived().RebuildPackExpansion(Out, Ellipsis, OrigNumExpansions); if (Out.getArgument().isNull()) return true; Outputs.addArgument(Out); } continue; } // The simple case: if (getDerived().TransformTemplateArgument(In, Out, Uneval)) return true; Outputs.addArgument(Out); } return false; } //===----------------------------------------------------------------------===// // Type transformation //===----------------------------------------------------------------------===// template QualType TreeTransform::TransformType(QualType T) { if (getDerived().AlreadyTransformed(T)) return T; // Temporary workaround. All of these transformations should // eventually turn into transformations on TypeLocs. TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, getDerived().getBaseLocation()); TypeSourceInfo *NewDI = getDerived().TransformType(DI); if (!NewDI) return QualType(); return NewDI->getType(); } template TypeSourceInfo *TreeTransform::TransformType(TypeSourceInfo *DI) { // Refine the base location to the type's location. TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), getDerived().getBaseEntity()); if (getDerived().AlreadyTransformed(DI->getType())) return DI; TypeLocBuilder TLB; TypeLoc TL = DI->getTypeLoc(); TLB.reserve(TL.getFullDataSize()); QualType Result = getDerived().TransformType(TLB, TL); if (Result.isNull()) return nullptr; return TLB.getTypeSourceInfo(SemaRef.Context, Result); } template QualType TreeTransform::TransformType(TypeLocBuilder &TLB, TypeLoc T) { switch (T.getTypeLocClass()) { #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ case TypeLoc::CLASS: \ return getDerived().Transform##CLASS##Type(TLB, \ T.castAs()); #include "clang/AST/TypeLocNodes.def" } llvm_unreachable("unhandled type loc!"); } template QualType TreeTransform::TransformTypeWithDeducedTST(QualType T) { if (!isa(T)) return TransformType(T); if (getDerived().AlreadyTransformed(T)) return T; TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, getDerived().getBaseLocation()); TypeSourceInfo *NewDI = getDerived().TransformTypeWithDeducedTST(DI); return NewDI ? NewDI->getType() : QualType(); } template TypeSourceInfo * TreeTransform::TransformTypeWithDeducedTST(TypeSourceInfo *DI) { if (!isa(DI->getType())) return TransformType(DI); // Refine the base location to the type's location. TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), getDerived().getBaseEntity()); if (getDerived().AlreadyTransformed(DI->getType())) return DI; TypeLocBuilder TLB; TypeLoc TL = DI->getTypeLoc(); TLB.reserve(TL.getFullDataSize()); auto QTL = TL.getAs(); if (QTL) TL = QTL.getUnqualifiedLoc(); auto DNTL = TL.castAs(); QualType Result = getDerived().TransformDependentNameType( TLB, DNTL, /*DeducedTSTContext*/true); if (Result.isNull()) return nullptr; if (QTL) { Result = getDerived().RebuildQualifiedType(Result, QTL); if (Result.isNull()) return nullptr; TLB.TypeWasModifiedSafely(Result); } return TLB.getTypeSourceInfo(SemaRef.Context, Result); } template QualType TreeTransform::TransformQualifiedType(TypeLocBuilder &TLB, QualifiedTypeLoc T) { QualType Result; TypeLoc UnqualTL = T.getUnqualifiedLoc(); auto SuppressObjCLifetime = T.getType().getLocalQualifiers().hasObjCLifetime(); if (auto TTP = UnqualTL.getAs()) { Result = getDerived().TransformTemplateTypeParmType(TLB, TTP, SuppressObjCLifetime); } else if (auto STTP = UnqualTL.getAs()) { Result = getDerived().TransformSubstTemplateTypeParmPackType( TLB, STTP, SuppressObjCLifetime); } else { Result = getDerived().TransformType(TLB, UnqualTL); } if (Result.isNull()) return QualType(); Result = getDerived().RebuildQualifiedType(Result, T); if (Result.isNull()) return QualType(); // RebuildQualifiedType might have updated the type, but not in a way // that invalidates the TypeLoc. (There's no location information for // qualifiers.) TLB.TypeWasModifiedSafely(Result); return Result; } template QualType TreeTransform::RebuildQualifiedType(QualType T, QualifiedTypeLoc TL) { SourceLocation Loc = TL.getBeginLoc(); Qualifiers Quals = TL.getType().getLocalQualifiers(); if ((T.getAddressSpace() != LangAS::Default && Quals.getAddressSpace() != LangAS::Default) && T.getAddressSpace() != Quals.getAddressSpace()) { SemaRef.Diag(Loc, diag::err_address_space_mismatch_templ_inst) << TL.getType() << T; return QualType(); } // C++ [dcl.fct]p7: // [When] adding cv-qualifications on top of the function type [...] the // cv-qualifiers are ignored. if (T->isFunctionType()) { T = SemaRef.getASTContext().getAddrSpaceQualType(T, Quals.getAddressSpace()); return T; } // C++ [dcl.ref]p1: // when the cv-qualifiers are introduced through the use of a typedef-name // or decltype-specifier [...] the cv-qualifiers are ignored. // Note that [dcl.ref]p1 lists all cases in which cv-qualifiers can be // applied to a reference type. if (T->isReferenceType()) { // The only qualifier that applies to a reference type is restrict. if (!Quals.hasRestrict()) return T; Quals = Qualifiers::fromCVRMask(Qualifiers::Restrict); } // Suppress Objective-C lifetime qualifiers if they don't make sense for the // resulting type. if (Quals.hasObjCLifetime()) { if (!T->isObjCLifetimeType() && !T->isDependentType()) Quals.removeObjCLifetime(); else if (T.getObjCLifetime()) { // Objective-C ARC: // A lifetime qualifier applied to a substituted template parameter // overrides the lifetime qualifier from the template argument. const AutoType *AutoTy; if ((AutoTy = dyn_cast(T)) && AutoTy->isDeduced()) { // 'auto' types behave the same way as template parameters. QualType Deduced = AutoTy->getDeducedType(); Qualifiers Qs = Deduced.getQualifiers(); Qs.removeObjCLifetime(); Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs); T = SemaRef.Context.getAutoType(Deduced, AutoTy->getKeyword(), AutoTy->isDependentType(), /*isPack=*/false, AutoTy->getTypeConstraintConcept(), AutoTy->getTypeConstraintArguments()); } else { // Otherwise, complain about the addition of a qualifier to an // already-qualified type. // FIXME: Why is this check not in Sema::BuildQualifiedType? SemaRef.Diag(Loc, diag::err_attr_objc_ownership_redundant) << T; Quals.removeObjCLifetime(); } } } return SemaRef.BuildQualifiedType(T, Loc, Quals); } template TypeLoc TreeTransform::TransformTypeInObjectScope(TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup, CXXScopeSpec &SS) { if (getDerived().AlreadyTransformed(TL.getType())) return TL; TypeSourceInfo *TSI = TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS); if (TSI) return TSI->getTypeLoc(); return TypeLoc(); } template TypeSourceInfo * TreeTransform::TransformTypeInObjectScope(TypeSourceInfo *TSInfo, QualType ObjectType, NamedDecl *UnqualLookup, CXXScopeSpec &SS) { if (getDerived().AlreadyTransformed(TSInfo->getType())) return TSInfo; return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType, UnqualLookup, SS); } template TypeSourceInfo *TreeTransform::TransformTSIInObjectScope( TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup, CXXScopeSpec &SS) { QualType T = TL.getType(); assert(!getDerived().AlreadyTransformed(T)); TypeLocBuilder TLB; QualType Result; if (isa(T)) { TemplateSpecializationTypeLoc SpecTL = TL.castAs(); TemplateName Template = getDerived().TransformTemplateName( SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(), ObjectType, UnqualLookup, /*AllowInjectedClassName*/true); if (Template.isNull()) return nullptr; Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL, Template); } else if (isa(T)) { DependentTemplateSpecializationTypeLoc SpecTL = TL.castAs(); TemplateName Template = getDerived().RebuildTemplateName(SS, SpecTL.getTemplateKeywordLoc(), *SpecTL.getTypePtr()->getIdentifier(), SpecTL.getTemplateNameLoc(), ObjectType, UnqualLookup, /*AllowInjectedClassName*/true); if (Template.isNull()) return nullptr; Result = getDerived().TransformDependentTemplateSpecializationType(TLB, SpecTL, Template, SS); } else { // Nothing special needs to be done for these. Result = getDerived().TransformType(TLB, TL); } if (Result.isNull()) return nullptr; return TLB.getTypeSourceInfo(SemaRef.Context, Result); } template static inline QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) { TyLoc NewT = TLB.push(T.getType()); NewT.setNameLoc(T.getNameLoc()); return T.getType(); } template QualType TreeTransform::TransformBuiltinType(TypeLocBuilder &TLB, BuiltinTypeLoc T) { BuiltinTypeLoc NewT = TLB.push(T.getType()); NewT.setBuiltinLoc(T.getBuiltinLoc()); if (T.needsExtraLocalData()) NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs(); return T.getType(); } template QualType TreeTransform::TransformComplexType(TypeLocBuilder &TLB, ComplexTypeLoc T) { // FIXME: recurse? return TransformTypeSpecType(TLB, T); } template QualType TreeTransform::TransformAdjustedType(TypeLocBuilder &TLB, AdjustedTypeLoc TL) { // Adjustments applied during transformation are handled elsewhere. return getDerived().TransformType(TLB, TL.getOriginalLoc()); } template QualType TreeTransform::TransformDecayedType(TypeLocBuilder &TLB, DecayedTypeLoc TL) { QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc()); if (OriginalType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || OriginalType != TL.getOriginalLoc().getType()) Result = SemaRef.Context.getDecayedType(OriginalType); TLB.push(Result); // Nothing to set for DecayedTypeLoc. return Result; } template QualType TreeTransform::TransformArrayParameterType(TypeLocBuilder &TLB, ArrayParameterTypeLoc TL) { QualType OriginalType = getDerived().TransformType(TLB, TL.getElementLoc()); if (OriginalType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || OriginalType != TL.getElementLoc().getType()) Result = SemaRef.Context.getArrayParameterType(OriginalType); TLB.push(Result); // Nothing to set for ArrayParameterTypeLoc. return Result; } template QualType TreeTransform::TransformPointerType(TypeLocBuilder &TLB, PointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (PointeeType->getAs()) { // A dependent pointer type 'T *' has is being transformed such // that an Objective-C class type is being replaced for 'T'. The // resulting pointer type is an ObjCObjectPointerType, not a // PointerType. Result = SemaRef.Context.getObjCObjectPointerType(PointeeType); ObjCObjectPointerTypeLoc NewT = TLB.push(Result); NewT.setStarLoc(TL.getStarLoc()); return Result; } if (getDerived().AlwaysRebuild() || PointeeType != TL.getPointeeLoc().getType()) { Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc()); if (Result.isNull()) return QualType(); } // Objective-C ARC can add lifetime qualifiers to the type that we're // pointing to. TLB.TypeWasModifiedSafely(Result->getPointeeType()); PointerTypeLoc NewT = TLB.push(Result); NewT.setSigilLoc(TL.getSigilLoc()); return Result; } template QualType TreeTransform::TransformBlockPointerType(TypeLocBuilder &TLB, BlockPointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != TL.getPointeeLoc().getType()) { Result = getDerived().RebuildBlockPointerType(PointeeType, TL.getSigilLoc()); if (Result.isNull()) return QualType(); } BlockPointerTypeLoc NewT = TLB.push(Result); NewT.setSigilLoc(TL.getSigilLoc()); return Result; } /// Transforms a reference type. Note that somewhat paradoxically we /// don't care whether the type itself is an l-value type or an r-value /// type; we only care if the type was *written* as an l-value type /// or an r-value type. template QualType TreeTransform::TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL) { const ReferenceType *T = TL.getTypePtr(); // Note that this works with the pointee-as-written. QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != T->getPointeeTypeAsWritten()) { Result = getDerived().RebuildReferenceType(PointeeType, T->isSpelledAsLValue(), TL.getSigilLoc()); if (Result.isNull()) return QualType(); } // Objective-C ARC can add lifetime qualifiers to the type that we're // referring to. TLB.TypeWasModifiedSafely( Result->castAs()->getPointeeTypeAsWritten()); // r-value references can be rebuilt as l-value references. ReferenceTypeLoc NewTL; if (isa(Result)) NewTL = TLB.push(Result); else NewTL = TLB.push(Result); NewTL.setSigilLoc(TL.getSigilLoc()); return Result; } template QualType TreeTransform::TransformLValueReferenceType(TypeLocBuilder &TLB, LValueReferenceTypeLoc TL) { return TransformReferenceType(TLB, TL); } template QualType TreeTransform::TransformRValueReferenceType(TypeLocBuilder &TLB, RValueReferenceTypeLoc TL) { return TransformReferenceType(TLB, TL); } template QualType TreeTransform::TransformMemberPointerType(TypeLocBuilder &TLB, MemberPointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); TypeSourceInfo* OldClsTInfo = TL.getClassTInfo(); TypeSourceInfo *NewClsTInfo = nullptr; if (OldClsTInfo) { NewClsTInfo = getDerived().TransformType(OldClsTInfo); if (!NewClsTInfo) return QualType(); } const MemberPointerType *T = TL.getTypePtr(); QualType OldClsType = QualType(T->getClass(), 0); QualType NewClsType; if (NewClsTInfo) NewClsType = NewClsTInfo->getType(); else { NewClsType = getDerived().TransformType(OldClsType); if (NewClsType.isNull()) return QualType(); } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != T->getPointeeType() || NewClsType != OldClsType) { Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType, TL.getStarLoc()); if (Result.isNull()) return QualType(); } // If we had to adjust the pointee type when building a member pointer, make // sure to push TypeLoc info for it. const MemberPointerType *MPT = Result->getAs(); if (MPT && PointeeType != MPT->getPointeeType()) { assert(isa(MPT->getPointeeType())); TLB.push(MPT->getPointeeType()); } MemberPointerTypeLoc NewTL = TLB.push(Result); NewTL.setSigilLoc(TL.getSigilLoc()); NewTL.setClassTInfo(NewClsTInfo); return Result; } template QualType TreeTransform::TransformConstantArrayType(TypeLocBuilder &TLB, ConstantArrayTypeLoc TL) { const ConstantArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); // Prefer the expression from the TypeLoc; the other may have been uniqued. Expr *OldSize = TL.getSizeExpr(); if (!OldSize) OldSize = const_cast(T->getSizeExpr()); Expr *NewSize = nullptr; if (OldSize) { EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); NewSize = getDerived().TransformExpr(OldSize).template getAs(); NewSize = SemaRef.ActOnConstantExpression(NewSize).get(); } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || (T->getSizeExpr() && NewSize != OldSize)) { Result = getDerived().RebuildConstantArrayType(ElementType, T->getSizeModifier(), T->getSize(), NewSize, T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } // We might have either a ConstantArrayType or a VariableArrayType now: // a ConstantArrayType is allowed to have an element type which is a // VariableArrayType if the type is dependent. Fortunately, all array // types have the same location layout. ArrayTypeLoc NewTL = TLB.push(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(NewSize); return Result; } template QualType TreeTransform::TransformIncompleteArrayType( TypeLocBuilder &TLB, IncompleteArrayTypeLoc TL) { const IncompleteArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildIncompleteArrayType(ElementType, T->getSizeModifier(), T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } IncompleteArrayTypeLoc NewTL = TLB.push(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(nullptr); return Result; } template QualType TreeTransform::TransformVariableArrayType(TypeLocBuilder &TLB, VariableArrayTypeLoc TL) { const VariableArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); ExprResult SizeResult; { EnterExpressionEvaluationContext Context( SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); SizeResult = getDerived().TransformExpr(T->getSizeExpr()); } if (SizeResult.isInvalid()) return QualType(); SizeResult = SemaRef.ActOnFinishFullExpr(SizeResult.get(), /*DiscardedValue*/ false); if (SizeResult.isInvalid()) return QualType(); Expr *Size = SizeResult.get(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || Size != T->getSizeExpr()) { Result = getDerived().RebuildVariableArrayType(ElementType, T->getSizeModifier(), Size, T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } // We might have constant size array now, but fortunately it has the same // location layout. ArrayTypeLoc NewTL = TLB.push(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(Size); return Result; } template QualType TreeTransform::TransformDependentSizedArrayType(TypeLocBuilder &TLB, DependentSizedArrayTypeLoc TL) { const DependentSizedArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); // Array bounds are constant expressions. EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); // If we have a VLA then it won't be a constant. SemaRef.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true; // Prefer the expression from the TypeLoc; the other may have been uniqued. Expr *origSize = TL.getSizeExpr(); if (!origSize) origSize = T->getSizeExpr(); ExprResult sizeResult = getDerived().TransformExpr(origSize); sizeResult = SemaRef.ActOnConstantExpression(sizeResult); if (sizeResult.isInvalid()) return QualType(); Expr *size = sizeResult.get(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || size != origSize) { Result = getDerived().RebuildDependentSizedArrayType(ElementType, T->getSizeModifier(), size, T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } // We might have any sort of array type now, but fortunately they // all have the same location layout. ArrayTypeLoc NewTL = TLB.push(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(size); return Result; } template QualType TreeTransform::TransformDependentVectorType( TypeLocBuilder &TLB, DependentVectorTypeLoc TL) { const DependentVectorType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); Size = SemaRef.ActOnConstantExpression(Size); if (Size.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || Size.get() != T->getSizeExpr()) { Result = getDerived().RebuildDependentVectorType( ElementType, Size.get(), T->getAttributeLoc(), T->getVectorKind()); if (Result.isNull()) return QualType(); } // Result might be dependent or not. if (isa(Result)) { DependentVectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); } else { VectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); } return Result; } template QualType TreeTransform::TransformDependentSizedExtVectorType( TypeLocBuilder &TLB, DependentSizedExtVectorTypeLoc TL) { const DependentSizedExtVectorType *T = TL.getTypePtr(); // FIXME: ext vector locs should be nested QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); // Vector sizes are constant expressions. EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); Size = SemaRef.ActOnConstantExpression(Size); if (Size.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || Size.get() != T->getSizeExpr()) { Result = getDerived().RebuildDependentSizedExtVectorType(ElementType, Size.get(), T->getAttributeLoc()); if (Result.isNull()) return QualType(); } // Result might be dependent or not. if (isa(Result)) { DependentSizedExtVectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); } else { ExtVectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); } return Result; } template QualType TreeTransform::TransformConstantMatrixType(TypeLocBuilder &TLB, ConstantMatrixTypeLoc TL) { const ConstantMatrixType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(T->getElementType()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildConstantMatrixType( ElementType, T->getNumRows(), T->getNumColumns()); if (Result.isNull()) return QualType(); } ConstantMatrixTypeLoc NewTL = TLB.push(Result); NewTL.setAttrNameLoc(TL.getAttrNameLoc()); NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); NewTL.setAttrRowOperand(TL.getAttrRowOperand()); NewTL.setAttrColumnOperand(TL.getAttrColumnOperand()); return Result; } template QualType TreeTransform::TransformDependentSizedMatrixType( TypeLocBuilder &TLB, DependentSizedMatrixTypeLoc TL) { const DependentSizedMatrixType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(T->getElementType()); if (ElementType.isNull()) { return QualType(); } // Matrix dimensions are constant expressions. EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); Expr *origRows = TL.getAttrRowOperand(); if (!origRows) origRows = T->getRowExpr(); Expr *origColumns = TL.getAttrColumnOperand(); if (!origColumns) origColumns = T->getColumnExpr(); ExprResult rowResult = getDerived().TransformExpr(origRows); rowResult = SemaRef.ActOnConstantExpression(rowResult); if (rowResult.isInvalid()) return QualType(); ExprResult columnResult = getDerived().TransformExpr(origColumns); columnResult = SemaRef.ActOnConstantExpression(columnResult); if (columnResult.isInvalid()) return QualType(); Expr *rows = rowResult.get(); Expr *columns = columnResult.get(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || rows != origRows || columns != origColumns) { Result = getDerived().RebuildDependentSizedMatrixType( ElementType, rows, columns, T->getAttributeLoc()); if (Result.isNull()) return QualType(); } // We might have any sort of matrix type now, but fortunately they // all have the same location layout. MatrixTypeLoc NewTL = TLB.push(Result); NewTL.setAttrNameLoc(TL.getAttrNameLoc()); NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); NewTL.setAttrRowOperand(rows); NewTL.setAttrColumnOperand(columns); return Result; } template QualType TreeTransform::TransformDependentAddressSpaceType( TypeLocBuilder &TLB, DependentAddressSpaceTypeLoc TL) { const DependentAddressSpaceType *T = TL.getTypePtr(); QualType pointeeType = getDerived().TransformType(T->getPointeeType()); if (pointeeType.isNull()) return QualType(); // Address spaces are constant expressions. EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult AddrSpace = getDerived().TransformExpr(T->getAddrSpaceExpr()); AddrSpace = SemaRef.ActOnConstantExpression(AddrSpace); if (AddrSpace.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || pointeeType != T->getPointeeType() || AddrSpace.get() != T->getAddrSpaceExpr()) { Result = getDerived().RebuildDependentAddressSpaceType( pointeeType, AddrSpace.get(), T->getAttributeLoc()); if (Result.isNull()) return QualType(); } // Result might be dependent or not. if (isa(Result)) { DependentAddressSpaceTypeLoc NewTL = TLB.push(Result); NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); NewTL.setAttrExprOperand(TL.getAttrExprOperand()); NewTL.setAttrNameLoc(TL.getAttrNameLoc()); } else { TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo( Result, getDerived().getBaseLocation()); TransformType(TLB, DI->getTypeLoc()); } return Result; } template QualType TreeTransform::TransformVectorType(TypeLocBuilder &TLB, VectorTypeLoc TL) { const VectorType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(), T->getVectorKind()); if (Result.isNull()) return QualType(); } VectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformExtVectorType(TypeLocBuilder &TLB, ExtVectorTypeLoc TL) { const VectorType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildExtVectorType(ElementType, T->getNumElements(), /*FIXME*/ SourceLocation()); if (Result.isNull()) return QualType(); } ExtVectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template ParmVarDecl *TreeTransform::TransformFunctionTypeParam( ParmVarDecl *OldParm, int indexAdjustment, std::optional NumExpansions, bool ExpectParameterPack) { TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo(); TypeSourceInfo *NewDI = nullptr; if (NumExpansions && isa(OldDI->getType())) { // If we're substituting into a pack expansion type and we know the // length we want to expand to, just substitute for the pattern. TypeLoc OldTL = OldDI->getTypeLoc(); PackExpansionTypeLoc OldExpansionTL = OldTL.castAs(); TypeLocBuilder TLB; TypeLoc NewTL = OldDI->getTypeLoc(); TLB.reserve(NewTL.getFullDataSize()); QualType Result = getDerived().TransformType(TLB, OldExpansionTL.getPatternLoc()); if (Result.isNull()) return nullptr; Result = RebuildPackExpansionType(Result, OldExpansionTL.getPatternLoc().getSourceRange(), OldExpansionTL.getEllipsisLoc(), NumExpansions); if (Result.isNull()) return nullptr; PackExpansionTypeLoc NewExpansionTL = TLB.push(Result); NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc()); NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result); } else NewDI = getDerived().TransformType(OldDI); if (!NewDI) return nullptr; if (NewDI == OldDI && indexAdjustment == 0) return OldParm; ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context, OldParm->getDeclContext(), OldParm->getInnerLocStart(), OldParm->getLocation(), OldParm->getIdentifier(), NewDI->getType(), NewDI, OldParm->getStorageClass(), /* DefArg */ nullptr); newParm->setScopeInfo(OldParm->getFunctionScopeDepth(), OldParm->getFunctionScopeIndex() + indexAdjustment); transformedLocalDecl(OldParm, {newParm}); return newParm; } template bool TreeTransform::TransformFunctionTypeParams( SourceLocation Loc, ArrayRef Params, const QualType *ParamTypes, const FunctionProtoType::ExtParameterInfo *ParamInfos, SmallVectorImpl &OutParamTypes, SmallVectorImpl *PVars, Sema::ExtParameterInfoBuilder &PInfos, unsigned *LastParamTransformed) { int indexAdjustment = 0; unsigned NumParams = Params.size(); for (unsigned i = 0; i != NumParams; ++i) { if (LastParamTransformed) *LastParamTransformed = i; if (ParmVarDecl *OldParm = Params[i]) { assert(OldParm->getFunctionScopeIndex() == i); std::optional NumExpansions; ParmVarDecl *NewParm = nullptr; if (OldParm->isParameterPack()) { // We have a function parameter pack that may need to be expanded. SmallVector Unexpanded; // Find the parameter packs that could be expanded. TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc(); PackExpansionTypeLoc ExpansionTL = TL.castAs(); TypeLoc Pattern = ExpansionTL.getPatternLoc(); SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); // Determine whether we should expand the parameter packs. bool ShouldExpand = false; bool RetainExpansion = false; std::optional OrigNumExpansions; if (Unexpanded.size() > 0) { OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions(); NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), Pattern.getSourceRange(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) { return true; } } else { #ifndef NDEBUG const AutoType *AT = Pattern.getType().getTypePtr()->getContainedAutoType(); assert((AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) && "Could not find parameter packs or undeduced auto type!"); #endif } if (ShouldExpand) { // Expand the function parameter pack into multiple, separate // parameters. getDerived().ExpandingFunctionParameterPack(OldParm); for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ParmVarDecl *NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment++, OrigNumExpansions, /*ExpectParameterPack=*/false); if (!NewParm) return true; if (ParamInfos) PInfos.set(OutParamTypes.size(), ParamInfos[i]); OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); ParmVarDecl *NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment++, OrigNumExpansions, /*ExpectParameterPack=*/false); if (!NewParm) return true; if (ParamInfos) PInfos.set(OutParamTypes.size(), ParamInfos[i]); OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); } // The next parameter should have the same adjustment as the // last thing we pushed, but we post-incremented indexAdjustment // on every push. Also, if we push nothing, the adjustment should // go down by one. indexAdjustment--; // We're done with the pack expansion. continue; } // We'll substitute the parameter now without expanding the pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment, NumExpansions, /*ExpectParameterPack=*/true); assert(NewParm->isParameterPack() && "Parameter pack no longer a parameter pack after " "transformation."); } else { NewParm = getDerived().TransformFunctionTypeParam( OldParm, indexAdjustment, std::nullopt, /*ExpectParameterPack=*/false); } if (!NewParm) return true; if (ParamInfos) PInfos.set(OutParamTypes.size(), ParamInfos[i]); OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); continue; } // Deal with the possibility that we don't have a parameter // declaration for this parameter. assert(ParamTypes); QualType OldType = ParamTypes[i]; bool IsPackExpansion = false; std::optional NumExpansions; QualType NewType; if (const PackExpansionType *Expansion = dyn_cast(OldType)) { // We have a function parameter pack that may need to be expanded. QualType Pattern = Expansion->getPattern(); SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); // Determine whether we should expand the parameter packs. bool ShouldExpand = false; bool RetainExpansion = false; if (getDerived().TryExpandParameterPacks(Loc, SourceRange(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) { return true; } if (ShouldExpand) { // Expand the function parameter pack into multiple, separate // parameters. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); QualType NewType = getDerived().TransformType(Pattern); if (NewType.isNull()) return true; if (NewType->containsUnexpandedParameterPack()) { NewType = getSema().getASTContext().getPackExpansionType( NewType, std::nullopt); if (NewType.isNull()) return true; } if (ParamInfos) PInfos.set(OutParamTypes.size(), ParamInfos[i]); OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(nullptr); } // We're done with the pack expansion. continue; } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); QualType NewType = getDerived().TransformType(Pattern); if (NewType.isNull()) return true; if (ParamInfos) PInfos.set(OutParamTypes.size(), ParamInfos[i]); OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(nullptr); } // We'll substitute the parameter now without expanding the pack // expansion. OldType = Expansion->getPattern(); IsPackExpansion = true; Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); NewType = getDerived().TransformType(OldType); } else { NewType = getDerived().TransformType(OldType); } if (NewType.isNull()) return true; if (IsPackExpansion) NewType = getSema().Context.getPackExpansionType(NewType, NumExpansions); if (ParamInfos) PInfos.set(OutParamTypes.size(), ParamInfos[i]); OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(nullptr); } #ifndef NDEBUG if (PVars) { for (unsigned i = 0, e = PVars->size(); i != e; ++i) if (ParmVarDecl *parm = (*PVars)[i]) assert(parm->getFunctionScopeIndex() == i); } #endif return false; } template QualType TreeTransform::TransformFunctionProtoType(TypeLocBuilder &TLB, FunctionProtoTypeLoc TL) { SmallVector ExceptionStorage; return getDerived().TransformFunctionProtoType( TLB, TL, nullptr, Qualifiers(), [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) { return getDerived().TransformExceptionSpec(TL.getBeginLoc(), ESI, ExceptionStorage, Changed); }); } template template QualType TreeTransform::TransformFunctionProtoType( TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext, Qualifiers ThisTypeQuals, Fn TransformExceptionSpec) { // Transform the parameters and return type. // // We are required to instantiate the params and return type in source order. // When the function has a trailing return type, we instantiate the // parameters before the return type, since the return type can then refer // to the parameters themselves (via decltype, sizeof, etc.). // SmallVector ParamTypes; SmallVector ParamDecls; Sema::ExtParameterInfoBuilder ExtParamInfos; const FunctionProtoType *T = TL.getTypePtr(); QualType ResultType; if (T->hasTrailingReturn()) { if (getDerived().TransformFunctionTypeParams( TL.getBeginLoc(), TL.getParams(), TL.getTypePtr()->param_type_begin(), T->getExtParameterInfosOrNull(), ParamTypes, &ParamDecls, ExtParamInfos)) return QualType(); { // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. auto *RD = dyn_cast(SemaRef.getCurLexicalContext()); Sema::CXXThisScopeRAII ThisScope( SemaRef, !ThisContext && RD ? RD : ThisContext, ThisTypeQuals); ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); if (ResultType.isNull()) return QualType(); } } else { ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); if (ResultType.isNull()) return QualType(); if (getDerived().TransformFunctionTypeParams( TL.getBeginLoc(), TL.getParams(), TL.getTypePtr()->param_type_begin(), T->getExtParameterInfosOrNull(), ParamTypes, &ParamDecls, ExtParamInfos)) return QualType(); } FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo(); bool EPIChanged = false; if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged)) return QualType(); // Handle extended parameter information. if (auto NewExtParamInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size())) { if (!EPI.ExtParameterInfos || llvm::ArrayRef(EPI.ExtParameterInfos, TL.getNumParams()) != llvm::ArrayRef(NewExtParamInfos, ParamTypes.size())) { EPIChanged = true; } EPI.ExtParameterInfos = NewExtParamInfos; } else if (EPI.ExtParameterInfos) { EPIChanged = true; EPI.ExtParameterInfos = nullptr; } // Transform any function effects with unevaluated conditions. // Hold this set in a local for the rest of this function, since EPI // may need to hold a FunctionEffectsRef pointing into it. std::optional NewFX; if (ArrayRef FXConds = EPI.FunctionEffects.conditions(); !FXConds.empty()) { NewFX.emplace(); EnterExpressionEvaluationContext Unevaluated( getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated); for (const FunctionEffectWithCondition &PrevEC : EPI.FunctionEffects) { FunctionEffectWithCondition NewEC = PrevEC; if (Expr *CondExpr = PrevEC.Cond.getCondition()) { ExprResult NewExpr = getDerived().TransformExpr(CondExpr); if (NewExpr.isInvalid()) return QualType(); std::optional Mode = SemaRef.ActOnEffectExpression(NewExpr.get(), PrevEC.Effect.name()); if (!Mode) return QualType(); // The condition expression has been transformed, and re-evaluated. // It may or may not have become constant. switch (*Mode) { case FunctionEffectMode::True: NewEC.Cond = {}; break; case FunctionEffectMode::False: NewEC.Effect = FunctionEffect(PrevEC.Effect.oppositeKind()); NewEC.Cond = {}; break; case FunctionEffectMode::Dependent: NewEC.Cond = EffectConditionExpr(NewExpr.get()); break; case FunctionEffectMode::None: llvm_unreachable( "FunctionEffectMode::None shouldn't be possible here"); } } if (!SemaRef.diagnoseConflictingFunctionEffect(*NewFX, NewEC, TL.getBeginLoc())) { FunctionEffectSet::Conflicts Errs; NewFX->insert(NewEC, Errs); assert(Errs.empty()); } } EPI.FunctionEffects = *NewFX; EPIChanged = true; } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() || T->getParamTypes() != llvm::ArrayRef(ParamTypes) || EPIChanged) { Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI); if (Result.isNull()) return QualType(); } FunctionProtoTypeLoc NewTL = TLB.push(Result); NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setExceptionSpecRange(TL.getExceptionSpecRange()); NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i) NewTL.setParam(i, ParamDecls[i]); return Result; } template bool TreeTransform::TransformExceptionSpec( SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI, SmallVectorImpl &Exceptions, bool &Changed) { assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated); // Instantiate a dynamic noexcept expression, if any. if (isComputedNoexcept(ESI.Type)) { // Update this scrope because ContextDecl in Sema will be used in // TransformExpr. auto *Method = dyn_cast_if_present(ESI.SourceTemplate); Sema::CXXThisScopeRAII ThisScope( SemaRef, Method ? Method->getParent() : nullptr, Method ? Method->getMethodQualifiers() : Qualifiers{}, Method != nullptr); EnterExpressionEvaluationContext Unevaluated( getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr); if (NoexceptExpr.isInvalid()) return true; ExceptionSpecificationType EST = ESI.Type; NoexceptExpr = getSema().ActOnNoexceptSpec(NoexceptExpr.get(), EST); if (NoexceptExpr.isInvalid()) return true; if (ESI.NoexceptExpr != NoexceptExpr.get() || EST != ESI.Type) Changed = true; ESI.NoexceptExpr = NoexceptExpr.get(); ESI.Type = EST; } if (ESI.Type != EST_Dynamic) return false; // Instantiate a dynamic exception specification's type. for (QualType T : ESI.Exceptions) { if (const PackExpansionType *PackExpansion = T->getAs()) { Changed = true; // We have a pack expansion. Instantiate it. SmallVector Unexpanded; SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(), Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and // should // be expanded. bool Expand = false; bool RetainExpansion = false; std::optional NumExpansions = PackExpansion->getNumExpansions(); // FIXME: Track the location of the ellipsis (and track source location // information for the types in the exception specification in general). if (getDerived().TryExpandParameterPacks( Loc, SourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return true; if (!Expand) { // We can't expand this pack expansion into separate arguments yet; // just substitute into the pattern and create a new pack expansion // type. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); QualType U = getDerived().TransformType(PackExpansion->getPattern()); if (U.isNull()) return true; U = SemaRef.Context.getPackExpansionType(U, NumExpansions); Exceptions.push_back(U); continue; } // Substitute into the pack expansion pattern for each slice of the // pack. for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx); QualType U = getDerived().TransformType(PackExpansion->getPattern()); if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc)) return true; Exceptions.push_back(U); } } else { QualType U = getDerived().TransformType(T); if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc)) return true; if (T != U) Changed = true; Exceptions.push_back(U); } } ESI.Exceptions = Exceptions; if (ESI.Exceptions.empty()) ESI.Type = EST_DynamicNone; return false; } template QualType TreeTransform::TransformFunctionNoProtoType( TypeLocBuilder &TLB, FunctionNoProtoTypeLoc TL) { const FunctionNoProtoType *T = TL.getTypePtr(); QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); if (ResultType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType()) Result = getDerived().RebuildFunctionNoProtoType(ResultType); FunctionNoProtoTypeLoc NewTL = TLB.push(Result); NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); return Result; } template QualType TreeTransform::TransformUnresolvedUsingType( TypeLocBuilder &TLB, UnresolvedUsingTypeLoc TL) { const UnresolvedUsingType *T = TL.getTypePtr(); Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()); if (!D) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || D != T->getDecl()) { Result = getDerived().RebuildUnresolvedUsingType(TL.getNameLoc(), D); if (Result.isNull()) return QualType(); } // We might get an arbitrary type spec type back. We should at // least always get a type spec type, though. TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformUsingType(TypeLocBuilder &TLB, UsingTypeLoc TL) { const UsingType *T = TL.getTypePtr(); auto *Found = cast_or_null(getDerived().TransformDecl( TL.getLocalSourceRange().getBegin(), T->getFoundDecl())); if (!Found) return QualType(); QualType Underlying = getDerived().TransformType(T->desugar()); if (Underlying.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Found != T->getFoundDecl() || Underlying != T->getUnderlyingType()) { Result = getDerived().RebuildUsingType(Found, Underlying); if (Result.isNull()) return QualType(); } TLB.pushTypeSpec(Result).setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { const TypedefType *T = TL.getTypePtr(); TypedefNameDecl *Typedef = cast_or_null(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Typedef) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Typedef != T->getDecl()) { Result = getDerived().RebuildTypedefType(Typedef); if (Result.isNull()) return QualType(); } TypedefTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformTypeOfExprType(TypeLocBuilder &TLB, TypeOfExprTypeLoc TL) { // typeof expressions are not potentially evaluated contexts EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, Sema::ReuseLambdaContextDecl); ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr()); if (E.isInvalid()) return QualType(); E = SemaRef.HandleExprEvaluationContextForTypeof(E.get()); if (E.isInvalid()) return QualType(); QualType Result = TL.getType(); TypeOfKind Kind = Result->castAs()->getKind(); if (getDerived().AlwaysRebuild() || E.get() != TL.getUnderlyingExpr()) { Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc(), Kind); if (Result.isNull()) return QualType(); } TypeOfExprTypeLoc NewTL = TLB.push(Result); NewTL.setTypeofLoc(TL.getTypeofLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } template QualType TreeTransform::TransformTypeOfType(TypeLocBuilder &TLB, TypeOfTypeLoc TL) { TypeSourceInfo* Old_Under_TI = TL.getUnmodifiedTInfo(); TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI); if (!New_Under_TI) return QualType(); QualType Result = TL.getType(); TypeOfKind Kind = Result->castAs()->getKind(); if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) { Result = getDerived().RebuildTypeOfType(New_Under_TI->getType(), Kind); if (Result.isNull()) return QualType(); } TypeOfTypeLoc NewTL = TLB.push(Result); NewTL.setTypeofLoc(TL.getTypeofLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setUnmodifiedTInfo(New_Under_TI); return Result; } template QualType TreeTransform::TransformDecltypeType(TypeLocBuilder &TLB, DecltypeTypeLoc TL) { const DecltypeType *T = TL.getTypePtr(); // decltype expressions are not potentially evaluated contexts EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, nullptr, Sema::ExpressionEvaluationContextRecord::EK_Decltype); ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr()); if (E.isInvalid()) return QualType(); E = getSema().ActOnDecltypeExpression(E.get()); if (E.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || E.get() != T->getUnderlyingExpr()) { Result = getDerived().RebuildDecltypeType(E.get(), TL.getDecltypeLoc()); if (Result.isNull()) return QualType(); } else E.get(); DecltypeTypeLoc NewTL = TLB.push(Result); NewTL.setDecltypeLoc(TL.getDecltypeLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } template QualType TreeTransform::TransformPackIndexingType(TypeLocBuilder &TLB, PackIndexingTypeLoc TL) { // Transform the index ExprResult IndexExpr = getDerived().TransformExpr(TL.getIndexExpr()); if (IndexExpr.isInvalid()) return QualType(); QualType Pattern = TL.getPattern(); const PackIndexingType *PIT = TL.getTypePtr(); SmallVector SubtitutedTypes; llvm::ArrayRef Types = PIT->getExpansions(); bool NotYetExpanded = Types.empty(); bool FullySubstituted = true; if (Types.empty()) Types = llvm::ArrayRef(&Pattern, 1); for (const QualType &T : Types) { if (!T->containsUnexpandedParameterPack()) { QualType Transformed = getDerived().TransformType(T); if (Transformed.isNull()) return QualType(); SubtitutedTypes.push_back(Transformed); continue; } SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(T, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool ShouldExpand = true; bool RetainExpansion = false; std::optional OrigNumExpansions; std::optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(TL.getEllipsisLoc(), SourceRange(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) return QualType(); if (!ShouldExpand) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); // FIXME: should we keep TypeLoc for individual expansions in // PackIndexingTypeLoc? TypeSourceInfo *TI = SemaRef.getASTContext().getTrivialTypeSourceInfo(T, TL.getBeginLoc()); QualType Pack = getDerived().TransformType(TLB, TI->getTypeLoc()); if (Pack.isNull()) return QualType(); if (NotYetExpanded) { FullySubstituted = false; QualType Out = getDerived().RebuildPackIndexingType( Pack, IndexExpr.get(), SourceLocation(), TL.getEllipsisLoc(), FullySubstituted); if (Out.isNull()) return QualType(); PackIndexingTypeLoc Loc = TLB.push(Out); Loc.setEllipsisLoc(TL.getEllipsisLoc()); return Out; } SubtitutedTypes.push_back(Pack); continue; } for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); QualType Out = getDerived().TransformType(T); if (Out.isNull()) return QualType(); SubtitutedTypes.push_back(Out); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { FullySubstituted = false; ForgetPartiallySubstitutedPackRAII Forget(getDerived()); QualType Out = getDerived().TransformType(T); if (Out.isNull()) return QualType(); SubtitutedTypes.push_back(Out); } } // A pack indexing type can appear in a larger pack expansion, // e.g. `Pack...[pack_of_indexes]...` // so we need to temporarily disable substitution of pack elements Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); QualType Result = getDerived().TransformType(TLB, TL.getPatternLoc()); QualType Out = getDerived().RebuildPackIndexingType( Result, IndexExpr.get(), SourceLocation(), TL.getEllipsisLoc(), FullySubstituted, SubtitutedTypes); if (Out.isNull()) return Out; PackIndexingTypeLoc Loc = TLB.push(Out); Loc.setEllipsisLoc(TL.getEllipsisLoc()); return Out; } template QualType TreeTransform::TransformUnaryTransformType( TypeLocBuilder &TLB, UnaryTransformTypeLoc TL) { QualType Result = TL.getType(); if (Result->isDependentType()) { const UnaryTransformType *T = TL.getTypePtr(); TypeSourceInfo *NewBaseTSI = getDerived().TransformType(TL.getUnderlyingTInfo()); if (!NewBaseTSI) return QualType(); QualType NewBase = NewBaseTSI->getType(); Result = getDerived().RebuildUnaryTransformType(NewBase, T->getUTTKind(), TL.getKWLoc()); if (Result.isNull()) return QualType(); } UnaryTransformTypeLoc NewTL = TLB.push(Result); NewTL.setKWLoc(TL.getKWLoc()); NewTL.setParensRange(TL.getParensRange()); NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo()); return Result; } template QualType TreeTransform::TransformDeducedTemplateSpecializationType( TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { const DeducedTemplateSpecializationType *T = TL.getTypePtr(); CXXScopeSpec SS; TemplateName TemplateName = getDerived().TransformTemplateName( SS, T->getTemplateName(), TL.getTemplateNameLoc()); if (TemplateName.isNull()) return QualType(); QualType OldDeduced = T->getDeducedType(); QualType NewDeduced; if (!OldDeduced.isNull()) { NewDeduced = getDerived().TransformType(OldDeduced); if (NewDeduced.isNull()) return QualType(); } QualType Result = getDerived().RebuildDeducedTemplateSpecializationType( TemplateName, NewDeduced); if (Result.isNull()) return QualType(); DeducedTemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); return Result; } template QualType TreeTransform::TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) { const RecordType *T = TL.getTypePtr(); RecordDecl *Record = cast_or_null(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Record) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Record != T->getDecl()) { Result = getDerived().RebuildRecordType(Record); if (Result.isNull()) return QualType(); } RecordTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformEnumType(TypeLocBuilder &TLB, EnumTypeLoc TL) { const EnumType *T = TL.getTypePtr(); EnumDecl *Enum = cast_or_null(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Enum) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Enum != T->getDecl()) { Result = getDerived().RebuildEnumType(Enum); if (Result.isNull()) return QualType(); } EnumTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformInjectedClassNameType( TypeLocBuilder &TLB, InjectedClassNameTypeLoc TL) { Decl *D = getDerived().TransformDecl(TL.getNameLoc(), TL.getTypePtr()->getDecl()); if (!D) return QualType(); QualType T = SemaRef.Context.getTypeDeclType(cast(D)); TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc()); return T; } template QualType TreeTransform::TransformTemplateTypeParmType( TypeLocBuilder &TLB, TemplateTypeParmTypeLoc TL) { return getDerived().TransformTemplateTypeParmType( TLB, TL, /*SuppressObjCLifetime=*/false); } template QualType TreeTransform::TransformTemplateTypeParmType( TypeLocBuilder &TLB, TemplateTypeParmTypeLoc TL, bool) { return TransformTypeSpecType(TLB, TL); } template QualType TreeTransform::TransformSubstTemplateTypeParmType( TypeLocBuilder &TLB, SubstTemplateTypeParmTypeLoc TL) { const SubstTemplateTypeParmType *T = TL.getTypePtr(); Decl *NewReplaced = getDerived().TransformDecl(TL.getNameLoc(), T->getAssociatedDecl()); // Substitute into the replacement type, which itself might involve something // that needs to be transformed. This only tends to occur with default // template arguments of template template parameters. TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName()); QualType Replacement = getDerived().TransformType(T->getReplacementType()); if (Replacement.isNull()) return QualType(); QualType Result = SemaRef.Context.getSubstTemplateTypeParmType( Replacement, NewReplaced, T->getIndex(), T->getPackIndex()); // Propagate type-source information. SubstTemplateTypeParmTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformSubstTemplateTypeParmPackType( TypeLocBuilder &TLB, SubstTemplateTypeParmPackTypeLoc TL) { return getDerived().TransformSubstTemplateTypeParmPackType( TLB, TL, /*SuppressObjCLifetime=*/false); } template QualType TreeTransform::TransformSubstTemplateTypeParmPackType( TypeLocBuilder &TLB, SubstTemplateTypeParmPackTypeLoc TL, bool) { return TransformTypeSpecType(TLB, TL); } template QualType TreeTransform::TransformTemplateSpecializationType( TypeLocBuilder &TLB, TemplateSpecializationTypeLoc TL) { const TemplateSpecializationType *T = TL.getTypePtr(); // The nested-name-specifier never matters in a TemplateSpecializationType, // because we can't have a dependent nested-name-specifier anyway. CXXScopeSpec SS; TemplateName Template = getDerived().TransformTemplateName(SS, T->getTemplateName(), TL.getTemplateNameLoc()); if (Template.isNull()) return QualType(); return getDerived().TransformTemplateSpecializationType(TLB, TL, Template); } template QualType TreeTransform::TransformAtomicType(TypeLocBuilder &TLB, AtomicTypeLoc TL) { QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); if (ValueType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) { Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc()); if (Result.isNull()) return QualType(); } AtomicTypeLoc NewTL = TLB.push(Result); NewTL.setKWLoc(TL.getKWLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } template QualType TreeTransform::TransformPipeType(TypeLocBuilder &TLB, PipeTypeLoc TL) { QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); if (ValueType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) { const PipeType *PT = Result->castAs(); bool isReadPipe = PT->isReadOnly(); Result = getDerived().RebuildPipeType(ValueType, TL.getKWLoc(), isReadPipe); if (Result.isNull()) return QualType(); } PipeTypeLoc NewTL = TLB.push(Result); NewTL.setKWLoc(TL.getKWLoc()); return Result; } template QualType TreeTransform::TransformBitIntType(TypeLocBuilder &TLB, BitIntTypeLoc TL) { const BitIntType *EIT = TL.getTypePtr(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild()) { Result = getDerived().RebuildBitIntType(EIT->isUnsigned(), EIT->getNumBits(), TL.getNameLoc()); if (Result.isNull()) return QualType(); } BitIntTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformDependentBitIntType( TypeLocBuilder &TLB, DependentBitIntTypeLoc TL) { const DependentBitIntType *EIT = TL.getTypePtr(); EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult BitsExpr = getDerived().TransformExpr(EIT->getNumBitsExpr()); BitsExpr = SemaRef.ActOnConstantExpression(BitsExpr); if (BitsExpr.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || BitsExpr.get() != EIT->getNumBitsExpr()) { Result = getDerived().RebuildDependentBitIntType( EIT->isUnsigned(), BitsExpr.get(), TL.getNameLoc()); if (Result.isNull()) return QualType(); } if (isa(Result)) { DependentBitIntTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); } else { BitIntTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); } return Result; } /// Simple iterator that traverses the template arguments in a /// container that provides a \c getArgLoc() member function. /// /// This iterator is intended to be used with the iterator form of /// \c TreeTransform::TransformTemplateArguments(). template class TemplateArgumentLocContainerIterator { ArgLocContainer *Container; unsigned Index; public: typedef TemplateArgumentLoc value_type; typedef TemplateArgumentLoc reference; typedef int difference_type; typedef std::input_iterator_tag iterator_category; class pointer { TemplateArgumentLoc Arg; public: explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } const TemplateArgumentLoc *operator->() const { return &Arg; } }; TemplateArgumentLocContainerIterator() {} TemplateArgumentLocContainerIterator(ArgLocContainer &Container, unsigned Index) : Container(&Container), Index(Index) { } TemplateArgumentLocContainerIterator &operator++() { ++Index; return *this; } TemplateArgumentLocContainerIterator operator++(int) { TemplateArgumentLocContainerIterator Old(*this); ++(*this); return Old; } TemplateArgumentLoc operator*() const { return Container->getArgLoc(Index); } pointer operator->() const { return pointer(Container->getArgLoc(Index)); } friend bool operator==(const TemplateArgumentLocContainerIterator &X, const TemplateArgumentLocContainerIterator &Y) { return X.Container == Y.Container && X.Index == Y.Index; } friend bool operator!=(const TemplateArgumentLocContainerIterator &X, const TemplateArgumentLocContainerIterator &Y) { return !(X == Y); } }; template QualType TreeTransform::TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { const AutoType *T = TL.getTypePtr(); QualType OldDeduced = T->getDeducedType(); QualType NewDeduced; if (!OldDeduced.isNull()) { NewDeduced = getDerived().TransformType(OldDeduced); if (NewDeduced.isNull()) return QualType(); } ConceptDecl *NewCD = nullptr; TemplateArgumentListInfo NewTemplateArgs; NestedNameSpecifierLoc NewNestedNameSpec; if (T->isConstrained()) { assert(TL.getConceptReference()); NewCD = cast_or_null(getDerived().TransformDecl( TL.getConceptNameLoc(), T->getTypeConstraintConcept())); NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); typedef TemplateArgumentLocContainerIterator ArgIterator; if (getDerived().TransformTemplateArguments( ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()), NewTemplateArgs)) return QualType(); if (TL.getNestedNameSpecifierLoc()) { NewNestedNameSpec = getDerived().TransformNestedNameSpecifierLoc( TL.getNestedNameSpecifierLoc()); if (!NewNestedNameSpec) return QualType(); } } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced || T->isDependentType() || T->isConstrained()) { // FIXME: Maybe don't rebuild if all template arguments are the same. llvm::SmallVector NewArgList; NewArgList.reserve(NewTemplateArgs.size()); for (const auto &ArgLoc : NewTemplateArgs.arguments()) NewArgList.push_back(ArgLoc.getArgument()); Result = getDerived().RebuildAutoType(NewDeduced, T->getKeyword(), NewCD, NewArgList); if (Result.isNull()) return QualType(); } AutoTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setConceptReference(nullptr); if (T->isConstrained()) { DeclarationNameInfo DNI = DeclarationNameInfo( TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(), TL.getConceptNameLoc(), TL.getTypePtr()->getTypeConstraintConcept()->getDeclName()); auto *CR = ConceptReference::Create( SemaRef.Context, NewNestedNameSpec, TL.getTemplateKWLoc(), DNI, TL.getFoundDecl(), TL.getTypePtr()->getTypeConstraintConcept(), ASTTemplateArgumentListInfo::Create(SemaRef.Context, NewTemplateArgs)); NewTL.setConceptReference(CR); } return Result; } template QualType TreeTransform::TransformTemplateSpecializationType( TypeLocBuilder &TLB, TemplateSpecializationTypeLoc TL, TemplateName Template) { TemplateArgumentListInfo NewTemplateArgs; NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); typedef TemplateArgumentLocContainerIterator ArgIterator; if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()), NewTemplateArgs)) return QualType(); // FIXME: maybe don't rebuild if all the template arguments are the same. QualType Result = getDerived().RebuildTemplateSpecializationType(Template, TL.getTemplateNameLoc(), NewTemplateArgs); if (!Result.isNull()) { // Specializations of template template parameters are represented as // TemplateSpecializationTypes, and substitution of type alias templates // within a dependent context can transform them into // DependentTemplateSpecializationTypes. if (isa(Result)) { DependentTemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(SourceLocation()); NewTL.setQualifierLoc(NestedNameSpecifierLoc()); NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NewTL.setLAngleLoc(TL.getLAngleLoc()); NewTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); return Result; } TemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NewTL.setLAngleLoc(TL.getLAngleLoc()); NewTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); } return Result; } template QualType TreeTransform::TransformDependentTemplateSpecializationType( TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, TemplateName Template, CXXScopeSpec &SS) { TemplateArgumentListInfo NewTemplateArgs; NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); typedef TemplateArgumentLocContainerIterator< DependentTemplateSpecializationTypeLoc> ArgIterator; if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()), NewTemplateArgs)) return QualType(); // FIXME: maybe don't rebuild if all the template arguments are the same. if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { QualType Result = getSema().Context.getDependentTemplateSpecializationType( TL.getTypePtr()->getKeyword(), DTN->getQualifier(), DTN->getIdentifier(), NewTemplateArgs.arguments()); DependentTemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context)); NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NewTL.setLAngleLoc(TL.getLAngleLoc()); NewTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); return Result; } QualType Result = getDerived().RebuildTemplateSpecializationType(Template, TL.getTemplateNameLoc(), NewTemplateArgs); if (!Result.isNull()) { /// FIXME: Wrap this in an elaborated-type-specifier? TemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NewTL.setLAngleLoc(TL.getLAngleLoc()); NewTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); } return Result; } template QualType TreeTransform::TransformElaboratedType(TypeLocBuilder &TLB, ElaboratedTypeLoc TL) { const ElaboratedType *T = TL.getTypePtr(); NestedNameSpecifierLoc QualifierLoc; // NOTE: the qualifier in an ElaboratedType is optional. if (TL.getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); if (!QualifierLoc) return QualType(); } QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc()); if (NamedT.isNull()) return QualType(); // C++0x [dcl.type.elab]p2: // If the identifier resolves to a typedef-name or the simple-template-id // resolves to an alias template specialization, the // elaborated-type-specifier is ill-formed. if (T->getKeyword() != ElaboratedTypeKeyword::None && T->getKeyword() != ElaboratedTypeKeyword::Typename) { if (const TemplateSpecializationType *TST = NamedT->getAs()) { TemplateName Template = TST->getTemplateName(); if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null( Template.getAsTemplateDecl())) { SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(), diag::err_tag_reference_non_tag) << TAT << Sema::NTK_TypeAliasTemplate << llvm::to_underlying( ElaboratedType::getTagTypeKindForKeyword(T->getKeyword())); SemaRef.Diag(TAT->getLocation(), diag::note_declared_at); } } } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || QualifierLoc != TL.getQualifierLoc() || NamedT != T->getNamedType()) { Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(), T->getKeyword(), QualifierLoc, NamedT); if (Result.isNull()) return QualType(); } ElaboratedTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(QualifierLoc); return Result; } template template QualType TreeTransform::TransformAttributedType( TypeLocBuilder &TLB, AttributedTypeLoc TL, Fn TransformModifiedTypeFn) { const AttributedType *oldType = TL.getTypePtr(); QualType modifiedType = TransformModifiedTypeFn(TLB, TL.getModifiedLoc()); if (modifiedType.isNull()) return QualType(); // oldAttr can be null if we started with a QualType rather than a TypeLoc. const Attr *oldAttr = TL.getAttr(); const Attr *newAttr = oldAttr ? getDerived().TransformAttr(oldAttr) : nullptr; if (oldAttr && !newAttr) return QualType(); QualType result = TL.getType(); // FIXME: dependent operand expressions? if (getDerived().AlwaysRebuild() || modifiedType != oldType->getModifiedType()) { TypeLocBuilder AuxiliaryTLB; AuxiliaryTLB.reserve(TL.getFullDataSize()); QualType equivalentType = getDerived().TransformType(AuxiliaryTLB, TL.getEquivalentTypeLoc()); if (equivalentType.isNull()) return QualType(); // Check whether we can add nullability; it is only represented as // type sugar, and therefore cannot be diagnosed in any other way. if (auto nullability = oldType->getImmediateNullability()) { if (!modifiedType->canHaveNullability()) { SemaRef.Diag((TL.getAttr() ? TL.getAttr()->getLocation() : TL.getModifiedLoc().getBeginLoc()), diag::err_nullability_nonpointer) << DiagNullabilityKind(*nullability, false) << modifiedType; return QualType(); } } result = SemaRef.Context.getAttributedType(TL.getAttrKind(), modifiedType, equivalentType); } AttributedTypeLoc newTL = TLB.push(result); newTL.setAttr(newAttr); return result; } template QualType TreeTransform::TransformAttributedType(TypeLocBuilder &TLB, AttributedTypeLoc TL) { return getDerived().TransformAttributedType( TLB, TL, [&](TypeLocBuilder &TLB, TypeLoc ModifiedLoc) -> QualType { return getDerived().TransformType(TLB, ModifiedLoc); }); } template QualType TreeTransform::TransformCountAttributedType( TypeLocBuilder &TLB, CountAttributedTypeLoc TL) { const CountAttributedType *OldTy = TL.getTypePtr(); QualType InnerTy = getDerived().TransformType(TLB, TL.getInnerLoc()); if (InnerTy.isNull()) return QualType(); Expr *OldCount = TL.getCountExpr(); Expr *NewCount = nullptr; if (OldCount) { ExprResult CountResult = getDerived().TransformExpr(OldCount); if (CountResult.isInvalid()) return QualType(); NewCount = CountResult.get(); } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || InnerTy != OldTy->desugar() || OldCount != NewCount) { // Currently, CountAttributedType can only wrap incomplete array types. Result = SemaRef.BuildCountAttributedArrayOrPointerType( InnerTy, NewCount, OldTy->isCountInBytes(), OldTy->isOrNull()); } TLB.push(Result); return Result; } template QualType TreeTransform::TransformBTFTagAttributedType( TypeLocBuilder &TLB, BTFTagAttributedTypeLoc TL) { // The BTFTagAttributedType is available for C only. llvm_unreachable("Unexpected TreeTransform for BTFTagAttributedType"); } template QualType TreeTransform::TransformParenType(TypeLocBuilder &TLB, ParenTypeLoc TL) { QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc()); if (Inner.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) { Result = getDerived().RebuildParenType(Inner); if (Result.isNull()) return QualType(); } ParenTypeLoc NewTL = TLB.push(Result); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } template QualType TreeTransform::TransformMacroQualifiedType(TypeLocBuilder &TLB, MacroQualifiedTypeLoc TL) { QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc()); if (Inner.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) { Result = getDerived().RebuildMacroQualifiedType(Inner, TL.getMacroIdentifier()); if (Result.isNull()) return QualType(); } MacroQualifiedTypeLoc NewTL = TLB.push(Result); NewTL.setExpansionLoc(TL.getExpansionLoc()); return Result; } template QualType TreeTransform::TransformDependentNameType( TypeLocBuilder &TLB, DependentNameTypeLoc TL) { return TransformDependentNameType(TLB, TL, false); } template QualType TreeTransform::TransformDependentNameType( TypeLocBuilder &TLB, DependentNameTypeLoc TL, bool DeducedTSTContext) { const DependentNameType *T = TL.getTypePtr(); NestedNameSpecifierLoc QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); if (!QualifierLoc) return QualType(); QualType Result = getDerived().RebuildDependentNameType(T->getKeyword(), TL.getElaboratedKeywordLoc(), QualifierLoc, T->getIdentifier(), TL.getNameLoc(), DeducedTSTContext); if (Result.isNull()) return QualType(); if (const ElaboratedType* ElabT = Result->getAs()) { QualType NamedT = ElabT->getNamedType(); TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc()); ElaboratedTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(QualifierLoc); } else { DependentNameTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(QualifierLoc); NewTL.setNameLoc(TL.getNameLoc()); } return Result; } template QualType TreeTransform:: TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL) { NestedNameSpecifierLoc QualifierLoc; if (TL.getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); if (!QualifierLoc) return QualType(); } return getDerived() .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc); } template QualType TreeTransform:: TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, NestedNameSpecifierLoc QualifierLoc) { const DependentTemplateSpecializationType *T = TL.getTypePtr(); TemplateArgumentListInfo NewTemplateArgs; NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); typedef TemplateArgumentLocContainerIterator< DependentTemplateSpecializationTypeLoc> ArgIterator; if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()), NewTemplateArgs)) return QualType(); QualType Result = getDerived().RebuildDependentTemplateSpecializationType( T->getKeyword(), QualifierLoc, TL.getTemplateKeywordLoc(), T->getIdentifier(), TL.getTemplateNameLoc(), NewTemplateArgs, /*AllowInjectedClassName*/ false); if (Result.isNull()) return QualType(); if (const ElaboratedType *ElabT = dyn_cast(Result)) { QualType NamedT = ElabT->getNamedType(); // Copy information relevant to the template specialization. TemplateSpecializationTypeLoc NamedTL = TLB.push(NamedT); NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NamedTL.setLAngleLoc(TL.getLAngleLoc()); NamedTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); // Copy information relevant to the elaborated type. ElaboratedTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(QualifierLoc); } else if (isa(Result)) { DependentTemplateSpecializationTypeLoc SpecTL = TLB.push(Result); SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); SpecTL.setQualifierLoc(QualifierLoc); SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); SpecTL.setLAngleLoc(TL.getLAngleLoc()); SpecTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); } else { TemplateSpecializationTypeLoc SpecTL = TLB.push(Result); SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); SpecTL.setLAngleLoc(TL.getLAngleLoc()); SpecTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); } return Result; } template QualType TreeTransform::TransformPackExpansionType(TypeLocBuilder &TLB, PackExpansionTypeLoc TL) { QualType Pattern = getDerived().TransformType(TLB, TL.getPatternLoc()); if (Pattern.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Pattern != TL.getPatternLoc().getType()) { Result = getDerived().RebuildPackExpansionType(Pattern, TL.getPatternLoc().getSourceRange(), TL.getEllipsisLoc(), TL.getTypePtr()->getNumExpansions()); if (Result.isNull()) return QualType(); } PackExpansionTypeLoc NewT = TLB.push(Result); NewT.setEllipsisLoc(TL.getEllipsisLoc()); return Result; } template QualType TreeTransform::TransformObjCInterfaceType(TypeLocBuilder &TLB, ObjCInterfaceTypeLoc TL) { // ObjCInterfaceType is never dependent. TLB.pushFullCopy(TL); return TL.getType(); } template QualType TreeTransform::TransformObjCTypeParamType(TypeLocBuilder &TLB, ObjCTypeParamTypeLoc TL) { const ObjCTypeParamType *T = TL.getTypePtr(); ObjCTypeParamDecl *OTP = cast_or_null( getDerived().TransformDecl(T->getDecl()->getLocation(), T->getDecl())); if (!OTP) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || OTP != T->getDecl()) { Result = getDerived().RebuildObjCTypeParamType( OTP, TL.getProtocolLAngleLoc(), llvm::ArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()), TL.getProtocolLocs(), TL.getProtocolRAngleLoc()); if (Result.isNull()) return QualType(); } ObjCTypeParamTypeLoc NewTL = TLB.push(Result); if (TL.getNumProtocols()) { NewTL.setProtocolLAngleLoc(TL.getProtocolLAngleLoc()); for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i) NewTL.setProtocolLoc(i, TL.getProtocolLoc(i)); NewTL.setProtocolRAngleLoc(TL.getProtocolRAngleLoc()); } return Result; } template QualType TreeTransform::TransformObjCObjectType(TypeLocBuilder &TLB, ObjCObjectTypeLoc TL) { // Transform base type. QualType BaseType = getDerived().TransformType(TLB, TL.getBaseLoc()); if (BaseType.isNull()) return QualType(); bool AnyChanged = BaseType != TL.getBaseLoc().getType(); // Transform type arguments. SmallVector NewTypeArgInfos; for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) { TypeSourceInfo *TypeArgInfo = TL.getTypeArgTInfo(i); TypeLoc TypeArgLoc = TypeArgInfo->getTypeLoc(); QualType TypeArg = TypeArgInfo->getType(); if (auto PackExpansionLoc = TypeArgLoc.getAs()) { AnyChanged = true; // We have a pack expansion. Instantiate it. const auto *PackExpansion = PackExpansionLoc.getType() ->castAs(); SmallVector Unexpanded; SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(), Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can // and should be expanded. TypeLoc PatternLoc = PackExpansionLoc.getPatternLoc(); bool Expand = false; bool RetainExpansion = false; std::optional NumExpansions = PackExpansion->getNumExpansions(); if (getDerived().TryExpandParameterPacks( PackExpansionLoc.getEllipsisLoc(), PatternLoc.getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return QualType(); if (!Expand) { // We can't expand this pack expansion into separate arguments yet; // just substitute into the pattern and create a new pack expansion // type. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); TypeLocBuilder TypeArgBuilder; TypeArgBuilder.reserve(PatternLoc.getFullDataSize()); QualType NewPatternType = getDerived().TransformType(TypeArgBuilder, PatternLoc); if (NewPatternType.isNull()) return QualType(); QualType NewExpansionType = SemaRef.Context.getPackExpansionType( NewPatternType, NumExpansions); auto NewExpansionLoc = TLB.push(NewExpansionType); NewExpansionLoc.setEllipsisLoc(PackExpansionLoc.getEllipsisLoc()); NewTypeArgInfos.push_back( TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewExpansionType)); continue; } // Substitute into the pack expansion pattern for each slice of the // pack. for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx); TypeLocBuilder TypeArgBuilder; TypeArgBuilder.reserve(PatternLoc.getFullDataSize()); QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder, PatternLoc); if (NewTypeArg.isNull()) return QualType(); NewTypeArgInfos.push_back( TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg)); } continue; } TypeLocBuilder TypeArgBuilder; TypeArgBuilder.reserve(TypeArgLoc.getFullDataSize()); QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder, TypeArgLoc); if (NewTypeArg.isNull()) return QualType(); // If nothing changed, just keep the old TypeSourceInfo. if (NewTypeArg == TypeArg) { NewTypeArgInfos.push_back(TypeArgInfo); continue; } NewTypeArgInfos.push_back( TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg)); AnyChanged = true; } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || AnyChanged) { // Rebuild the type. Result = getDerived().RebuildObjCObjectType( BaseType, TL.getBeginLoc(), TL.getTypeArgsLAngleLoc(), NewTypeArgInfos, TL.getTypeArgsRAngleLoc(), TL.getProtocolLAngleLoc(), llvm::ArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()), TL.getProtocolLocs(), TL.getProtocolRAngleLoc()); if (Result.isNull()) return QualType(); } ObjCObjectTypeLoc NewT = TLB.push(Result); NewT.setHasBaseTypeAsWritten(true); NewT.setTypeArgsLAngleLoc(TL.getTypeArgsLAngleLoc()); for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) NewT.setTypeArgTInfo(i, NewTypeArgInfos[i]); NewT.setTypeArgsRAngleLoc(TL.getTypeArgsRAngleLoc()); NewT.setProtocolLAngleLoc(TL.getProtocolLAngleLoc()); for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i) NewT.setProtocolLoc(i, TL.getProtocolLoc(i)); NewT.setProtocolRAngleLoc(TL.getProtocolRAngleLoc()); return Result; } template QualType TreeTransform::TransformObjCObjectPointerType(TypeLocBuilder &TLB, ObjCObjectPointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != TL.getPointeeLoc().getType()) { Result = getDerived().RebuildObjCObjectPointerType(PointeeType, TL.getStarLoc()); if (Result.isNull()) return QualType(); } ObjCObjectPointerTypeLoc NewT = TLB.push(Result); NewT.setStarLoc(TL.getStarLoc()); return Result; } //===----------------------------------------------------------------------===// // Statement transformation //===----------------------------------------------------------------------===// template StmtResult TreeTransform::TransformNullStmt(NullStmt *S) { return S; } template StmtResult TreeTransform::TransformCompoundStmt(CompoundStmt *S) { return getDerived().TransformCompoundStmt(S, false); } template StmtResult TreeTransform::TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr) { Sema::CompoundScopeRAII CompoundScope(getSema()); Sema::FPFeaturesStateRAII FPSave(getSema()); if (S->hasStoredFPFeatures()) getSema().resetFPOptions( S->getStoredFPFeatures().applyOverrides(getSema().getLangOpts())); const Stmt *ExprResult = S->getStmtExprResult(); bool SubStmtInvalid = false; bool SubStmtChanged = false; SmallVector Statements; for (auto *B : S->body()) { StmtResult Result = getDerived().TransformStmt( B, IsStmtExpr && B == ExprResult ? SDK_StmtExprResult : SDK_Discarded); if (Result.isInvalid()) { // Immediately fail if this was a DeclStmt, since it's very // likely that this will cause problems for future statements. if (isa(B)) return StmtError(); // Otherwise, just keep processing substatements and fail later. SubStmtInvalid = true; continue; } SubStmtChanged = SubStmtChanged || Result.get() != B; Statements.push_back(Result.getAs()); } if (SubStmtInvalid) return StmtError(); if (!getDerived().AlwaysRebuild() && !SubStmtChanged) return S; return getDerived().RebuildCompoundStmt(S->getLBracLoc(), Statements, S->getRBracLoc(), IsStmtExpr); } template StmtResult TreeTransform::TransformCaseStmt(CaseStmt *S) { ExprResult LHS, RHS; { EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); // Transform the left-hand case value. LHS = getDerived().TransformExpr(S->getLHS()); LHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), LHS); if (LHS.isInvalid()) return StmtError(); // Transform the right-hand case value (for the GNU case-range extension). RHS = getDerived().TransformExpr(S->getRHS()); RHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), RHS); if (RHS.isInvalid()) return StmtError(); } // Build the case statement. // Case statements are always rebuilt so that they will attached to their // transformed switch statement. StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(), LHS.get(), S->getEllipsisLoc(), RHS.get(), S->getColonLoc()); if (Case.isInvalid()) return StmtError(); // Transform the statement following the case StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); if (SubStmt.isInvalid()) return StmtError(); // Attach the body to the case statement return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get()); } template StmtResult TreeTransform::TransformDefaultStmt(DefaultStmt *S) { // Transform the statement following the default case StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); if (SubStmt.isInvalid()) return StmtError(); // Default statements are always rebuilt return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(), SubStmt.get()); } template StmtResult TreeTransform::TransformLabelStmt(LabelStmt *S, StmtDiscardKind SDK) { StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK); if (SubStmt.isInvalid()) return StmtError(); Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(), S->getDecl()); if (!LD) return StmtError(); // If we're transforming "in-place" (we're not creating new local // declarations), assume we're replacing the old label statement // and clear out the reference to it. if (LD == S->getDecl()) S->getDecl()->setStmt(nullptr); // FIXME: Pass the real colon location in. return getDerived().RebuildLabelStmt(S->getIdentLoc(), cast(LD), SourceLocation(), SubStmt.get()); } template const Attr *TreeTransform::TransformAttr(const Attr *R) { if (!R) return R; switch (R->getKind()) { // Transform attributes by calling TransformXXXAttr. #define ATTR(X) \ case attr::X: \ return getDerived().Transform##X##Attr(cast(R)); #include "clang/Basic/AttrList.inc" } return R; } template const Attr *TreeTransform::TransformStmtAttr(const Stmt *OrigS, const Stmt *InstS, const Attr *R) { if (!R) return R; switch (R->getKind()) { // Transform attributes by calling TransformStmtXXXAttr. #define ATTR(X) \ case attr::X: \ return getDerived().TransformStmt##X##Attr(OrigS, InstS, cast(R)); #include "clang/Basic/AttrList.inc" } return TransformAttr(R); } template StmtResult TreeTransform::TransformAttributedStmt(AttributedStmt *S, StmtDiscardKind SDK) { StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK); if (SubStmt.isInvalid()) return StmtError(); bool AttrsChanged = false; SmallVector Attrs; // Visit attributes and keep track if any are transformed. for (const auto *I : S->getAttrs()) { const Attr *R = getDerived().TransformStmtAttr(S->getSubStmt(), SubStmt.get(), I); AttrsChanged |= (I != R); if (R) Attrs.push_back(R); } if (SubStmt.get() == S->getSubStmt() && !AttrsChanged) return S; // If transforming the attributes failed for all of the attributes in the // statement, don't make an AttributedStmt without attributes. if (Attrs.empty()) return SubStmt; return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs, SubStmt.get()); } template StmtResult TreeTransform::TransformIfStmt(IfStmt *S) { // Transform the initialization statement StmtResult Init = getDerived().TransformStmt(S->getInit()); if (Init.isInvalid()) return StmtError(); Sema::ConditionResult Cond; if (!S->isConsteval()) { // Transform the condition Cond = getDerived().TransformCondition( S->getIfLoc(), S->getConditionVariable(), S->getCond(), S->isConstexpr() ? Sema::ConditionKind::ConstexprIf : Sema::ConditionKind::Boolean); if (Cond.isInvalid()) return StmtError(); } // If this is a constexpr if, determine which arm we should instantiate. std::optional ConstexprConditionValue; if (S->isConstexpr()) ConstexprConditionValue = Cond.getKnownValue(); // Transform the "then" branch. StmtResult Then; if (!ConstexprConditionValue || *ConstexprConditionValue) { EnterExpressionEvaluationContext Ctx( getSema(), Sema::ExpressionEvaluationContext::ImmediateFunctionContext, nullptr, Sema::ExpressionEvaluationContextRecord::EK_Other, S->isNonNegatedConsteval()); Then = getDerived().TransformStmt(S->getThen()); if (Then.isInvalid()) return StmtError(); } else { // Discarded branch is replaced with empty CompoundStmt so we can keep // proper source location for start and end of original branch, so // subsequent transformations like CoverageMapping work properly Then = new (getSema().Context) CompoundStmt(S->getThen()->getBeginLoc(), S->getThen()->getEndLoc()); } // Transform the "else" branch. StmtResult Else; if (!ConstexprConditionValue || !*ConstexprConditionValue) { EnterExpressionEvaluationContext Ctx( getSema(), Sema::ExpressionEvaluationContext::ImmediateFunctionContext, nullptr, Sema::ExpressionEvaluationContextRecord::EK_Other, S->isNegatedConsteval()); Else = getDerived().TransformStmt(S->getElse()); if (Else.isInvalid()) return StmtError(); } else if (S->getElse() && ConstexprConditionValue && *ConstexprConditionValue) { // Same thing here as with branch, we are discarding it, we can't // replace it with NULL nor NullStmt as we need to keep for source location // range, for CoverageMapping Else = new (getSema().Context) CompoundStmt(S->getElse()->getBeginLoc(), S->getElse()->getEndLoc()); } if (!getDerived().AlwaysRebuild() && Init.get() == S->getInit() && Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && Then.get() == S->getThen() && Else.get() == S->getElse()) return S; return getDerived().RebuildIfStmt( S->getIfLoc(), S->getStatementKind(), S->getLParenLoc(), Cond, S->getRParenLoc(), Init.get(), Then.get(), S->getElseLoc(), Else.get()); } template StmtResult TreeTransform::TransformSwitchStmt(SwitchStmt *S) { // Transform the initialization statement StmtResult Init = getDerived().TransformStmt(S->getInit()); if (Init.isInvalid()) return StmtError(); // Transform the condition. Sema::ConditionResult Cond = getDerived().TransformCondition( S->getSwitchLoc(), S->getConditionVariable(), S->getCond(), Sema::ConditionKind::Switch); if (Cond.isInvalid()) return StmtError(); // Rebuild the switch statement. StmtResult Switch = getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), S->getLParenLoc(), Init.get(), Cond, S->getRParenLoc()); if (Switch.isInvalid()) return StmtError(); // Transform the body of the switch statement. StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); // Complete the switch statement. return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(), Body.get()); } template StmtResult TreeTransform::TransformWhileStmt(WhileStmt *S) { // Transform the condition Sema::ConditionResult Cond = getDerived().TransformCondition( S->getWhileLoc(), S->getConditionVariable(), S->getCond(), Sema::ConditionKind::Boolean); if (Cond.isInvalid()) return StmtError(); // Transform the body StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && Body.get() == S->getBody()) return Owned(S); return getDerived().RebuildWhileStmt(S->getWhileLoc(), S->getLParenLoc(), Cond, S->getRParenLoc(), Body.get()); } template StmtResult TreeTransform::TransformDoStmt(DoStmt *S) { // Transform the body StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); // Transform the condition ExprResult Cond = getDerived().TransformExpr(S->getCond()); if (Cond.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && Cond.get() == S->getCond() && Body.get() == S->getBody()) return S; return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(), /*FIXME:*/S->getWhileLoc(), Cond.get(), S->getRParenLoc()); } template StmtResult TreeTransform::TransformForStmt(ForStmt *S) { if (getSema().getLangOpts().OpenMP) getSema().OpenMP().startOpenMPLoop(); // Transform the initialization statement StmtResult Init = getDerived().TransformStmt(S->getInit()); if (Init.isInvalid()) return StmtError(); // In OpenMP loop region loop control variable must be captured and be // private. Perform analysis of first part (if any). if (getSema().getLangOpts().OpenMP && Init.isUsable()) getSema().OpenMP().ActOnOpenMPLoopInitialization(S->getForLoc(), Init.get()); // Transform the condition Sema::ConditionResult Cond = getDerived().TransformCondition( S->getForLoc(), S->getConditionVariable(), S->getCond(), Sema::ConditionKind::Boolean); if (Cond.isInvalid()) return StmtError(); // Transform the increment ExprResult Inc = getDerived().TransformExpr(S->getInc()); if (Inc.isInvalid()) return StmtError(); Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get())); if (S->getInc() && !FullInc.get()) return StmtError(); // Transform the body StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && Init.get() == S->getInit() && Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && Inc.get() == S->getInc() && Body.get() == S->getBody()) return S; return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(), Init.get(), Cond, FullInc, S->getRParenLoc(), Body.get()); } template StmtResult TreeTransform::TransformGotoStmt(GotoStmt *S) { Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(), S->getLabel()); if (!LD) return StmtError(); // Goto statements must always be rebuilt, to resolve the label. return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(), cast(LD)); } template StmtResult TreeTransform::TransformIndirectGotoStmt(IndirectGotoStmt *S) { ExprResult Target = getDerived().TransformExpr(S->getTarget()); if (Target.isInvalid()) return StmtError(); Target = SemaRef.MaybeCreateExprWithCleanups(Target.get()); if (!getDerived().AlwaysRebuild() && Target.get() == S->getTarget()) return S; return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(), Target.get()); } template StmtResult TreeTransform::TransformContinueStmt(ContinueStmt *S) { return S; } template StmtResult TreeTransform::TransformBreakStmt(BreakStmt *S) { return S; } template StmtResult TreeTransform::TransformReturnStmt(ReturnStmt *S) { ExprResult Result = getDerived().TransformInitializer(S->getRetValue(), /*NotCopyInit*/false); if (Result.isInvalid()) return StmtError(); // FIXME: We always rebuild the return statement because there is no way // to tell whether the return type of the function has changed. return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get()); } template StmtResult TreeTransform::TransformDeclStmt(DeclStmt *S) { bool DeclChanged = false; SmallVector Decls; for (auto *D : S->decls()) { Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D); if (!Transformed) return StmtError(); if (Transformed != D) DeclChanged = true; Decls.push_back(Transformed); } if (!getDerived().AlwaysRebuild() && !DeclChanged) return S; return getDerived().RebuildDeclStmt(Decls, S->getBeginLoc(), S->getEndLoc()); } template StmtResult TreeTransform::TransformGCCAsmStmt(GCCAsmStmt *S) { SmallVector Constraints; SmallVector Exprs; SmallVector Names; ExprResult AsmString; SmallVector Clobbers; bool ExprsChanged = false; // Go through the outputs. for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) { Names.push_back(S->getOutputIdentifier(I)); // No need to transform the constraint literal. Constraints.push_back(S->getOutputConstraintLiteral(I)); // Transform the output expr. Expr *OutputExpr = S->getOutputExpr(I); ExprResult Result = getDerived().TransformExpr(OutputExpr); if (Result.isInvalid()) return StmtError(); ExprsChanged |= Result.get() != OutputExpr; Exprs.push_back(Result.get()); } // Go through the inputs. for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) { Names.push_back(S->getInputIdentifier(I)); // No need to transform the constraint literal. Constraints.push_back(S->getInputConstraintLiteral(I)); // Transform the input expr. Expr *InputExpr = S->getInputExpr(I); ExprResult Result = getDerived().TransformExpr(InputExpr); if (Result.isInvalid()) return StmtError(); ExprsChanged |= Result.get() != InputExpr; Exprs.push_back(Result.get()); } // Go through the Labels. for (unsigned I = 0, E = S->getNumLabels(); I != E; ++I) { Names.push_back(S->getLabelIdentifier(I)); ExprResult Result = getDerived().TransformExpr(S->getLabelExpr(I)); if (Result.isInvalid()) return StmtError(); ExprsChanged |= Result.get() != S->getLabelExpr(I); Exprs.push_back(Result.get()); } if (!getDerived().AlwaysRebuild() && !ExprsChanged) return S; // Go through the clobbers. for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I) Clobbers.push_back(S->getClobberStringLiteral(I)); // No need to transform the asm string literal. AsmString = S->getAsmString(); return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(), S->isVolatile(), S->getNumOutputs(), S->getNumInputs(), Names.data(), Constraints, Exprs, AsmString.get(), Clobbers, S->getNumLabels(), S->getRParenLoc()); } template StmtResult TreeTransform::TransformMSAsmStmt(MSAsmStmt *S) { ArrayRef AsmToks = llvm::ArrayRef(S->getAsmToks(), S->getNumAsmToks()); bool HadError = false, HadChange = false; ArrayRef SrcExprs = S->getAllExprs(); SmallVector TransformedExprs; TransformedExprs.reserve(SrcExprs.size()); for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) { ExprResult Result = getDerived().TransformExpr(SrcExprs[i]); if (!Result.isUsable()) { HadError = true; } else { HadChange |= (Result.get() != SrcExprs[i]); TransformedExprs.push_back(Result.get()); } } if (HadError) return StmtError(); if (!HadChange && !getDerived().AlwaysRebuild()) return Owned(S); return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(), AsmToks, S->getAsmString(), S->getNumOutputs(), S->getNumInputs(), S->getAllConstraints(), S->getClobbers(), TransformedExprs, S->getEndLoc()); } // C++ Coroutines template StmtResult TreeTransform::TransformCoroutineBodyStmt(CoroutineBodyStmt *S) { auto *ScopeInfo = SemaRef.getCurFunction(); auto *FD = cast(SemaRef.CurContext); assert(FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && "expected clean scope info"); // Set that we have (possibly-invalid) suspend points before we do anything // that may fail. ScopeInfo->setNeedsCoroutineSuspends(false); // We re-build the coroutine promise object (and the coroutine parameters its // type and constructor depend on) based on the types used in our current // function. We must do so, and set it on the current FunctionScopeInfo, // before attempting to transform the other parts of the coroutine body // statement, such as the implicit suspend statements (because those // statements reference the FunctionScopeInfo::CoroutinePromise). if (!SemaRef.buildCoroutineParameterMoves(FD->getLocation())) return StmtError(); auto *Promise = SemaRef.buildCoroutinePromise(FD->getLocation()); if (!Promise) return StmtError(); getDerived().transformedLocalDecl(S->getPromiseDecl(), {Promise}); ScopeInfo->CoroutinePromise = Promise; // Transform the implicit coroutine statements constructed using dependent // types during the previous parse: initial and final suspensions, the return // object, and others. We also transform the coroutine function's body. StmtResult InitSuspend = getDerived().TransformStmt(S->getInitSuspendStmt()); if (InitSuspend.isInvalid()) return StmtError(); StmtResult FinalSuspend = getDerived().TransformStmt(S->getFinalSuspendStmt()); if (FinalSuspend.isInvalid() || !SemaRef.checkFinalSuspendNoThrow(FinalSuspend.get())) return StmtError(); ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); assert(isa(InitSuspend.get()) && isa(FinalSuspend.get())); StmtResult BodyRes = getDerived().TransformStmt(S->getBody()); if (BodyRes.isInvalid()) return StmtError(); CoroutineStmtBuilder Builder(SemaRef, *FD, *ScopeInfo, BodyRes.get()); if (Builder.isInvalid()) return StmtError(); Expr *ReturnObject = S->getReturnValueInit(); assert(ReturnObject && "the return object is expected to be valid"); ExprResult Res = getDerived().TransformInitializer(ReturnObject, /*NoCopyInit*/ false); if (Res.isInvalid()) return StmtError(); Builder.ReturnValue = Res.get(); // If during the previous parse the coroutine still had a dependent promise // statement, we may need to build some implicit coroutine statements // (such as exception and fallthrough handlers) for the first time. if (S->hasDependentPromiseType()) { // We can only build these statements, however, if the current promise type // is not dependent. if (!Promise->getType()->isDependentType()) { assert(!S->getFallthroughHandler() && !S->getExceptionHandler() && !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() && "these nodes should not have been built yet"); if (!Builder.buildDependentStatements()) return StmtError(); } } else { if (auto *OnFallthrough = S->getFallthroughHandler()) { StmtResult Res = getDerived().TransformStmt(OnFallthrough); if (Res.isInvalid()) return StmtError(); Builder.OnFallthrough = Res.get(); } if (auto *OnException = S->getExceptionHandler()) { StmtResult Res = getDerived().TransformStmt(OnException); if (Res.isInvalid()) return StmtError(); Builder.OnException = Res.get(); } if (auto *OnAllocFailure = S->getReturnStmtOnAllocFailure()) { StmtResult Res = getDerived().TransformStmt(OnAllocFailure); if (Res.isInvalid()) return StmtError(); Builder.ReturnStmtOnAllocFailure = Res.get(); } // Transform any additional statements we may have already built assert(S->getAllocate() && S->getDeallocate() && "allocation and deallocation calls must already be built"); ExprResult AllocRes = getDerived().TransformExpr(S->getAllocate()); if (AllocRes.isInvalid()) return StmtError(); Builder.Allocate = AllocRes.get(); ExprResult DeallocRes = getDerived().TransformExpr(S->getDeallocate()); if (DeallocRes.isInvalid()) return StmtError(); Builder.Deallocate = DeallocRes.get(); if (auto *ResultDecl = S->getResultDecl()) { StmtResult Res = getDerived().TransformStmt(ResultDecl); if (Res.isInvalid()) return StmtError(); Builder.ResultDecl = Res.get(); } if (auto *ReturnStmt = S->getReturnStmt()) { StmtResult Res = getDerived().TransformStmt(ReturnStmt); if (Res.isInvalid()) return StmtError(); Builder.ReturnStmt = Res.get(); } } return getDerived().RebuildCoroutineBodyStmt(Builder); } template StmtResult TreeTransform::TransformCoreturnStmt(CoreturnStmt *S) { ExprResult Result = getDerived().TransformInitializer(S->getOperand(), /*NotCopyInit*/false); if (Result.isInvalid()) return StmtError(); // Always rebuild; we don't know if this needs to be injected into a new // context or if the promise type has changed. return getDerived().RebuildCoreturnStmt(S->getKeywordLoc(), Result.get(), S->isImplicit()); } template ExprResult TreeTransform::TransformCoawaitExpr(CoawaitExpr *E) { ExprResult Operand = getDerived().TransformInitializer(E->getOperand(), /*NotCopyInit*/ false); if (Operand.isInvalid()) return ExprError(); // Rebuild the common-expr from the operand rather than transforming it // separately. // FIXME: getCurScope() should not be used during template instantiation. // We should pick up the set of unqualified lookup results for operator // co_await during the initial parse. ExprResult Lookup = getSema().BuildOperatorCoawaitLookupExpr( getSema().getCurScope(), E->getKeywordLoc()); // Always rebuild; we don't know if this needs to be injected into a new // context or if the promise type has changed. return getDerived().RebuildCoawaitExpr( E->getKeywordLoc(), Operand.get(), cast(Lookup.get()), E->isImplicit()); } template ExprResult TreeTransform::TransformDependentCoawaitExpr(DependentCoawaitExpr *E) { ExprResult OperandResult = getDerived().TransformInitializer(E->getOperand(), /*NotCopyInit*/ false); if (OperandResult.isInvalid()) return ExprError(); ExprResult LookupResult = getDerived().TransformUnresolvedLookupExpr( E->getOperatorCoawaitLookup()); if (LookupResult.isInvalid()) return ExprError(); // Always rebuild; we don't know if this needs to be injected into a new // context or if the promise type has changed. return getDerived().RebuildDependentCoawaitExpr( E->getKeywordLoc(), OperandResult.get(), cast(LookupResult.get())); } template ExprResult TreeTransform::TransformCoyieldExpr(CoyieldExpr *E) { ExprResult Result = getDerived().TransformInitializer(E->getOperand(), /*NotCopyInit*/false); if (Result.isInvalid()) return ExprError(); // Always rebuild; we don't know if this needs to be injected into a new // context or if the promise type has changed. return getDerived().RebuildCoyieldExpr(E->getKeywordLoc(), Result.get()); } // Objective-C Statements. template StmtResult TreeTransform::TransformObjCAtTryStmt(ObjCAtTryStmt *S) { // Transform the body of the @try. StmtResult TryBody = getDerived().TransformStmt(S->getTryBody()); if (TryBody.isInvalid()) return StmtError(); // Transform the @catch statements (if present). bool AnyCatchChanged = false; SmallVector CatchStmts; for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) { StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I)); if (Catch.isInvalid()) return StmtError(); if (Catch.get() != S->getCatchStmt(I)) AnyCatchChanged = true; CatchStmts.push_back(Catch.get()); } // Transform the @finally statement (if present). StmtResult Finally; if (S->getFinallyStmt()) { Finally = getDerived().TransformStmt(S->getFinallyStmt()); if (Finally.isInvalid()) return StmtError(); } // If nothing changed, just retain this statement. if (!getDerived().AlwaysRebuild() && TryBody.get() == S->getTryBody() && !AnyCatchChanged && Finally.get() == S->getFinallyStmt()) return S; // Build a new statement. return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(), CatchStmts, Finally.get()); } template StmtResult TreeTransform::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) { // Transform the @catch parameter, if there is one. VarDecl *Var = nullptr; if (VarDecl *FromVar = S->getCatchParamDecl()) { TypeSourceInfo *TSInfo = nullptr; if (FromVar->getTypeSourceInfo()) { TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo()); if (!TSInfo) return StmtError(); } QualType T; if (TSInfo) T = TSInfo->getType(); else { T = getDerived().TransformType(FromVar->getType()); if (T.isNull()) return StmtError(); } Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T); if (!Var) return StmtError(); } StmtResult Body = getDerived().TransformStmt(S->getCatchBody()); if (Body.isInvalid()) return StmtError(); return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(), S->getRParenLoc(), Var, Body.get()); } template StmtResult TreeTransform::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) { // Transform the body. StmtResult Body = getDerived().TransformStmt(S->getFinallyBody()); if (Body.isInvalid()) return StmtError(); // If nothing changed, just retain this statement. if (!getDerived().AlwaysRebuild() && Body.get() == S->getFinallyBody()) return S; // Build a new statement. return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(), Body.get()); } template StmtResult TreeTransform::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) { ExprResult Operand; if (S->getThrowExpr()) { Operand = getDerived().TransformExpr(S->getThrowExpr()); if (Operand.isInvalid()) return StmtError(); } if (!getDerived().AlwaysRebuild() && Operand.get() == S->getThrowExpr()) return S; return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get()); } template StmtResult TreeTransform::TransformObjCAtSynchronizedStmt( ObjCAtSynchronizedStmt *S) { // Transform the object we are locking. ExprResult Object = getDerived().TransformExpr(S->getSynchExpr()); if (Object.isInvalid()) return StmtError(); Object = getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(), Object.get()); if (Object.isInvalid()) return StmtError(); // Transform the body. StmtResult Body = getDerived().TransformStmt(S->getSynchBody()); if (Body.isInvalid()) return StmtError(); // If nothing change, just retain the current statement. if (!getDerived().AlwaysRebuild() && Object.get() == S->getSynchExpr() && Body.get() == S->getSynchBody()) return S; // Build a new statement. return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(), Object.get(), Body.get()); } template StmtResult TreeTransform::TransformObjCAutoreleasePoolStmt( ObjCAutoreleasePoolStmt *S) { // Transform the body. StmtResult Body = getDerived().TransformStmt(S->getSubStmt()); if (Body.isInvalid()) return StmtError(); // If nothing changed, just retain this statement. if (!getDerived().AlwaysRebuild() && Body.get() == S->getSubStmt()) return S; // Build a new statement. return getDerived().RebuildObjCAutoreleasePoolStmt( S->getAtLoc(), Body.get()); } template StmtResult TreeTransform::TransformObjCForCollectionStmt( ObjCForCollectionStmt *S) { // Transform the element statement. StmtResult Element = getDerived().TransformStmt(S->getElement(), SDK_NotDiscarded); if (Element.isInvalid()) return StmtError(); // Transform the collection expression. ExprResult Collection = getDerived().TransformExpr(S->getCollection()); if (Collection.isInvalid()) return StmtError(); // Transform the body. StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); // If nothing changed, just retain this statement. if (!getDerived().AlwaysRebuild() && Element.get() == S->getElement() && Collection.get() == S->getCollection() && Body.get() == S->getBody()) return S; // Build a new statement. return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(), Element.get(), Collection.get(), S->getRParenLoc(), Body.get()); } template StmtResult TreeTransform::TransformCXXCatchStmt(CXXCatchStmt *S) { // Transform the exception declaration, if any. VarDecl *Var = nullptr; if (VarDecl *ExceptionDecl = S->getExceptionDecl()) { TypeSourceInfo *T = getDerived().TransformType(ExceptionDecl->getTypeSourceInfo()); if (!T) return StmtError(); Var = getDerived().RebuildExceptionDecl( ExceptionDecl, T, ExceptionDecl->getInnerLocStart(), ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier()); if (!Var || Var->isInvalidDecl()) return StmtError(); } // Transform the actual exception handler. StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock()); if (Handler.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && !Var && Handler.get() == S->getHandlerBlock()) return S; return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get()); } template StmtResult TreeTransform::TransformCXXTryStmt(CXXTryStmt *S) { // Transform the try block itself. StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock()); if (TryBlock.isInvalid()) return StmtError(); // Transform the handlers. bool HandlerChanged = false; SmallVector Handlers; for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) { StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I)); if (Handler.isInvalid()) return StmtError(); HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I); Handlers.push_back(Handler.getAs()); } if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() && !HandlerChanged) return S; return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(), Handlers); } template StmtResult TreeTransform::TransformCXXForRangeStmt(CXXForRangeStmt *S) { EnterExpressionEvaluationContext ForRangeInitContext( getSema(), Sema::ExpressionEvaluationContext::PotentiallyEvaluated, /*LambdaContextDecl=*/nullptr, Sema::ExpressionEvaluationContextRecord::EK_Other, getSema().getLangOpts().CPlusPlus23); // P2718R0 - Lifetime extension in range-based for loops. if (getSema().getLangOpts().CPlusPlus23) { auto &LastRecord = getSema().ExprEvalContexts.back(); LastRecord.InLifetimeExtendingContext = true; } StmtResult Init = S->getInit() ? getDerived().TransformStmt(S->getInit()) : StmtResult(); if (Init.isInvalid()) return StmtError(); StmtResult Range = getDerived().TransformStmt(S->getRangeStmt()); if (Range.isInvalid()) return StmtError(); // Before c++23, ForRangeLifetimeExtendTemps should be empty. assert(getSema().getLangOpts().CPlusPlus23 || getSema().ExprEvalContexts.back().ForRangeLifetimeExtendTemps.empty()); auto ForRangeLifetimeExtendTemps = getSema().ExprEvalContexts.back().ForRangeLifetimeExtendTemps; StmtResult Begin = getDerived().TransformStmt(S->getBeginStmt()); if (Begin.isInvalid()) return StmtError(); StmtResult End = getDerived().TransformStmt(S->getEndStmt()); if (End.isInvalid()) return StmtError(); ExprResult Cond = getDerived().TransformExpr(S->getCond()); if (Cond.isInvalid()) return StmtError(); if (Cond.get()) Cond = SemaRef.CheckBooleanCondition(S->getColonLoc(), Cond.get()); if (Cond.isInvalid()) return StmtError(); if (Cond.get()) Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get()); ExprResult Inc = getDerived().TransformExpr(S->getInc()); if (Inc.isInvalid()) return StmtError(); if (Inc.get()) Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get()); StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt()); if (LoopVar.isInvalid()) return StmtError(); StmtResult NewStmt = S; if (getDerived().AlwaysRebuild() || Init.get() != S->getInit() || Range.get() != S->getRangeStmt() || Begin.get() != S->getBeginStmt() || End.get() != S->getEndStmt() || Cond.get() != S->getCond() || Inc.get() != S->getInc() || LoopVar.get() != S->getLoopVarStmt()) { NewStmt = getDerived().RebuildCXXForRangeStmt( S->getForLoc(), S->getCoawaitLoc(), Init.get(), S->getColonLoc(), Range.get(), Begin.get(), End.get(), Cond.get(), Inc.get(), LoopVar.get(), S->getRParenLoc(), ForRangeLifetimeExtendTemps); if (NewStmt.isInvalid() && LoopVar.get() != S->getLoopVarStmt()) { // Might not have attached any initializer to the loop variable. getSema().ActOnInitializerError( cast(LoopVar.get())->getSingleDecl()); return StmtError(); } } StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); // Body has changed but we didn't rebuild the for-range statement. Rebuild // it now so we have a new statement to attach the body to. if (Body.get() != S->getBody() && NewStmt.get() == S) { NewStmt = getDerived().RebuildCXXForRangeStmt( S->getForLoc(), S->getCoawaitLoc(), Init.get(), S->getColonLoc(), Range.get(), Begin.get(), End.get(), Cond.get(), Inc.get(), LoopVar.get(), S->getRParenLoc(), ForRangeLifetimeExtendTemps); if (NewStmt.isInvalid()) return StmtError(); } if (NewStmt.get() == S) return S; return FinishCXXForRangeStmt(NewStmt.get(), Body.get()); } template StmtResult TreeTransform::TransformMSDependentExistsStmt( MSDependentExistsStmt *S) { // Transform the nested-name-specifier, if any. NestedNameSpecifierLoc QualifierLoc; if (S->getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc()); if (!QualifierLoc) return StmtError(); } // Transform the declaration name. DeclarationNameInfo NameInfo = S->getNameInfo(); if (NameInfo.getName()) { NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); if (!NameInfo.getName()) return StmtError(); } // Check whether anything changed. if (!getDerived().AlwaysRebuild() && QualifierLoc == S->getQualifierLoc() && NameInfo.getName() == S->getNameInfo().getName()) return S; // Determine whether this name exists, if we can. CXXScopeSpec SS; SS.Adopt(QualifierLoc); bool Dependent = false; switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) { case Sema::IER_Exists: if (S->isIfExists()) break; return new (getSema().Context) NullStmt(S->getKeywordLoc()); case Sema::IER_DoesNotExist: if (S->isIfNotExists()) break; return new (getSema().Context) NullStmt(S->getKeywordLoc()); case Sema::IER_Dependent: Dependent = true; break; case Sema::IER_Error: return StmtError(); } // We need to continue with the instantiation, so do so now. StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt()); if (SubStmt.isInvalid()) return StmtError(); // If we have resolved the name, just transform to the substatement. if (!Dependent) return SubStmt; // The name is still dependent, so build a dependent expression again. return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(), S->isIfExists(), QualifierLoc, NameInfo, SubStmt.get()); } template ExprResult TreeTransform::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) { NestedNameSpecifierLoc QualifierLoc; if (E->getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); if (!QualifierLoc) return ExprError(); } MSPropertyDecl *PD = cast_or_null( getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl())); if (!PD) return ExprError(); ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); if (Base.isInvalid()) return ExprError(); return new (SemaRef.getASTContext()) MSPropertyRefExpr(Base.get(), PD, E->isArrow(), SemaRef.getASTContext().PseudoObjectTy, VK_LValue, QualifierLoc, E->getMemberLoc()); } template ExprResult TreeTransform::TransformMSPropertySubscriptExpr( MSPropertySubscriptExpr *E) { auto BaseRes = getDerived().TransformExpr(E->getBase()); if (BaseRes.isInvalid()) return ExprError(); auto IdxRes = getDerived().TransformExpr(E->getIdx()); if (IdxRes.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && BaseRes.get() == E->getBase() && IdxRes.get() == E->getIdx()) return E; return getDerived().RebuildArraySubscriptExpr( BaseRes.get(), SourceLocation(), IdxRes.get(), E->getRBracketLoc()); } template StmtResult TreeTransform::TransformSEHTryStmt(SEHTryStmt *S) { StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock()); if (TryBlock.isInvalid()) return StmtError(); StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler()); if (Handler.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() && Handler.get() == S->getHandler()) return S; return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(), TryBlock.get(), Handler.get()); } template StmtResult TreeTransform::TransformSEHFinallyStmt(SEHFinallyStmt *S) { StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock()); if (Block.isInvalid()) return StmtError(); return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get()); } template StmtResult TreeTransform::TransformSEHExceptStmt(SEHExceptStmt *S) { ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr()); if (FilterExpr.isInvalid()) return StmtError(); StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock()); if (Block.isInvalid()) return StmtError(); return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(), Block.get()); } template StmtResult TreeTransform::TransformSEHHandler(Stmt *Handler) { if (isa(Handler)) return getDerived().TransformSEHFinallyStmt(cast(Handler)); else return getDerived().TransformSEHExceptStmt(cast(Handler)); } template StmtResult TreeTransform::TransformSEHLeaveStmt(SEHLeaveStmt *S) { return S; } //===----------------------------------------------------------------------===// // OpenMP directive transformation //===----------------------------------------------------------------------===// template StmtResult TreeTransform::TransformOMPCanonicalLoop(OMPCanonicalLoop *L) { // OMPCanonicalLoops are eliminated during transformation, since they will be // recomputed by semantic analysis of the associated OMPLoopBasedDirective // after transformation. return getDerived().TransformStmt(L->getLoopStmt()); } template StmtResult TreeTransform::TransformOMPExecutableDirective( OMPExecutableDirective *D) { // Transform the clauses llvm::SmallVector TClauses; ArrayRef Clauses = D->clauses(); TClauses.reserve(Clauses.size()); for (ArrayRef::iterator I = Clauses.begin(), E = Clauses.end(); I != E; ++I) { if (*I) { getDerived().getSema().OpenMP().StartOpenMPClause((*I)->getClauseKind()); OMPClause *Clause = getDerived().TransformOMPClause(*I); getDerived().getSema().OpenMP().EndOpenMPClause(); if (Clause) TClauses.push_back(Clause); } else { TClauses.push_back(nullptr); } } StmtResult AssociatedStmt; if (D->hasAssociatedStmt() && D->getAssociatedStmt()) { getDerived().getSema().OpenMP().ActOnOpenMPRegionStart( D->getDirectiveKind(), /*CurScope=*/nullptr); StmtResult Body; { Sema::CompoundScopeRAII CompoundScope(getSema()); Stmt *CS; if (D->getDirectiveKind() == OMPD_atomic || D->getDirectiveKind() == OMPD_critical || D->getDirectiveKind() == OMPD_section || D->getDirectiveKind() == OMPD_master) CS = D->getAssociatedStmt(); else CS = D->getRawStmt(); Body = getDerived().TransformStmt(CS); if (Body.isUsable() && isOpenMPLoopDirective(D->getDirectiveKind()) && getSema().getLangOpts().OpenMPIRBuilder) Body = getDerived().RebuildOMPCanonicalLoop(Body.get()); } AssociatedStmt = getDerived().getSema().OpenMP().ActOnOpenMPRegionEnd(Body, TClauses); if (AssociatedStmt.isInvalid()) { return StmtError(); } } if (TClauses.size() != Clauses.size()) { return StmtError(); } // Transform directive name for 'omp critical' directive. DeclarationNameInfo DirName; if (D->getDirectiveKind() == OMPD_critical) { DirName = cast(D)->getDirectiveName(); DirName = getDerived().TransformDeclarationNameInfo(DirName); } OpenMPDirectiveKind CancelRegion = OMPD_unknown; if (D->getDirectiveKind() == OMPD_cancellation_point) { CancelRegion = cast(D)->getCancelRegion(); } else if (D->getDirectiveKind() == OMPD_cancel) { CancelRegion = cast(D)->getCancelRegion(); } return getDerived().RebuildOMPExecutableDirective( D->getDirectiveKind(), DirName, CancelRegion, TClauses, AssociatedStmt.get(), D->getBeginLoc(), D->getEndLoc(), D->getMappedDirective()); } template StmtResult TreeTransform::TransformOMPMetaDirective(OMPMetaDirective *D) { // TODO: Fix This SemaRef.Diag(D->getBeginLoc(), diag::err_omp_instantiation_not_supported) << getOpenMPDirectiveName(D->getDirectiveKind()); return StmtError(); } template StmtResult TreeTransform::TransformOMPParallelDirective(OMPParallelDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPSimdDirective(OMPSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTileDirective(OMPTileDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPUnrollDirective(OMPUnrollDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPReverseDirective(OMPReverseDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPInterchangeDirective( OMPInterchangeDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPForDirective(OMPForDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_for, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPForSimdDirective(OMPForSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_for_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPSectionsDirective(OMPSectionsDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_sections, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPSectionDirective(OMPSectionDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_section, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPScopeDirective(OMPScopeDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_scope, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPSingleDirective(OMPSingleDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_single, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPMasterDirective(OMPMasterDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_master, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPCriticalDirective(OMPCriticalDirective *D) { getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_critical, D->getDirectiveName(), nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelForDirective( OMPParallelForDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_for, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelForSimdDirective( OMPParallelForSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelMasterDirective( OMPParallelMasterDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_master, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelMaskedDirective( OMPParallelMaskedDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_masked, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelSectionsDirective( OMPParallelSectionsDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_sections, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTaskDirective(OMPTaskDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_task, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTaskyieldDirective( OMPTaskyieldDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_taskyield, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPBarrierDirective(OMPBarrierDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_barrier, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_taskwait, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPErrorDirective(OMPErrorDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_error, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTaskgroupDirective( OMPTaskgroupDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_taskgroup, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPFlushDirective(OMPFlushDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_flush, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPDepobjDirective(OMPDepobjDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_depobj, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPScanDirective(OMPScanDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_scan, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPOrderedDirective(OMPOrderedDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_ordered, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPAtomicDirective(OMPAtomicDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_atomic, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetDirective(OMPTargetDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetDataDirective( OMPTargetDataDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_data, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetEnterDataDirective( OMPTargetEnterDataDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_enter_data, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetExitDataDirective( OMPTargetExitDataDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_exit_data, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetParallelDirective( OMPTargetParallelDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_parallel, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetParallelForDirective( OMPTargetParallelForDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_parallel_for, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetUpdateDirective( OMPTargetUpdateDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_update, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTeamsDirective(OMPTeamsDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_teams, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPCancellationPointDirective( OMPCancellationPointDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_cancellation_point, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPCancelDirective(OMPCancelDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_cancel, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTaskLoopDirective(OMPTaskLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_taskloop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTaskLoopSimdDirective( OMPTaskLoopSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_taskloop_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPMasterTaskLoopDirective( OMPMasterTaskLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_master_taskloop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPMaskedTaskLoopDirective( OMPMaskedTaskLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_masked_taskloop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPMasterTaskLoopSimdDirective( OMPMasterTaskLoopSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_master_taskloop_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPMaskedTaskLoopSimdDirective( OMPMaskedTaskLoopSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_masked_taskloop_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelMasterTaskLoopDirective( OMPParallelMasterTaskLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_master_taskloop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelMaskedTaskLoopDirective( OMPParallelMaskedTaskLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_masked_taskloop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelMasterTaskLoopSimdDirective( OMPParallelMasterTaskLoopSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_master_taskloop_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelMaskedTaskLoopSimdDirective( OMPParallelMaskedTaskLoopSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_masked_taskloop_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPDistributeDirective( OMPDistributeDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_distribute, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPDistributeParallelForDirective( OMPDistributeParallelForDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_distribute_parallel_for, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPDistributeParallelForSimdDirective( OMPDistributeParallelForSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPDistributeSimdDirective( OMPDistributeSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_distribute_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetParallelForSimdDirective( OMPTargetParallelForSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetSimdDirective( OMPTargetSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTeamsDistributeDirective( OMPTeamsDistributeDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_teams_distribute, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTeamsDistributeSimdDirective( OMPTeamsDistributeSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_teams_distribute_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTeamsDistributeParallelForSimdDirective( OMPTeamsDistributeParallelForSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_teams_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTeamsDistributeParallelForDirective( OMPTeamsDistributeParallelForDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_teams_distribute_parallel_for, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetTeamsDirective( OMPTargetTeamsDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_teams, DirName, nullptr, D->getBeginLoc()); auto Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetTeamsDistributeDirective( OMPTargetTeamsDistributeDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_teams_distribute, DirName, nullptr, D->getBeginLoc()); auto Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetTeamsDistributeParallelForDirective( OMPTargetTeamsDistributeParallelForDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_teams_distribute_parallel_for, DirName, nullptr, D->getBeginLoc()); auto Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform:: TransformOMPTargetTeamsDistributeParallelForSimdDirective( OMPTargetTeamsDistributeParallelForSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_teams_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); auto Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetTeamsDistributeSimdDirective( OMPTargetTeamsDistributeSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_teams_distribute_simd, DirName, nullptr, D->getBeginLoc()); auto Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPInteropDirective(OMPInteropDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_interop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPDispatchDirective(OMPDispatchDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_dispatch, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPMaskedDirective(OMPMaskedDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_masked, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPGenericLoopDirective( OMPGenericLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_loop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTeamsGenericLoopDirective( OMPTeamsGenericLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_teams_loop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetTeamsGenericLoopDirective( OMPTargetTeamsGenericLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_teams_loop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelGenericLoopDirective( OMPParallelGenericLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_parallel_loop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPTargetParallelGenericLoopDirective( OMPTargetParallelGenericLoopDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().OpenMP().StartOpenMPDSABlock( OMPD_target_parallel_loop, DirName, nullptr, D->getBeginLoc()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); return Res; } //===----------------------------------------------------------------------===// // OpenMP clause transformation //===----------------------------------------------------------------------===// template OMPClause *TreeTransform::TransformOMPIfClause(OMPIfClause *C) { ExprResult Cond = getDerived().TransformExpr(C->getCondition()); if (Cond.isInvalid()) return nullptr; return getDerived().RebuildOMPIfClause( C->getNameModifier(), Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getNameModifierLoc(), C->getColonLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPFinalClause(OMPFinalClause *C) { ExprResult Cond = getDerived().TransformExpr(C->getCondition()); if (Cond.isInvalid()) return nullptr; return getDerived().RebuildOMPFinalClause(Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) { ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads()); if (NumThreads.isInvalid()) return nullptr; return getDerived().RebuildOMPNumThreadsClause( NumThreads.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPSafelenClause(OMPSafelenClause *C) { ExprResult E = getDerived().TransformExpr(C->getSafelen()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPSafelenClause( E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPAllocatorClause(OMPAllocatorClause *C) { ExprResult E = getDerived().TransformExpr(C->getAllocator()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPAllocatorClause( E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPSimdlenClause(OMPSimdlenClause *C) { ExprResult E = getDerived().TransformExpr(C->getSimdlen()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPSimdlenClause( E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPSizesClause(OMPSizesClause *C) { SmallVector TransformedSizes; TransformedSizes.reserve(C->getNumSizes()); bool Changed = false; for (Expr *E : C->getSizesRefs()) { if (!E) { TransformedSizes.push_back(nullptr); continue; } ExprResult T = getDerived().TransformExpr(E); if (T.isInvalid()) return nullptr; if (E != T.get()) Changed = true; TransformedSizes.push_back(T.get()); } if (!Changed && !getDerived().AlwaysRebuild()) return C; return RebuildOMPSizesClause(TransformedSizes, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPFullClause(OMPFullClause *C) { if (!getDerived().AlwaysRebuild()) return C; return RebuildOMPFullClause(C->getBeginLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPPartialClause(OMPPartialClause *C) { ExprResult T = getDerived().TransformExpr(C->getFactor()); if (T.isInvalid()) return nullptr; Expr *Factor = T.get(); bool Changed = Factor != C->getFactor(); if (!Changed && !getDerived().AlwaysRebuild()) return C; return RebuildOMPPartialClause(Factor, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPCollapseClause(OMPCollapseClause *C) { ExprResult E = getDerived().TransformExpr(C->getNumForLoops()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPCollapseClause( E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPDefaultClause(OMPDefaultClause *C) { return getDerived().RebuildOMPDefaultClause( C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPProcBindClause(OMPProcBindClause *C) { return getDerived().RebuildOMPProcBindClause( C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPScheduleClause(OMPScheduleClause *C) { ExprResult E = getDerived().TransformExpr(C->getChunkSize()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPScheduleClause( C->getFirstScheduleModifier(), C->getSecondScheduleModifier(), C->getScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getFirstScheduleModifierLoc(), C->getSecondScheduleModifierLoc(), C->getScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPOrderedClause(OMPOrderedClause *C) { ExprResult E; if (auto *Num = C->getNumForLoops()) { E = getDerived().TransformExpr(Num); if (E.isInvalid()) return nullptr; } return getDerived().RebuildOMPOrderedClause(C->getBeginLoc(), C->getEndLoc(), C->getLParenLoc(), E.get()); } template OMPClause * TreeTransform::TransformOMPDetachClause(OMPDetachClause *C) { ExprResult E; if (Expr *Evt = C->getEventHandler()) { E = getDerived().TransformExpr(Evt); if (E.isInvalid()) return nullptr; } return getDerived().RebuildOMPDetachClause(E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPNowaitClause(OMPNowaitClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPUntiedClause(OMPUntiedClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPMergeableClause(OMPMergeableClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause *TreeTransform::TransformOMPReadClause(OMPReadClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause *TreeTransform::TransformOMPWriteClause(OMPWriteClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPUpdateClause(OMPUpdateClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPCaptureClause(OMPCaptureClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPCompareClause(OMPCompareClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause *TreeTransform::TransformOMPFailClause(OMPFailClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPSeqCstClause(OMPSeqCstClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPAcqRelClause(OMPAcqRelClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPAcquireClause(OMPAcquireClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPReleaseClause(OMPReleaseClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPRelaxedClause(OMPRelaxedClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause *TreeTransform::TransformOMPWeakClause(OMPWeakClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPThreadsClause(OMPThreadsClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause *TreeTransform::TransformOMPSIMDClause(OMPSIMDClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPNogroupClause(OMPNogroupClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause *TreeTransform::TransformOMPInitClause(OMPInitClause *C) { ExprResult IVR = getDerived().TransformExpr(C->getInteropVar()); if (IVR.isInvalid()) return nullptr; OMPInteropInfo InteropInfo(C->getIsTarget(), C->getIsTargetSync()); InteropInfo.PreferTypes.reserve(C->varlist_size() - 1); for (Expr *E : llvm::drop_begin(C->varlists())) { ExprResult ER = getDerived().TransformExpr(cast(E)); if (ER.isInvalid()) return nullptr; InteropInfo.PreferTypes.push_back(ER.get()); } return getDerived().RebuildOMPInitClause(IVR.get(), InteropInfo, C->getBeginLoc(), C->getLParenLoc(), C->getVarLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPUseClause(OMPUseClause *C) { ExprResult ER = getDerived().TransformExpr(C->getInteropVar()); if (ER.isInvalid()) return nullptr; return getDerived().RebuildOMPUseClause(ER.get(), C->getBeginLoc(), C->getLParenLoc(), C->getVarLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPDestroyClause(OMPDestroyClause *C) { ExprResult ER; if (Expr *IV = C->getInteropVar()) { ER = getDerived().TransformExpr(IV); if (ER.isInvalid()) return nullptr; } return getDerived().RebuildOMPDestroyClause(ER.get(), C->getBeginLoc(), C->getLParenLoc(), C->getVarLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPNovariantsClause(OMPNovariantsClause *C) { ExprResult Cond = getDerived().TransformExpr(C->getCondition()); if (Cond.isInvalid()) return nullptr; return getDerived().RebuildOMPNovariantsClause( Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPNocontextClause(OMPNocontextClause *C) { ExprResult Cond = getDerived().TransformExpr(C->getCondition()); if (Cond.isInvalid()) return nullptr; return getDerived().RebuildOMPNocontextClause( Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPFilterClause(OMPFilterClause *C) { ExprResult ThreadID = getDerived().TransformExpr(C->getThreadID()); if (ThreadID.isInvalid()) return nullptr; return getDerived().RebuildOMPFilterClause(ThreadID.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPAlignClause(OMPAlignClause *C) { ExprResult E = getDerived().TransformExpr(C->getAlignment()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPAlignClause(E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPUnifiedAddressClause( OMPUnifiedAddressClause *C) { llvm_unreachable("unified_address clause cannot appear in dependent context"); } template OMPClause *TreeTransform::TransformOMPUnifiedSharedMemoryClause( OMPUnifiedSharedMemoryClause *C) { llvm_unreachable( "unified_shared_memory clause cannot appear in dependent context"); } template OMPClause *TreeTransform::TransformOMPReverseOffloadClause( OMPReverseOffloadClause *C) { llvm_unreachable("reverse_offload clause cannot appear in dependent context"); } template OMPClause *TreeTransform::TransformOMPDynamicAllocatorsClause( OMPDynamicAllocatorsClause *C) { llvm_unreachable( "dynamic_allocators clause cannot appear in dependent context"); } template OMPClause *TreeTransform::TransformOMPAtomicDefaultMemOrderClause( OMPAtomicDefaultMemOrderClause *C) { llvm_unreachable( "atomic_default_mem_order clause cannot appear in dependent context"); } template OMPClause *TreeTransform::TransformOMPAtClause(OMPAtClause *C) { return getDerived().RebuildOMPAtClause(C->getAtKind(), C->getAtKindKwLoc(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPSeverityClause(OMPSeverityClause *C) { return getDerived().RebuildOMPSeverityClause( C->getSeverityKind(), C->getSeverityKindKwLoc(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPMessageClause(OMPMessageClause *C) { ExprResult E = getDerived().TransformExpr(C->getMessageString()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPMessageClause( C->getMessageString(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPPrivateClause(OMPPrivateClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPPrivateClause( Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPFirstprivateClause( OMPFirstprivateClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPFirstprivateClause( Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPLastprivateClause(OMPLastprivateClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPLastprivateClause( Vars, C->getKind(), C->getKindLoc(), C->getColonLoc(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPSharedClause(OMPSharedClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPSharedClause(Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPReductionClause(OMPReductionClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } CXXScopeSpec ReductionIdScopeSpec; ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); DeclarationNameInfo NameInfo = C->getNameInfo(); if (NameInfo.getName()) { NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); if (!NameInfo.getName()) return nullptr; } // Build a list of all UDR decls with the same names ranged by the Scopes. // The Scope boundary is a duplication of the previous decl. llvm::SmallVector UnresolvedReductions; for (auto *E : C->reduction_ops()) { // Transform all the decls. if (E) { auto *ULE = cast(E); UnresolvedSet<8> Decls; for (auto *D : ULE->decls()) { NamedDecl *InstD = cast(getDerived().TransformDecl(E->getExprLoc(), D)); Decls.addDecl(InstD, InstD->getAccess()); } UnresolvedReductions.push_back(UnresolvedLookupExpr::Create( SemaRef.Context, /*NamingClass=*/nullptr, ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo, /*ADL=*/true, Decls.begin(), Decls.end(), /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); } else UnresolvedReductions.push_back(nullptr); } return getDerived().RebuildOMPReductionClause( Vars, C->getModifier(), C->getBeginLoc(), C->getLParenLoc(), C->getModifierLoc(), C->getColonLoc(), C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions); } template OMPClause *TreeTransform::TransformOMPTaskReductionClause( OMPTaskReductionClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } CXXScopeSpec ReductionIdScopeSpec; ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); DeclarationNameInfo NameInfo = C->getNameInfo(); if (NameInfo.getName()) { NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); if (!NameInfo.getName()) return nullptr; } // Build a list of all UDR decls with the same names ranged by the Scopes. // The Scope boundary is a duplication of the previous decl. llvm::SmallVector UnresolvedReductions; for (auto *E : C->reduction_ops()) { // Transform all the decls. if (E) { auto *ULE = cast(E); UnresolvedSet<8> Decls; for (auto *D : ULE->decls()) { NamedDecl *InstD = cast(getDerived().TransformDecl(E->getExprLoc(), D)); Decls.addDecl(InstD, InstD->getAccess()); } UnresolvedReductions.push_back(UnresolvedLookupExpr::Create( SemaRef.Context, /*NamingClass=*/nullptr, ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo, /*ADL=*/true, Decls.begin(), Decls.end(), /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); } else UnresolvedReductions.push_back(nullptr); } return getDerived().RebuildOMPTaskReductionClause( Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions); } template OMPClause * TreeTransform::TransformOMPInReductionClause(OMPInReductionClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } CXXScopeSpec ReductionIdScopeSpec; ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); DeclarationNameInfo NameInfo = C->getNameInfo(); if (NameInfo.getName()) { NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); if (!NameInfo.getName()) return nullptr; } // Build a list of all UDR decls with the same names ranged by the Scopes. // The Scope boundary is a duplication of the previous decl. llvm::SmallVector UnresolvedReductions; for (auto *E : C->reduction_ops()) { // Transform all the decls. if (E) { auto *ULE = cast(E); UnresolvedSet<8> Decls; for (auto *D : ULE->decls()) { NamedDecl *InstD = cast(getDerived().TransformDecl(E->getExprLoc(), D)); Decls.addDecl(InstD, InstD->getAccess()); } UnresolvedReductions.push_back(UnresolvedLookupExpr::Create( SemaRef.Context, /*NamingClass=*/nullptr, ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo, /*ADL=*/true, Decls.begin(), Decls.end(), /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); } else UnresolvedReductions.push_back(nullptr); } return getDerived().RebuildOMPInReductionClause( Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions); } template OMPClause * TreeTransform::TransformOMPLinearClause(OMPLinearClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } ExprResult Step = getDerived().TransformExpr(C->getStep()); if (Step.isInvalid()) return nullptr; return getDerived().RebuildOMPLinearClause( Vars, Step.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifier(), C->getModifierLoc(), C->getColonLoc(), C->getStepModifierLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPAlignedClause(OMPAlignedClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } ExprResult Alignment = getDerived().TransformExpr(C->getAlignment()); if (Alignment.isInvalid()) return nullptr; return getDerived().RebuildOMPAlignedClause( Vars, Alignment.get(), C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPCopyinClause(OMPCopyinClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPCopyinClause(Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPCopyprivateClause( Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPFlushClause(OMPFlushClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPFlushClause(Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPDepobjClause(OMPDepobjClause *C) { ExprResult E = getDerived().TransformExpr(C->getDepobj()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPDepobjClause(E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPDependClause(OMPDependClause *C) { llvm::SmallVector Vars; Expr *DepModifier = C->getModifier(); if (DepModifier) { ExprResult DepModRes = getDerived().TransformExpr(DepModifier); if (DepModRes.isInvalid()) return nullptr; DepModifier = DepModRes.get(); } Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPDependClause( {C->getDependencyKind(), C->getDependencyLoc(), C->getColonLoc(), C->getOmpAllMemoryLoc()}, DepModifier, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPDeviceClause(OMPDeviceClause *C) { ExprResult E = getDerived().TransformExpr(C->getDevice()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPDeviceClause( C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifierLoc(), C->getEndLoc()); } template bool transformOMPMappableExprListClause( TreeTransform &TT, OMPMappableExprListClause *C, llvm::SmallVectorImpl &Vars, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperIdInfo, llvm::SmallVectorImpl &UnresolvedMappers) { // Transform expressions in the list. Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = TT.getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return true; Vars.push_back(EVar.get()); } // Transform mapper scope specifier and identifier. NestedNameSpecifierLoc QualifierLoc; if (C->getMapperQualifierLoc()) { QualifierLoc = TT.getDerived().TransformNestedNameSpecifierLoc( C->getMapperQualifierLoc()); if (!QualifierLoc) return true; } MapperIdScopeSpec.Adopt(QualifierLoc); MapperIdInfo = C->getMapperIdInfo(); if (MapperIdInfo.getName()) { MapperIdInfo = TT.getDerived().TransformDeclarationNameInfo(MapperIdInfo); if (!MapperIdInfo.getName()) return true; } // Build a list of all candidate OMPDeclareMapperDecls, which is provided by // the previous user-defined mapper lookup in dependent environment. for (auto *E : C->mapperlists()) { // Transform all the decls. if (E) { auto *ULE = cast(E); UnresolvedSet<8> Decls; for (auto *D : ULE->decls()) { NamedDecl *InstD = cast(TT.getDerived().TransformDecl(E->getExprLoc(), D)); Decls.addDecl(InstD, InstD->getAccess()); } UnresolvedMappers.push_back(UnresolvedLookupExpr::Create( TT.getSema().Context, /*NamingClass=*/nullptr, MapperIdScopeSpec.getWithLocInContext(TT.getSema().Context), MapperIdInfo, /*ADL=*/true, Decls.begin(), Decls.end(), /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); } else { UnresolvedMappers.push_back(nullptr); } } return false; } template OMPClause *TreeTransform::TransformOMPMapClause(OMPMapClause *C) { OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); llvm::SmallVector Vars; Expr *IteratorModifier = C->getIteratorModifier(); if (IteratorModifier) { ExprResult MapModRes = getDerived().TransformExpr(IteratorModifier); if (MapModRes.isInvalid()) return nullptr; IteratorModifier = MapModRes.get(); } CXXScopeSpec MapperIdScopeSpec; DeclarationNameInfo MapperIdInfo; llvm::SmallVector UnresolvedMappers; if (transformOMPMappableExprListClause( *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) return nullptr; return getDerived().RebuildOMPMapClause( IteratorModifier, C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(), MapperIdScopeSpec, MapperIdInfo, C->getMapType(), C->isImplicitMapType(), C->getMapLoc(), C->getColonLoc(), Vars, Locs, UnresolvedMappers); } template OMPClause * TreeTransform::TransformOMPAllocateClause(OMPAllocateClause *C) { Expr *Allocator = C->getAllocator(); if (Allocator) { ExprResult AllocatorRes = getDerived().TransformExpr(Allocator); if (AllocatorRes.isInvalid()) return nullptr; Allocator = AllocatorRes.get(); } llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPAllocateClause( Allocator, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPNumTeamsClause(OMPNumTeamsClause *C) { ExprResult E = getDerived().TransformExpr(C->getNumTeams()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPNumTeamsClause( E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPThreadLimitClause(OMPThreadLimitClause *C) { ExprResult E = getDerived().TransformExpr(C->getThreadLimit()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPThreadLimitClause( E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPPriorityClause(OMPPriorityClause *C) { ExprResult E = getDerived().TransformExpr(C->getPriority()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPPriorityClause( E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPGrainsizeClause(OMPGrainsizeClause *C) { ExprResult E = getDerived().TransformExpr(C->getGrainsize()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPGrainsizeClause( C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifierLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPNumTasksClause(OMPNumTasksClause *C) { ExprResult E = getDerived().TransformExpr(C->getNumTasks()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPNumTasksClause( C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifierLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPHintClause(OMPHintClause *C) { ExprResult E = getDerived().TransformExpr(C->getHint()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPHintClause(E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPDistScheduleClause( OMPDistScheduleClause *C) { ExprResult E = getDerived().TransformExpr(C->getChunkSize()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPDistScheduleClause( C->getDistScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getDistScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPDefaultmapClause(OMPDefaultmapClause *C) { // Rebuild Defaultmap Clause since we need to invoke the checking of // defaultmap(none:variable-category) after template initialization. return getDerived().RebuildOMPDefaultmapClause(C->getDefaultmapModifier(), C->getDefaultmapKind(), C->getBeginLoc(), C->getLParenLoc(), C->getDefaultmapModifierLoc(), C->getDefaultmapKindLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPToClause(OMPToClause *C) { OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); llvm::SmallVector Vars; CXXScopeSpec MapperIdScopeSpec; DeclarationNameInfo MapperIdInfo; llvm::SmallVector UnresolvedMappers; if (transformOMPMappableExprListClause( *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) return nullptr; return getDerived().RebuildOMPToClause( C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec, MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers); } template OMPClause *TreeTransform::TransformOMPFromClause(OMPFromClause *C) { OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); llvm::SmallVector Vars; CXXScopeSpec MapperIdScopeSpec; DeclarationNameInfo MapperIdInfo; llvm::SmallVector UnresolvedMappers; if (transformOMPMappableExprListClause( *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) return nullptr; return getDerived().RebuildOMPFromClause( C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec, MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers); } template OMPClause *TreeTransform::TransformOMPUseDevicePtrClause( OMPUseDevicePtrClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); return getDerived().RebuildOMPUseDevicePtrClause(Vars, Locs); } template OMPClause *TreeTransform::TransformOMPUseDeviceAddrClause( OMPUseDeviceAddrClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); return getDerived().RebuildOMPUseDeviceAddrClause(Vars, Locs); } template OMPClause * TreeTransform::TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); return getDerived().RebuildOMPIsDevicePtrClause(Vars, Locs); } template OMPClause *TreeTransform::TransformOMPHasDeviceAddrClause( OMPHasDeviceAddrClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); return getDerived().RebuildOMPHasDeviceAddrClause(Vars, Locs); } template OMPClause * TreeTransform::TransformOMPNontemporalClause(OMPNontemporalClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPNontemporalClause( Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPInclusiveClause(OMPInclusiveClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPInclusiveClause( Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPExclusiveClause(OMPExclusiveClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPExclusiveClause( Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPUsesAllocatorsClause( OMPUsesAllocatorsClause *C) { SmallVector Data; Data.reserve(C->getNumberOfAllocators()); for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I); ExprResult Allocator = getDerived().TransformExpr(D.Allocator); if (Allocator.isInvalid()) continue; ExprResult AllocatorTraits; if (Expr *AT = D.AllocatorTraits) { AllocatorTraits = getDerived().TransformExpr(AT); if (AllocatorTraits.isInvalid()) continue; } SemaOpenMP::UsesAllocatorsData &NewD = Data.emplace_back(); NewD.Allocator = Allocator.get(); NewD.AllocatorTraits = AllocatorTraits.get(); NewD.LParenLoc = D.LParenLoc; NewD.RParenLoc = D.RParenLoc; } return getDerived().RebuildOMPUsesAllocatorsClause( Data, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPAffinityClause(OMPAffinityClause *C) { SmallVector Locators; Locators.reserve(C->varlist_size()); ExprResult ModifierRes; if (Expr *Modifier = C->getModifier()) { ModifierRes = getDerived().TransformExpr(Modifier); if (ModifierRes.isInvalid()) return nullptr; } for (Expr *E : C->varlists()) { ExprResult Locator = getDerived().TransformExpr(E); if (Locator.isInvalid()) continue; Locators.push_back(Locator.get()); } return getDerived().RebuildOMPAffinityClause( C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(), ModifierRes.get(), Locators); } template OMPClause *TreeTransform::TransformOMPOrderClause(OMPOrderClause *C) { return getDerived().RebuildOMPOrderClause( C->getKind(), C->getKindKwLoc(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc(), C->getModifier(), C->getModifierKwLoc()); } template OMPClause *TreeTransform::TransformOMPBindClause(OMPBindClause *C) { return getDerived().RebuildOMPBindClause( C->getBindKind(), C->getBindKindLoc(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPXDynCGroupMemClause( OMPXDynCGroupMemClause *C) { ExprResult Size = getDerived().TransformExpr(C->getSize()); if (Size.isInvalid()) return nullptr; return getDerived().RebuildOMPXDynCGroupMemClause( Size.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPDoacrossClause(OMPDoacrossClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPDoacrossClause( C->getDependenceType(), C->getDependenceLoc(), C->getColonLoc(), Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause * TreeTransform::TransformOMPXAttributeClause(OMPXAttributeClause *C) { SmallVector NewAttrs; for (auto *A : C->getAttrs()) NewAttrs.push_back(getDerived().TransformAttr(A)); return getDerived().RebuildOMPXAttributeClause( NewAttrs, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); } template OMPClause *TreeTransform::TransformOMPXBareClause(OMPXBareClause *C) { return getDerived().RebuildOMPXBareClause(C->getBeginLoc(), C->getEndLoc()); } //===----------------------------------------------------------------------===// // OpenACC transformation //===----------------------------------------------------------------------===// namespace { template class OpenACCClauseTransform final : public OpenACCClauseVisitor> { TreeTransform &Self; ArrayRef ExistingClauses; SemaOpenACC::OpenACCParsedClause &ParsedClause; OpenACCClause *NewClause = nullptr; llvm::SmallVector VisitVarList(ArrayRef VarList) { llvm::SmallVector InstantiatedVarList; for (Expr *CurVar : VarList) { ExprResult Res = Self.TransformExpr(CurVar); if (!Res.isUsable()) continue; Res = Self.getSema().OpenACC().ActOnVar(ParsedClause.getClauseKind(), Res.get()); if (Res.isUsable()) InstantiatedVarList.push_back(Res.get()); } return InstantiatedVarList; } public: OpenACCClauseTransform(TreeTransform &Self, ArrayRef ExistingClauses, SemaOpenACC::OpenACCParsedClause &PC) : Self(Self), ExistingClauses(ExistingClauses), ParsedClause(PC) {} OpenACCClause *CreatedClause() const { return NewClause; } #define VISIT_CLAUSE(CLAUSE_NAME) \ void Visit##CLAUSE_NAME##Clause(const OpenACC##CLAUSE_NAME##Clause &Clause); #include "clang/Basic/OpenACCClauses.def" }; template void OpenACCClauseTransform::VisitDefaultClause( const OpenACCDefaultClause &C) { ParsedClause.setDefaultDetails(C.getDefaultClauseKind()); NewClause = OpenACCDefaultClause::Create( Self.getSema().getASTContext(), ParsedClause.getDefaultClauseKind(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitIfClause(const OpenACCIfClause &C) { Expr *Cond = const_cast(C.getConditionExpr()); assert(Cond && "If constructed with invalid Condition"); Sema::ConditionResult Res = Self.TransformCondition( Cond->getExprLoc(), /*Var=*/nullptr, Cond, Sema::ConditionKind::Boolean); if (Res.isInvalid() || !Res.get().second) return; ParsedClause.setConditionDetails(Res.get().second); NewClause = OpenACCIfClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getConditionExpr(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitSelfClause( const OpenACCSelfClause &C) { if (C.hasConditionExpr()) { Expr *Cond = const_cast(C.getConditionExpr()); Sema::ConditionResult Res = Self.TransformCondition(Cond->getExprLoc(), /*Var=*/nullptr, Cond, Sema::ConditionKind::Boolean); if (Res.isInvalid() || !Res.get().second) return; ParsedClause.setConditionDetails(Res.get().second); } NewClause = OpenACCSelfClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getConditionExpr(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitNumGangsClause( const OpenACCNumGangsClause &C) { llvm::SmallVector InstantiatedIntExprs; for (Expr *CurIntExpr : C.getIntExprs()) { ExprResult Res = Self.TransformExpr(CurIntExpr); if (!Res.isUsable()) return; Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, C.getClauseKind(), C.getBeginLoc(), Res.get()); if (!Res.isUsable()) return; InstantiatedIntExprs.push_back(Res.get()); } ParsedClause.setIntExprDetails(InstantiatedIntExprs); NewClause = OpenACCNumGangsClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getIntExprs(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitPrivateClause( const OpenACCPrivateClause &C) { ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), /*IsReadOnly=*/false, /*IsZero=*/false); NewClause = OpenACCPrivateClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitFirstPrivateClause( const OpenACCFirstPrivateClause &C) { ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), /*IsReadOnly=*/false, /*IsZero=*/false); NewClause = OpenACCFirstPrivateClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitNoCreateClause( const OpenACCNoCreateClause &C) { ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), /*IsReadOnly=*/false, /*IsZero=*/false); NewClause = OpenACCNoCreateClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitPresentClause( const OpenACCPresentClause &C) { ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), /*IsReadOnly=*/false, /*IsZero=*/false); NewClause = OpenACCPresentClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitCopyClause( const OpenACCCopyClause &C) { ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), /*IsReadOnly=*/false, /*IsZero=*/false); NewClause = OpenACCCopyClause::Create( Self.getSema().getASTContext(), ParsedClause.getClauseKind(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitCopyInClause( const OpenACCCopyInClause &C) { ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), C.isReadOnly(), /*IsZero=*/false); NewClause = OpenACCCopyInClause::Create( Self.getSema().getASTContext(), ParsedClause.getClauseKind(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.isReadOnly(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitCopyOutClause( const OpenACCCopyOutClause &C) { ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), /*IsReadOnly=*/false, C.isZero()); NewClause = OpenACCCopyOutClause::Create( Self.getSema().getASTContext(), ParsedClause.getClauseKind(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.isZero(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitCreateClause( const OpenACCCreateClause &C) { ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), /*IsReadOnly=*/false, C.isZero()); NewClause = OpenACCCreateClause::Create( Self.getSema().getASTContext(), ParsedClause.getClauseKind(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.isZero(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitAttachClause( const OpenACCAttachClause &C) { llvm::SmallVector VarList = VisitVarList(C.getVarList()); // Ensure each var is a pointer type. VarList.erase(std::remove_if(VarList.begin(), VarList.end(), [&](Expr *E) { return Self.getSema().OpenACC().CheckVarIsPointerType( OpenACCClauseKind::Attach, E); }), VarList.end()); ParsedClause.setVarListDetails(VarList, /*IsReadOnly=*/false, /*IsZero=*/false); NewClause = OpenACCAttachClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitDevicePtrClause( const OpenACCDevicePtrClause &C) { llvm::SmallVector VarList = VisitVarList(C.getVarList()); // Ensure each var is a pointer type. VarList.erase(std::remove_if(VarList.begin(), VarList.end(), [&](Expr *E) { return Self.getSema().OpenACC().CheckVarIsPointerType( OpenACCClauseKind::DevicePtr, E); }), VarList.end()); ParsedClause.setVarListDetails(VarList, /*IsReadOnly=*/false, /*IsZero=*/false); NewClause = OpenACCDevicePtrClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getVarList(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitNumWorkersClause( const OpenACCNumWorkersClause &C) { Expr *IntExpr = const_cast(C.getIntExpr()); assert(IntExpr && "num_workers clause constructed with invalid int expr"); ExprResult Res = Self.TransformExpr(IntExpr); if (!Res.isUsable()) return; Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, C.getClauseKind(), C.getBeginLoc(), Res.get()); if (!Res.isUsable()) return; ParsedClause.setIntExprDetails(Res.get()); NewClause = OpenACCNumWorkersClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0], ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitVectorLengthClause( const OpenACCVectorLengthClause &C) { Expr *IntExpr = const_cast(C.getIntExpr()); assert(IntExpr && "vector_length clause constructed with invalid int expr"); ExprResult Res = Self.TransformExpr(IntExpr); if (!Res.isUsable()) return; Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, C.getClauseKind(), C.getBeginLoc(), Res.get()); if (!Res.isUsable()) return; ParsedClause.setIntExprDetails(Res.get()); NewClause = OpenACCVectorLengthClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0], ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitAsyncClause( const OpenACCAsyncClause &C) { if (C.hasIntExpr()) { ExprResult Res = Self.TransformExpr(const_cast(C.getIntExpr())); if (!Res.isUsable()) return; Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, C.getClauseKind(), C.getBeginLoc(), Res.get()); if (!Res.isUsable()) return; ParsedClause.setIntExprDetails(Res.get()); } NewClause = OpenACCAsyncClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getNumIntExprs() != 0 ? ParsedClause.getIntExprs()[0] : nullptr, ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitWaitClause( const OpenACCWaitClause &C) { if (!C.getLParenLoc().isInvalid()) { Expr *DevNumExpr = nullptr; llvm::SmallVector InstantiatedQueueIdExprs; // Instantiate devnum expr if it exists. if (C.getDevNumExpr()) { ExprResult Res = Self.TransformExpr(C.getDevNumExpr()); if (!Res.isUsable()) return; Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, C.getClauseKind(), C.getBeginLoc(), Res.get()); if (!Res.isUsable()) return; DevNumExpr = Res.get(); } // Instantiate queue ids. for (Expr *CurQueueIdExpr : C.getQueueIdExprs()) { ExprResult Res = Self.TransformExpr(CurQueueIdExpr); if (!Res.isUsable()) return; Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, C.getClauseKind(), C.getBeginLoc(), Res.get()); if (!Res.isUsable()) return; InstantiatedQueueIdExprs.push_back(Res.get()); } ParsedClause.setWaitDetails(DevNumExpr, C.getQueuesLoc(), std::move(InstantiatedQueueIdExprs)); } NewClause = OpenACCWaitClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), ParsedClause.getDevNumExpr(), ParsedClause.getQueuesLoc(), ParsedClause.getQueueIdExprs(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitDeviceTypeClause( const OpenACCDeviceTypeClause &C) { // Nothing to transform here, just create a new version of 'C'. NewClause = OpenACCDeviceTypeClause::Create( Self.getSema().getASTContext(), C.getClauseKind(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), C.getArchitectures(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitAutoClause( const OpenACCAutoClause &C) { // Nothing to do, so just create a new node. NewClause = OpenACCAutoClause::Create(Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitIndependentClause( const OpenACCIndependentClause &C) { NewClause = OpenACCIndependentClause::Create(Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitSeqClause( const OpenACCSeqClause &C) { NewClause = OpenACCSeqClause::Create(Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getEndLoc()); } template void OpenACCClauseTransform::VisitReductionClause( const OpenACCReductionClause &C) { SmallVector TransformedVars = VisitVarList(C.getVarList()); SmallVector ValidVars; for (Expr *Var : TransformedVars) { ExprResult Res = Self.getSema().OpenACC().CheckReductionVar(Var); if (Res.isUsable()) ValidVars.push_back(Res.get()); } NewClause = OpenACCReductionClause::Create( Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), C.getReductionOp(), ValidVars, ParsedClause.getEndLoc()); } } // namespace template OpenACCClause *TreeTransform::TransformOpenACCClause( ArrayRef ExistingClauses, OpenACCDirectiveKind DirKind, const OpenACCClause *OldClause) { SemaOpenACC::OpenACCParsedClause ParsedClause( DirKind, OldClause->getClauseKind(), OldClause->getBeginLoc()); ParsedClause.setEndLoc(OldClause->getEndLoc()); if (const auto *WithParms = dyn_cast(OldClause)) ParsedClause.setLParenLoc(WithParms->getLParenLoc()); OpenACCClauseTransform Transform{*this, ExistingClauses, ParsedClause}; Transform.Visit(OldClause); return Transform.CreatedClause(); } template llvm::SmallVector TreeTransform::TransformOpenACCClauseList( OpenACCDirectiveKind DirKind, ArrayRef OldClauses) { llvm::SmallVector TransformedClauses; for (const auto *Clause : OldClauses) { if (OpenACCClause *TransformedClause = getDerived().TransformOpenACCClause( TransformedClauses, DirKind, Clause)) TransformedClauses.push_back(TransformedClause); } return TransformedClauses; } template StmtResult TreeTransform::TransformOpenACCComputeConstruct( OpenACCComputeConstruct *C) { getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); if (getSema().OpenACC().ActOnStartStmtDirective(C->getDirectiveKind(), C->getBeginLoc())) return StmtError(); llvm::SmallVector TransformedClauses = getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), C->clauses()); // Transform Structured Block. SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(getSema().OpenACC(), C->getDirectiveKind()); StmtResult StrBlock = getDerived().TransformStmt(C->getStructuredBlock()); StrBlock = getSema().OpenACC().ActOnAssociatedStmt( C->getBeginLoc(), C->getDirectiveKind(), StrBlock); return getDerived().RebuildOpenACCComputeConstruct( C->getDirectiveKind(), C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), TransformedClauses, StrBlock); } template StmtResult TreeTransform::TransformOpenACCLoopConstruct(OpenACCLoopConstruct *C) { getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); if (getSema().OpenACC().ActOnStartStmtDirective(C->getDirectiveKind(), C->getBeginLoc())) return StmtError(); llvm::SmallVector TransformedClauses = getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), C->clauses()); // Transform Loop. SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(getSema().OpenACC(), C->getDirectiveKind()); StmtResult Loop = getDerived().TransformStmt(C->getLoop()); Loop = getSema().OpenACC().ActOnAssociatedStmt(C->getBeginLoc(), C->getDirectiveKind(), Loop); return getDerived().RebuildOpenACCLoopConstruct( C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), TransformedClauses, Loop); } //===----------------------------------------------------------------------===// // Expression transformation //===----------------------------------------------------------------------===// template ExprResult TreeTransform::TransformConstantExpr(ConstantExpr *E) { return TransformExpr(E->getSubExpr()); } template ExprResult TreeTransform::TransformSYCLUniqueStableNameExpr( SYCLUniqueStableNameExpr *E) { if (!E->isTypeDependent()) return E; TypeSourceInfo *NewT = getDerived().TransformType(E->getTypeSourceInfo()); if (!NewT) return ExprError(); if (!getDerived().AlwaysRebuild() && E->getTypeSourceInfo() == NewT) return E; return getDerived().RebuildSYCLUniqueStableNameExpr( E->getLocation(), E->getLParenLocation(), E->getRParenLocation(), NewT); } template ExprResult TreeTransform::TransformPredefinedExpr(PredefinedExpr *E) { if (!E->isTypeDependent()) return E; return getDerived().RebuildPredefinedExpr(E->getLocation(), E->getIdentKind()); } template ExprResult TreeTransform::TransformDeclRefExpr(DeclRefExpr *E) { NestedNameSpecifierLoc QualifierLoc; if (E->getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); if (!QualifierLoc) return ExprError(); } ValueDecl *ND = cast_or_null(getDerived().TransformDecl(E->getLocation(), E->getDecl())); if (!ND) return ExprError(); NamedDecl *Found = ND; if (E->getFoundDecl() != E->getDecl()) { Found = cast_or_null( getDerived().TransformDecl(E->getLocation(), E->getFoundDecl())); if (!Found) return ExprError(); } DeclarationNameInfo NameInfo = E->getNameInfo(); if (NameInfo.getName()) { NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); if (!NameInfo.getName()) return ExprError(); } if (!getDerived().AlwaysRebuild() && !E->isCapturedByCopyInLambdaWithExplicitObjectParameter() && QualifierLoc == E->getQualifierLoc() && ND == E->getDecl() && Found == E->getFoundDecl() && NameInfo.getName() == E->getDecl()->getDeclName() && !E->hasExplicitTemplateArgs()) { // Mark it referenced in the new context regardless. // FIXME: this is a bit instantiation-specific. SemaRef.MarkDeclRefReferenced(E); return E; } TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr; if (E->hasExplicitTemplateArgs()) { TemplateArgs = &TransArgs; TransArgs.setLAngleLoc(E->getLAngleLoc()); TransArgs.setRAngleLoc(E->getRAngleLoc()); if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) return ExprError(); } return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo, Found, TemplateArgs); } template ExprResult TreeTransform::TransformIntegerLiteral(IntegerLiteral *E) { return E; } template ExprResult TreeTransform::TransformFixedPointLiteral( FixedPointLiteral *E) { return E; } template ExprResult TreeTransform::TransformFloatingLiteral(FloatingLiteral *E) { return E; } template ExprResult TreeTransform::TransformImaginaryLiteral(ImaginaryLiteral *E) { return E; } template ExprResult TreeTransform::TransformStringLiteral(StringLiteral *E) { return E; } template ExprResult TreeTransform::TransformCharacterLiteral(CharacterLiteral *E) { return E; } template ExprResult TreeTransform::TransformUserDefinedLiteral(UserDefinedLiteral *E) { return getDerived().TransformCallExpr(E); } template ExprResult TreeTransform::TransformGenericSelectionExpr(GenericSelectionExpr *E) { ExprResult ControllingExpr; TypeSourceInfo *ControllingType = nullptr; if (E->isExprPredicate()) ControllingExpr = getDerived().TransformExpr(E->getControllingExpr()); else ControllingType = getDerived().TransformType(E->getControllingType()); if (ControllingExpr.isInvalid() && !ControllingType) return ExprError(); SmallVector AssocExprs; SmallVector AssocTypes; for (const GenericSelectionExpr::Association Assoc : E->associations()) { TypeSourceInfo *TSI = Assoc.getTypeSourceInfo(); if (TSI) { TypeSourceInfo *AssocType = getDerived().TransformType(TSI); if (!AssocType) return ExprError(); AssocTypes.push_back(AssocType); } else { AssocTypes.push_back(nullptr); } ExprResult AssocExpr = getDerived().TransformExpr(Assoc.getAssociationExpr()); if (AssocExpr.isInvalid()) return ExprError(); AssocExprs.push_back(AssocExpr.get()); } if (!ControllingType) return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(), E->getDefaultLoc(), E->getRParenLoc(), ControllingExpr.get(), AssocTypes, AssocExprs); return getDerived().RebuildGenericSelectionExpr( E->getGenericLoc(), E->getDefaultLoc(), E->getRParenLoc(), ControllingType, AssocTypes, AssocExprs); } template ExprResult TreeTransform::TransformParenExpr(ParenExpr *E) { ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(), E->getRParen()); } /// The operand of a unary address-of operator has special rules: it's /// allowed to refer to a non-static member of a class even if there's no 'this' /// object available. template ExprResult TreeTransform::TransformAddressOfOperand(Expr *E) { if (DependentScopeDeclRefExpr *DRE = dyn_cast(E)) return getDerived().TransformDependentScopeDeclRefExpr( DRE, /*IsAddressOfOperand=*/true, nullptr); else if (UnresolvedLookupExpr *ULE = dyn_cast(E)) return getDerived().TransformUnresolvedLookupExpr( ULE, /*IsAddressOfOperand=*/true); else return getDerived().TransformExpr(E); } template ExprResult TreeTransform::TransformUnaryOperator(UnaryOperator *E) { ExprResult SubExpr; if (E->getOpcode() == UO_AddrOf) SubExpr = TransformAddressOfOperand(E->getSubExpr()); else SubExpr = TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildUnaryOperator(E->getOperatorLoc(), E->getOpcode(), SubExpr.get()); } template ExprResult TreeTransform::TransformOffsetOfExpr(OffsetOfExpr *E) { // Transform the type. TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); if (!Type) return ExprError(); // Transform all of the components into components similar to what the // parser uses. // FIXME: It would be slightly more efficient in the non-dependent case to // just map FieldDecls, rather than requiring the rebuilder to look for // the fields again. However, __builtin_offsetof is rare enough in // template code that we don't care. bool ExprChanged = false; typedef Sema::OffsetOfComponent Component; SmallVector Components; for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) { const OffsetOfNode &ON = E->getComponent(I); Component Comp; Comp.isBrackets = true; Comp.LocStart = ON.getSourceRange().getBegin(); Comp.LocEnd = ON.getSourceRange().getEnd(); switch (ON.getKind()) { case OffsetOfNode::Array: { Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex()); ExprResult Index = getDerived().TransformExpr(FromIndex); if (Index.isInvalid()) return ExprError(); ExprChanged = ExprChanged || Index.get() != FromIndex; Comp.isBrackets = true; Comp.U.E = Index.get(); break; } case OffsetOfNode::Field: case OffsetOfNode::Identifier: Comp.isBrackets = false; Comp.U.IdentInfo = ON.getFieldName(); if (!Comp.U.IdentInfo) continue; break; case OffsetOfNode::Base: // Will be recomputed during the rebuild. continue; } Components.push_back(Comp); } // If nothing changed, retain the existing expression. if (!getDerived().AlwaysRebuild() && Type == E->getTypeSourceInfo() && !ExprChanged) return E; // Build a new offsetof expression. return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type, Components, E->getRParenLoc()); } template ExprResult TreeTransform::TransformOpaqueValueExpr(OpaqueValueExpr *E) { assert((!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) && "opaque value expression requires transformation"); return E; } template ExprResult TreeTransform::TransformTypoExpr(TypoExpr *E) { return E; } template ExprResult TreeTransform::TransformRecoveryExpr(RecoveryExpr *E) { llvm::SmallVector Children; bool Changed = false; for (Expr *C : E->subExpressions()) { ExprResult NewC = getDerived().TransformExpr(C); if (NewC.isInvalid()) return ExprError(); Children.push_back(NewC.get()); Changed |= NewC.get() != C; } if (!getDerived().AlwaysRebuild() && !Changed) return E; return getDerived().RebuildRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), Children, E->getType()); } template ExprResult TreeTransform::TransformPseudoObjectExpr(PseudoObjectExpr *E) { // Rebuild the syntactic form. The original syntactic form has // opaque-value expressions in it, so strip those away and rebuild // the result. This is a really awful way of doing this, but the // better solution (rebuilding the semantic expressions and // rebinding OVEs as necessary) doesn't work; we'd need // TreeTransform to not strip away implicit conversions. Expr *newSyntacticForm = SemaRef.PseudoObject().recreateSyntacticForm(E); ExprResult result = getDerived().TransformExpr(newSyntacticForm); if (result.isInvalid()) return ExprError(); // If that gives us a pseudo-object result back, the pseudo-object // expression must have been an lvalue-to-rvalue conversion which we // should reapply. if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject)) result = SemaRef.PseudoObject().checkRValue(result.get()); return result; } template ExprResult TreeTransform::TransformUnaryExprOrTypeTraitExpr( UnaryExprOrTypeTraitExpr *E) { if (E->isArgumentType()) { TypeSourceInfo *OldT = E->getArgumentTypeInfo(); TypeSourceInfo *NewT = getDerived().TransformType(OldT); if (!NewT) return ExprError(); if (!getDerived().AlwaysRebuild() && OldT == NewT) return E; return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(), E->getKind(), E->getSourceRange()); } // C++0x [expr.sizeof]p1: // The operand is either an expression, which is an unevaluated operand // [...] EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, Sema::ReuseLambdaContextDecl); // Try to recover if we have something like sizeof(T::X) where X is a type. // Notably, there must be *exactly* one set of parens if X is a type. TypeSourceInfo *RecoveryTSI = nullptr; ExprResult SubExpr; auto *PE = dyn_cast(E->getArgumentExpr()); if (auto *DRE = PE ? dyn_cast(PE->getSubExpr()) : nullptr) SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr( PE, DRE, false, &RecoveryTSI); else SubExpr = getDerived().TransformExpr(E->getArgumentExpr()); if (RecoveryTSI) { return getDerived().RebuildUnaryExprOrTypeTrait( RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange()); } else if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr()) return E; return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(), E->getOperatorLoc(), E->getKind(), E->getSourceRange()); } template ExprResult TreeTransform::TransformArraySubscriptExpr(ArraySubscriptExpr *E) { ExprResult LHS = getDerived().TransformExpr(E->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformExpr(E->getRHS()); if (RHS.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; return getDerived().RebuildArraySubscriptExpr( LHS.get(), /*FIXME:*/ E->getLHS()->getBeginLoc(), RHS.get(), E->getRBracketLoc()); } template ExprResult TreeTransform::TransformMatrixSubscriptExpr(MatrixSubscriptExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); ExprResult RowIdx = getDerived().TransformExpr(E->getRowIdx()); if (RowIdx.isInvalid()) return ExprError(); ExprResult ColumnIdx = getDerived().TransformExpr(E->getColumnIdx()); if (ColumnIdx.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() && RowIdx.get() == E->getRowIdx() && ColumnIdx.get() == E->getColumnIdx()) return E; return getDerived().RebuildMatrixSubscriptExpr( Base.get(), RowIdx.get(), ColumnIdx.get(), E->getRBracketLoc()); } template ExprResult TreeTransform::TransformArraySectionExpr(ArraySectionExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); ExprResult LowerBound; if (E->getLowerBound()) { LowerBound = getDerived().TransformExpr(E->getLowerBound()); if (LowerBound.isInvalid()) return ExprError(); } ExprResult Length; if (E->getLength()) { Length = getDerived().TransformExpr(E->getLength()); if (Length.isInvalid()) return ExprError(); } ExprResult Stride; if (E->isOMPArraySection()) { if (Expr *Str = E->getStride()) { Stride = getDerived().TransformExpr(Str); if (Stride.isInvalid()) return ExprError(); } } if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() && LowerBound.get() == E->getLowerBound() && Length.get() == E->getLength() && (E->isOpenACCArraySection() || Stride.get() == E->getStride())) return E; return getDerived().RebuildArraySectionExpr( E->isOMPArraySection(), Base.get(), E->getBase()->getEndLoc(), LowerBound.get(), E->getColonLocFirst(), E->isOMPArraySection() ? E->getColonLocSecond() : SourceLocation{}, Length.get(), Stride.get(), E->getRBracketLoc()); } template ExprResult TreeTransform::TransformOMPArrayShapingExpr(OMPArrayShapingExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); SmallVector Dims; bool ErrorFound = false; for (Expr *Dim : E->getDimensions()) { ExprResult DimRes = getDerived().TransformExpr(Dim); if (DimRes.isInvalid()) { ErrorFound = true; continue; } Dims.push_back(DimRes.get()); } if (ErrorFound) return ExprError(); return getDerived().RebuildOMPArrayShapingExpr(Base.get(), E->getLParenLoc(), E->getRParenLoc(), Dims, E->getBracketsRanges()); } template ExprResult TreeTransform::TransformOMPIteratorExpr(OMPIteratorExpr *E) { unsigned NumIterators = E->numOfIterators(); SmallVector Data(NumIterators); bool ErrorFound = false; bool NeedToRebuild = getDerived().AlwaysRebuild(); for (unsigned I = 0; I < NumIterators; ++I) { auto *D = cast(E->getIteratorDecl(I)); Data[I].DeclIdent = D->getIdentifier(); Data[I].DeclIdentLoc = D->getLocation(); if (D->getLocation() == D->getBeginLoc()) { assert(SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) && "Implicit type must be int."); } else { TypeSourceInfo *TSI = getDerived().TransformType(D->getTypeSourceInfo()); QualType DeclTy = getDerived().TransformType(D->getType()); Data[I].Type = SemaRef.CreateParsedType(DeclTy, TSI); } OMPIteratorExpr::IteratorRange Range = E->getIteratorRange(I); ExprResult Begin = getDerived().TransformExpr(Range.Begin); ExprResult End = getDerived().TransformExpr(Range.End); ExprResult Step = getDerived().TransformExpr(Range.Step); ErrorFound = ErrorFound || !(!D->getTypeSourceInfo() || (Data[I].Type.getAsOpaquePtr() && !Data[I].Type.get().isNull())) || Begin.isInvalid() || End.isInvalid() || Step.isInvalid(); if (ErrorFound) continue; Data[I].Range.Begin = Begin.get(); Data[I].Range.End = End.get(); Data[I].Range.Step = Step.get(); Data[I].AssignLoc = E->getAssignLoc(I); Data[I].ColonLoc = E->getColonLoc(I); Data[I].SecColonLoc = E->getSecondColonLoc(I); NeedToRebuild = NeedToRebuild || (D->getTypeSourceInfo() && Data[I].Type.get().getTypePtrOrNull() != D->getType().getTypePtrOrNull()) || Range.Begin != Data[I].Range.Begin || Range.End != Data[I].Range.End || Range.Step != Data[I].Range.Step; } if (ErrorFound) return ExprError(); if (!NeedToRebuild) return E; ExprResult Res = getDerived().RebuildOMPIteratorExpr( E->getIteratorKwLoc(), E->getLParenLoc(), E->getRParenLoc(), Data); if (!Res.isUsable()) return Res; auto *IE = cast(Res.get()); for (unsigned I = 0; I < NumIterators; ++I) getDerived().transformedLocalDecl(E->getIteratorDecl(I), IE->getIteratorDecl(I)); return Res; } template ExprResult TreeTransform::TransformCallExpr(CallExpr *E) { // Transform the callee. ExprResult Callee = getDerived().TransformExpr(E->getCallee()); if (Callee.isInvalid()) return ExprError(); // Transform arguments. bool ArgChanged = false; SmallVector Args; if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, &ArgChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && Callee.get() == E->getCallee() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); // FIXME: Wrong source location information for the '('. SourceLocation FakeLParenLoc = ((Expr *)Callee.get())->getSourceRange().getBegin(); Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); if (E->hasStoredFPFeatures()) { FPOptionsOverride NewOverrides = E->getFPFeatures(); getSema().CurFPFeatures = NewOverrides.applyOverrides(getSema().getLangOpts()); getSema().FpPragmaStack.CurrentValue = NewOverrides; } return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, Args, E->getRParenLoc()); } template ExprResult TreeTransform::TransformMemberExpr(MemberExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); NestedNameSpecifierLoc QualifierLoc; if (E->hasQualifier()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); if (!QualifierLoc) return ExprError(); } SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); ValueDecl *Member = cast_or_null(getDerived().TransformDecl(E->getMemberLoc(), E->getMemberDecl())); if (!Member) return ExprError(); NamedDecl *FoundDecl = E->getFoundDecl(); if (FoundDecl == E->getMemberDecl()) { FoundDecl = Member; } else { FoundDecl = cast_or_null( getDerived().TransformDecl(E->getMemberLoc(), FoundDecl)); if (!FoundDecl) return ExprError(); } if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() && QualifierLoc == E->getQualifierLoc() && Member == E->getMemberDecl() && FoundDecl == E->getFoundDecl() && !E->hasExplicitTemplateArgs()) { // Skip for member expression of (this->f), rebuilt thisi->f is needed // for Openmp where the field need to be privatizized in the case. if (!(isa(E->getBase()) && getSema().OpenMP().isOpenMPRebuildMemberExpr( cast(Member)))) { // Mark it referenced in the new context regardless. // FIXME: this is a bit instantiation-specific. SemaRef.MarkMemberReferenced(E); return E; } } TemplateArgumentListInfo TransArgs; if (E->hasExplicitTemplateArgs()) { TransArgs.setLAngleLoc(E->getLAngleLoc()); TransArgs.setRAngleLoc(E->getRAngleLoc()); if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) return ExprError(); } // FIXME: Bogus source location for the operator SourceLocation FakeOperatorLoc = SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd()); // FIXME: to do this check properly, we will need to preserve the // first-qualifier-in-scope here, just in case we had a dependent // base (and therefore couldn't do the check) and a // nested-name-qualifier (and therefore could do the lookup). NamedDecl *FirstQualifierInScope = nullptr; DeclarationNameInfo MemberNameInfo = E->getMemberNameInfo(); if (MemberNameInfo.getName()) { MemberNameInfo = getDerived().TransformDeclarationNameInfo(MemberNameInfo); if (!MemberNameInfo.getName()) return ExprError(); } return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc, E->isArrow(), QualifierLoc, TemplateKWLoc, MemberNameInfo, Member, FoundDecl, (E->hasExplicitTemplateArgs() ? &TransArgs : nullptr), FirstQualifierInScope); } template ExprResult TreeTransform::TransformBinaryOperator(BinaryOperator *E) { ExprResult LHS = getDerived().TransformExpr(E->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformInitializer(E->getRHS(), /*NotCopyInit=*/false); if (RHS.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; if (E->isCompoundAssignmentOp()) // FPFeatures has already been established from trailing storage return getDerived().RebuildBinaryOperator( E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get()); Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); FPOptionsOverride NewOverrides(E->getFPFeatures()); getSema().CurFPFeatures = NewOverrides.applyOverrides(getSema().getLangOpts()); getSema().FpPragmaStack.CurrentValue = NewOverrides; return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get()); } template ExprResult TreeTransform::TransformCXXRewrittenBinaryOperator( CXXRewrittenBinaryOperator *E) { CXXRewrittenBinaryOperator::DecomposedForm Decomp = E->getDecomposedForm(); ExprResult LHS = getDerived().TransformExpr(const_cast(Decomp.LHS)); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformExpr(const_cast(Decomp.RHS)); if (RHS.isInvalid()) return ExprError(); // Extract the already-resolved callee declarations so that we can restrict // ourselves to using them as the unqualified lookup results when rebuilding. UnresolvedSet<2> UnqualLookups; bool ChangedAnyLookups = false; Expr *PossibleBinOps[] = {E->getSemanticForm(), const_cast(Decomp.InnerBinOp)}; for (Expr *PossibleBinOp : PossibleBinOps) { auto *Op = dyn_cast(PossibleBinOp->IgnoreImplicit()); if (!Op) continue; auto *Callee = dyn_cast(Op->getCallee()->IgnoreImplicit()); if (!Callee || isa(Callee->getDecl())) continue; // Transform the callee in case we built a call to a local extern // declaration. NamedDecl *Found = cast_or_null(getDerived().TransformDecl( E->getOperatorLoc(), Callee->getFoundDecl())); if (!Found) return ExprError(); if (Found != Callee->getFoundDecl()) ChangedAnyLookups = true; UnqualLookups.addDecl(Found); } if (!getDerived().AlwaysRebuild() && !ChangedAnyLookups && LHS.get() == Decomp.LHS && RHS.get() == Decomp.RHS) { // Mark all functions used in the rewrite as referenced. Note that when // a < b is rewritten to (a <=> b) < 0, both the <=> and the < might be // function calls, and/or there might be a user-defined conversion sequence // applied to the operands of the <. // FIXME: this is a bit instantiation-specific. const Expr *StopAt[] = {Decomp.LHS, Decomp.RHS}; SemaRef.MarkDeclarationsReferencedInExpr(E, false, StopAt); return E; } return getDerived().RebuildCXXRewrittenBinaryOperator( E->getOperatorLoc(), Decomp.Opcode, UnqualLookups, LHS.get(), RHS.get()); } template ExprResult TreeTransform::TransformCompoundAssignOperator( CompoundAssignOperator *E) { Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); FPOptionsOverride NewOverrides(E->getFPFeatures()); getSema().CurFPFeatures = NewOverrides.applyOverrides(getSema().getLangOpts()); getSema().FpPragmaStack.CurrentValue = NewOverrides; return getDerived().TransformBinaryOperator(E); } template ExprResult TreeTransform:: TransformBinaryConditionalOperator(BinaryConditionalOperator *e) { // Just rebuild the common and RHS expressions and see whether we // get any changes. ExprResult commonExpr = getDerived().TransformExpr(e->getCommon()); if (commonExpr.isInvalid()) return ExprError(); ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr()); if (rhs.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && commonExpr.get() == e->getCommon() && rhs.get() == e->getFalseExpr()) return e; return getDerived().RebuildConditionalOperator(commonExpr.get(), e->getQuestionLoc(), nullptr, e->getColonLoc(), rhs.get()); } template ExprResult TreeTransform::TransformConditionalOperator(ConditionalOperator *E) { ExprResult Cond = getDerived().TransformExpr(E->getCond()); if (Cond.isInvalid()) return ExprError(); ExprResult LHS = getDerived().TransformExpr(E->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformExpr(E->getRHS()); if (RHS.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Cond.get() == E->getCond() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; return getDerived().RebuildConditionalOperator(Cond.get(), E->getQuestionLoc(), LHS.get(), E->getColonLoc(), RHS.get()); } template ExprResult TreeTransform::TransformImplicitCastExpr(ImplicitCastExpr *E) { // Implicit casts are eliminated during transformation, since they // will be recomputed by semantic analysis after transformation. return getDerived().TransformExpr(E->getSubExprAsWritten()); } template ExprResult TreeTransform::TransformCStyleCastExpr(CStyleCastExpr *E) { TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); if (!Type) return ExprError(); ExprResult SubExpr = getDerived().TransformExpr(E->getSubExprAsWritten()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Type == E->getTypeInfoAsWritten() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(), Type, E->getRParenLoc(), SubExpr.get()); } template ExprResult TreeTransform::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) { TypeSourceInfo *OldT = E->getTypeSourceInfo(); TypeSourceInfo *NewT = getDerived().TransformType(OldT); if (!NewT) return ExprError(); ExprResult Init = getDerived().TransformExpr(E->getInitializer()); if (Init.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && OldT == NewT && Init.get() == E->getInitializer()) return SemaRef.MaybeBindToTemporary(E); // Note: the expression type doesn't necessarily match the // type-as-written, but that's okay, because it should always be // derivable from the initializer. return getDerived().RebuildCompoundLiteralExpr( E->getLParenLoc(), NewT, /*FIXME:*/ E->getInitializer()->getEndLoc(), Init.get()); } template ExprResult TreeTransform::TransformExtVectorElementExpr(ExtVectorElementExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase()) return E; // FIXME: Bad source location SourceLocation FakeOperatorLoc = SemaRef.getLocForEndOfToken(E->getBase()->getEndLoc()); return getDerived().RebuildExtVectorElementExpr( Base.get(), FakeOperatorLoc, E->isArrow(), E->getAccessorLoc(), E->getAccessor()); } template ExprResult TreeTransform::TransformInitListExpr(InitListExpr *E) { if (InitListExpr *Syntactic = E->getSyntacticForm()) E = Syntactic; bool InitChanged = false; EnterExpressionEvaluationContext Context( getSema(), EnterExpressionEvaluationContext::InitList); SmallVector Inits; if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false, Inits, &InitChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && !InitChanged) { // FIXME: Attempt to reuse the existing syntactic form of the InitListExpr // in some cases. We can't reuse it in general, because the syntactic and // semantic forms are linked, and we can't know that semantic form will // match even if the syntactic form does. } return getDerived().RebuildInitList(E->getLBraceLoc(), Inits, E->getRBraceLoc()); } template ExprResult TreeTransform::TransformDesignatedInitExpr(DesignatedInitExpr *E) { Designation Desig; // transform the initializer value ExprResult Init = getDerived().TransformExpr(E->getInit()); if (Init.isInvalid()) return ExprError(); // transform the designators. SmallVector ArrayExprs; bool ExprChanged = false; for (const DesignatedInitExpr::Designator &D : E->designators()) { if (D.isFieldDesignator()) { if (D.getFieldDecl()) { FieldDecl *Field = cast_or_null( getDerived().TransformDecl(D.getFieldLoc(), D.getFieldDecl())); if (Field != D.getFieldDecl()) // Rebuild the expression when the transformed FieldDecl is // different to the already assigned FieldDecl. ExprChanged = true; if (Field->isAnonymousStructOrUnion()) continue; } else { // Ensure that the designator expression is rebuilt when there isn't // a resolved FieldDecl in the designator as we don't want to assign // a FieldDecl to a pattern designator that will be instantiated again. ExprChanged = true; } Desig.AddDesignator(Designator::CreateFieldDesignator( D.getFieldName(), D.getDotLoc(), D.getFieldLoc())); continue; } if (D.isArrayDesignator()) { ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(D)); if (Index.isInvalid()) return ExprError(); Desig.AddDesignator( Designator::CreateArrayDesignator(Index.get(), D.getLBracketLoc())); ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(D); ArrayExprs.push_back(Index.get()); continue; } assert(D.isArrayRangeDesignator() && "New kind of designator?"); ExprResult Start = getDerived().TransformExpr(E->getArrayRangeStart(D)); if (Start.isInvalid()) return ExprError(); ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(D)); if (End.isInvalid()) return ExprError(); Desig.AddDesignator(Designator::CreateArrayRangeDesignator( Start.get(), End.get(), D.getLBracketLoc(), D.getEllipsisLoc())); ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(D) || End.get() != E->getArrayRangeEnd(D); ArrayExprs.push_back(Start.get()); ArrayExprs.push_back(End.get()); } if (!getDerived().AlwaysRebuild() && Init.get() == E->getInit() && !ExprChanged) return E; return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs, E->getEqualOrColonLoc(), E->usesGNUSyntax(), Init.get()); } // Seems that if TransformInitListExpr() only works on the syntactic form of an // InitListExpr, then a DesignatedInitUpdateExpr is not encountered. template ExprResult TreeTransform::TransformDesignatedInitUpdateExpr( DesignatedInitUpdateExpr *E) { llvm_unreachable("Unexpected DesignatedInitUpdateExpr in syntactic form of " "initializer"); return ExprError(); } template ExprResult TreeTransform::TransformNoInitExpr( NoInitExpr *E) { llvm_unreachable("Unexpected NoInitExpr in syntactic form of initializer"); return ExprError(); } template ExprResult TreeTransform::TransformArrayInitLoopExpr(ArrayInitLoopExpr *E) { llvm_unreachable("Unexpected ArrayInitLoopExpr outside of initializer"); return ExprError(); } template ExprResult TreeTransform::TransformArrayInitIndexExpr(ArrayInitIndexExpr *E) { llvm_unreachable("Unexpected ArrayInitIndexExpr outside of initializer"); return ExprError(); } template ExprResult TreeTransform::TransformImplicitValueInitExpr( ImplicitValueInitExpr *E) { TemporaryBase Rebase(*this, E->getBeginLoc(), DeclarationName()); // FIXME: Will we ever have proper type location here? Will we actually // need to transform the type? QualType T = getDerived().TransformType(E->getType()); if (T.isNull()) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getType()) return E; return getDerived().RebuildImplicitValueInitExpr(T); } template ExprResult TreeTransform::TransformVAArgExpr(VAArgExpr *E) { TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo()); if (!TInfo) return ExprError(); ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && TInfo == E->getWrittenTypeInfo() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(), TInfo, E->getRParenLoc()); } template ExprResult TreeTransform::TransformParenListExpr(ParenListExpr *E) { bool ArgumentChanged = false; SmallVector Inits; if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits, &ArgumentChanged)) return ExprError(); return getDerived().RebuildParenListExpr(E->getLParenLoc(), Inits, E->getRParenLoc()); } /// Transform an address-of-label expression. /// /// By default, the transformation of an address-of-label expression always /// rebuilds the expression, so that the label identifier can be resolved to /// the corresponding label statement by semantic analysis. template ExprResult TreeTransform::TransformAddrLabelExpr(AddrLabelExpr *E) { Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(), E->getLabel()); if (!LD) return ExprError(); return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(), cast(LD)); } template ExprResult TreeTransform::TransformStmtExpr(StmtExpr *E) { SemaRef.ActOnStartStmtExpr(); StmtResult SubStmt = getDerived().TransformCompoundStmt(E->getSubStmt(), true); if (SubStmt.isInvalid()) { SemaRef.ActOnStmtExprError(); return ExprError(); } unsigned OldDepth = E->getTemplateDepth(); unsigned NewDepth = getDerived().TransformTemplateDepth(OldDepth); if (!getDerived().AlwaysRebuild() && OldDepth == NewDepth && SubStmt.get() == E->getSubStmt()) { // Calling this an 'error' is unintuitive, but it does the right thing. SemaRef.ActOnStmtExprError(); return SemaRef.MaybeBindToTemporary(E); } return getDerived().RebuildStmtExpr(E->getLParenLoc(), SubStmt.get(), E->getRParenLoc(), NewDepth); } template ExprResult TreeTransform::TransformChooseExpr(ChooseExpr *E) { ExprResult Cond = getDerived().TransformExpr(E->getCond()); if (Cond.isInvalid()) return ExprError(); ExprResult LHS = getDerived().TransformExpr(E->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformExpr(E->getRHS()); if (RHS.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Cond.get() == E->getCond() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; return getDerived().RebuildChooseExpr(E->getBuiltinLoc(), Cond.get(), LHS.get(), RHS.get(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformGNUNullExpr(GNUNullExpr *E) { return E; } template ExprResult TreeTransform::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { switch (E->getOperator()) { case OO_New: case OO_Delete: case OO_Array_New: case OO_Array_Delete: llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr"); case OO_Subscript: case OO_Call: { // This is a call to an object's operator(). assert(E->getNumArgs() >= 1 && "Object call is missing arguments"); // Transform the object itself. ExprResult Object = getDerived().TransformExpr(E->getArg(0)); if (Object.isInvalid()) return ExprError(); // FIXME: Poor location information SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken( static_cast(Object.get())->getEndLoc()); // Transform the call arguments. SmallVector Args; if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true, Args)) return ExprError(); if (E->getOperator() == OO_Subscript) return getDerived().RebuildCxxSubscriptExpr(Object.get(), FakeLParenLoc, Args, E->getEndLoc()); return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, Args, E->getEndLoc()); } #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \ case OO_##Name: \ break; #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) #include "clang/Basic/OperatorKinds.def" case OO_Conditional: llvm_unreachable("conditional operator is not actually overloadable"); case OO_None: case NUM_OVERLOADED_OPERATORS: llvm_unreachable("not an overloaded operator?"); } ExprResult First; if (E->getNumArgs() == 1 && E->getOperator() == OO_Amp) First = getDerived().TransformAddressOfOperand(E->getArg(0)); else First = getDerived().TransformExpr(E->getArg(0)); if (First.isInvalid()) return ExprError(); ExprResult Second; if (E->getNumArgs() == 2) { Second = getDerived().TransformInitializer(E->getArg(1), /*NotCopyInit=*/false); if (Second.isInvalid()) return ExprError(); } Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); FPOptionsOverride NewOverrides(E->getFPFeatures()); getSema().CurFPFeatures = NewOverrides.applyOverrides(getSema().getLangOpts()); getSema().FpPragmaStack.CurrentValue = NewOverrides; Expr *Callee = E->getCallee(); if (UnresolvedLookupExpr *ULE = dyn_cast(Callee)) { LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), Sema::LookupOrdinaryName); if (getDerived().TransformOverloadExprDecls(ULE, ULE->requiresADL(), R)) return ExprError(); return getDerived().RebuildCXXOperatorCallExpr( E->getOperator(), E->getOperatorLoc(), Callee->getBeginLoc(), ULE->requiresADL(), R.asUnresolvedSet(), First.get(), Second.get()); } UnresolvedSet<1> Functions; if (ImplicitCastExpr *ICE = dyn_cast(Callee)) Callee = ICE->getSubExprAsWritten(); NamedDecl *DR = cast(Callee)->getDecl(); ValueDecl *VD = cast_or_null( getDerived().TransformDecl(DR->getLocation(), DR)); if (!VD) return ExprError(); if (!isa(VD)) Functions.addDecl(VD); return getDerived().RebuildCXXOperatorCallExpr( E->getOperator(), E->getOperatorLoc(), Callee->getBeginLoc(), /*RequiresADL=*/false, Functions, First.get(), Second.get()); } template ExprResult TreeTransform::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) { return getDerived().TransformCallExpr(E); } template ExprResult TreeTransform::TransformSourceLocExpr(SourceLocExpr *E) { bool NeedRebuildFunc = SourceLocExpr::MayBeDependent(E->getIdentKind()) && getSema().CurContext != E->getParentContext(); if (!getDerived().AlwaysRebuild() && !NeedRebuildFunc) return E; return getDerived().RebuildSourceLocExpr(E->getIdentKind(), E->getType(), E->getBeginLoc(), E->getEndLoc(), getSema().CurContext); } template ExprResult TreeTransform::TransformEmbedExpr(EmbedExpr *E) { return E; } template ExprResult TreeTransform::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) { // Transform the callee. ExprResult Callee = getDerived().TransformExpr(E->getCallee()); if (Callee.isInvalid()) return ExprError(); // Transform exec config. ExprResult EC = getDerived().TransformCallExpr(E->getConfig()); if (EC.isInvalid()) return ExprError(); // Transform arguments. bool ArgChanged = false; SmallVector Args; if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, &ArgChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && Callee.get() == E->getCallee() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); // FIXME: Wrong source location information for the '('. SourceLocation FakeLParenLoc = ((Expr *)Callee.get())->getSourceRange().getBegin(); return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, Args, E->getRParenLoc(), EC.get()); } template ExprResult TreeTransform::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) { TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); if (!Type) return ExprError(); ExprResult SubExpr = getDerived().TransformExpr(E->getSubExprAsWritten()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Type == E->getTypeInfoAsWritten() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildCXXNamedCastExpr( E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(), Type, E->getAngleBrackets().getEnd(), // FIXME. this should be '(' location E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformBuiltinBitCastExpr(BuiltinBitCastExpr *BCE) { TypeSourceInfo *TSI = getDerived().TransformType(BCE->getTypeInfoAsWritten()); if (!TSI) return ExprError(); ExprResult Sub = getDerived().TransformExpr(BCE->getSubExpr()); if (Sub.isInvalid()) return ExprError(); return getDerived().RebuildBuiltinBitCastExpr(BCE->getBeginLoc(), TSI, Sub.get(), BCE->getEndLoc()); } template ExprResult TreeTransform::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXReinterpretCastExpr( CXXReinterpretCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXConstCastExpr(CXXConstCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXFunctionalCastExpr( CXXFunctionalCastExpr *E) { TypeSourceInfo *Type = getDerived().TransformTypeWithDeducedTST(E->getTypeInfoAsWritten()); if (!Type) return ExprError(); ExprResult SubExpr = getDerived().TransformExpr(E->getSubExprAsWritten()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Type == E->getTypeInfoAsWritten() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildCXXFunctionalCastExpr(Type, E->getLParenLoc(), SubExpr.get(), E->getRParenLoc(), E->isListInitialization()); } template ExprResult TreeTransform::TransformCXXTypeidExpr(CXXTypeidExpr *E) { if (E->isTypeOperand()) { TypeSourceInfo *TInfo = getDerived().TransformType(E->getTypeOperandSourceInfo()); if (!TInfo) return ExprError(); if (!getDerived().AlwaysRebuild() && TInfo == E->getTypeOperandSourceInfo()) return E; return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(), TInfo, E->getEndLoc()); } // Typeid's operand is an unevaluated context, unless it's a polymorphic // type. We must not unilaterally enter unevaluated context here, as then // semantic processing can re-transform an already transformed operand. Expr *Op = E->getExprOperand(); auto EvalCtx = Sema::ExpressionEvaluationContext::Unevaluated; if (E->isGLValue()) if (auto *RecordT = Op->getType()->getAs()) if (cast(RecordT->getDecl())->isPolymorphic()) EvalCtx = SemaRef.ExprEvalContexts.back().Context; EnterExpressionEvaluationContext Unevaluated(SemaRef, EvalCtx, Sema::ReuseLambdaContextDecl); ExprResult SubExpr = getDerived().TransformExpr(Op); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getExprOperand()) return E; return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(), SubExpr.get(), E->getEndLoc()); } template ExprResult TreeTransform::TransformCXXUuidofExpr(CXXUuidofExpr *E) { if (E->isTypeOperand()) { TypeSourceInfo *TInfo = getDerived().TransformType(E->getTypeOperandSourceInfo()); if (!TInfo) return ExprError(); if (!getDerived().AlwaysRebuild() && TInfo == E->getTypeOperandSourceInfo()) return E; return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(), TInfo, E->getEndLoc()); } EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getExprOperand()) return E; return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(), SubExpr.get(), E->getEndLoc()); } template ExprResult TreeTransform::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { return E; } template ExprResult TreeTransform::TransformCXXNullPtrLiteralExpr( CXXNullPtrLiteralExpr *E) { return E; } template ExprResult TreeTransform::TransformCXXThisExpr(CXXThisExpr *E) { // In lambdas, the qualifiers of the type depends of where in // the call operator `this` appear, and we do not have a good way to // rebuild this information, so we transform the type. // // In other contexts, the type of `this` may be overrided // for type deduction, so we need to recompute it. // // Always recompute the type if we're in the body of a lambda, and // 'this' is dependent on a lambda's explicit object parameter. QualType T = [&]() { auto &S = getSema(); if (E->isCapturedByCopyInLambdaWithExplicitObjectParameter()) return S.getCurrentThisType(); if (S.getCurLambda()) return getDerived().TransformType(E->getType()); return S.getCurrentThisType(); }(); if (!getDerived().AlwaysRebuild() && T == E->getType()) { // Mark it referenced in the new context regardless. // FIXME: this is a bit instantiation-specific. getSema().MarkThisReferenced(E); return E; } return getDerived().RebuildCXXThisExpr(E->getBeginLoc(), T, E->isImplicit()); } template ExprResult TreeTransform::TransformCXXThrowExpr(CXXThrowExpr *E) { ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(), E->isThrownVariableInScope()); } template ExprResult TreeTransform::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) { ParmVarDecl *Param = cast_or_null( getDerived().TransformDecl(E->getBeginLoc(), E->getParam())); if (!Param) return ExprError(); ExprResult InitRes; if (E->hasRewrittenInit()) { InitRes = getDerived().TransformExpr(E->getRewrittenExpr()); if (InitRes.isInvalid()) return ExprError(); } if (!getDerived().AlwaysRebuild() && Param == E->getParam() && E->getUsedContext() == SemaRef.CurContext && InitRes.get() == E->getRewrittenExpr()) return E; return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param, InitRes.get()); } template ExprResult TreeTransform::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) { FieldDecl *Field = cast_or_null( getDerived().TransformDecl(E->getBeginLoc(), E->getField())); if (!Field) return ExprError(); if (!getDerived().AlwaysRebuild() && Field == E->getField() && E->getUsedContext() == SemaRef.CurContext) return E; return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field); } template ExprResult TreeTransform::TransformCXXScalarValueInitExpr( CXXScalarValueInitExpr *E) { TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); if (!T) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getTypeSourceInfo()) return E; return getDerived().RebuildCXXScalarValueInitExpr(T, /*FIXME:*/T->getTypeLoc().getEndLoc(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformCXXNewExpr(CXXNewExpr *E) { // Transform the type that we're allocating TypeSourceInfo *AllocTypeInfo = getDerived().TransformTypeWithDeducedTST(E->getAllocatedTypeSourceInfo()); if (!AllocTypeInfo) return ExprError(); // Transform the size of the array we're allocating (if any). std::optional ArraySize; if (E->isArray()) { ExprResult NewArraySize; if (std::optional OldArraySize = E->getArraySize()) { NewArraySize = getDerived().TransformExpr(*OldArraySize); if (NewArraySize.isInvalid()) return ExprError(); } ArraySize = NewArraySize.get(); } // Transform the placement arguments (if any). bool ArgumentChanged = false; SmallVector PlacementArgs; if (getDerived().TransformExprs(E->getPlacementArgs(), E->getNumPlacementArgs(), true, PlacementArgs, &ArgumentChanged)) return ExprError(); // Transform the initializer (if any). Expr *OldInit = E->getInitializer(); ExprResult NewInit; if (OldInit) NewInit = getDerived().TransformInitializer(OldInit, true); if (NewInit.isInvalid()) return ExprError(); // Transform new operator and delete operator. FunctionDecl *OperatorNew = nullptr; if (E->getOperatorNew()) { OperatorNew = cast_or_null( getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorNew())); if (!OperatorNew) return ExprError(); } FunctionDecl *OperatorDelete = nullptr; if (E->getOperatorDelete()) { OperatorDelete = cast_or_null( getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete())); if (!OperatorDelete) return ExprError(); } if (!getDerived().AlwaysRebuild() && AllocTypeInfo == E->getAllocatedTypeSourceInfo() && ArraySize == E->getArraySize() && NewInit.get() == OldInit && OperatorNew == E->getOperatorNew() && OperatorDelete == E->getOperatorDelete() && !ArgumentChanged) { // Mark any declarations we need as referenced. // FIXME: instantiation-specific. if (OperatorNew) SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorNew); if (OperatorDelete) SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete); if (E->isArray() && !E->getAllocatedType()->isDependentType()) { QualType ElementType = SemaRef.Context.getBaseElementType(E->getAllocatedType()); if (const RecordType *RecordT = ElementType->getAs()) { CXXRecordDecl *Record = cast(RecordT->getDecl()); if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) { SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Destructor); } } } return E; } QualType AllocType = AllocTypeInfo->getType(); if (!ArraySize) { // If no array size was specified, but the new expression was // instantiated with an array type (e.g., "new T" where T is // instantiated with "int[4]"), extract the outer bound from the // array type as our array size. We do this with constant and // dependently-sized array types. const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType); if (!ArrayT) { // Do nothing } else if (const ConstantArrayType *ConsArrayT = dyn_cast(ArrayT)) { ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(), SemaRef.Context.getSizeType(), /*FIXME:*/ E->getBeginLoc()); AllocType = ConsArrayT->getElementType(); } else if (const DependentSizedArrayType *DepArrayT = dyn_cast(ArrayT)) { if (DepArrayT->getSizeExpr()) { ArraySize = DepArrayT->getSizeExpr(); AllocType = DepArrayT->getElementType(); } } } return getDerived().RebuildCXXNewExpr( E->getBeginLoc(), E->isGlobalNew(), /*FIXME:*/ E->getBeginLoc(), PlacementArgs, /*FIXME:*/ E->getBeginLoc(), E->getTypeIdParens(), AllocType, AllocTypeInfo, ArraySize, E->getDirectInitRange(), NewInit.get()); } template ExprResult TreeTransform::TransformCXXDeleteExpr(CXXDeleteExpr *E) { ExprResult Operand = getDerived().TransformExpr(E->getArgument()); if (Operand.isInvalid()) return ExprError(); // Transform the delete operator, if known. FunctionDecl *OperatorDelete = nullptr; if (E->getOperatorDelete()) { OperatorDelete = cast_or_null( getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete())); if (!OperatorDelete) return ExprError(); } if (!getDerived().AlwaysRebuild() && Operand.get() == E->getArgument() && OperatorDelete == E->getOperatorDelete()) { // Mark any declarations we need as referenced. // FIXME: instantiation-specific. if (OperatorDelete) SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete); if (!E->getArgument()->isTypeDependent()) { QualType Destroyed = SemaRef.Context.getBaseElementType( E->getDestroyedType()); if (const RecordType *DestroyedRec = Destroyed->getAs()) { CXXRecordDecl *Record = cast(DestroyedRec->getDecl()); SemaRef.MarkFunctionReferenced(E->getBeginLoc(), SemaRef.LookupDestructor(Record)); } } return E; } return getDerived().RebuildCXXDeleteExpr( E->getBeginLoc(), E->isGlobalDelete(), E->isArrayForm(), Operand.get()); } template ExprResult TreeTransform::TransformCXXPseudoDestructorExpr( CXXPseudoDestructorExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); ParsedType ObjectTypePtr; bool MayBePseudoDestructor = false; Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(), E->getOperatorLoc(), E->isArrow()? tok::arrow : tok::period, ObjectTypePtr, MayBePseudoDestructor); if (Base.isInvalid()) return ExprError(); QualType ObjectType = ObjectTypePtr.get(); NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType); if (!QualifierLoc) return ExprError(); } CXXScopeSpec SS; SS.Adopt(QualifierLoc); PseudoDestructorTypeStorage Destroyed; if (E->getDestroyedTypeInfo()) { TypeSourceInfo *DestroyedTypeInfo = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(), ObjectType, nullptr, SS); if (!DestroyedTypeInfo) return ExprError(); Destroyed = DestroyedTypeInfo; } else if (!ObjectType.isNull() && ObjectType->isDependentType()) { // We aren't likely to be able to resolve the identifier down to a type // now anyway, so just retain the identifier. Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(), E->getDestroyedTypeLoc()); } else { // Look for a destructor known with the given name. ParsedType T = SemaRef.getDestructorName( *E->getDestroyedTypeIdentifier(), E->getDestroyedTypeLoc(), /*Scope=*/nullptr, SS, ObjectTypePtr, false); if (!T) return ExprError(); Destroyed = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T), E->getDestroyedTypeLoc()); } TypeSourceInfo *ScopeTypeInfo = nullptr; if (E->getScopeTypeInfo()) { CXXScopeSpec EmptySS; ScopeTypeInfo = getDerived().TransformTypeInObjectScope( E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS); if (!ScopeTypeInfo) return ExprError(); } return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(), E->getOperatorLoc(), E->isArrow(), SS, ScopeTypeInfo, E->getColonColonLoc(), E->getTildeLoc(), Destroyed); } template bool TreeTransform::TransformOverloadExprDecls(OverloadExpr *Old, bool RequiresADL, LookupResult &R) { // Transform all the decls. bool AllEmptyPacks = true; for (auto *OldD : Old->decls()) { Decl *InstD = getDerived().TransformDecl(Old->getNameLoc(), OldD); if (!InstD) { // Silently ignore these if a UsingShadowDecl instantiated to nothing. // This can happen because of dependent hiding. if (isa(OldD)) continue; else { R.clear(); return true; } } // Expand using pack declarations. NamedDecl *SingleDecl = cast(InstD); ArrayRef Decls = SingleDecl; if (auto *UPD = dyn_cast(InstD)) Decls = UPD->expansions(); // Expand using declarations. for (auto *D : Decls) { if (auto *UD = dyn_cast(D)) { for (auto *SD : UD->shadows()) R.addDecl(SD); } else { R.addDecl(D); } } AllEmptyPacks &= Decls.empty(); } // C++ [temp.res]/8.4.2: // The program is ill-formed, no diagnostic required, if [...] lookup for // a name in the template definition found a using-declaration, but the // lookup in the corresponding scope in the instantiation odoes not find // any declarations because the using-declaration was a pack expansion and // the corresponding pack is empty if (AllEmptyPacks && !RequiresADL) { getSema().Diag(Old->getNameLoc(), diag::err_using_pack_expansion_empty) << isa(Old) << Old->getName(); return true; } // Resolve a kind, but don't do any further analysis. If it's // ambiguous, the callee needs to deal with it. R.resolveKind(); if (Old->hasTemplateKeyword() && !R.empty()) { NamedDecl *FoundDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); getSema().FilterAcceptableTemplateNames(R, /*AllowFunctionTemplates=*/true, /*AllowDependent=*/true); if (R.empty()) { // If a 'template' keyword was used, a lookup that finds only non-template // names is an error. getSema().Diag(R.getNameLoc(), diag::err_template_kw_refers_to_non_template) << R.getLookupName() << Old->getQualifierLoc().getSourceRange() << Old->hasTemplateKeyword() << Old->getTemplateKeywordLoc(); getSema().Diag(FoundDecl->getLocation(), diag::note_template_kw_refers_to_non_template) << R.getLookupName(); return true; } } return false; } template ExprResult TreeTransform::TransformUnresolvedLookupExpr( UnresolvedLookupExpr *Old) { return TransformUnresolvedLookupExpr(Old, /*IsAddressOfOperand=*/false); } template ExprResult TreeTransform::TransformUnresolvedLookupExpr(UnresolvedLookupExpr *Old, bool IsAddressOfOperand) { LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(), Sema::LookupOrdinaryName); // Transform the declaration set. if (TransformOverloadExprDecls(Old, Old->requiresADL(), R)) return ExprError(); // Rebuild the nested-name qualifier, if present. CXXScopeSpec SS; if (Old->getQualifierLoc()) { NestedNameSpecifierLoc QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); if (!QualifierLoc) return ExprError(); SS.Adopt(QualifierLoc); } if (Old->getNamingClass()) { CXXRecordDecl *NamingClass = cast_or_null(getDerived().TransformDecl( Old->getNameLoc(), Old->getNamingClass())); if (!NamingClass) { R.clear(); return ExprError(); } R.setNamingClass(NamingClass); } // Rebuild the template arguments, if any. SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc()); if (Old->hasExplicitTemplateArgs() && getDerived().TransformTemplateArguments(Old->getTemplateArgs(), Old->getNumTemplateArgs(), TransArgs)) { R.clear(); return ExprError(); } // An UnresolvedLookupExpr can refer to a class member. This occurs e.g. when // a non-static data member is named in an unevaluated operand, or when // a member is named in a dependent class scope function template explicit // specialization that is neither declared static nor with an explicit object // parameter. if (SemaRef.isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand)) return SemaRef.BuildPossibleImplicitMemberExpr( SS, TemplateKWLoc, R, Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr, /*S=*/nullptr); // If we have neither explicit template arguments, nor the template keyword, // it's a normal declaration name or member reference. if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid()) return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL()); // If we have template arguments, then rebuild the template-id expression. return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R, Old->requiresADL(), &TransArgs); } template ExprResult TreeTransform::TransformTypeTraitExpr(TypeTraitExpr *E) { bool ArgChanged = false; SmallVector Args; for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) { TypeSourceInfo *From = E->getArg(I); TypeLoc FromTL = From->getTypeLoc(); if (!FromTL.getAs()) { TypeLocBuilder TLB; TLB.reserve(FromTL.getFullDataSize()); QualType To = getDerived().TransformType(TLB, FromTL); if (To.isNull()) return ExprError(); if (To == From->getType()) Args.push_back(From); else { Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); ArgChanged = true; } continue; } ArgChanged = true; // We have a pack expansion. Instantiate it. PackExpansionTypeLoc ExpansionTL = FromTL.castAs(); TypeLoc PatternTL = ExpansionTL.getPatternLoc(); SmallVector Unexpanded; SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; std::optional OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions(); std::optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), PatternTL.getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return ExprError(); if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); TypeLocBuilder TLB; TLB.reserve(From->getTypeLoc().getFullDataSize()); QualType To = getDerived().TransformType(TLB, PatternTL); if (To.isNull()) return ExprError(); To = getDerived().RebuildPackExpansionType(To, PatternTL.getSourceRange(), ExpansionTL.getEllipsisLoc(), NumExpansions); if (To.isNull()) return ExprError(); PackExpansionTypeLoc ToExpansionTL = TLB.push(To); ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); continue; } // Expand the pack expansion by substituting for each argument in the // pack(s). for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); TypeLocBuilder TLB; TLB.reserve(PatternTL.getFullDataSize()); QualType To = getDerived().TransformType(TLB, PatternTL); if (To.isNull()) return ExprError(); if (To->containsUnexpandedParameterPack()) { To = getDerived().RebuildPackExpansionType(To, PatternTL.getSourceRange(), ExpansionTL.getEllipsisLoc(), NumExpansions); if (To.isNull()) return ExprError(); PackExpansionTypeLoc ToExpansionTL = TLB.push(To); ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); } Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); } if (!RetainExpansion) continue; // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. ForgetPartiallySubstitutedPackRAII Forget(getDerived()); TypeLocBuilder TLB; TLB.reserve(From->getTypeLoc().getFullDataSize()); QualType To = getDerived().TransformType(TLB, PatternTL); if (To.isNull()) return ExprError(); To = getDerived().RebuildPackExpansionType(To, PatternTL.getSourceRange(), ExpansionTL.getEllipsisLoc(), NumExpansions); if (To.isNull()) return ExprError(); PackExpansionTypeLoc ToExpansionTL = TLB.push(To); ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); } if (!getDerived().AlwaysRebuild() && !ArgChanged) return E; return getDerived().RebuildTypeTrait(E->getTrait(), E->getBeginLoc(), Args, E->getEndLoc()); } template ExprResult TreeTransform::TransformConceptSpecializationExpr( ConceptSpecializationExpr *E) { const ASTTemplateArgumentListInfo *Old = E->getTemplateArgsAsWritten(); TemplateArgumentListInfo TransArgs(Old->LAngleLoc, Old->RAngleLoc); if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(), Old->NumTemplateArgs, TransArgs)) return ExprError(); return getDerived().RebuildConceptSpecializationExpr( E->getNestedNameSpecifierLoc(), E->getTemplateKWLoc(), E->getConceptNameInfo(), E->getFoundDecl(), E->getNamedConcept(), &TransArgs); } template ExprResult TreeTransform::TransformRequiresExpr(RequiresExpr *E) { SmallVector TransParams; SmallVector TransParamTypes; Sema::ExtParameterInfoBuilder ExtParamInfos; // C++2a [expr.prim.req]p2 // Expressions appearing within a requirement-body are unevaluated operands. EnterExpressionEvaluationContext Ctx( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, Sema::ReuseLambdaContextDecl); RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create( getSema().Context, getSema().CurContext, E->getBody()->getBeginLoc()); Sema::ContextRAII SavedContext(getSema(), Body, /*NewThisContext*/false); ExprResult TypeParamResult = getDerived().TransformRequiresTypeParams( E->getRequiresKWLoc(), E->getRBraceLoc(), E, Body, E->getLocalParameters(), TransParamTypes, TransParams, ExtParamInfos); for (ParmVarDecl *Param : TransParams) if (Param) Param->setDeclContext(Body); // On failure to transform, TransformRequiresTypeParams returns an expression // in the event that the transformation of the type params failed in some way. // It is expected that this will result in a 'not satisfied' Requires clause // when instantiating. if (!TypeParamResult.isUnset()) return TypeParamResult; SmallVector TransReqs; if (getDerived().TransformRequiresExprRequirements(E->getRequirements(), TransReqs)) return ExprError(); for (concepts::Requirement *Req : TransReqs) { if (auto *ER = dyn_cast(Req)) { if (ER->getReturnTypeRequirement().isTypeConstraint()) { ER->getReturnTypeRequirement() .getTypeConstraintTemplateParameterList()->getParam(0) ->setDeclContext(Body); } } } return getDerived().RebuildRequiresExpr( E->getRequiresKWLoc(), Body, E->getLParenLoc(), TransParams, E->getRParenLoc(), TransReqs, E->getRBraceLoc()); } template bool TreeTransform::TransformRequiresExprRequirements( ArrayRef Reqs, SmallVectorImpl &Transformed) { for (concepts::Requirement *Req : Reqs) { concepts::Requirement *TransReq = nullptr; if (auto *TypeReq = dyn_cast(Req)) TransReq = getDerived().TransformTypeRequirement(TypeReq); else if (auto *ExprReq = dyn_cast(Req)) TransReq = getDerived().TransformExprRequirement(ExprReq); else TransReq = getDerived().TransformNestedRequirement( cast(Req)); if (!TransReq) return true; Transformed.push_back(TransReq); } return false; } template concepts::TypeRequirement * TreeTransform::TransformTypeRequirement( concepts::TypeRequirement *Req) { if (Req->isSubstitutionFailure()) { if (getDerived().AlwaysRebuild()) return getDerived().RebuildTypeRequirement( Req->getSubstitutionDiagnostic()); return Req; } TypeSourceInfo *TransType = getDerived().TransformType(Req->getType()); if (!TransType) return nullptr; return getDerived().RebuildTypeRequirement(TransType); } template concepts::ExprRequirement * TreeTransform::TransformExprRequirement(concepts::ExprRequirement *Req) { llvm::PointerUnion TransExpr; if (Req->isExprSubstitutionFailure()) TransExpr = Req->getExprSubstitutionDiagnostic(); else { ExprResult TransExprRes = getDerived().TransformExpr(Req->getExpr()); if (TransExprRes.isUsable() && TransExprRes.get()->hasPlaceholderType()) TransExprRes = SemaRef.CheckPlaceholderExpr(TransExprRes.get()); if (TransExprRes.isInvalid()) return nullptr; TransExpr = TransExprRes.get(); } std::optional TransRetReq; const auto &RetReq = Req->getReturnTypeRequirement(); if (RetReq.isEmpty()) TransRetReq.emplace(); else if (RetReq.isSubstitutionFailure()) TransRetReq.emplace(RetReq.getSubstitutionDiagnostic()); else if (RetReq.isTypeConstraint()) { TemplateParameterList *OrigTPL = RetReq.getTypeConstraintTemplateParameterList(); TemplateParameterList *TPL = getDerived().TransformTemplateParameterList(OrigTPL); if (!TPL) return nullptr; TransRetReq.emplace(TPL); } assert(TransRetReq && "All code paths leading here must set TransRetReq"); if (Expr *E = TransExpr.dyn_cast()) return getDerived().RebuildExprRequirement(E, Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq)); return getDerived().RebuildExprRequirement( TransExpr.get(), Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq)); } template concepts::NestedRequirement * TreeTransform::TransformNestedRequirement( concepts::NestedRequirement *Req) { if (Req->hasInvalidConstraint()) { if (getDerived().AlwaysRebuild()) return getDerived().RebuildNestedRequirement( Req->getInvalidConstraintEntity(), Req->getConstraintSatisfaction()); return Req; } ExprResult TransConstraint = getDerived().TransformExpr(Req->getConstraintExpr()); if (TransConstraint.isInvalid()) return nullptr; return getDerived().RebuildNestedRequirement(TransConstraint.get()); } template ExprResult TreeTransform::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) { TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo()); if (!T) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getQueriedTypeSourceInfo()) return E; ExprResult SubExpr; { EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); SubExpr = getDerived().TransformExpr(E->getDimensionExpression()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression()) return E; } return getDerived().RebuildArrayTypeTrait(E->getTrait(), E->getBeginLoc(), T, SubExpr.get(), E->getEndLoc()); } template ExprResult TreeTransform::TransformExpressionTraitExpr(ExpressionTraitExpr *E) { ExprResult SubExpr; { EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); SubExpr = getDerived().TransformExpr(E->getQueriedExpression()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression()) return E; } return getDerived().RebuildExpressionTrait(E->getTrait(), E->getBeginLoc(), SubExpr.get(), E->getEndLoc()); } template ExprResult TreeTransform::TransformParenDependentScopeDeclRefExpr( ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken, TypeSourceInfo **RecoveryTSI) { ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr( DRE, AddrTaken, RecoveryTSI); // Propagate both errors and recovered types, which return ExprEmpty. if (!NewDRE.isUsable()) return NewDRE; // We got an expr, wrap it up in parens. if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE) return PE; return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(), PE->getRParen()); } template ExprResult TreeTransform::TransformDependentScopeDeclRefExpr( DependentScopeDeclRefExpr *E) { return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false, nullptr); } template ExprResult TreeTransform::TransformDependentScopeDeclRefExpr( DependentScopeDeclRefExpr *E, bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) { assert(E->getQualifierLoc()); NestedNameSpecifierLoc QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); if (!QualifierLoc) return ExprError(); SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); // TODO: If this is a conversion-function-id, verify that the // destination type name (if present) resolves the same way after // instantiation as it did in the local scope. DeclarationNameInfo NameInfo = getDerived().TransformDeclarationNameInfo(E->getNameInfo()); if (!NameInfo.getName()) return ExprError(); if (!E->hasExplicitTemplateArgs()) { if (!getDerived().AlwaysRebuild() && QualifierLoc == E->getQualifierLoc() && // Note: it is sufficient to compare the Name component of NameInfo: // if name has not changed, DNLoc has not changed either. NameInfo.getName() == E->getDeclName()) return E; return getDerived().RebuildDependentScopeDeclRefExpr( QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr, IsAddressOfOperand, RecoveryTSI); } TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); if (getDerived().TransformTemplateArguments( E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) return ExprError(); return getDerived().RebuildDependentScopeDeclRefExpr( QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand, RecoveryTSI); } template ExprResult TreeTransform::TransformCXXConstructExpr(CXXConstructExpr *E) { // CXXConstructExprs other than for list-initialization and // CXXTemporaryObjectExpr are always implicit, so when we have // a 1-argument construction we just transform that argument. if (getDerived().AllowSkippingCXXConstructExpr() && ((E->getNumArgs() == 1 || (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) && (!getDerived().DropCallArgument(E->getArg(0))) && !E->isListInitialization())) return getDerived().TransformInitializer(E->getArg(0), /*DirectInit*/ false); TemporaryBase Rebase(*this, /*FIXME*/ E->getBeginLoc(), DeclarationName()); QualType T = getDerived().TransformType(E->getType()); if (T.isNull()) return ExprError(); CXXConstructorDecl *Constructor = cast_or_null( getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); if (!Constructor) return ExprError(); bool ArgumentChanged = false; SmallVector Args; { EnterExpressionEvaluationContext Context( getSema(), EnterExpressionEvaluationContext::InitList, E->isListInitialization()); if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, &ArgumentChanged)) return ExprError(); } if (!getDerived().AlwaysRebuild() && T == E->getType() && Constructor == E->getConstructor() && !ArgumentChanged) { // Mark the constructor as referenced. // FIXME: Instantiation-specific SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); return E; } return getDerived().RebuildCXXConstructExpr( T, /*FIXME:*/ E->getBeginLoc(), Constructor, E->isElidable(), Args, E->hadMultipleCandidates(), E->isListInitialization(), E->isStdInitListInitialization(), E->requiresZeroInitialization(), E->getConstructionKind(), E->getParenOrBraceRange()); } template ExprResult TreeTransform::TransformCXXInheritedCtorInitExpr( CXXInheritedCtorInitExpr *E) { QualType T = getDerived().TransformType(E->getType()); if (T.isNull()) return ExprError(); CXXConstructorDecl *Constructor = cast_or_null( getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); if (!Constructor) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getType() && Constructor == E->getConstructor()) { // Mark the constructor as referenced. // FIXME: Instantiation-specific SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); return E; } return getDerived().RebuildCXXInheritedCtorInitExpr( T, E->getLocation(), Constructor, E->constructsVBase(), E->inheritedFromVBase()); } /// Transform a C++ temporary-binding expression. /// /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just /// transform the subexpression and return that. template ExprResult TreeTransform::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { if (auto *Dtor = E->getTemporary()->getDestructor()) SemaRef.MarkFunctionReferenced(E->getBeginLoc(), const_cast(Dtor)); return getDerived().TransformExpr(E->getSubExpr()); } /// Transform a C++ expression that contains cleanups that should /// be run after the expression is evaluated. /// /// Since ExprWithCleanups nodes are implicitly generated, we /// just transform the subexpression and return that. template ExprResult TreeTransform::TransformExprWithCleanups(ExprWithCleanups *E) { return getDerived().TransformExpr(E->getSubExpr()); } template ExprResult TreeTransform::TransformCXXTemporaryObjectExpr( CXXTemporaryObjectExpr *E) { TypeSourceInfo *T = getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo()); if (!T) return ExprError(); CXXConstructorDecl *Constructor = cast_or_null( getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); if (!Constructor) return ExprError(); bool ArgumentChanged = false; SmallVector Args; Args.reserve(E->getNumArgs()); { EnterExpressionEvaluationContext Context( getSema(), EnterExpressionEvaluationContext::InitList, E->isListInitialization()); if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, &ArgumentChanged)) return ExprError(); } if (!getDerived().AlwaysRebuild() && T == E->getTypeSourceInfo() && Constructor == E->getConstructor() && !ArgumentChanged) { // FIXME: Instantiation-specific SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); return SemaRef.MaybeBindToTemporary(E); } // FIXME: We should just pass E->isListInitialization(), but we're not // prepared to handle list-initialization without a child InitListExpr. SourceLocation LParenLoc = T->getTypeLoc().getEndLoc(); return getDerived().RebuildCXXTemporaryObjectExpr( T, LParenLoc, Args, E->getEndLoc(), /*ListInitialization=*/LParenLoc.isInvalid()); } template ExprResult TreeTransform::TransformLambdaExpr(LambdaExpr *E) { // Transform any init-capture expressions before entering the scope of the // lambda body, because they are not semantically within that scope. typedef std::pair InitCaptureInfoTy; struct TransformedInitCapture { // The location of the ... if the result is retaining a pack expansion. SourceLocation EllipsisLoc; // Zero or more expansions of the init-capture. SmallVector Expansions; }; SmallVector InitCaptures; InitCaptures.resize(E->explicit_capture_end() - E->explicit_capture_begin()); for (LambdaExpr::capture_iterator C = E->capture_begin(), CEnd = E->capture_end(); C != CEnd; ++C) { if (!E->isInitCapture(C)) continue; TransformedInitCapture &Result = InitCaptures[C - E->capture_begin()]; auto *OldVD = cast(C->getCapturedVar()); auto SubstInitCapture = [&](SourceLocation EllipsisLoc, std::optional NumExpansions) { ExprResult NewExprInitResult = getDerived().TransformInitializer( OldVD->getInit(), OldVD->getInitStyle() == VarDecl::CallInit); if (NewExprInitResult.isInvalid()) { Result.Expansions.push_back(InitCaptureInfoTy(ExprError(), QualType())); return; } Expr *NewExprInit = NewExprInitResult.get(); QualType NewInitCaptureType = getSema().buildLambdaInitCaptureInitialization( C->getLocation(), C->getCaptureKind() == LCK_ByRef, EllipsisLoc, NumExpansions, OldVD->getIdentifier(), cast(C->getCapturedVar())->getInitStyle() != VarDecl::CInit, NewExprInit); Result.Expansions.push_back( InitCaptureInfoTy(NewExprInit, NewInitCaptureType)); }; // If this is an init-capture pack, consider expanding the pack now. if (OldVD->isParameterPack()) { PackExpansionTypeLoc ExpansionTL = OldVD->getTypeSourceInfo() ->getTypeLoc() .castAs(); SmallVector Unexpanded; SemaRef.collectUnexpandedParameterPacks(OldVD->getInit(), Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; std::optional OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions(); std::optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks( ExpansionTL.getEllipsisLoc(), OldVD->getInit()->getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return ExprError(); if (Expand) { for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); SubstInitCapture(SourceLocation(), std::nullopt); } } if (!Expand || RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); SubstInitCapture(ExpansionTL.getEllipsisLoc(), NumExpansions); Result.EllipsisLoc = ExpansionTL.getEllipsisLoc(); } } else { SubstInitCapture(SourceLocation(), std::nullopt); } } LambdaScopeInfo *LSI = getSema().PushLambdaScope(); Sema::FunctionScopeRAII FuncScopeCleanup(getSema()); // Create the local class that will describe the lambda. // FIXME: DependencyKind below is wrong when substituting inside a templated // context that isn't a DeclContext (such as a variable template), or when // substituting an unevaluated lambda inside of a function's parameter's type // - as parameter types are not instantiated from within a function's DC. We // use evaluation contexts to distinguish the function parameter case. CXXRecordDecl::LambdaDependencyKind DependencyKind = CXXRecordDecl::LDK_Unknown; DeclContext *DC = getSema().CurContext; // A RequiresExprBodyDecl is not interesting for dependencies. // For the following case, // // template // concept C = requires { [] {}; }; // // template // struct Widget; // // template // struct Widget {}; // // While we are substituting Widget, the parent of DC would be // the template specialization itself. Thus, the lambda expression // will be deemed as dependent even if there are no dependent template // arguments. // (A ClassTemplateSpecializationDecl is always a dependent context.) while (DC->isRequiresExprBody()) DC = DC->getParent(); if ((getSema().isUnevaluatedContext() || getSema().isConstantEvaluatedContext()) && (DC->isFileContext() || !DC->getParent()->isDependentContext())) DependencyKind = CXXRecordDecl::LDK_NeverDependent; CXXRecordDecl *OldClass = E->getLambdaClass(); CXXRecordDecl *Class = getSema().createLambdaClosureType( E->getIntroducerRange(), /*Info=*/nullptr, DependencyKind, E->getCaptureDefault()); getDerived().transformedLocalDecl(OldClass, {Class}); CXXMethodDecl *NewCallOperator = getSema().CreateLambdaCallOperator(E->getIntroducerRange(), Class); NewCallOperator->setLexicalDeclContext(getSema().CurContext); // Enter the scope of the lambda. getSema().buildLambdaScope(LSI, NewCallOperator, E->getIntroducerRange(), E->getCaptureDefault(), E->getCaptureDefaultLoc(), E->hasExplicitParameters(), E->isMutable()); // Introduce the context of the call operator. Sema::ContextRAII SavedContext(getSema(), NewCallOperator, /*NewThisContext*/false); bool Invalid = false; // Transform captures. for (LambdaExpr::capture_iterator C = E->capture_begin(), CEnd = E->capture_end(); C != CEnd; ++C) { // When we hit the first implicit capture, tell Sema that we've finished // the list of explicit captures. if (C->isImplicit()) break; // Capturing 'this' is trivial. if (C->capturesThis()) { // If this is a lambda that is part of a default member initialiser // and which we're instantiating outside the class that 'this' is // supposed to refer to, adjust the type of 'this' accordingly. // // Otherwise, leave the type of 'this' as-is. Sema::CXXThisScopeRAII ThisScope( getSema(), dyn_cast_if_present( getSema().getFunctionLevelDeclContext()), Qualifiers()); getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(), /*BuildAndDiagnose*/ true, nullptr, C->getCaptureKind() == LCK_StarThis); continue; } // Captured expression will be recaptured during captured variables // rebuilding. if (C->capturesVLAType()) continue; // Rebuild init-captures, including the implied field declaration. if (E->isInitCapture(C)) { TransformedInitCapture &NewC = InitCaptures[C - E->capture_begin()]; auto *OldVD = cast(C->getCapturedVar()); llvm::SmallVector NewVDs; for (InitCaptureInfoTy &Info : NewC.Expansions) { ExprResult Init = Info.first; QualType InitQualType = Info.second; if (Init.isInvalid() || InitQualType.isNull()) { Invalid = true; break; } VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl( OldVD->getLocation(), InitQualType, NewC.EllipsisLoc, OldVD->getIdentifier(), OldVD->getInitStyle(), Init.get(), getSema().CurContext); if (!NewVD) { Invalid = true; break; } NewVDs.push_back(NewVD); getSema().addInitCapture(LSI, NewVD, C->getCaptureKind() == LCK_ByRef); } if (Invalid) break; getDerived().transformedLocalDecl(OldVD, NewVDs); continue; } assert(C->capturesVariable() && "unexpected kind of lambda capture"); // Determine the capture kind for Sema. Sema::TryCaptureKind Kind = C->isImplicit()? Sema::TryCapture_Implicit : C->getCaptureKind() == LCK_ByCopy ? Sema::TryCapture_ExplicitByVal : Sema::TryCapture_ExplicitByRef; SourceLocation EllipsisLoc; if (C->isPackExpansion()) { UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation()); bool ShouldExpand = false; bool RetainExpansion = false; std::optional NumExpansions; if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(), C->getLocation(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) { Invalid = true; continue; } if (ShouldExpand) { // The transform has determined that we should perform an expansion; // transform and capture each of the arguments. // expansion of the pattern. Do so. auto *Pack = cast(C->getCapturedVar()); for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); VarDecl *CapturedVar = cast_or_null(getDerived().TransformDecl(C->getLocation(), Pack)); if (!CapturedVar) { Invalid = true; continue; } // Capture the transformed variable. getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind); } // FIXME: Retain a pack expansion if RetainExpansion is true. continue; } EllipsisLoc = C->getEllipsisLoc(); } // Transform the captured variable. auto *CapturedVar = cast_or_null( getDerived().TransformDecl(C->getLocation(), C->getCapturedVar())); if (!CapturedVar || CapturedVar->isInvalidDecl()) { Invalid = true; continue; } // Capture the transformed variable. getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind, EllipsisLoc); } getSema().finishLambdaExplicitCaptures(LSI); // Transform the template parameters, and add them to the current // instantiation scope. The null case is handled correctly. auto TPL = getDerived().TransformTemplateParameterList( E->getTemplateParameterList()); LSI->GLTemplateParameterList = TPL; if (TPL) getSema().AddTemplateParametersToLambdaCallOperator(NewCallOperator, Class, TPL); // Transform the type of the original lambda's call operator. // The transformation MUST be done in the CurrentInstantiationScope since // it introduces a mapping of the original to the newly created // transformed parameters. TypeSourceInfo *NewCallOpTSI = nullptr; { auto OldCallOpTypeLoc = E->getCallOperator()->getTypeSourceInfo()->getTypeLoc(); auto TransformFunctionProtoTypeLoc = [this](TypeLocBuilder &TLB, FunctionProtoTypeLoc FPTL) -> QualType { SmallVector ExceptionStorage; return this->TransformFunctionProtoType( TLB, FPTL, nullptr, Qualifiers(), [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) { return TransformExceptionSpec(FPTL.getBeginLoc(), ESI, ExceptionStorage, Changed); }); }; QualType NewCallOpType; TypeLocBuilder NewCallOpTLBuilder; if (auto ATL = OldCallOpTypeLoc.getAs()) { NewCallOpType = this->TransformAttributedType( NewCallOpTLBuilder, ATL, [&](TypeLocBuilder &TLB, TypeLoc TL) -> QualType { return TransformFunctionProtoTypeLoc( TLB, TL.castAs()); }); } else { auto FPTL = OldCallOpTypeLoc.castAs(); NewCallOpType = TransformFunctionProtoTypeLoc(NewCallOpTLBuilder, FPTL); } if (NewCallOpType.isNull()) return ExprError(); NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context, NewCallOpType); } ArrayRef Params; if (auto ATL = NewCallOpTSI->getTypeLoc().getAs()) { Params = ATL.getModifiedLoc().castAs().getParams(); } else { auto FPTL = NewCallOpTSI->getTypeLoc().castAs(); Params = FPTL.getParams(); } getSema().CompleteLambdaCallOperator( NewCallOperator, E->getCallOperator()->getLocation(), E->getCallOperator()->getInnerLocStart(), E->getCallOperator()->getTrailingRequiresClause(), NewCallOpTSI, E->getCallOperator()->getConstexprKind(), E->getCallOperator()->getStorageClass(), Params, E->hasExplicitResultType()); getDerived().transformAttrs(E->getCallOperator(), NewCallOperator); getDerived().transformedLocalDecl(E->getCallOperator(), {NewCallOperator}); { // Number the lambda for linkage purposes if necessary. Sema::ContextRAII ManglingContext(getSema(), Class->getDeclContext()); std::optional Numbering; if (getDerived().ReplacingOriginal()) { Numbering = OldClass->getLambdaNumbering(); } getSema().handleLambdaNumbering(Class, NewCallOperator, Numbering); } // FIXME: Sema's lambda-building mechanism expects us to push an expression // evaluation context even if we're not transforming the function body. getSema().PushExpressionEvaluationContext( E->getCallOperator()->isConsteval() ? Sema::ExpressionEvaluationContext::ImmediateFunctionContext : Sema::ExpressionEvaluationContext::PotentiallyEvaluated); getSema().currentEvaluationContext().InImmediateEscalatingFunctionContext = getSema().getLangOpts().CPlusPlus20 && E->getCallOperator()->isImmediateEscalating(); Sema::CodeSynthesisContext C; C.Kind = clang::Sema::CodeSynthesisContext::LambdaExpressionSubstitution; C.PointOfInstantiation = E->getBody()->getBeginLoc(); getSema().pushCodeSynthesisContext(C); // Instantiate the body of the lambda expression. StmtResult Body = Invalid ? StmtError() : getDerived().TransformLambdaBody(E, E->getBody()); getSema().popCodeSynthesisContext(); // ActOnLambda* will pop the function scope for us. FuncScopeCleanup.disable(); if (Body.isInvalid()) { SavedContext.pop(); getSema().ActOnLambdaError(E->getBeginLoc(), /*CurScope=*/nullptr, /*IsInstantiation=*/true); return ExprError(); } // Copy the LSI before ActOnFinishFunctionBody removes it. // FIXME: This is dumb. Store the lambda information somewhere that outlives // the call operator. auto LSICopy = *LSI; getSema().ActOnFinishFunctionBody(NewCallOperator, Body.get(), /*IsInstantiation*/ true); SavedContext.pop(); // Recompute the dependency of the lambda so that we can defer the lambda call // construction until after we have all the necessary template arguments. For // example, given // // template struct S { // template // using Type = decltype([](U){}(42.0)); // }; // void foo() { // using T = S::Type; // ^~~~~~ // } // // We would end up here from instantiating S when ensuring its // completeness. That would transform the lambda call expression regardless of // the absence of the corresponding argument for U. // // Going ahead with unsubstituted type U makes things worse: we would soon // compare the argument type (which is float) against the parameter U // somewhere in Sema::BuildCallExpr. Then we would quickly run into a bogus // error suggesting unmatched types 'U' and 'float'! // // That said, everything will be fine if we defer that semantic checking. // Fortunately, we have such a mechanism that bypasses it if the CallExpr is // dependent. Since the CallExpr's dependency boils down to the lambda's // dependency in this case, we can harness that by recomputing the dependency // from the instantiation arguments. // // FIXME: Creating the type of a lambda requires us to have a dependency // value, which happens before its substitution. We update its dependency // *after* the substitution in case we can't decide the dependency // so early, e.g. because we want to see if any of the *substituted* // parameters are dependent. DependencyKind = getDerived().ComputeLambdaDependency(&LSICopy); Class->setLambdaDependencyKind(DependencyKind); // Clean up the type cache created previously. Then, we re-create a type for // such Decl with the new DependencyKind. Class->setTypeForDecl(nullptr); getSema().Context.getTypeDeclType(Class); return getSema().BuildLambdaExpr(E->getBeginLoc(), Body.get()->getEndLoc(), &LSICopy); } template StmtResult TreeTransform::TransformLambdaBody(LambdaExpr *E, Stmt *S) { return TransformStmt(S); } template StmtResult TreeTransform::SkipLambdaBody(LambdaExpr *E, Stmt *S) { // Transform captures. for (LambdaExpr::capture_iterator C = E->capture_begin(), CEnd = E->capture_end(); C != CEnd; ++C) { // When we hit the first implicit capture, tell Sema that we've finished // the list of explicit captures. if (!C->isImplicit()) continue; // Capturing 'this' is trivial. if (C->capturesThis()) { getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(), /*BuildAndDiagnose*/ true, nullptr, C->getCaptureKind() == LCK_StarThis); continue; } // Captured expression will be recaptured during captured variables // rebuilding. if (C->capturesVLAType()) continue; assert(C->capturesVariable() && "unexpected kind of lambda capture"); assert(!E->isInitCapture(C) && "implicit init-capture?"); // Transform the captured variable. VarDecl *CapturedVar = cast_or_null( getDerived().TransformDecl(C->getLocation(), C->getCapturedVar())); if (!CapturedVar || CapturedVar->isInvalidDecl()) return StmtError(); // Capture the transformed variable. getSema().tryCaptureVariable(CapturedVar, C->getLocation()); } return S; } template ExprResult TreeTransform::TransformCXXUnresolvedConstructExpr( CXXUnresolvedConstructExpr *E) { TypeSourceInfo *T = getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo()); if (!T) return ExprError(); bool ArgumentChanged = false; SmallVector Args; Args.reserve(E->getNumArgs()); { EnterExpressionEvaluationContext Context( getSema(), EnterExpressionEvaluationContext::InitList, E->isListInitialization()); if (getDerived().TransformExprs(E->arg_begin(), E->getNumArgs(), true, Args, &ArgumentChanged)) return ExprError(); } if (!getDerived().AlwaysRebuild() && T == E->getTypeSourceInfo() && !ArgumentChanged) return E; // FIXME: we're faking the locations of the commas return getDerived().RebuildCXXUnresolvedConstructExpr( T, E->getLParenLoc(), Args, E->getRParenLoc(), E->isListInitialization()); } template ExprResult TreeTransform::TransformCXXDependentScopeMemberExpr( CXXDependentScopeMemberExpr *E) { // Transform the base of the expression. ExprResult Base((Expr*) nullptr); Expr *OldBase; QualType BaseType; QualType ObjectType; if (!E->isImplicitAccess()) { OldBase = E->getBase(); Base = getDerived().TransformExpr(OldBase); if (Base.isInvalid()) return ExprError(); // Start the member reference and compute the object's type. ParsedType ObjectTy; bool MayBePseudoDestructor = false; Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(), E->getOperatorLoc(), E->isArrow()? tok::arrow : tok::period, ObjectTy, MayBePseudoDestructor); if (Base.isInvalid()) return ExprError(); ObjectType = ObjectTy.get(); BaseType = ((Expr*) Base.get())->getType(); } else { OldBase = nullptr; BaseType = getDerived().TransformType(E->getBaseType()); ObjectType = BaseType->castAs()->getPointeeType(); } // Transform the first part of the nested-name-specifier that qualifies // the member name. NamedDecl *FirstQualifierInScope = getDerived().TransformFirstQualifierInScope( E->getFirstQualifierFoundInScope(), E->getQualifierLoc().getBeginLoc()); NestedNameSpecifierLoc QualifierLoc; if (E->getQualifier()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(), ObjectType, FirstQualifierInScope); if (!QualifierLoc) return ExprError(); } SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); // TODO: If this is a conversion-function-id, verify that the // destination type name (if present) resolves the same way after // instantiation as it did in the local scope. DeclarationNameInfo NameInfo = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo()); if (!NameInfo.getName()) return ExprError(); if (!E->hasExplicitTemplateArgs()) { // This is a reference to a member without an explicitly-specified // template argument list. Optimize for this common case. if (!getDerived().AlwaysRebuild() && Base.get() == OldBase && BaseType == E->getBaseType() && QualifierLoc == E->getQualifierLoc() && NameInfo.getName() == E->getMember() && FirstQualifierInScope == E->getFirstQualifierFoundInScope()) return E; return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), BaseType, E->isArrow(), E->getOperatorLoc(), QualifierLoc, TemplateKWLoc, FirstQualifierInScope, NameInfo, /*TemplateArgs*/nullptr); } TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) return ExprError(); return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), BaseType, E->isArrow(), E->getOperatorLoc(), QualifierLoc, TemplateKWLoc, FirstQualifierInScope, NameInfo, &TransArgs); } template ExprResult TreeTransform::TransformUnresolvedMemberExpr( UnresolvedMemberExpr *Old) { // Transform the base of the expression. ExprResult Base((Expr *)nullptr); QualType BaseType; if (!Old->isImplicitAccess()) { Base = getDerived().TransformExpr(Old->getBase()); if (Base.isInvalid()) return ExprError(); Base = getSema().PerformMemberExprBaseConversion(Base.get(), Old->isArrow()); if (Base.isInvalid()) return ExprError(); BaseType = Base.get()->getType(); } else { BaseType = getDerived().TransformType(Old->getBaseType()); } NestedNameSpecifierLoc QualifierLoc; if (Old->getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); if (!QualifierLoc) return ExprError(); } SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); LookupResult R(SemaRef, Old->getMemberNameInfo(), Sema::LookupOrdinaryName); // Transform the declaration set. if (TransformOverloadExprDecls(Old, /*RequiresADL*/ false, R)) return ExprError(); // Determine the naming class. if (Old->getNamingClass()) { CXXRecordDecl *NamingClass = cast_or_null( getDerived().TransformDecl(Old->getMemberLoc(), Old->getNamingClass())); if (!NamingClass) return ExprError(); R.setNamingClass(NamingClass); } TemplateArgumentListInfo TransArgs; if (Old->hasExplicitTemplateArgs()) { TransArgs.setLAngleLoc(Old->getLAngleLoc()); TransArgs.setRAngleLoc(Old->getRAngleLoc()); if (getDerived().TransformTemplateArguments( Old->getTemplateArgs(), Old->getNumTemplateArgs(), TransArgs)) return ExprError(); } // FIXME: to do this check properly, we will need to preserve the // first-qualifier-in-scope here, just in case we had a dependent // base (and therefore couldn't do the check) and a // nested-name-qualifier (and therefore could do the lookup). NamedDecl *FirstQualifierInScope = nullptr; return getDerived().RebuildUnresolvedMemberExpr( Base.get(), BaseType, Old->getOperatorLoc(), Old->isArrow(), QualifierLoc, TemplateKWLoc, FirstQualifierInScope, R, (Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr)); } template ExprResult TreeTransform::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) { EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); ExprResult SubExpr = getDerived().TransformExpr(E->getOperand()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand()) return E; return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get()); } template ExprResult TreeTransform::TransformPackExpansionExpr(PackExpansionExpr *E) { ExprResult Pattern = getDerived().TransformExpr(E->getPattern()); if (Pattern.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern()) return E; return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(), E->getNumExpansions()); } template ExprResult TreeTransform::TransformSizeOfPackExpr(SizeOfPackExpr *E) { // If E is not value-dependent, then nothing will change when we transform it. // Note: This is an instantiation-centric view. if (!E->isValueDependent()) return E; EnterExpressionEvaluationContext Unevaluated( getSema(), Sema::ExpressionEvaluationContext::Unevaluated); ArrayRef PackArgs; TemplateArgument ArgStorage; // Find the argument list to transform. if (E->isPartiallySubstituted()) { PackArgs = E->getPartialArguments(); } else if (E->isValueDependent()) { UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc()); bool ShouldExpand = false; bool RetainExpansion = false; std::optional NumExpansions; if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) return ExprError(); // If we need to expand the pack, build a template argument from it and // expand that. if (ShouldExpand) { auto *Pack = E->getPack(); if (auto *TTPD = dyn_cast(Pack)) { ArgStorage = getSema().Context.getPackExpansionType( getSema().Context.getTypeDeclType(TTPD), std::nullopt); } else if (auto *TTPD = dyn_cast(Pack)) { ArgStorage = TemplateArgument(TemplateName(TTPD), std::nullopt); } else { auto *VD = cast(Pack); ExprResult DRE = getSema().BuildDeclRefExpr( VD, VD->getType().getNonLValueExprType(getSema().Context), VD->getType()->isReferenceType() ? VK_LValue : VK_PRValue, E->getPackLoc()); if (DRE.isInvalid()) return ExprError(); ArgStorage = new (getSema().Context) PackExpansionExpr(getSema().Context.DependentTy, DRE.get(), E->getPackLoc(), std::nullopt); } PackArgs = ArgStorage; } } // If we're not expanding the pack, just transform the decl. if (!PackArgs.size()) { auto *Pack = cast_or_null( getDerived().TransformDecl(E->getPackLoc(), E->getPack())); if (!Pack) return ExprError(); return getDerived().RebuildSizeOfPackExpr( E->getOperatorLoc(), Pack, E->getPackLoc(), E->getRParenLoc(), std::nullopt, std::nullopt); } // Try to compute the result without performing a partial substitution. std::optional Result = 0; for (const TemplateArgument &Arg : PackArgs) { if (!Arg.isPackExpansion()) { Result = *Result + 1; continue; } TemplateArgumentLoc ArgLoc; InventTemplateArgumentLoc(Arg, ArgLoc); // Find the pattern of the pack expansion. SourceLocation Ellipsis; std::optional OrigNumExpansions; TemplateArgumentLoc Pattern = getSema().getTemplateArgumentPackExpansionPattern(ArgLoc, Ellipsis, OrigNumExpansions); // Substitute under the pack expansion. Do not expand the pack (yet). TemplateArgumentLoc OutPattern; Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); if (getDerived().TransformTemplateArgument(Pattern, OutPattern, /*Uneval*/ true)) return true; // See if we can determine the number of arguments from the result. std::optional NumExpansions = getSema().getFullyPackExpandedSize(OutPattern.getArgument()); if (!NumExpansions) { // No: we must be in an alias template expansion, and we're going to need // to actually expand the packs. Result = std::nullopt; break; } Result = *Result + *NumExpansions; } // Common case: we could determine the number of expansions without // substituting. if (Result) return getDerived().RebuildSizeOfPackExpr( E->getOperatorLoc(), E->getPack(), E->getPackLoc(), E->getRParenLoc(), *Result, std::nullopt); TemplateArgumentListInfo TransformedPackArgs(E->getPackLoc(), E->getPackLoc()); { TemporaryBase Rebase(*this, E->getPackLoc(), getBaseEntity()); typedef TemplateArgumentLocInventIterator< Derived, const TemplateArgument*> PackLocIterator; if (TransformTemplateArguments(PackLocIterator(*this, PackArgs.begin()), PackLocIterator(*this, PackArgs.end()), TransformedPackArgs, /*Uneval*/true)) return ExprError(); } // Check whether we managed to fully-expand the pack. // FIXME: Is it possible for us to do so and not hit the early exit path? SmallVector Args; bool PartialSubstitution = false; for (auto &Loc : TransformedPackArgs.arguments()) { Args.push_back(Loc.getArgument()); if (Loc.getArgument().isPackExpansion()) PartialSubstitution = true; } if (PartialSubstitution) return getDerived().RebuildSizeOfPackExpr( E->getOperatorLoc(), E->getPack(), E->getPackLoc(), E->getRParenLoc(), std::nullopt, Args); return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(), E->getPackLoc(), E->getRParenLoc(), Args.size(), std::nullopt); } template ExprResult TreeTransform::TransformPackIndexingExpr(PackIndexingExpr *E) { if (!E->isValueDependent()) return E; // Transform the index ExprResult IndexExpr = getDerived().TransformExpr(E->getIndexExpr()); if (IndexExpr.isInvalid()) return ExprError(); SmallVector ExpandedExprs; if (!E->expandsToEmptyPack() && E->getExpressions().empty()) { Expr *Pattern = E->getPackIdExpression(); SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(E->getPackIdExpression(), Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool ShouldExpand = true; bool RetainExpansion = false; std::optional OrigNumExpansions; std::optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks( E->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) return true; if (!ShouldExpand) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); ExprResult Pack = getDerived().TransformExpr(Pattern); if (Pack.isInvalid()) return ExprError(); return getDerived().RebuildPackIndexingExpr( E->getEllipsisLoc(), E->getRSquareLoc(), Pack.get(), IndexExpr.get(), std::nullopt); } for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; if (Out.get()->containsUnexpandedParameterPack()) { Out = getDerived().RebuildPackExpansion(Out.get(), E->getEllipsisLoc(), OrigNumExpansions); if (Out.isInvalid()) return true; } ExpandedExprs.push_back(Out.get()); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; Out = getDerived().RebuildPackExpansion(Out.get(), E->getEllipsisLoc(), OrigNumExpansions); if (Out.isInvalid()) return true; ExpandedExprs.push_back(Out.get()); } } else if (!E->expandsToEmptyPack()) { if (getDerived().TransformExprs(E->getExpressions().data(), E->getExpressions().size(), false, ExpandedExprs)) return ExprError(); } return getDerived().RebuildPackIndexingExpr( E->getEllipsisLoc(), E->getRSquareLoc(), E->getPackIdExpression(), IndexExpr.get(), ExpandedExprs, /*EmptyPack=*/ExpandedExprs.size() == 0); } template ExprResult TreeTransform::TransformSubstNonTypeTemplateParmPackExpr( SubstNonTypeTemplateParmPackExpr *E) { // Default behavior is to do nothing with this transformation. return E; } template ExprResult TreeTransform::TransformSubstNonTypeTemplateParmExpr( SubstNonTypeTemplateParmExpr *E) { // Default behavior is to do nothing with this transformation. return E; } template ExprResult TreeTransform::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) { // Default behavior is to do nothing with this transformation. return E; } template ExprResult TreeTransform::TransformMaterializeTemporaryExpr( MaterializeTemporaryExpr *E) { return getDerived().TransformExpr(E->getSubExpr()); } template ExprResult TreeTransform::TransformCXXFoldExpr(CXXFoldExpr *E) { UnresolvedLookupExpr *Callee = nullptr; if (Expr *OldCallee = E->getCallee()) { ExprResult CalleeResult = getDerived().TransformExpr(OldCallee); if (CalleeResult.isInvalid()) return ExprError(); Callee = cast(CalleeResult.get()); } Expr *Pattern = E->getPattern(); SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; std::optional OrigNumExpansions = E->getNumExpansions(), NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return true; if (!Expand) { // Do not expand any packs here, just transform and rebuild a fold // expression. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); ExprResult LHS = E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult(); if (LHS.isInvalid()) return true; ExprResult RHS = E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult(); if (RHS.isInvalid()) return true; if (!getDerived().AlwaysRebuild() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; return getDerived().RebuildCXXFoldExpr( Callee, E->getBeginLoc(), LHS.get(), E->getOperator(), E->getEllipsisLoc(), RHS.get(), E->getEndLoc(), NumExpansions); } // Formally a fold expression expands to nested parenthesized expressions. // Enforce this limit to avoid creating trees so deep we can't safely traverse // them. if (NumExpansions && SemaRef.getLangOpts().BracketDepth < NumExpansions) { SemaRef.Diag(E->getEllipsisLoc(), clang::diag::err_fold_expression_limit_exceeded) << *NumExpansions << SemaRef.getLangOpts().BracketDepth << E->getSourceRange(); SemaRef.Diag(E->getEllipsisLoc(), diag::note_bracket_depth); return ExprError(); } // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. ExprResult Result = getDerived().TransformExpr(E->getInit()); if (Result.isInvalid()) return true; bool LeftFold = E->isLeftFold(); // If we're retaining an expansion for a right fold, it is the innermost // component and takes the init (if any). if (!LeftFold && RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; Result = getDerived().RebuildCXXFoldExpr( Callee, E->getBeginLoc(), Out.get(), E->getOperator(), E->getEllipsisLoc(), Result.get(), E->getEndLoc(), OrigNumExpansions); if (Result.isInvalid()) return true; } for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex( getSema(), LeftFold ? I : *NumExpansions - I - 1); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; if (Out.get()->containsUnexpandedParameterPack()) { // We still have a pack; retain a pack expansion for this slice. Result = getDerived().RebuildCXXFoldExpr( Callee, E->getBeginLoc(), LeftFold ? Result.get() : Out.get(), E->getOperator(), E->getEllipsisLoc(), LeftFold ? Out.get() : Result.get(), E->getEndLoc(), OrigNumExpansions); } else if (Result.isUsable()) { // We've got down to a single element; build a binary operator. Expr *LHS = LeftFold ? Result.get() : Out.get(); Expr *RHS = LeftFold ? Out.get() : Result.get(); if (Callee) { UnresolvedSet<16> Functions; Functions.append(Callee->decls_begin(), Callee->decls_end()); Result = getDerived().RebuildCXXOperatorCallExpr( BinaryOperator::getOverloadedOperator(E->getOperator()), E->getEllipsisLoc(), Callee->getBeginLoc(), Callee->requiresADL(), Functions, LHS, RHS); } else { Result = getDerived().RebuildBinaryOperator(E->getEllipsisLoc(), E->getOperator(), LHS, RHS); } } else Result = Out; if (Result.isInvalid()) return true; } // If we're retaining an expansion for a left fold, it is the outermost // component and takes the complete expansion so far as its init (if any). if (LeftFold && RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; Result = getDerived().RebuildCXXFoldExpr( Callee, E->getBeginLoc(), Result.get(), E->getOperator(), E->getEllipsisLoc(), Out.get(), E->getEndLoc(), OrigNumExpansions); if (Result.isInvalid()) return true; } // If we had no init and an empty pack, and we're not retaining an expansion, // then produce a fallback value or error. if (Result.isUnset()) return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(), E->getOperator()); return Result; } template ExprResult TreeTransform::TransformCXXParenListInitExpr(CXXParenListInitExpr *E) { SmallVector TransformedInits; ArrayRef InitExprs = E->getInitExprs(); if (TransformExprs(InitExprs.data(), InitExprs.size(), true, TransformedInits)) return ExprError(); return getDerived().RebuildParenListExpr(E->getBeginLoc(), TransformedInits, E->getEndLoc()); } template ExprResult TreeTransform::TransformCXXStdInitializerListExpr( CXXStdInitializerListExpr *E) { return getDerived().TransformExpr(E->getSubExpr()); } template ExprResult TreeTransform::TransformObjCStringLiteral(ObjCStringLiteral *E) { return SemaRef.MaybeBindToTemporary(E); } template ExprResult TreeTransform::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) { return E; } template ExprResult TreeTransform::TransformObjCBoxedExpr(ObjCBoxedExpr *E) { ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get()); } template ExprResult TreeTransform::TransformObjCArrayLiteral(ObjCArrayLiteral *E) { // Transform each of the elements. SmallVector Elements; bool ArgChanged = false; if (getDerived().TransformExprs(E->getElements(), E->getNumElements(), /*IsCall=*/false, Elements, &ArgChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(), Elements.data(), Elements.size()); } template ExprResult TreeTransform::TransformObjCDictionaryLiteral( ObjCDictionaryLiteral *E) { // Transform each of the elements. SmallVector Elements; bool ArgChanged = false; for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) { ObjCDictionaryElement OrigElement = E->getKeyValueElement(I); if (OrigElement.isPackExpansion()) { // This key/value element is a pack expansion. SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded); getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can // and should be expanded. bool Expand = true; bool RetainExpansion = false; std::optional OrigNumExpansions = OrigElement.NumExpansions; std::optional NumExpansions = OrigNumExpansions; SourceRange PatternRange(OrigElement.Key->getBeginLoc(), OrigElement.Value->getEndLoc()); if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc, PatternRange, Unexpanded, Expand, RetainExpansion, NumExpansions)) return ExprError(); if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); ExprResult Key = getDerived().TransformExpr(OrigElement.Key); if (Key.isInvalid()) return ExprError(); if (Key.get() != OrigElement.Key) ArgChanged = true; ExprResult Value = getDerived().TransformExpr(OrigElement.Value); if (Value.isInvalid()) return ExprError(); if (Value.get() != OrigElement.Value) ArgChanged = true; ObjCDictionaryElement Expansion = { Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions }; Elements.push_back(Expansion); continue; } // Record right away that the argument was changed. This needs // to happen even if the array expands to nothing. ArgChanged = true; // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ExprResult Key = getDerived().TransformExpr(OrigElement.Key); if (Key.isInvalid()) return ExprError(); ExprResult Value = getDerived().TransformExpr(OrigElement.Value); if (Value.isInvalid()) return ExprError(); ObjCDictionaryElement Element = { Key.get(), Value.get(), SourceLocation(), NumExpansions }; // If any unexpanded parameter packs remain, we still have a // pack expansion. // FIXME: Can this really happen? if (Key.get()->containsUnexpandedParameterPack() || Value.get()->containsUnexpandedParameterPack()) Element.EllipsisLoc = OrigElement.EllipsisLoc; Elements.push_back(Element); } // FIXME: Retain a pack expansion if RetainExpansion is true. // We've finished with this pack expansion. continue; } // Transform and check key. ExprResult Key = getDerived().TransformExpr(OrigElement.Key); if (Key.isInvalid()) return ExprError(); if (Key.get() != OrigElement.Key) ArgChanged = true; // Transform and check value. ExprResult Value = getDerived().TransformExpr(OrigElement.Value); if (Value.isInvalid()) return ExprError(); if (Value.get() != OrigElement.Value) ArgChanged = true; ObjCDictionaryElement Element = {Key.get(), Value.get(), SourceLocation(), std::nullopt}; Elements.push_back(Element); } if (!getDerived().AlwaysRebuild() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(), Elements); } template ExprResult TreeTransform::TransformObjCEncodeExpr(ObjCEncodeExpr *E) { TypeSourceInfo *EncodedTypeInfo = getDerived().TransformType(E->getEncodedTypeSourceInfo()); if (!EncodedTypeInfo) return ExprError(); if (!getDerived().AlwaysRebuild() && EncodedTypeInfo == E->getEncodedTypeSourceInfo()) return E; return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(), EncodedTypeInfo, E->getRParenLoc()); } template ExprResult TreeTransform:: TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) { // This is a kind of implicit conversion, and it needs to get dropped // and recomputed for the same general reasons that ImplicitCastExprs // do, as well a more specific one: this expression is only valid when // it appears *immediately* as an argument expression. return getDerived().TransformExpr(E->getSubExpr()); } template ExprResult TreeTransform:: TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) { TypeSourceInfo *TSInfo = getDerived().TransformType(E->getTypeInfoAsWritten()); if (!TSInfo) return ExprError(); ExprResult Result = getDerived().TransformExpr(E->getSubExpr()); if (Result.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && TSInfo == E->getTypeInfoAsWritten() && Result.get() == E->getSubExpr()) return E; return SemaRef.ObjC().BuildObjCBridgedCast( E->getLParenLoc(), E->getBridgeKind(), E->getBridgeKeywordLoc(), TSInfo, Result.get()); } template ExprResult TreeTransform::TransformObjCAvailabilityCheckExpr( ObjCAvailabilityCheckExpr *E) { return E; } template ExprResult TreeTransform::TransformObjCMessageExpr(ObjCMessageExpr *E) { // Transform arguments. bool ArgChanged = false; SmallVector Args; Args.reserve(E->getNumArgs()); if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args, &ArgChanged)) return ExprError(); if (E->getReceiverKind() == ObjCMessageExpr::Class) { // Class message: transform the receiver type. TypeSourceInfo *ReceiverTypeInfo = getDerived().TransformType(E->getClassReceiverTypeInfo()); if (!ReceiverTypeInfo) return ExprError(); // If nothing changed, just retain the existing message send. if (!getDerived().AlwaysRebuild() && ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); // Build a new class message send. SmallVector SelLocs; E->getSelectorLocs(SelLocs); return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo, E->getSelector(), SelLocs, E->getMethodDecl(), E->getLeftLoc(), Args, E->getRightLoc()); } else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass || E->getReceiverKind() == ObjCMessageExpr::SuperInstance) { if (!E->getMethodDecl()) return ExprError(); // Build a new class message send to 'super'. SmallVector SelLocs; E->getSelectorLocs(SelLocs); return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(), E->getSelector(), SelLocs, E->getReceiverType(), E->getMethodDecl(), E->getLeftLoc(), Args, E->getRightLoc()); } // Instance message: transform the receiver assert(E->getReceiverKind() == ObjCMessageExpr::Instance && "Only class and instance messages may be instantiated"); ExprResult Receiver = getDerived().TransformExpr(E->getInstanceReceiver()); if (Receiver.isInvalid()) return ExprError(); // If nothing changed, just retain the existing message send. if (!getDerived().AlwaysRebuild() && Receiver.get() == E->getInstanceReceiver() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); // Build a new instance message send. SmallVector SelLocs; E->getSelectorLocs(SelLocs); return getDerived().RebuildObjCMessageExpr(Receiver.get(), E->getSelector(), SelLocs, E->getMethodDecl(), E->getLeftLoc(), Args, E->getRightLoc()); } template ExprResult TreeTransform::TransformObjCSelectorExpr(ObjCSelectorExpr *E) { return E; } template ExprResult TreeTransform::TransformObjCProtocolExpr(ObjCProtocolExpr *E) { return E; } template ExprResult TreeTransform::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) { // Transform the base expression. ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); // We don't need to transform the ivar; it will never change. // If nothing changed, just retain the existing expression. if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase()) return E; return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(), E->getLocation(), E->isArrow(), E->isFreeIvar()); } template ExprResult TreeTransform::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { // 'super' and types never change. Property never changes. Just // retain the existing expression. if (!E->isObjectReceiver()) return E; // Transform the base expression. ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); // We don't need to transform the property; it will never change. // If nothing changed, just retain the existing expression. if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase()) return E; if (E->isExplicitProperty()) return getDerived().RebuildObjCPropertyRefExpr(Base.get(), E->getExplicitProperty(), E->getLocation()); return getDerived().RebuildObjCPropertyRefExpr(Base.get(), SemaRef.Context.PseudoObjectTy, E->getImplicitPropertyGetter(), E->getImplicitPropertySetter(), E->getLocation()); } template ExprResult TreeTransform::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) { // Transform the base expression. ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); if (Base.isInvalid()) return ExprError(); // Transform the key expression. ExprResult Key = getDerived().TransformExpr(E->getKeyExpr()); if (Key.isInvalid()) return ExprError(); // If nothing changed, just retain the existing expression. if (!getDerived().AlwaysRebuild() && Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr()) return E; return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(), Base.get(), Key.get(), E->getAtIndexMethodDecl(), E->setAtIndexMethodDecl()); } template ExprResult TreeTransform::TransformObjCIsaExpr(ObjCIsaExpr *E) { // Transform the base expression. ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); // If nothing changed, just retain the existing expression. if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase()) return E; return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(), E->getOpLoc(), E->isArrow()); } template ExprResult TreeTransform::TransformShuffleVectorExpr(ShuffleVectorExpr *E) { bool ArgumentChanged = false; SmallVector SubExprs; SubExprs.reserve(E->getNumSubExprs()); if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, SubExprs, &ArgumentChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && !ArgumentChanged) return E; return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(), SubExprs, E->getRParenLoc()); } template ExprResult TreeTransform::TransformConvertVectorExpr(ConvertVectorExpr *E) { ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr()); if (SrcExpr.isInvalid()) return ExprError(); TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); if (!Type) return ExprError(); if (!getDerived().AlwaysRebuild() && Type == E->getTypeSourceInfo() && SrcExpr.get() == E->getSrcExpr()) return E; return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(), SrcExpr.get(), Type, E->getRParenLoc()); } template ExprResult TreeTransform::TransformBlockExpr(BlockExpr *E) { BlockDecl *oldBlock = E->getBlockDecl(); SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr); BlockScopeInfo *blockScope = SemaRef.getCurBlock(); blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic()); blockScope->TheDecl->setBlockMissingReturnType( oldBlock->blockMissingReturnType()); SmallVector params; SmallVector paramTypes; const FunctionProtoType *exprFunctionType = E->getFunctionType(); // Parameter substitution. Sema::ExtParameterInfoBuilder extParamInfos; if (getDerived().TransformFunctionTypeParams( E->getCaretLocation(), oldBlock->parameters(), nullptr, exprFunctionType->getExtParameterInfosOrNull(), paramTypes, ¶ms, extParamInfos)) { getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr); return ExprError(); } QualType exprResultType = getDerived().TransformType(exprFunctionType->getReturnType()); auto epi = exprFunctionType->getExtProtoInfo(); epi.ExtParameterInfos = extParamInfos.getPointerOrNull(paramTypes.size()); QualType functionType = getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, epi); blockScope->FunctionType = functionType; // Set the parameters on the block decl. if (!params.empty()) blockScope->TheDecl->setParams(params); if (!oldBlock->blockMissingReturnType()) { blockScope->HasImplicitReturnType = false; blockScope->ReturnType = exprResultType; } // Transform the body StmtResult body = getDerived().TransformStmt(E->getBody()); if (body.isInvalid()) { getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr); return ExprError(); } #ifndef NDEBUG // In builds with assertions, make sure that we captured everything we // captured before. if (!SemaRef.getDiagnostics().hasErrorOccurred()) { for (const auto &I : oldBlock->captures()) { VarDecl *oldCapture = I.getVariable(); // Ignore parameter packs. if (oldCapture->isParameterPack()) continue; VarDecl *newCapture = cast(getDerived().TransformDecl(E->getCaretLocation(), oldCapture)); assert(blockScope->CaptureMap.count(newCapture)); } // The this pointer may not be captured by the instantiated block, even when // it's captured by the original block, if the expression causing the // capture is in the discarded branch of a constexpr if statement. assert((!blockScope->isCXXThisCaptured() || oldBlock->capturesCXXThis()) && "this pointer isn't captured in the old block"); } #endif return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(), /*Scope=*/nullptr); } template ExprResult TreeTransform::TransformAsTypeExpr(AsTypeExpr *E) { ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr()); if (SrcExpr.isInvalid()) return ExprError(); QualType Type = getDerived().TransformType(E->getType()); return SemaRef.BuildAsTypeExpr(SrcExpr.get(), Type, E->getBuiltinLoc(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformAtomicExpr(AtomicExpr *E) { bool ArgumentChanged = false; SmallVector SubExprs; SubExprs.reserve(E->getNumSubExprs()); if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, SubExprs, &ArgumentChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && !ArgumentChanged) return E; return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs, E->getOp(), E->getRParenLoc()); } //===----------------------------------------------------------------------===// // Type reconstruction //===----------------------------------------------------------------------===// template QualType TreeTransform::RebuildPointerType(QualType PointeeType, SourceLocation Star) { return SemaRef.BuildPointerType(PointeeType, Star, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildBlockPointerType(QualType PointeeType, SourceLocation Star) { return SemaRef.BuildBlockPointerType(PointeeType, Star, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildReferenceType(QualType ReferentType, bool WrittenAsLValue, SourceLocation Sigil) { return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue, Sigil, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildMemberPointerType(QualType PointeeType, QualType ClassType, SourceLocation Sigil) { return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildObjCTypeParamType( const ObjCTypeParamDecl *Decl, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc) { return SemaRef.ObjC().BuildObjCTypeParamType( Decl, ProtocolLAngleLoc, Protocols, ProtocolLocs, ProtocolRAngleLoc, /*FailOnError=*/true); } template QualType TreeTransform::RebuildObjCObjectType( QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc, ArrayRef TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc) { return SemaRef.ObjC().BuildObjCObjectType( BaseType, Loc, TypeArgsLAngleLoc, TypeArgs, TypeArgsRAngleLoc, ProtocolLAngleLoc, Protocols, ProtocolLocs, ProtocolRAngleLoc, /*FailOnError=*/true, /*Rebuilding=*/true); } template QualType TreeTransform::RebuildObjCObjectPointerType( QualType PointeeType, SourceLocation Star) { return SemaRef.Context.getObjCObjectPointerType(PointeeType); } template QualType TreeTransform::RebuildArrayType( QualType ElementType, ArraySizeModifier SizeMod, const llvm::APInt *Size, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { if (SizeExpr || !Size) return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr, IndexTypeQuals, BracketsRange, getDerived().getBaseEntity()); QualType Types[] = { SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy, SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy, SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty }; QualType SizeType; for (const auto &T : Types) if (Size->getBitWidth() == SemaRef.Context.getIntWidth(T)) { SizeType = T; break; } // Note that we can return a VariableArrayType here in the case where // the element type was a dependent VariableArrayType. IntegerLiteral *ArraySize = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType, /*FIXME*/BracketsRange.getBegin()); return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize, IndexTypeQuals, BracketsRange, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildConstantArrayType( QualType ElementType, ArraySizeModifier SizeMod, const llvm::APInt &Size, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, SizeExpr, IndexTypeQuals, BracketsRange); } template QualType TreeTransform::RebuildIncompleteArrayType( QualType ElementType, ArraySizeModifier SizeMod, unsigned IndexTypeQuals, SourceRange BracketsRange) { return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr, IndexTypeQuals, BracketsRange); } template QualType TreeTransform::RebuildVariableArrayType( QualType ElementType, ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, SizeExpr, IndexTypeQuals, BracketsRange); } template QualType TreeTransform::RebuildDependentSizedArrayType( QualType ElementType, ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, SizeExpr, IndexTypeQuals, BracketsRange); } template QualType TreeTransform::RebuildDependentAddressSpaceType( QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttributeLoc) { return SemaRef.BuildAddressSpaceAttr(PointeeType, AddrSpaceExpr, AttributeLoc); } template QualType TreeTransform::RebuildVectorType(QualType ElementType, unsigned NumElements, VectorKind VecKind) { // FIXME: semantic checking! return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind); } template QualType TreeTransform::RebuildDependentVectorType( QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc, VectorKind VecKind) { return SemaRef.BuildVectorType(ElementType, SizeExpr, AttributeLoc); } template QualType TreeTransform::RebuildExtVectorType(QualType ElementType, unsigned NumElements, SourceLocation AttributeLoc) { llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), NumElements, true); IntegerLiteral *VectorSize = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy, AttributeLoc); return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc); } template QualType TreeTransform::RebuildDependentSizedExtVectorType(QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc) { return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc); } template QualType TreeTransform::RebuildConstantMatrixType( QualType ElementType, unsigned NumRows, unsigned NumColumns) { return SemaRef.Context.getConstantMatrixType(ElementType, NumRows, NumColumns); } template QualType TreeTransform::RebuildDependentSizedMatrixType( QualType ElementType, Expr *RowExpr, Expr *ColumnExpr, SourceLocation AttributeLoc) { return SemaRef.BuildMatrixType(ElementType, RowExpr, ColumnExpr, AttributeLoc); } template QualType TreeTransform::RebuildFunctionProtoType( QualType T, MutableArrayRef ParamTypes, const FunctionProtoType::ExtProtoInfo &EPI) { return SemaRef.BuildFunctionType(T, ParamTypes, getDerived().getBaseLocation(), getDerived().getBaseEntity(), EPI); } template QualType TreeTransform::RebuildFunctionNoProtoType(QualType T) { return SemaRef.Context.getFunctionNoProtoType(T); } template QualType TreeTransform::RebuildUnresolvedUsingType(SourceLocation Loc, Decl *D) { assert(D && "no decl found"); if (D->isInvalidDecl()) return QualType(); // FIXME: Doesn't account for ObjCInterfaceDecl! if (auto *UPD = dyn_cast(D)) { // A valid resolved using typename pack expansion decl can have multiple // UsingDecls, but they must each have exactly one type, and it must be // the same type in every case. But we must have at least one expansion! if (UPD->expansions().empty()) { getSema().Diag(Loc, diag::err_using_pack_expansion_empty) << UPD->isCXXClassMember() << UPD; return QualType(); } // We might still have some unresolved types. Try to pick a resolved type // if we can. The final instantiation will check that the remaining // unresolved types instantiate to the type we pick. QualType FallbackT; QualType T; for (auto *E : UPD->expansions()) { QualType ThisT = RebuildUnresolvedUsingType(Loc, E); if (ThisT.isNull()) continue; else if (ThisT->getAs()) FallbackT = ThisT; else if (T.isNull()) T = ThisT; else assert(getSema().Context.hasSameType(ThisT, T) && "mismatched resolved types in using pack expansion"); } return T.isNull() ? FallbackT : T; } else if (auto *Using = dyn_cast(D)) { assert(Using->hasTypename() && "UnresolvedUsingTypenameDecl transformed to non-typename using"); // A valid resolved using typename decl points to exactly one type decl. assert(++Using->shadow_begin() == Using->shadow_end()); UsingShadowDecl *Shadow = *Using->shadow_begin(); if (SemaRef.DiagnoseUseOfDecl(Shadow->getTargetDecl(), Loc)) return QualType(); return SemaRef.Context.getUsingType( Shadow, SemaRef.Context.getTypeDeclType( cast(Shadow->getTargetDecl()))); } else { assert(isa(D) && "UnresolvedUsingTypenameDecl transformed to non-using decl"); return SemaRef.Context.getTypeDeclType( cast(D)); } } template QualType TreeTransform::RebuildTypeOfExprType(Expr *E, SourceLocation, TypeOfKind Kind) { return SemaRef.BuildTypeofExprType(E, Kind); } template QualType TreeTransform::RebuildTypeOfType(QualType Underlying, TypeOfKind Kind) { return SemaRef.Context.getTypeOfType(Underlying, Kind); } template QualType TreeTransform::RebuildDecltypeType(Expr *E, SourceLocation) { return SemaRef.BuildDecltypeType(E); } template QualType TreeTransform::RebuildPackIndexingType( QualType Pattern, Expr *IndexExpr, SourceLocation Loc, SourceLocation EllipsisLoc, bool FullySubstituted, ArrayRef Expansions) { return SemaRef.BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc, FullySubstituted, Expansions); } template QualType TreeTransform::RebuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc) { return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc); } template QualType TreeTransform::RebuildTemplateSpecializationType( TemplateName Template, SourceLocation TemplateNameLoc, TemplateArgumentListInfo &TemplateArgs) { return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); } template QualType TreeTransform::RebuildAtomicType(QualType ValueType, SourceLocation KWLoc) { return SemaRef.BuildAtomicType(ValueType, KWLoc); } template QualType TreeTransform::RebuildPipeType(QualType ValueType, SourceLocation KWLoc, bool isReadPipe) { return isReadPipe ? SemaRef.BuildReadPipeType(ValueType, KWLoc) : SemaRef.BuildWritePipeType(ValueType, KWLoc); } template QualType TreeTransform::RebuildBitIntType(bool IsUnsigned, unsigned NumBits, SourceLocation Loc) { llvm::APInt NumBitsAP(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), NumBits, true); IntegerLiteral *Bits = IntegerLiteral::Create(SemaRef.Context, NumBitsAP, SemaRef.Context.IntTy, Loc); return SemaRef.BuildBitIntType(IsUnsigned, Bits, Loc); } template QualType TreeTransform::RebuildDependentBitIntType( bool IsUnsigned, Expr *NumBitsExpr, SourceLocation Loc) { return SemaRef.BuildBitIntType(IsUnsigned, NumBitsExpr, Loc); } template TemplateName TreeTransform::RebuildTemplateName(CXXScopeSpec &SS, bool TemplateKW, TemplateDecl *Template) { return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW, TemplateName(Template)); } template TemplateName TreeTransform::RebuildTemplateName(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const IdentifierInfo &Name, SourceLocation NameLoc, QualType ObjectType, NamedDecl *FirstQualifierInScope, bool AllowInjectedClassName) { UnqualifiedId TemplateName; TemplateName.setIdentifier(&Name, NameLoc); Sema::TemplateTy Template; getSema().ActOnTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc, TemplateName, ParsedType::make(ObjectType), /*EnteringContext=*/false, Template, AllowInjectedClassName); return Template.get(); } template TemplateName TreeTransform::RebuildTemplateName(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, OverloadedOperatorKind Operator, SourceLocation NameLoc, QualType ObjectType, bool AllowInjectedClassName) { UnqualifiedId Name; // FIXME: Bogus location information. SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc }; Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations); Sema::TemplateTy Template; getSema().ActOnTemplateName( /*Scope=*/nullptr, SS, TemplateKWLoc, Name, ParsedType::make(ObjectType), /*EnteringContext=*/false, Template, AllowInjectedClassName); return Template.get(); } template ExprResult TreeTransform::RebuildCXXOperatorCallExpr( OverloadedOperatorKind Op, SourceLocation OpLoc, SourceLocation CalleeLoc, bool RequiresADL, const UnresolvedSetImpl &Functions, Expr *First, Expr *Second) { bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus); if (First->getObjectKind() == OK_ObjCProperty) { BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); if (BinaryOperator::isAssignmentOp(Opc)) return SemaRef.PseudoObject().checkAssignment(/*Scope=*/nullptr, OpLoc, Opc, First, Second); ExprResult Result = SemaRef.CheckPlaceholderExpr(First); if (Result.isInvalid()) return ExprError(); First = Result.get(); } if (Second && Second->getObjectKind() == OK_ObjCProperty) { ExprResult Result = SemaRef.CheckPlaceholderExpr(Second); if (Result.isInvalid()) return ExprError(); Second = Result.get(); } // Determine whether this should be a builtin operation. if (Op == OO_Subscript) { if (!First->getType()->isOverloadableType() && !Second->getType()->isOverloadableType()) return getSema().CreateBuiltinArraySubscriptExpr(First, CalleeLoc, Second, OpLoc); } else if (Op == OO_Arrow) { // It is possible that the type refers to a RecoveryExpr created earlier // in the tree transformation. if (First->getType()->isDependentType()) return ExprError(); // -> is never a builtin operation. return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc); } else if (Second == nullptr || isPostIncDec) { if (!First->getType()->isOverloadableType() || (Op == OO_Amp && getSema().isQualifiedMemberAccess(First))) { // The argument is not of overloadable type, or this is an expression // of the form &Class::member, so try to create a built-in unary // operation. UnaryOperatorKind Opc = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First); } } else { if (!First->isTypeDependent() && !Second->isTypeDependent() && !First->getType()->isOverloadableType() && !Second->getType()->isOverloadableType()) { // Neither of the arguments is type-dependent or has an overloadable // type, so try to create a built-in binary operation. BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); ExprResult Result = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second); if (Result.isInvalid()) return ExprError(); return Result; } } // Create the overloaded operator invocation for unary operators. if (!Second || isPostIncDec) { UnaryOperatorKind Opc = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First, RequiresADL); } // Create the overloaded operator invocation for binary operators. BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); ExprResult Result = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, First, Second, RequiresADL); if (Result.isInvalid()) return ExprError(); return Result; } template ExprResult TreeTransform::RebuildCXXPseudoDestructorExpr(Expr *Base, SourceLocation OperatorLoc, bool isArrow, CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage Destroyed) { QualType BaseType = Base->getType(); if (Base->isTypeDependent() || Destroyed.getIdentifier() || (!isArrow && !BaseType->getAs()) || (isArrow && BaseType->getAs() && !BaseType->castAs()->getPointeeType() ->template getAs())){ // This pseudo-destructor expression is still a pseudo-destructor. return SemaRef.BuildPseudoDestructorExpr( Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType, CCLoc, TildeLoc, Destroyed); } TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo(); DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName( SemaRef.Context.getCanonicalType(DestroyedType->getType()))); DeclarationNameInfo NameInfo(Name, Destroyed.getLocation()); NameInfo.setNamedTypeInfo(DestroyedType); // The scope type is now known to be a valid nested name specifier // component. Tack it on to the end of the nested name specifier. if (ScopeType) { if (!ScopeType->getType()->getAs()) { getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(), diag::err_expected_class_or_namespace) << ScopeType->getType() << getSema().getLangOpts().CPlusPlus; return ExprError(); } SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(), CCLoc); } SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. return getSema().BuildMemberReferenceExpr(Base, BaseType, OperatorLoc, isArrow, SS, TemplateKWLoc, /*FIXME: FirstQualifier*/ nullptr, NameInfo, /*TemplateArgs*/ nullptr, /*S*/nullptr); } template StmtResult TreeTransform::TransformCapturedStmt(CapturedStmt *S) { SourceLocation Loc = S->getBeginLoc(); CapturedDecl *CD = S->getCapturedDecl(); unsigned NumParams = CD->getNumParams(); unsigned ContextParamPos = CD->getContextParamPosition(); SmallVector Params; for (unsigned I = 0; I < NumParams; ++I) { if (I != ContextParamPos) { Params.push_back( std::make_pair( CD->getParam(I)->getName(), getDerived().TransformType(CD->getParam(I)->getType()))); } else { Params.push_back(std::make_pair(StringRef(), QualType())); } } getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr, S->getCapturedRegionKind(), Params); StmtResult Body; { Sema::CompoundScopeRAII CompoundScope(getSema()); Body = getDerived().TransformStmt(S->getCapturedStmt()); } if (Body.isInvalid()) { getSema().ActOnCapturedRegionError(); return StmtError(); } return getSema().ActOnCapturedRegionEnd(Body.get()); } } // end namespace clang #endif // LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H