//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception //===----------------------------------------------------------------------===/ // // This file implements C++ template instantiation for declarations. // //===----------------------------------------------------------------------===/ #include "TreeTransform.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/DependentDiagnostic.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/PrettyDeclStackTrace.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Template.h" #include "clang/Sema/TemplateInstCallback.h" #include "llvm/Support/TimeProfiler.h" using namespace clang; static bool isDeclWithinFunction(const Decl *D) { const DeclContext *DC = D->getDeclContext(); if (DC->isFunctionOrMethod()) return true; if (DC->isRecord()) return cast(DC)->isLocalClass(); return false; } template static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, const MultiLevelTemplateArgumentList &TemplateArgs) { if (!OldDecl->getQualifierLoc()) return false; assert((NewDecl->getFriendObjectKind() || !OldDecl->getLexicalDeclContext()->isDependentContext()) && "non-friend with qualified name defined in dependent context"); Sema::ContextRAII SavedContext( SemaRef, const_cast(NewDecl->getFriendObjectKind() ? NewDecl->getLexicalDeclContext() : OldDecl->getLexicalDeclContext())); NestedNameSpecifierLoc NewQualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), TemplateArgs); if (!NewQualifierLoc) return true; NewDecl->setQualifierInfo(NewQualifierLoc); return false; } bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, DeclaratorDecl *NewDecl) { return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); } bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, TagDecl *NewDecl) { return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); } // Include attribute instantiation code. #include "clang/Sema/AttrTemplateInstantiate.inc" static void instantiateDependentAlignedAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { if (Aligned->isAlignmentExpr()) { // The alignment expression is a constant expression. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); if (!Result.isInvalid()) S.AddAlignedAttr(New, *Aligned, Result.getAs(), IsPackExpansion); } else { TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(), TemplateArgs, Aligned->getLocation(), DeclarationName()); if (Result) S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion); } } static void instantiateDependentAlignedAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AlignedAttr *Aligned, Decl *New) { if (!Aligned->isPackExpansion()) { instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); return; } SmallVector Unexpanded; if (Aligned->isAlignmentExpr()) S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), Unexpanded); else S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether we can expand this attribute pack yet. bool Expand = true, RetainExpansion = false; Optional NumExpansions; // FIXME: Use the actual location of the ellipsis. SourceLocation EllipsisLoc = Aligned->getLocation(); if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpansions)) return; if (!Expand) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); } else { for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); } } } static void instantiateDependentAssumeAlignedAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AssumeAlignedAttr *Aligned, Decl *New) { // The alignment expression is a constant expression. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); Expr *E, *OE = nullptr; ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); if (Result.isInvalid()) return; E = Result.getAs(); if (Aligned->getOffset()) { Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); if (Result.isInvalid()) return; OE = Result.getAs(); } S.AddAssumeAlignedAttr(New, *Aligned, E, OE); } static void instantiateDependentAlignValueAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AlignValueAttr *Aligned, Decl *New) { // The alignment expression is a constant expression. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); if (!Result.isInvalid()) S.AddAlignValueAttr(New, *Aligned, Result.getAs()); } static void instantiateDependentAllocAlignAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AllocAlignAttr *Align, Decl *New) { Expr *Param = IntegerLiteral::Create( S.getASTContext(), llvm::APInt(64, Align->getParamIndex().getSourceIndex()), S.getASTContext().UnsignedLongLongTy, Align->getLocation()); S.AddAllocAlignAttr(New, *Align, Param); } static void instantiateDependentAnnotationAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AnnotateAttr *Attr, Decl *New) { EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); SmallVector Args; Args.reserve(Attr->args_size()); for (auto *E : Attr->args()) { ExprResult Result = S.SubstExpr(E, TemplateArgs); if (!Result.isUsable()) return; Args.push_back(Result.get()); } S.AddAnnotationAttr(New, *Attr, Attr->getAnnotation(), Args); } static Expr *instantiateDependentFunctionAttrCondition( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { Expr *Cond = nullptr; { Sema::ContextRAII SwitchContext(S, New); EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); if (Result.isInvalid()) return nullptr; Cond = Result.getAs(); } if (!Cond->isTypeDependent()) { ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); if (Converted.isInvalid()) return nullptr; Cond = Converted.get(); } SmallVector Diags; if (OldCond->isValueDependent() && !Cond->isValueDependent() && !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; for (const auto &P : Diags) S.Diag(P.first, P.second); return nullptr; } return Cond; } static void instantiateDependentEnableIfAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { Expr *Cond = instantiateDependentFunctionAttrCondition( S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); if (Cond) New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA, Cond, EIA->getMessage())); } static void instantiateDependentDiagnoseIfAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { Expr *Cond = instantiateDependentFunctionAttrCondition( S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); if (Cond) New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( S.getASTContext(), *DIA, Cond, DIA->getMessage(), DIA->getDiagnosticType(), DIA->getArgDependent(), New)); } // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using // template A as the base and arguments from TemplateArgs. static void instantiateDependentCUDALaunchBoundsAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const CUDALaunchBoundsAttr &Attr, Decl *New) { // The alignment expression is a constant expression. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); if (Result.isInvalid()) return; Expr *MaxThreads = Result.getAs(); Expr *MinBlocks = nullptr; if (Attr.getMinBlocks()) { Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); if (Result.isInvalid()) return; MinBlocks = Result.getAs(); } S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks); } static void instantiateDependentModeAttr(Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const ModeAttr &Attr, Decl *New) { S.AddModeAttr(New, Attr, Attr.getMode(), /*InInstantiation=*/true); } /// Instantiation of 'declare simd' attribute and its arguments. static void instantiateOMPDeclareSimdDeclAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const OMPDeclareSimdDeclAttr &Attr, Decl *New) { // Allow 'this' in clauses with varlists. if (auto *FTD = dyn_cast(New)) New = FTD->getTemplatedDecl(); auto *FD = cast(New); auto *ThisContext = dyn_cast_or_null(FD->getDeclContext()); SmallVector Uniforms, Aligneds, Alignments, Linears, Steps; SmallVector LinModifiers; auto SubstExpr = [&](Expr *E) -> ExprResult { if (auto *DRE = dyn_cast(E->IgnoreParenImpCasts())) if (auto *PVD = dyn_cast(DRE->getDecl())) { Sema::ContextRAII SavedContext(S, FD); LocalInstantiationScope Local(S); if (FD->getNumParams() > PVD->getFunctionScopeIndex()) Local.InstantiatedLocal( PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); return S.SubstExpr(E, TemplateArgs); } Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), FD->isCXXInstanceMember()); return S.SubstExpr(E, TemplateArgs); }; // Substitute a single OpenMP clause, which is a potentially-evaluated // full-expression. auto Subst = [&](Expr *E) -> ExprResult { EnterExpressionEvaluationContext Evaluated( S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); ExprResult Res = SubstExpr(E); if (Res.isInvalid()) return Res; return S.ActOnFinishFullExpr(Res.get(), false); }; ExprResult Simdlen; if (auto *E = Attr.getSimdlen()) Simdlen = Subst(E); if (Attr.uniforms_size() > 0) { for(auto *E : Attr.uniforms()) { ExprResult Inst = Subst(E); if (Inst.isInvalid()) continue; Uniforms.push_back(Inst.get()); } } auto AI = Attr.alignments_begin(); for (auto *E : Attr.aligneds()) { ExprResult Inst = Subst(E); if (Inst.isInvalid()) continue; Aligneds.push_back(Inst.get()); Inst = ExprEmpty(); if (*AI) Inst = S.SubstExpr(*AI, TemplateArgs); Alignments.push_back(Inst.get()); ++AI; } auto SI = Attr.steps_begin(); for (auto *E : Attr.linears()) { ExprResult Inst = Subst(E); if (Inst.isInvalid()) continue; Linears.push_back(Inst.get()); Inst = ExprEmpty(); if (*SI) Inst = S.SubstExpr(*SI, TemplateArgs); Steps.push_back(Inst.get()); ++SI; } LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); (void)S.ActOnOpenMPDeclareSimdDirective( S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, Attr.getRange()); } /// Instantiation of 'declare variant' attribute and its arguments. static void instantiateOMPDeclareVariantAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const OMPDeclareVariantAttr &Attr, Decl *New) { // Allow 'this' in clauses with varlists. if (auto *FTD = dyn_cast(New)) New = FTD->getTemplatedDecl(); auto *FD = cast(New); auto *ThisContext = dyn_cast_or_null(FD->getDeclContext()); auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) { if (auto *DRE = dyn_cast(E->IgnoreParenImpCasts())) if (auto *PVD = dyn_cast(DRE->getDecl())) { Sema::ContextRAII SavedContext(S, FD); LocalInstantiationScope Local(S); if (FD->getNumParams() > PVD->getFunctionScopeIndex()) Local.InstantiatedLocal( PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); return S.SubstExpr(E, TemplateArgs); } Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), FD->isCXXInstanceMember()); return S.SubstExpr(E, TemplateArgs); }; // Substitute a single OpenMP clause, which is a potentially-evaluated // full-expression. auto &&Subst = [&SubstExpr, &S](Expr *E) { EnterExpressionEvaluationContext Evaluated( S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); ExprResult Res = SubstExpr(E); if (Res.isInvalid()) return Res; return S.ActOnFinishFullExpr(Res.get(), false); }; ExprResult VariantFuncRef; if (Expr *E = Attr.getVariantFuncRef()) { // Do not mark function as is used to prevent its emission if this is the // only place where it is used. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); VariantFuncRef = Subst(E); } // Copy the template version of the OMPTraitInfo and run substitute on all // score and condition expressiosn. OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo(); TI = *Attr.getTraitInfos(); // Try to substitute template parameters in score and condition expressions. auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) { if (E) { EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult ER = Subst(E); if (ER.isUsable()) E = ER.get(); else return true; } return false; }; if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr)) return; Expr *E = VariantFuncRef.get(); // Check function/variant ref for `omp declare variant` but not for `omp // begin declare variant` (which use implicit attributes). Optional> DeclVarData = S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New), E, TI, Attr.appendArgs_size(), Attr.getRange()); if (!DeclVarData) return; E = DeclVarData.getValue().second; FD = DeclVarData.getValue().first; if (auto *VariantDRE = dyn_cast(E->IgnoreParenImpCasts())) { if (auto *VariantFD = dyn_cast(VariantDRE->getDecl())) { if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) { if (!VariantFTD->isThisDeclarationADefinition()) return; Sema::TentativeAnalysisScope Trap(S); const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy( S.Context, TemplateArgs.getInnermost()); auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL, New->getLocation()); if (!SubstFD) return; QualType NewType = S.Context.mergeFunctionTypes( SubstFD->getType(), FD->getType(), /* OfBlockPointer */ false, /* Unqualified */ false, /* AllowCXX */ true); if (NewType.isNull()) return; S.InstantiateFunctionDefinition( New->getLocation(), SubstFD, /* Recursive */ true, /* DefinitionRequired */ false, /* AtEndOfTU */ false); SubstFD->setInstantiationIsPending(!SubstFD->isDefined()); E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(), SourceLocation(), SubstFD, /* RefersToEnclosingVariableOrCapture */ false, /* NameLoc */ SubstFD->getLocation(), SubstFD->getType(), ExprValueKind::VK_PRValue); } } } SmallVector NothingExprs; SmallVector NeedDevicePtrExprs; SmallVector AppendArgs; for (Expr *E : Attr.adjustArgsNothing()) { ExprResult ER = Subst(E); if (ER.isInvalid()) continue; NothingExprs.push_back(ER.get()); } for (Expr *E : Attr.adjustArgsNeedDevicePtr()) { ExprResult ER = Subst(E); if (ER.isInvalid()) continue; NeedDevicePtrExprs.push_back(ER.get()); } for (auto A : Attr.appendArgs()) AppendArgs.push_back(A); S.ActOnOpenMPDeclareVariantDirective( FD, E, TI, NothingExprs, NeedDevicePtrExprs, AppendArgs, SourceLocation(), SourceLocation(), Attr.getRange()); } static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) { // Both min and max expression are constant expressions. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); if (Result.isInvalid()) return; Expr *MinExpr = Result.getAs(); Result = S.SubstExpr(Attr.getMax(), TemplateArgs); if (Result.isInvalid()) return; Expr *MaxExpr = Result.getAs(); S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr); } static ExplicitSpecifier instantiateExplicitSpecifier(Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES, FunctionDecl *New) { if (!ES.getExpr()) return ES; Expr *OldCond = ES.getExpr(); Expr *Cond = nullptr; { EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs); if (SubstResult.isInvalid()) { return ExplicitSpecifier::Invalid(); } Cond = SubstResult.get(); } ExplicitSpecifier Result(Cond, ES.getKind()); if (!Cond->isTypeDependent()) S.tryResolveExplicitSpecifier(Result); return Result; } static void instantiateDependentAMDGPUWavesPerEUAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AMDGPUWavesPerEUAttr &Attr, Decl *New) { // Both min and max expression are constant expressions. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); if (Result.isInvalid()) return; Expr *MinExpr = Result.getAs(); Expr *MaxExpr = nullptr; if (auto Max = Attr.getMax()) { Result = S.SubstExpr(Max, TemplateArgs); if (Result.isInvalid()) return; MaxExpr = Result.getAs(); } S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr); } // This doesn't take any template parameters, but we have a custom action that // needs to happen when the kernel itself is instantiated. We need to run the // ItaniumMangler to mark the names required to name this kernel. static void instantiateDependentSYCLKernelAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const SYCLKernelAttr &Attr, Decl *New) { New->addAttr(Attr.clone(S.getASTContext())); } /// Determine whether the attribute A might be relevant to the declaration D. /// If not, we can skip instantiating it. The attribute may or may not have /// been instantiated yet. static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) { // 'preferred_name' is only relevant to the matching specialization of the // template. if (const auto *PNA = dyn_cast(A)) { QualType T = PNA->getTypedefType(); const auto *RD = cast(D); if (!T->isDependentType() && !RD->isDependentContext() && !declaresSameEntity(T->getAsCXXRecordDecl(), RD)) return false; for (const auto *ExistingPNA : D->specific_attrs()) if (S.Context.hasSameType(ExistingPNA->getTypedefType(), PNA->getTypedefType())) return false; return true; } return true; } void Sema::InstantiateAttrsForDecl( const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, Decl *New, LateInstantiatedAttrVec *LateAttrs, LocalInstantiationScope *OuterMostScope) { if (NamedDecl *ND = dyn_cast(New)) { // FIXME: This function is called multiple times for the same template // specialization. We should only instantiate attributes that were added // since the previous instantiation. for (const auto *TmplAttr : Tmpl->attrs()) { if (!isRelevantAttr(*this, New, TmplAttr)) continue; // FIXME: If any of the special case versions from InstantiateAttrs become // applicable to template declaration, we'll need to add them here. CXXThisScopeRAII ThisScope( *this, dyn_cast_or_null(ND->getDeclContext()), Qualifiers(), ND->isCXXInstanceMember()); Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( TmplAttr, Context, *this, TemplateArgs); if (NewAttr && isRelevantAttr(*this, New, NewAttr)) New->addAttr(NewAttr); } } } static Sema::RetainOwnershipKind attrToRetainOwnershipKind(const Attr *A) { switch (A->getKind()) { case clang::attr::CFConsumed: return Sema::RetainOwnershipKind::CF; case clang::attr::OSConsumed: return Sema::RetainOwnershipKind::OS; case clang::attr::NSConsumed: return Sema::RetainOwnershipKind::NS; default: llvm_unreachable("Wrong argument supplied"); } } void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, Decl *New, LateInstantiatedAttrVec *LateAttrs, LocalInstantiationScope *OuterMostScope) { for (const auto *TmplAttr : Tmpl->attrs()) { if (!isRelevantAttr(*this, New, TmplAttr)) continue; // FIXME: This should be generalized to more than just the AlignedAttr. const AlignedAttr *Aligned = dyn_cast(TmplAttr); if (Aligned && Aligned->isAlignmentDependent()) { instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); continue; } if (const auto *AssumeAligned = dyn_cast(TmplAttr)) { instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); continue; } if (const auto *AlignValue = dyn_cast(TmplAttr)) { instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); continue; } if (const auto *AllocAlign = dyn_cast(TmplAttr)) { instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); continue; } if (const auto *Annotate = dyn_cast(TmplAttr)) { instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New); continue; } if (const auto *EnableIf = dyn_cast(TmplAttr)) { instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, cast(New)); continue; } if (const auto *DiagnoseIf = dyn_cast(TmplAttr)) { instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, cast(New)); continue; } if (const auto *CUDALaunchBounds = dyn_cast(TmplAttr)) { instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, *CUDALaunchBounds, New); continue; } if (const auto *Mode = dyn_cast(TmplAttr)) { instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); continue; } if (const auto *OMPAttr = dyn_cast(TmplAttr)) { instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); continue; } if (const auto *OMPAttr = dyn_cast(TmplAttr)) { instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New); continue; } if (const auto *AMDGPUFlatWorkGroupSize = dyn_cast(TmplAttr)) { instantiateDependentAMDGPUFlatWorkGroupSizeAttr( *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New); } if (const auto *AMDGPUFlatWorkGroupSize = dyn_cast(TmplAttr)) { instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New); } // Existing DLL attribute on the instantiation takes precedence. if (TmplAttr->getKind() == attr::DLLExport || TmplAttr->getKind() == attr::DLLImport) { if (New->hasAttr() || New->hasAttr()) { continue; } } if (const auto *ABIAttr = dyn_cast(TmplAttr)) { AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI()); continue; } if (isa(TmplAttr) || isa(TmplAttr) || isa(TmplAttr)) { AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr), /*template instantiation=*/true); continue; } if (auto *A = dyn_cast(TmplAttr)) { if (!New->hasAttr()) New->addAttr(A->clone(Context)); continue; } if (auto *A = dyn_cast(TmplAttr)) { if (!New->hasAttr()) New->addAttr(A->clone(Context)); continue; } if (auto *A = dyn_cast(TmplAttr)) { instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New); continue; } assert(!TmplAttr->isPackExpansion()); if (TmplAttr->isLateParsed() && LateAttrs) { // Late parsed attributes must be instantiated and attached after the // enclosing class has been instantiated. See Sema::InstantiateClass. LocalInstantiationScope *Saved = nullptr; if (CurrentInstantiationScope) Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); } else { // Allow 'this' within late-parsed attributes. auto *ND = cast(New); auto *ThisContext = dyn_cast_or_null(ND->getDeclContext()); CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(), ND->isCXXInstanceMember()); Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, *this, TemplateArgs); if (NewAttr && isRelevantAttr(*this, New, TmplAttr)) New->addAttr(NewAttr); } } } /// In the MS ABI, we need to instantiate default arguments of dllexported /// default constructors along with the constructor definition. This allows IR /// gen to emit a constructor closure which calls the default constructor with /// its default arguments. void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) { assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && Ctor->isDefaultConstructor()); unsigned NumParams = Ctor->getNumParams(); if (NumParams == 0) return; DLLExportAttr *Attr = Ctor->getAttr(); if (!Attr) return; for (unsigned I = 0; I != NumParams; ++I) { (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, Ctor->getParamDecl(I)); DiscardCleanupsInEvaluationContext(); } } /// Get the previous declaration of a declaration for the purposes of template /// instantiation. If this finds a previous declaration, then the previous /// declaration of the instantiation of D should be an instantiation of the /// result of this function. template static DeclT *getPreviousDeclForInstantiation(DeclT *D) { DeclT *Result = D->getPreviousDecl(); // If the declaration is within a class, and the previous declaration was // merged from a different definition of that class, then we don't have a // previous declaration for the purpose of template instantiation. if (Result && isa(D->getDeclContext()) && D->getLexicalDeclContext() != Result->getLexicalDeclContext()) return nullptr; return Result; } Decl * TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { llvm_unreachable("Translation units cannot be instantiated"); } Decl * TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { llvm_unreachable("pragma comment cannot be instantiated"); } Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( PragmaDetectMismatchDecl *D) { llvm_unreachable("pragma comment cannot be instantiated"); } Decl * TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { llvm_unreachable("extern \"C\" context cannot be instantiated"); } Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) { llvm_unreachable("GUID declaration cannot be instantiated"); } Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl( TemplateParamObjectDecl *D) { llvm_unreachable("template parameter objects cannot be instantiated"); } Decl * TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getIdentifier()); Owner->addDecl(Inst); return Inst; } Decl * TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { llvm_unreachable("Namespaces cannot be instantiated"); } Decl * TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { NamespaceAliasDecl *Inst = NamespaceAliasDecl::Create(SemaRef.Context, Owner, D->getNamespaceLoc(), D->getAliasLoc(), D->getIdentifier(), D->getQualifierLoc(), D->getTargetNameLoc(), D->getNamespace()); Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, bool IsTypeAlias) { bool Invalid = false; TypeSourceInfo *DI = D->getTypeSourceInfo(); if (DI->getType()->isInstantiationDependentType() || DI->getType()->isVariablyModifiedType()) { DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) { Invalid = true; DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); } } else { SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); } // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong. // libstdc++ relies upon this bug in its implementation of common_type. If we // happen to be processing that implementation, fake up the g++ ?: // semantics. See LWG issue 2141 for more information on the bug. The bugs // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22). const DecltypeType *DT = DI->getType()->getAs(); CXXRecordDecl *RD = dyn_cast(D->getDeclContext()); if (DT && RD && isa(DT->getUnderlyingExpr()) && DT->isReferenceType() && RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && D->getIdentifier() && D->getIdentifier()->isStr("type") && SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc())) // Fold it to the (non-reference) type which g++ would have produced. DI = SemaRef.Context.getTrivialTypeSourceInfo( DI->getType().getNonReferenceType()); // Create the new typedef TypedefNameDecl *Typedef; if (IsTypeAlias) Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), D->getIdentifier(), DI); else Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), D->getIdentifier(), DI); if (Invalid) Typedef->setInvalidDecl(); // If the old typedef was the name for linkage purposes of an anonymous // tag decl, re-establish that relationship for the new typedef. if (const TagType *oldTagType = D->getUnderlyingType()->getAs()) { TagDecl *oldTag = oldTagType->getDecl(); if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { TagDecl *newTag = DI->getType()->castAs()->getDecl(); assert(!newTag->hasNameForLinkage()); newTag->setTypedefNameForAnonDecl(Typedef); } } if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, TemplateArgs); if (!InstPrev) return nullptr; TypedefNameDecl *InstPrevTypedef = cast(InstPrev); // If the typedef types are not identical, reject them. SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); Typedef->setPreviousDecl(InstPrevTypedef); } SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); if (D->getUnderlyingType()->getAs()) SemaRef.inferGslPointerAttribute(Typedef); Typedef->setAccess(D->getAccess()); return Typedef; } Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); if (Typedef) Owner->addDecl(Typedef); return Typedef; } Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); if (Typedef) Owner->addDecl(Typedef); return Typedef; } Decl * TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { // Create a local instantiation scope for this type alias template, which // will contain the instantiations of the template parameters. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; TypeAliasDecl *Pattern = D->getTemplatedDecl(); TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; if (getPreviousDeclForInstantiation(Pattern)) { DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); if (!Found.empty()) { PrevAliasTemplate = dyn_cast(Found.front()); } } TypeAliasDecl *AliasInst = cast_or_null( InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); if (!AliasInst) return nullptr; TypeAliasTemplateDecl *Inst = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), InstParams, AliasInst); AliasInst->setDescribedAliasTemplate(Inst); if (PrevAliasTemplate) Inst->setPreviousDecl(PrevAliasTemplate); Inst->setAccess(D->getAccess()); if (!PrevAliasTemplate) Inst->setInstantiatedFromMemberTemplate(D); Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getIdentifier()); NewBD->setReferenced(D->isReferenced()); SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); return NewBD; } Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { // Transform the bindings first. SmallVector NewBindings; for (auto *OldBD : D->bindings()) NewBindings.push_back(cast(VisitBindingDecl(OldBD))); ArrayRef NewBindingArray = NewBindings; auto *NewDD = cast_or_null( VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); if (!NewDD || NewDD->isInvalidDecl()) for (auto *NewBD : NewBindings) NewBD->setInvalidDecl(); return NewDD; } Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); } Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, bool InstantiatingVarTemplate, ArrayRef *Bindings) { // Do substitution on the type of the declaration TypeSourceInfo *DI = SemaRef.SubstType( D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(), /*AllowDeducedTST*/true); if (!DI) return nullptr; if (DI->getType()->isFunctionType()) { SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) << D->isStaticDataMember() << DI->getType(); return nullptr; } DeclContext *DC = Owner; if (D->isLocalExternDecl()) SemaRef.adjustContextForLocalExternDecl(DC); // Build the instantiated declaration. VarDecl *Var; if (Bindings) Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), D->getLocation(), DI->getType(), DI, D->getStorageClass(), *Bindings); else Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), D->getLocation(), D->getIdentifier(), DI->getType(), DI, D->getStorageClass()); // In ARC, infer 'retaining' for variables of retainable type. if (SemaRef.getLangOpts().ObjCAutoRefCount && SemaRef.inferObjCARCLifetime(Var)) Var->setInvalidDecl(); if (SemaRef.getLangOpts().OpenCL) SemaRef.deduceOpenCLAddressSpace(Var); // Substitute the nested name specifier, if any. if (SubstQualifier(D, Var)) return nullptr; SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, StartingScope, InstantiatingVarTemplate); if (D->isNRVOVariable() && !Var->isInvalidDecl()) { QualType RT; if (auto *F = dyn_cast(DC)) RT = F->getReturnType(); else if (isa(DC)) RT = cast(SemaRef.getCurBlock()->FunctionType) ->getReturnType(); else llvm_unreachable("Unknown context type"); // This is the last chance we have of checking copy elision eligibility // for functions in dependent contexts. The sema actions for building // the return statement during template instantiation will have no effect // regarding copy elision, since NRVO propagation runs on the scope exit // actions, and these are not run on instantiation. // This might run through some VarDecls which were returned from non-taken // 'if constexpr' branches, and these will end up being constructed on the // return slot even if they will never be returned, as a sort of accidental // 'optimization'. Notably, functions with 'auto' return types won't have it // deduced by this point. Coupled with the limitation described // previously, this makes it very hard to support copy elision for these. Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var); bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr; Var->setNRVOVariable(NRVO); } Var->setImplicit(D->isImplicit()); if (Var->isStaticLocal()) SemaRef.CheckStaticLocalForDllExport(Var); return Var; } Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { AccessSpecDecl* AD = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, D->getAccessSpecifierLoc(), D->getColonLoc()); Owner->addHiddenDecl(AD); return AD; } Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { bool Invalid = false; TypeSourceInfo *DI = D->getTypeSourceInfo(); if (DI->getType()->isInstantiationDependentType() || DI->getType()->isVariablyModifiedType()) { DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) { DI = D->getTypeSourceInfo(); Invalid = true; } else if (DI->getType()->isFunctionType()) { // C++ [temp.arg.type]p3: // If a declaration acquires a function type through a type // dependent on a template-parameter and this causes a // declaration that does not use the syntactic form of a // function declarator to have function type, the program is // ill-formed. SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) << DI->getType(); Invalid = true; } } else { SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); } Expr *BitWidth = D->getBitWidth(); if (Invalid) BitWidth = nullptr; else if (BitWidth) { // The bit-width expression is a constant expression. EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult InstantiatedBitWidth = SemaRef.SubstExpr(BitWidth, TemplateArgs); if (InstantiatedBitWidth.isInvalid()) { Invalid = true; BitWidth = nullptr; } else BitWidth = InstantiatedBitWidth.getAs(); } FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), DI->getType(), DI, cast(Owner), D->getLocation(), D->isMutable(), BitWidth, D->getInClassInitStyle(), D->getInnerLocStart(), D->getAccess(), nullptr); if (!Field) { cast(Owner)->setInvalidDecl(); return nullptr; } SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); if (Field->hasAttrs()) SemaRef.CheckAlignasUnderalignment(Field); if (Invalid) Field->setInvalidDecl(); if (!Field->getDeclName()) { // Keep track of where this decl came from. SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); } if (CXXRecordDecl *Parent= dyn_cast(Field->getDeclContext())) { if (Parent->isAnonymousStructOrUnion() && Parent->getRedeclContext()->isFunctionOrMethod()) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); } Field->setImplicit(D->isImplicit()); Field->setAccess(D->getAccess()); Owner->addDecl(Field); return Field; } Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { bool Invalid = false; TypeSourceInfo *DI = D->getTypeSourceInfo(); if (DI->getType()->isVariablyModifiedType()) { SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) << D; Invalid = true; } else if (DI->getType()->isInstantiationDependentType()) { DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) { DI = D->getTypeSourceInfo(); Invalid = true; } else if (DI->getType()->isFunctionType()) { // C++ [temp.arg.type]p3: // If a declaration acquires a function type through a type // dependent on a template-parameter and this causes a // declaration that does not use the syntactic form of a // function declarator to have function type, the program is // ill-formed. SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) << DI->getType(); Invalid = true; } } else { SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); } MSPropertyDecl *Property = MSPropertyDecl::Create( SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId()); SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, StartingScope); if (Invalid) Property->setInvalidDecl(); Property->setAccess(D->getAccess()); Owner->addDecl(Property); return Property; } Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { NamedDecl **NamedChain = new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; int i = 0; for (auto *PI : D->chain()) { NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, TemplateArgs); if (!Next) return nullptr; NamedChain[i++] = Next; } QualType T = cast(NamedChain[i-1])->getType(); IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, {NamedChain, D->getChainingSize()}); for (const auto *Attr : D->attrs()) IndirectField->addAttr(Attr->clone(SemaRef.Context)); IndirectField->setImplicit(D->isImplicit()); IndirectField->setAccess(D->getAccess()); Owner->addDecl(IndirectField); return IndirectField; } Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { // Handle friend type expressions by simply substituting template // parameters into the pattern type and checking the result. if (TypeSourceInfo *Ty = D->getFriendType()) { TypeSourceInfo *InstTy; // If this is an unsupported friend, don't bother substituting template // arguments into it. The actual type referred to won't be used by any // parts of Clang, and may not be valid for instantiating. Just use the // same info for the instantiated friend. if (D->isUnsupportedFriend()) { InstTy = Ty; } else { InstTy = SemaRef.SubstType(Ty, TemplateArgs, D->getLocation(), DeclarationName()); } if (!InstTy) return nullptr; FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(), D->getFriendLoc(), InstTy); if (!FD) return nullptr; FD->setAccess(AS_public); FD->setUnsupportedFriend(D->isUnsupportedFriend()); Owner->addDecl(FD); return FD; } NamedDecl *ND = D->getFriendDecl(); assert(ND && "friend decl must be a decl or a type!"); // All of the Visit implementations for the various potential friend // declarations have to be carefully written to work for friend // objects, with the most important detail being that the target // decl should almost certainly not be placed in Owner. Decl *NewND = Visit(ND); if (!NewND) return nullptr; FriendDecl *FD = FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), cast(NewND), D->getFriendLoc()); FD->setAccess(AS_public); FD->setUnsupportedFriend(D->isUnsupportedFriend()); Owner->addDecl(FD); return FD; } Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { Expr *AssertExpr = D->getAssertExpr(); // The expression in a static assertion is a constant expression. EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult InstantiatedAssertExpr = SemaRef.SubstExpr(AssertExpr, TemplateArgs); if (InstantiatedAssertExpr.isInvalid()) return nullptr; return SemaRef.BuildStaticAssertDeclaration(D->getLocation(), InstantiatedAssertExpr.get(), D->getMessage(), D->getRParenLoc(), D->isFailed()); } Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { EnumDecl *PrevDecl = nullptr; if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), PatternPrev, TemplateArgs); if (!Prev) return nullptr; PrevDecl = cast(Prev); } EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), D->getIdentifier(), PrevDecl, D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); if (D->isFixed()) { if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { // If we have type source information for the underlying type, it means it // has been explicitly set by the user. Perform substitution on it before // moving on. SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, DeclarationName()); if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) Enum->setIntegerType(SemaRef.Context.IntTy); else Enum->setIntegerTypeSourceInfo(NewTI); } else { assert(!D->getIntegerType()->isDependentType() && "Dependent type without type source info"); Enum->setIntegerType(D->getIntegerType()); } } SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); Enum->setAccess(D->getAccess()); // Forward the mangling number from the template to the instantiated decl. SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); // See if the old tag was defined along with a declarator. // If it did, mark the new tag as being associated with that declarator. if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); // See if the old tag was defined along with a typedef. // If it did, mark the new tag as being associated with that typedef. if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); if (SubstQualifier(D, Enum)) return nullptr; Owner->addDecl(Enum); EnumDecl *Def = D->getDefinition(); if (Def && Def != D) { // If this is an out-of-line definition of an enum member template, check // that the underlying types match in the instantiation of both // declarations. if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); QualType DefnUnderlying = SemaRef.SubstType(TI->getType(), TemplateArgs, UnderlyingLoc, DeclarationName()); SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), DefnUnderlying, /*IsFixed=*/true, Enum); } } // C++11 [temp.inst]p1: The implicit instantiation of a class template // specialization causes the implicit instantiation of the declarations, but // not the definitions of scoped member enumerations. // // DR1484 clarifies that enumeration definitions inside of a template // declaration aren't considered entities that can be separately instantiated // from the rest of the entity they are declared inside of. if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); InstantiateEnumDefinition(Enum, Def); } return Enum; } void TemplateDeclInstantiator::InstantiateEnumDefinition( EnumDecl *Enum, EnumDecl *Pattern) { Enum->startDefinition(); // Update the location to refer to the definition. Enum->setLocation(Pattern->getLocation()); SmallVector Enumerators; EnumConstantDecl *LastEnumConst = nullptr; for (auto *EC : Pattern->enumerators()) { // The specified value for the enumerator. ExprResult Value((Expr *)nullptr); if (Expr *UninstValue = EC->getInitExpr()) { // The enumerator's value expression is a constant expression. EnterExpressionEvaluationContext Unevaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); } // Drop the initial value and continue. bool isInvalid = false; if (Value.isInvalid()) { Value = nullptr; isInvalid = true; } EnumConstantDecl *EnumConst = SemaRef.CheckEnumConstant(Enum, LastEnumConst, EC->getLocation(), EC->getIdentifier(), Value.get()); if (isInvalid) { if (EnumConst) EnumConst->setInvalidDecl(); Enum->setInvalidDecl(); } if (EnumConst) { SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); EnumConst->setAccess(Enum->getAccess()); Enum->addDecl(EnumConst); Enumerators.push_back(EnumConst); LastEnumConst = EnumConst; if (Pattern->getDeclContext()->isFunctionOrMethod() && !Enum->isScoped()) { // If the enumeration is within a function or method, record the enum // constant as a local. SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); } } } SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, Enumerators, nullptr, ParsedAttributesView()); } Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); } Decl * TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); } Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); // Create a local instantiation scope for this class template, which // will contain the instantiations of the template parameters. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; CXXRecordDecl *Pattern = D->getTemplatedDecl(); // Instantiate the qualifier. We have to do this first in case // we're a friend declaration, because if we are then we need to put // the new declaration in the appropriate context. NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return nullptr; } CXXRecordDecl *PrevDecl = nullptr; ClassTemplateDecl *PrevClassTemplate = nullptr; if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); if (!Found.empty()) { PrevClassTemplate = dyn_cast(Found.front()); if (PrevClassTemplate) PrevDecl = PrevClassTemplate->getTemplatedDecl(); } } // If this isn't a friend, then it's a member template, in which // case we just want to build the instantiation in the // specialization. If it is a friend, we want to build it in // the appropriate context. DeclContext *DC = Owner; if (isFriend) { if (QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (!DC) return nullptr; } else { DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), Pattern->getDeclContext(), TemplateArgs); } // Look for a previous declaration of the template in the owning // context. LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), Sema::LookupOrdinaryName, SemaRef.forRedeclarationInCurContext()); SemaRef.LookupQualifiedName(R, DC); if (R.isSingleResult()) { PrevClassTemplate = R.getAsSingle(); if (PrevClassTemplate) PrevDecl = PrevClassTemplate->getTemplatedDecl(); } if (!PrevClassTemplate && QualifierLoc) { SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC << QualifierLoc.getSourceRange(); return nullptr; } if (PrevClassTemplate) { TemplateParameterList *PrevParams = PrevClassTemplate->getMostRecentDecl()->getTemplateParameters(); // Make sure the parameter lists match. if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, true, Sema::TPL_TemplateMatch)) return nullptr; // Do some additional validation, then merge default arguments // from the existing declarations. if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams, Sema::TPC_ClassTemplate)) return nullptr; } } CXXRecordDecl *RecordInst = CXXRecordDecl::Create( SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(), Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, /*DelayTypeCreation=*/true); if (QualifierLoc) RecordInst->setQualifierInfo(QualifierLoc); SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs, StartingScope); ClassTemplateDecl *Inst = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, RecordInst); assert(!(isFriend && Owner->isDependentContext())); Inst->setPreviousDecl(PrevClassTemplate); RecordInst->setDescribedClassTemplate(Inst); if (isFriend) { if (PrevClassTemplate) Inst->setAccess(PrevClassTemplate->getAccess()); else Inst->setAccess(D->getAccess()); Inst->setObjectOfFriendDecl(); // TODO: do we want to track the instantiation progeny of this // friend target decl? } else { Inst->setAccess(D->getAccess()); if (!PrevClassTemplate) Inst->setInstantiatedFromMemberTemplate(D); } // Trigger creation of the type for the instantiation. SemaRef.Context.getInjectedClassNameType(RecordInst, Inst->getInjectedClassNameSpecialization()); // Finish handling of friends. if (isFriend) { DC->makeDeclVisibleInContext(Inst); Inst->setLexicalDeclContext(Owner); RecordInst->setLexicalDeclContext(Owner); return Inst; } if (D->isOutOfLine()) { Inst->setLexicalDeclContext(D->getLexicalDeclContext()); RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); } Owner->addDecl(Inst); if (!PrevClassTemplate) { // Queue up any out-of-line partial specializations of this member // class template; the client will force their instantiation once // the enclosing class has been instantiated. SmallVector PartialSpecs; D->getPartialSpecializations(PartialSpecs); for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); } return Inst; } Decl * TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D) { ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); // Lookup the already-instantiated declaration in the instantiation // of the class template and return that. DeclContext::lookup_result Found = Owner->lookup(ClassTemplate->getDeclName()); if (Found.empty()) return nullptr; ClassTemplateDecl *InstClassTemplate = dyn_cast(Found.front()); if (!InstClassTemplate) return nullptr; if (ClassTemplatePartialSpecializationDecl *Result = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) return Result; return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); } Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { assert(D->getTemplatedDecl()->isStaticDataMember() && "Only static data member templates are allowed."); // Create a local instantiation scope for this variable template, which // will contain the instantiations of the template parameters. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; VarDecl *Pattern = D->getTemplatedDecl(); VarTemplateDecl *PrevVarTemplate = nullptr; if (getPreviousDeclForInstantiation(Pattern)) { DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); if (!Found.empty()) PrevVarTemplate = dyn_cast(Found.front()); } VarDecl *VarInst = cast_or_null(VisitVarDecl(Pattern, /*InstantiatingVarTemplate=*/true)); if (!VarInst) return nullptr; DeclContext *DC = Owner; VarTemplateDecl *Inst = VarTemplateDecl::Create( SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, VarInst); VarInst->setDescribedVarTemplate(Inst); Inst->setPreviousDecl(PrevVarTemplate); Inst->setAccess(D->getAccess()); if (!PrevVarTemplate) Inst->setInstantiatedFromMemberTemplate(D); if (D->isOutOfLine()) { Inst->setLexicalDeclContext(D->getLexicalDeclContext()); VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); } Owner->addDecl(Inst); if (!PrevVarTemplate) { // Queue up any out-of-line partial specializations of this member // variable template; the client will force their instantiation once // the enclosing class has been instantiated. SmallVector PartialSpecs; D->getPartialSpecializations(PartialSpecs); for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) OutOfLineVarPartialSpecs.push_back( std::make_pair(Inst, PartialSpecs[I])); } return Inst; } Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( VarTemplatePartialSpecializationDecl *D) { assert(D->isStaticDataMember() && "Only static data member templates are allowed."); VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); // Lookup the already-instantiated declaration and return that. DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); assert(!Found.empty() && "Instantiation found nothing?"); VarTemplateDecl *InstVarTemplate = dyn_cast(Found.front()); assert(InstVarTemplate && "Instantiation did not find a variable template?"); if (VarTemplatePartialSpecializationDecl *Result = InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) return Result; return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); } Decl * TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { // Create a local instantiation scope for this function template, which // will contain the instantiations of the template parameters and then get // merged with the local instantiation scope for the function template // itself. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; FunctionDecl *Instantiated = nullptr; if (CXXMethodDecl *DMethod = dyn_cast(D->getTemplatedDecl())) Instantiated = cast_or_null(VisitCXXMethodDecl(DMethod, InstParams)); else Instantiated = cast_or_null(VisitFunctionDecl( D->getTemplatedDecl(), InstParams)); if (!Instantiated) return nullptr; // Link the instantiated function template declaration to the function // template from which it was instantiated. FunctionTemplateDecl *InstTemplate = Instantiated->getDescribedFunctionTemplate(); InstTemplate->setAccess(D->getAccess()); assert(InstTemplate && "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); // Link the instantiation back to the pattern *unless* this is a // non-definition friend declaration. if (!InstTemplate->getInstantiatedFromMemberTemplate() && !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) InstTemplate->setInstantiatedFromMemberTemplate(D); // Make declarations visible in the appropriate context. if (!isFriend) { Owner->addDecl(InstTemplate); } else if (InstTemplate->getDeclContext()->isRecord() && !getPreviousDeclForInstantiation(D)) { SemaRef.CheckFriendAccess(InstTemplate); } return InstTemplate; } Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { CXXRecordDecl *PrevDecl = nullptr; if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), PatternPrev, TemplateArgs); if (!Prev) return nullptr; PrevDecl = cast(Prev); } CXXRecordDecl *Record = nullptr; bool IsInjectedClassName = D->isInjectedClassName(); if (D->isLambda()) Record = CXXRecordDecl::CreateLambda( SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(), D->isDependentLambda(), D->isGenericLambda(), D->getLambdaCaptureDefault()); else Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), D->getLocation(), D->getIdentifier(), PrevDecl, /*DelayTypeCreation=*/IsInjectedClassName); // Link the type of the injected-class-name to that of the outer class. if (IsInjectedClassName) (void)SemaRef.Context.getTypeDeclType(Record, cast(Owner)); // Substitute the nested name specifier, if any. if (SubstQualifier(D, Record)) return nullptr; SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs, StartingScope); Record->setImplicit(D->isImplicit()); // FIXME: Check against AS_none is an ugly hack to work around the issue that // the tag decls introduced by friend class declarations don't have an access // specifier. Remove once this area of the code gets sorted out. if (D->getAccess() != AS_none) Record->setAccess(D->getAccess()); if (!IsInjectedClassName) Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); // If the original function was part of a friend declaration, // inherit its namespace state. if (D->getFriendObjectKind()) Record->setObjectOfFriendDecl(); // Make sure that anonymous structs and unions are recorded. if (D->isAnonymousStructOrUnion()) Record->setAnonymousStructOrUnion(true); if (D->isLocalClass()) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); // Forward the mangling number from the template to the instantiated decl. SemaRef.Context.setManglingNumber(Record, SemaRef.Context.getManglingNumber(D)); // See if the old tag was defined along with a declarator. // If it did, mark the new tag as being associated with that declarator. if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); // See if the old tag was defined along with a typedef. // If it did, mark the new tag as being associated with that typedef. if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); Owner->addDecl(Record); // DR1484 clarifies that the members of a local class are instantiated as part // of the instantiation of their enclosing entity. if (D->isCompleteDefinition() && D->isLocalClass()) { Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, TSK_ImplicitInstantiation, /*Complain=*/true); // For nested local classes, we will instantiate the members when we // reach the end of the outermost (non-nested) local class. if (!D->isCXXClassMember()) SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, TSK_ImplicitInstantiation); // This class may have local implicit instantiations that need to be // performed within this scope. LocalInstantiations.perform(); } SemaRef.DiagnoseUnusedNestedTypedefs(Record); if (IsInjectedClassName) assert(Record->isInjectedClassName() && "Broken injected-class-name"); return Record; } /// Adjust the given function type for an instantiation of the /// given declaration, to cope with modifications to the function's type that /// aren't reflected in the type-source information. /// /// \param D The declaration we're instantiating. /// \param TInfo The already-instantiated type. static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, FunctionDecl *D, TypeSourceInfo *TInfo) { const FunctionProtoType *OrigFunc = D->getType()->castAs(); const FunctionProtoType *NewFunc = TInfo->getType()->castAs(); if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) return TInfo->getType(); FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); NewEPI.ExtInfo = OrigFunc->getExtInfo(); return Context.getFunctionType(NewFunc->getReturnType(), NewFunc->getParamTypes(), NewEPI); } /// Normal class members are of more specific types and therefore /// don't make it here. This function serves three purposes: /// 1) instantiating function templates /// 2) substituting friend declarations /// 3) substituting deduction guide declarations for nested class templates Decl *TemplateDeclInstantiator::VisitFunctionDecl( FunctionDecl *D, TemplateParameterList *TemplateParams, RewriteKind FunctionRewriteKind) { // Check whether there is already a function template specialization for // this declaration. FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); if (FunctionTemplate && !TemplateParams) { ArrayRef Innermost = TemplateArgs.getInnermost(); void *InsertPos = nullptr; FunctionDecl *SpecFunc = FunctionTemplate->findSpecialization(Innermost, InsertPos); // If we already have a function template specialization, return it. if (SpecFunc) return SpecFunc; } bool isFriend; if (FunctionTemplate) isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); else isFriend = (D->getFriendObjectKind() != Decl::FOK_None); bool MergeWithParentScope = (TemplateParams != nullptr) || Owner->isFunctionOrMethod() || !(isa(Owner) && cast(Owner)->isDefinedOutsideFunctionOrMethod()); LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); ExplicitSpecifier InstantiatedExplicitSpecifier; if (auto *DGuide = dyn_cast(D)) { InstantiatedExplicitSpecifier = instantiateExplicitSpecifier( SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide); if (InstantiatedExplicitSpecifier.isInvalid()) return nullptr; } SmallVector Params; TypeSourceInfo *TInfo = SubstFunctionType(D, Params); if (!TInfo) return nullptr; QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); if (TemplateParams && TemplateParams->size()) { auto *LastParam = dyn_cast(TemplateParams->asArray().back()); if (LastParam && LastParam->isImplicit() && LastParam->hasTypeConstraint()) { // In abbreviated templates, the type-constraints of invented template // type parameters are instantiated with the function type, invalidating // the TemplateParameterList which relied on the template type parameter // not having a type constraint. Recreate the TemplateParameterList with // the updated parameter list. TemplateParams = TemplateParameterList::Create( SemaRef.Context, TemplateParams->getTemplateLoc(), TemplateParams->getLAngleLoc(), TemplateParams->asArray(), TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); } } NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return nullptr; } // FIXME: Concepts: Do not substitute into constraint expressions Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); if (TrailingRequiresClause) { EnterExpressionEvaluationContext ConstantEvaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause, TemplateArgs); if (SubstRC.isInvalid()) return nullptr; TrailingRequiresClause = SubstRC.get(); if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause)) return nullptr; } // If we're instantiating a local function declaration, put the result // in the enclosing namespace; otherwise we need to find the instantiated // context. DeclContext *DC; if (D->isLocalExternDecl()) { DC = Owner; SemaRef.adjustContextForLocalExternDecl(DC); } else if (isFriend && QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (!DC) return nullptr; } else { DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), TemplateArgs); } DeclarationNameInfo NameInfo = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); if (FunctionRewriteKind != RewriteKind::None) adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); FunctionDecl *Function; if (auto *DGuide = dyn_cast(D)) { Function = CXXDeductionGuideDecl::Create( SemaRef.Context, DC, D->getInnerLocStart(), InstantiatedExplicitSpecifier, NameInfo, T, TInfo, D->getSourceRange().getEnd()); if (DGuide->isCopyDeductionCandidate()) cast(Function)->setIsCopyDeductionCandidate(); Function->setAccess(D->getAccess()); } else { Function = FunctionDecl::Create( SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo, D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(), D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(), TrailingRequiresClause); Function->setRangeEnd(D->getSourceRange().getEnd()); } if (D->isInlined()) Function->setImplicitlyInline(); if (QualifierLoc) Function->setQualifierInfo(QualifierLoc); if (D->isLocalExternDecl()) Function->setLocalExternDecl(); DeclContext *LexicalDC = Owner; if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { assert(D->getDeclContext()->isFileContext()); LexicalDC = D->getDeclContext(); } Function->setLexicalDeclContext(LexicalDC); // Attach the parameters for (unsigned P = 0; P < Params.size(); ++P) if (Params[P]) Params[P]->setOwningFunction(Function); Function->setParams(Params); if (TrailingRequiresClause) Function->setTrailingRequiresClause(TrailingRequiresClause); if (TemplateParams) { // Our resulting instantiation is actually a function template, since we // are substituting only the outer template parameters. For example, given // // template // struct X { // template friend void f(T, U); // }; // // X x; // // We are instantiating the friend function template "f" within X, // which means substituting int for T, but leaving "f" as a friend function // template. // Build the function template itself. FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, Function->getLocation(), Function->getDeclName(), TemplateParams, Function); Function->setDescribedFunctionTemplate(FunctionTemplate); FunctionTemplate->setLexicalDeclContext(LexicalDC); if (isFriend && D->isThisDeclarationADefinition()) { FunctionTemplate->setInstantiatedFromMemberTemplate( D->getDescribedFunctionTemplate()); } } else if (FunctionTemplate) { // Record this function template specialization. ArrayRef Innermost = TemplateArgs.getInnermost(); Function->setFunctionTemplateSpecialization(FunctionTemplate, TemplateArgumentList::CreateCopy(SemaRef.Context, Innermost), /*InsertPos=*/nullptr); } else if (isFriend && D->isThisDeclarationADefinition()) { // Do not connect the friend to the template unless it's actually a // definition. We don't want non-template functions to be marked as being // template instantiations. Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); } if (isFriend) { Function->setObjectOfFriendDecl(); if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate()) FT->setObjectOfFriendDecl(); } if (InitFunctionInstantiation(Function, D)) Function->setInvalidDecl(); bool IsExplicitSpecialization = false; LookupResult Previous( SemaRef, Function->getDeclName(), SourceLocation(), D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage : Sema::LookupOrdinaryName, D->isLocalExternDecl() ? Sema::ForExternalRedeclaration : SemaRef.forRedeclarationInCurContext()); if (DependentFunctionTemplateSpecializationInfo *Info = D->getDependentSpecializationInfo()) { assert(isFriend && "non-friend has dependent specialization info?"); // Instantiate the explicit template arguments. TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), Info->getRAngleLoc()); if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs, ExplicitArgs)) return nullptr; // Map the candidate templates to their instantiations. for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), Info->getTemplate(I), TemplateArgs); if (!Temp) return nullptr; Previous.addDecl(cast(Temp)); } if (SemaRef.CheckFunctionTemplateSpecialization(Function, &ExplicitArgs, Previous)) Function->setInvalidDecl(); IsExplicitSpecialization = true; } else if (const ASTTemplateArgumentListInfo *Info = D->getTemplateSpecializationArgsAsWritten()) { // The name of this function was written as a template-id. SemaRef.LookupQualifiedName(Previous, DC); // Instantiate the explicit template arguments. TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), Info->getRAngleLoc()); if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs, ExplicitArgs)) return nullptr; if (SemaRef.CheckFunctionTemplateSpecialization(Function, &ExplicitArgs, Previous)) Function->setInvalidDecl(); IsExplicitSpecialization = true; } else if (TemplateParams || !FunctionTemplate) { // Look only into the namespace where the friend would be declared to // find a previous declaration. This is the innermost enclosing namespace, // as described in ActOnFriendFunctionDecl. SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext()); // In C++, the previous declaration we find might be a tag type // (class or enum). In this case, the new declaration will hide the // tag type. Note that this does does not apply if we're declaring a // typedef (C++ [dcl.typedef]p4). if (Previous.isSingleTagDecl()) Previous.clear(); // Filter out previous declarations that don't match the scope. The only // effect this has is to remove declarations found in inline namespaces // for friend declarations with unqualified names. SemaRef.FilterLookupForScope(Previous, DC, /*Scope*/ nullptr, /*ConsiderLinkage*/ true, QualifierLoc.hasQualifier()); } SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, IsExplicitSpecialization); // Check the template parameter list against the previous declaration. The // goal here is to pick up default arguments added since the friend was // declared; we know the template parameter lists match, since otherwise // we would not have picked this template as the previous declaration. if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) { SemaRef.CheckTemplateParameterList( TemplateParams, FunctionTemplate->getPreviousDecl()->getTemplateParameters(), Function->isThisDeclarationADefinition() ? Sema::TPC_FriendFunctionTemplateDefinition : Sema::TPC_FriendFunctionTemplate); } // If we're introducing a friend definition after the first use, trigger // instantiation. // FIXME: If this is a friend function template definition, we should check // to see if any specializations have been used. if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) { if (MemberSpecializationInfo *MSInfo = Function->getMemberSpecializationInfo()) { if (MSInfo->getPointOfInstantiation().isInvalid()) { SourceLocation Loc = D->getLocation(); // FIXME MSInfo->setPointOfInstantiation(Loc); SemaRef.PendingLocalImplicitInstantiations.push_back( std::make_pair(Function, Loc)); } } } if (D->isExplicitlyDefaulted()) { if (SubstDefaultedFunction(Function, D)) return nullptr; } if (D->isDeleted()) SemaRef.SetDeclDeleted(Function, D->getLocation()); NamedDecl *PrincipalDecl = (TemplateParams ? cast(FunctionTemplate) : Function); // If this declaration lives in a different context from its lexical context, // add it to the corresponding lookup table. if (isFriend || (Function->isLocalExternDecl() && !Function->getPreviousDecl())) DC->makeDeclVisibleInContext(PrincipalDecl); if (Function->isOverloadedOperator() && !DC->isRecord() && PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) PrincipalDecl->setNonMemberOperator(); return Function; } Decl *TemplateDeclInstantiator::VisitCXXMethodDecl( CXXMethodDecl *D, TemplateParameterList *TemplateParams, Optional ClassScopeSpecializationArgs, RewriteKind FunctionRewriteKind) { FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); if (FunctionTemplate && !TemplateParams) { // We are creating a function template specialization from a function // template. Check whether there is already a function template // specialization for this particular set of template arguments. ArrayRef Innermost = TemplateArgs.getInnermost(); void *InsertPos = nullptr; FunctionDecl *SpecFunc = FunctionTemplate->findSpecialization(Innermost, InsertPos); // If we already have a function template specialization, return it. if (SpecFunc) return SpecFunc; } bool isFriend; if (FunctionTemplate) isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); else isFriend = (D->getFriendObjectKind() != Decl::FOK_None); bool MergeWithParentScope = (TemplateParams != nullptr) || !(isa(Owner) && cast(Owner)->isDefinedOutsideFunctionOrMethod()); LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); // Instantiate enclosing template arguments for friends. SmallVector TempParamLists; unsigned NumTempParamLists = 0; if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { TempParamLists.resize(NumTempParamLists); for (unsigned I = 0; I != NumTempParamLists; ++I) { TemplateParameterList *TempParams = D->getTemplateParameterList(I); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; TempParamLists[I] = InstParams; } } ExplicitSpecifier InstantiatedExplicitSpecifier = instantiateExplicitSpecifier(SemaRef, TemplateArgs, ExplicitSpecifier::getFromDecl(D), D); if (InstantiatedExplicitSpecifier.isInvalid()) return nullptr; // Implicit destructors/constructors created for local classes in // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI. // Unfortunately there isn't enough context in those functions to // conditionally populate the TSI without breaking non-template related use // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get // a proper transformation. if (cast(D->getParent())->isLambda() && !D->getTypeSourceInfo() && isa(D)) { TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(D->getType()); D->setTypeSourceInfo(TSI); } SmallVector Params; TypeSourceInfo *TInfo = SubstFunctionType(D, Params); if (!TInfo) return nullptr; QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); if (TemplateParams && TemplateParams->size()) { auto *LastParam = dyn_cast(TemplateParams->asArray().back()); if (LastParam && LastParam->isImplicit() && LastParam->hasTypeConstraint()) { // In abbreviated templates, the type-constraints of invented template // type parameters are instantiated with the function type, invalidating // the TemplateParameterList which relied on the template type parameter // not having a type constraint. Recreate the TemplateParameterList with // the updated parameter list. TemplateParams = TemplateParameterList::Create( SemaRef.Context, TemplateParams->getTemplateLoc(), TemplateParams->getLAngleLoc(), TemplateParams->asArray(), TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); } } NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return nullptr; } // FIXME: Concepts: Do not substitute into constraint expressions Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); if (TrailingRequiresClause) { EnterExpressionEvaluationContext ConstantEvaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); auto *ThisContext = dyn_cast_or_null(Owner); Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, D->getMethodQualifiers(), ThisContext); ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause, TemplateArgs); if (SubstRC.isInvalid()) return nullptr; TrailingRequiresClause = SubstRC.get(); if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause)) return nullptr; } DeclContext *DC = Owner; if (isFriend) { if (QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) return nullptr; } else { DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), TemplateArgs); } if (!DC) return nullptr; } DeclarationNameInfo NameInfo = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); if (FunctionRewriteKind != RewriteKind::None) adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); // Build the instantiated method declaration. CXXRecordDecl *Record = cast(DC); CXXMethodDecl *Method = nullptr; SourceLocation StartLoc = D->getInnerLocStart(); if (CXXConstructorDecl *Constructor = dyn_cast(D)) { Method = CXXConstructorDecl::Create( SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(), Constructor->isInlineSpecified(), false, Constructor->getConstexprKind(), InheritedConstructor(), TrailingRequiresClause); Method->setRangeEnd(Constructor->getEndLoc()); } else if (CXXDestructorDecl *Destructor = dyn_cast(D)) { Method = CXXDestructorDecl::Create( SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false, Destructor->getConstexprKind(), TrailingRequiresClause); Method->setRangeEnd(Destructor->getEndLoc()); Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName( SemaRef.Context.getCanonicalType( SemaRef.Context.getTypeDeclType(Record)))); } else if (CXXConversionDecl *Conversion = dyn_cast(D)) { Method = CXXConversionDecl::Create( SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(), InstantiatedExplicitSpecifier, Conversion->getConstexprKind(), Conversion->getEndLoc(), TrailingRequiresClause); } else { StorageClass SC = D->isStatic() ? SC_Static : SC_None; Method = CXXMethodDecl::Create( SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC, D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(), D->getEndLoc(), TrailingRequiresClause); } if (D->isInlined()) Method->setImplicitlyInline(); if (QualifierLoc) Method->setQualifierInfo(QualifierLoc); if (TemplateParams) { // Our resulting instantiation is actually a function template, since we // are substituting only the outer template parameters. For example, given // // template // struct X { // template void f(T, U); // }; // // X x; // // We are instantiating the member template "f" within X, which means // substituting int for T, but leaving "f" as a member function template. // Build the function template itself. FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, Method->getLocation(), Method->getDeclName(), TemplateParams, Method); if (isFriend) { FunctionTemplate->setLexicalDeclContext(Owner); FunctionTemplate->setObjectOfFriendDecl(); } else if (D->isOutOfLine()) FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); Method->setDescribedFunctionTemplate(FunctionTemplate); } else if (FunctionTemplate) { // Record this function template specialization. ArrayRef Innermost = TemplateArgs.getInnermost(); Method->setFunctionTemplateSpecialization(FunctionTemplate, TemplateArgumentList::CreateCopy(SemaRef.Context, Innermost), /*InsertPos=*/nullptr); } else if (!isFriend) { // Record that this is an instantiation of a member function. Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); } // If we are instantiating a member function defined // out-of-line, the instantiation will have the same lexical // context (which will be a namespace scope) as the template. if (isFriend) { if (NumTempParamLists) Method->setTemplateParameterListsInfo( SemaRef.Context, llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists)); Method->setLexicalDeclContext(Owner); Method->setObjectOfFriendDecl(); } else if (D->isOutOfLine()) Method->setLexicalDeclContext(D->getLexicalDeclContext()); // Attach the parameters for (unsigned P = 0; P < Params.size(); ++P) Params[P]->setOwningFunction(Method); Method->setParams(Params); if (InitMethodInstantiation(Method, D)) Method->setInvalidDecl(); LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, Sema::ForExternalRedeclaration); bool IsExplicitSpecialization = false; // If the name of this function was written as a template-id, instantiate // the explicit template arguments. if (DependentFunctionTemplateSpecializationInfo *Info = D->getDependentSpecializationInfo()) { assert(isFriend && "non-friend has dependent specialization info?"); // Instantiate the explicit template arguments. TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), Info->getRAngleLoc()); if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs, ExplicitArgs)) return nullptr; // Map the candidate templates to their instantiations. for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), Info->getTemplate(I), TemplateArgs); if (!Temp) return nullptr; Previous.addDecl(cast(Temp)); } if (SemaRef.CheckFunctionTemplateSpecialization(Method, &ExplicitArgs, Previous)) Method->setInvalidDecl(); IsExplicitSpecialization = true; } else if (const ASTTemplateArgumentListInfo *Info = ClassScopeSpecializationArgs.getValueOr( D->getTemplateSpecializationArgsAsWritten())) { SemaRef.LookupQualifiedName(Previous, DC); TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), Info->getRAngleLoc()); if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs, ExplicitArgs)) return nullptr; if (SemaRef.CheckFunctionTemplateSpecialization(Method, &ExplicitArgs, Previous)) Method->setInvalidDecl(); IsExplicitSpecialization = true; } else if (ClassScopeSpecializationArgs) { // Class-scope explicit specialization written without explicit template // arguments. SemaRef.LookupQualifiedName(Previous, DC); if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous)) Method->setInvalidDecl(); IsExplicitSpecialization = true; } else if (!FunctionTemplate || TemplateParams || isFriend) { SemaRef.LookupQualifiedName(Previous, Record); // In C++, the previous declaration we find might be a tag type // (class or enum). In this case, the new declaration will hide the // tag type. Note that this does does not apply if we're declaring a // typedef (C++ [dcl.typedef]p4). if (Previous.isSingleTagDecl()) Previous.clear(); } SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, IsExplicitSpecialization); if (D->isPure()) SemaRef.CheckPureMethod(Method, SourceRange()); // Propagate access. For a non-friend declaration, the access is // whatever we're propagating from. For a friend, it should be the // previous declaration we just found. if (isFriend && Method->getPreviousDecl()) Method->setAccess(Method->getPreviousDecl()->getAccess()); else Method->setAccess(D->getAccess()); if (FunctionTemplate) FunctionTemplate->setAccess(Method->getAccess()); SemaRef.CheckOverrideControl(Method); // If a function is defined as defaulted or deleted, mark it as such now. if (D->isExplicitlyDefaulted()) { if (SubstDefaultedFunction(Method, D)) return nullptr; } if (D->isDeletedAsWritten()) SemaRef.SetDeclDeleted(Method, Method->getLocation()); // If this is an explicit specialization, mark the implicitly-instantiated // template specialization as being an explicit specialization too. // FIXME: Is this necessary? if (IsExplicitSpecialization && !isFriend) SemaRef.CompleteMemberSpecialization(Method, Previous); // If there's a function template, let our caller handle it. if (FunctionTemplate) { // do nothing // Don't hide a (potentially) valid declaration with an invalid one. } else if (Method->isInvalidDecl() && !Previous.empty()) { // do nothing // Otherwise, check access to friends and make them visible. } else if (isFriend) { // We only need to re-check access for methods which we didn't // manage to match during parsing. if (!D->getPreviousDecl()) SemaRef.CheckFriendAccess(Method); Record->makeDeclVisibleInContext(Method); // Otherwise, add the declaration. We don't need to do this for // class-scope specializations because we'll have matched them with // the appropriate template. } else { Owner->addDecl(Method); } // PR17480: Honor the used attribute to instantiate member function // definitions if (Method->hasAttr()) { if (const auto *A = dyn_cast(Owner)) { SourceLocation Loc; if (const MemberSpecializationInfo *MSInfo = A->getMemberSpecializationInfo()) Loc = MSInfo->getPointOfInstantiation(); else if (const auto *Spec = dyn_cast(A)) Loc = Spec->getPointOfInstantiation(); SemaRef.MarkFunctionReferenced(Loc, Method); } } return Method; } Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { return VisitCXXMethodDecl(D); } Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None, /*ExpectParameterPack=*/ false); } Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( TemplateTypeParmDecl *D) { assert(D->getTypeForDecl()->isTemplateTypeParmType()); Optional NumExpanded; if (const TypeConstraint *TC = D->getTypeConstraint()) { if (D->isPackExpansion() && !D->isExpandedParameterPack()) { assert(TC->getTemplateArgsAsWritten() && "type parameter can only be an expansion when explicit arguments " "are specified"); // The template type parameter pack's type is a pack expansion of types. // Determine whether we need to expand this parameter pack into separate // types. SmallVector Unexpanded; for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; if (SemaRef.CheckParameterPacksForExpansion( cast(TC->getImmediatelyDeclaredConstraint()) ->getEllipsisLoc(), SourceRange(TC->getConceptNameLoc(), TC->hasExplicitTemplateArgs() ? TC->getTemplateArgsAsWritten()->getRAngleLoc() : TC->getConceptNameInfo().getEndLoc()), Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded)) return nullptr; } } TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(), D->hasTypeConstraint(), NumExpanded); Inst->setAccess(AS_public); Inst->setImplicit(D->isImplicit()); if (auto *TC = D->getTypeConstraint()) { if (!D->isImplicit()) { // Invented template parameter type constraints will be instantiated with // the corresponding auto-typed parameter as it might reference other // parameters. // TODO: Concepts: do not instantiate the constraint (delayed constraint // substitution) if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs)) return nullptr; } } if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { TypeSourceInfo *InstantiatedDefaultArg = SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, D->getDefaultArgumentLoc(), D->getDeclName()); if (InstantiatedDefaultArg) Inst->setDefaultArgument(InstantiatedDefaultArg); } // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( NonTypeTemplateParmDecl *D) { // Substitute into the type of the non-type template parameter. TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); SmallVector ExpandedParameterPackTypesAsWritten; SmallVector ExpandedParameterPackTypes; bool IsExpandedParameterPack = false; TypeSourceInfo *DI; QualType T; bool Invalid = false; if (D->isExpandedParameterPack()) { // The non-type template parameter pack is an already-expanded pack // expansion of types. Substitute into each of the expanded types. ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { TypeSourceInfo *NewDI = SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewDI) return nullptr; QualType NewT = SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); if (NewT.isNull()) return nullptr; ExpandedParameterPackTypesAsWritten.push_back(NewDI); ExpandedParameterPackTypes.push_back(NewT); } IsExpandedParameterPack = true; DI = D->getTypeSourceInfo(); T = DI->getType(); } else if (D->isPackExpansion()) { // The non-type template parameter pack's type is a pack expansion of types. // Determine whether we need to expand this parameter pack into separate // types. PackExpansionTypeLoc Expansion = TL.castAs(); TypeLoc Pattern = Expansion.getPatternLoc(); SmallVector Unexpanded; SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional OrigNumExpansions = Expansion.getTypePtr()->getNumExpansions(); Optional NumExpansions = OrigNumExpansions; if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), Pattern.getSourceRange(), Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpansions)) return nullptr; if (Expand) { for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewDI) return nullptr; QualType NewT = SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); if (NewT.isNull()) return nullptr; ExpandedParameterPackTypesAsWritten.push_back(NewDI); ExpandedParameterPackTypes.push_back(NewT); } // Note that we have an expanded parameter pack. The "type" of this // expanded parameter pack is the original expansion type, but callers // will end up using the expanded parameter pack types for type-checking. IsExpandedParameterPack = true; DI = D->getTypeSourceInfo(); T = DI->getType(); } else { // We cannot fully expand the pack expansion now, so substitute into the // pattern and create a new pack expansion type. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewPattern) return nullptr; SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), NumExpansions); if (!DI) return nullptr; T = DI->getType(); } } else { // Simple case: substitution into a parameter that is not a parameter pack. DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) return nullptr; // Check that this type is acceptable for a non-type template parameter. T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); if (T.isNull()) { T = SemaRef.Context.IntTy; Invalid = true; } } NonTypeTemplateParmDecl *Param; if (IsExpandedParameterPack) Param = NonTypeTemplateParmDecl::Create( SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, ExpandedParameterPackTypesAsWritten); else Param = NonTypeTemplateParmDecl::Create( SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc()) if (AutoLoc.isConstrained()) if (SemaRef.AttachTypeConstraint( AutoLoc, Param, IsExpandedParameterPack ? DI->getTypeLoc().getAs() .getEllipsisLoc() : SourceLocation())) Invalid = true; Param->setAccess(AS_public); Param->setImplicit(D->isImplicit()); if (Invalid) Param->setInvalidDecl(); if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { EnterExpressionEvaluationContext ConstantEvaluated( SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); if (!Value.isInvalid()) Param->setDefaultArgument(Value.get()); } // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); return Param; } static void collectUnexpandedParameterPacks( Sema &S, TemplateParameterList *Params, SmallVectorImpl &Unexpanded) { for (const auto &P : *Params) { if (P->isTemplateParameterPack()) continue; if (NonTypeTemplateParmDecl *NTTP = dyn_cast(P)) S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), Unexpanded); if (TemplateTemplateParmDecl *TTP = dyn_cast(P)) collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), Unexpanded); } } Decl * TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( TemplateTemplateParmDecl *D) { // Instantiate the template parameter list of the template template parameter. TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams; SmallVector ExpandedParams; bool IsExpandedParameterPack = false; if (D->isExpandedParameterPack()) { // The template template parameter pack is an already-expanded pack // expansion of template parameters. Substitute into each of the expanded // parameters. ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); I != N; ++I) { LocalInstantiationScope Scope(SemaRef); TemplateParameterList *Expansion = SubstTemplateParams(D->getExpansionTemplateParameters(I)); if (!Expansion) return nullptr; ExpandedParams.push_back(Expansion); } IsExpandedParameterPack = true; InstParams = TempParams; } else if (D->isPackExpansion()) { // The template template parameter pack expands to a pack of template // template parameters. Determine whether we need to expand this parameter // pack into separate parameters. SmallVector Unexpanded; collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional NumExpansions; if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), TempParams->getSourceRange(), Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpansions)) return nullptr; if (Expand) { for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); LocalInstantiationScope Scope(SemaRef); TemplateParameterList *Expansion = SubstTemplateParams(TempParams); if (!Expansion) return nullptr; ExpandedParams.push_back(Expansion); } // Note that we have an expanded parameter pack. The "type" of this // expanded parameter pack is the original expansion type, but callers // will end up using the expanded parameter pack types for type-checking. IsExpandedParameterPack = true; InstParams = TempParams; } else { // We cannot fully expand the pack expansion now, so just substitute // into the pattern. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); LocalInstantiationScope Scope(SemaRef); InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; } } else { // Perform the actual substitution of template parameters within a new, // local instantiation scope. LocalInstantiationScope Scope(SemaRef); InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; } // Build the template template parameter. TemplateTemplateParmDecl *Param; if (IsExpandedParameterPack) Param = TemplateTemplateParmDecl::Create( SemaRef.Context, Owner, D->getLocation(), D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams); else Param = TemplateTemplateParmDecl::Create( SemaRef.Context, Owner, D->getLocation(), D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { NestedNameSpecifierLoc QualifierLoc = D->getDefaultArgument().getTemplateQualifierLoc(); QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); TemplateName TName = SemaRef.SubstTemplateName( QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); if (!TName.isNull()) Param->setDefaultArgument( SemaRef.Context, TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName), D->getDefaultArgument().getTemplateQualifierLoc(), D->getDefaultArgument().getTemplateNameLoc())); } Param->setAccess(AS_public); Param->setImplicit(D->isImplicit()); // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); return Param; } Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { // Using directives are never dependent (and never contain any types or // expressions), so they require no explicit instantiation work. UsingDirectiveDecl *Inst = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getNamespaceKeyLocation(), D->getQualifierLoc(), D->getIdentLocation(), D->getNominatedNamespace(), D->getCommonAncestor()); // Add the using directive to its declaration context // only if this is not a function or method. if (!Owner->isFunctionOrMethod()) Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D, BaseUsingDecl *Inst, LookupResult *Lookup) { bool isFunctionScope = Owner->isFunctionOrMethod(); for (auto *Shadow : D->shadows()) { // FIXME: UsingShadowDecl doesn't preserve its immediate target, so // reconstruct it in the case where it matters. Hm, can we extract it from // the DeclSpec when parsing and save it in the UsingDecl itself? NamedDecl *OldTarget = Shadow->getTargetDecl(); if (auto *CUSD = dyn_cast(Shadow)) if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) OldTarget = BaseShadow; NamedDecl *InstTarget = nullptr; if (auto *EmptyD = dyn_cast(Shadow->getTargetDecl())) { InstTarget = UnresolvedUsingIfExistsDecl::Create( SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName()); } else { InstTarget = cast_or_null(SemaRef.FindInstantiatedDecl( Shadow->getLocation(), OldTarget, TemplateArgs)); } if (!InstTarget) return nullptr; UsingShadowDecl *PrevDecl = nullptr; if (Lookup && SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl)) continue; if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow)) PrevDecl = cast_or_null(SemaRef.FindInstantiatedDecl( Shadow->getLocation(), OldPrev, TemplateArgs)); UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl( /*Scope*/ nullptr, Inst, InstTarget, PrevDecl); SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); if (isFunctionScope) SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); } return Inst; } Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { // The nested name specifier may be dependent, for example // template struct t { // struct s1 { T f1(); }; // struct s2 : s1 { using s1::f1; }; // }; // template struct t; // Here, in using s1::f1, s1 refers to t::s1; // we need to substitute for t::s1. NestedNameSpecifierLoc QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); if (!QualifierLoc) return nullptr; // For an inheriting constructor declaration, the name of the using // declaration is the name of a constructor in this class, not in the // base class. DeclarationNameInfo NameInfo = D->getNameInfo(); if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) if (auto *RD = dyn_cast(SemaRef.CurContext)) NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); // We only need to do redeclaration lookups if we're in a class scope (in // fact, it's not really even possible in non-class scopes). bool CheckRedeclaration = Owner->isRecord(); LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, Sema::ForVisibleRedeclaration); UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(), QualifierLoc, NameInfo, D->hasTypename()); CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (CheckRedeclaration) { Prev.setHideTags(false); SemaRef.LookupQualifiedName(Prev, Owner); // Check for invalid redeclarations. if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), D->hasTypename(), SS, D->getLocation(), Prev)) NewUD->setInvalidDecl(); } if (!NewUD->isInvalidDecl() && SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS, NameInfo, D->getLocation(), nullptr, D)) NewUD->setInvalidDecl(); SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); NewUD->setAccess(D->getAccess()); Owner->addDecl(NewUD); // Don't process the shadow decls for an invalid decl. if (NewUD->isInvalidDecl()) return NewUD; // If the using scope was dependent, or we had dependent bases, we need to // recheck the inheritance if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) SemaRef.CheckInheritingConstructorUsingDecl(NewUD); return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr); } Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) { // Cannot be a dependent type, but still could be an instantiation EnumDecl *EnumD = cast_or_null(SemaRef.FindInstantiatedDecl( D->getLocation(), D->getEnumDecl(), TemplateArgs)); if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation())) return nullptr; UsingEnumDecl *NewUD = UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(), D->getEnumLoc(), D->getLocation(), EnumD); SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D); NewUD->setAccess(D->getAccess()); Owner->addDecl(NewUD); // Don't process the shadow decls for an invalid decl. if (NewUD->isInvalidDecl()) return NewUD; // We don't have to recheck for duplication of the UsingEnumDecl itself, as it // cannot be dependent, and will therefore have been checked during template // definition. return VisitBaseUsingDecls(D, NewUD, nullptr); } Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { // Ignore these; we handle them in bulk when processing the UsingDecl. return nullptr; } Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( ConstructorUsingShadowDecl *D) { // Ignore these; we handle them in bulk when processing the UsingDecl. return nullptr; } template Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( T *D, bool InstantiatingPackElement) { // If this is a pack expansion, expand it now. if (D->isPackExpansion() && !InstantiatingPackElement) { SmallVector Unexpanded; SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional NumExpansions; if (SemaRef.CheckParameterPacksForExpansion( D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpansions)) return nullptr; // This declaration cannot appear within a function template signature, // so we can't have a partial argument list for a parameter pack. assert(!RetainExpansion && "should never need to retain an expansion for UsingPackDecl"); if (!Expand) { // We cannot fully expand the pack expansion now, so substitute into the // pattern and create a new pack expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); return instantiateUnresolvedUsingDecl(D, true); } // Within a function, we don't have any normal way to check for conflicts // between shadow declarations from different using declarations in the // same pack expansion, but this is always ill-formed because all expansions // must produce (conflicting) enumerators. // // Sadly we can't just reject this in the template definition because it // could be valid if the pack is empty or has exactly one expansion. if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { SemaRef.Diag(D->getEllipsisLoc(), diag::err_using_decl_redeclaration_expansion); return nullptr; } // Instantiate the slices of this pack and build a UsingPackDecl. SmallVector Expansions; for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); Decl *Slice = instantiateUnresolvedUsingDecl(D, true); if (!Slice) return nullptr; // Note that we can still get unresolved using declarations here, if we // had arguments for all packs but the pattern also contained other // template arguments (this only happens during partial substitution, eg // into the body of a generic lambda in a function template). Expansions.push_back(cast(Slice)); } auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); if (isDeclWithinFunction(D)) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); return NewD; } UnresolvedUsingTypenameDecl *TD = dyn_cast(D); SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); NestedNameSpecifierLoc QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); if (!QualifierLoc) return nullptr; CXXScopeSpec SS; SS.Adopt(QualifierLoc); DeclarationNameInfo NameInfo = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); // Produce a pack expansion only if we're not instantiating a particular // slice of a pack expansion. bool InstantiatingSlice = D->getEllipsisLoc().isValid() && SemaRef.ArgumentPackSubstitutionIndex != -1; SourceLocation EllipsisLoc = InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); bool IsUsingIfExists = D->template hasAttr(); NamedDecl *UD = SemaRef.BuildUsingDeclaration( /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, ParsedAttributesView(), /*IsInstantiation*/ true, IsUsingIfExists); if (UD) { SemaRef.InstantiateAttrs(TemplateArgs, D, UD); SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); } return UD; } Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( UnresolvedUsingTypenameDecl *D) { return instantiateUnresolvedUsingDecl(D); } Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( UnresolvedUsingValueDecl *D) { return instantiateUnresolvedUsingDecl(D); } Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl( UnresolvedUsingIfExistsDecl *D) { llvm_unreachable("referring to unresolved decl out of UsingShadowDecl"); } Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { SmallVector Expansions; for (auto *UD : D->expansions()) { if (NamedDecl *NewUD = SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) Expansions.push_back(NewUD); else return nullptr; } auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); if (isDeclWithinFunction(D)) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); return NewD; } Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( ClassScopeFunctionSpecializationDecl *Decl) { CXXMethodDecl *OldFD = Decl->getSpecialization(); return cast_or_null( VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten())); } Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( OMPThreadPrivateDecl *D) { SmallVector Vars; for (auto *I : D->varlists()) { Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); assert(isa(Var) && "threadprivate arg is not a DeclRefExpr"); Vars.push_back(Var); } OMPThreadPrivateDecl *TD = SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); TD->setAccess(AS_public); Owner->addDecl(TD); return TD; } Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) { SmallVector Vars; for (auto *I : D->varlists()) { Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); assert(isa(Var) && "allocate arg is not a DeclRefExpr"); Vars.push_back(Var); } SmallVector Clauses; // Copy map clauses from the original mapper. for (OMPClause *C : D->clauselists()) { OMPClause *IC = nullptr; if (auto *AC = dyn_cast(C)) { ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs); if (!NewE.isUsable()) continue; IC = SemaRef.ActOnOpenMPAllocatorClause( NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); } else if (auto *AC = dyn_cast(C)) { ExprResult NewE = SemaRef.SubstExpr(AC->getAlignment(), TemplateArgs); if (!NewE.isUsable()) continue; IC = SemaRef.ActOnOpenMPAlignClause(NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); // If align clause value ends up being invalid, this can end up null. if (!IC) continue; } Clauses.push_back(IC); } Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective( D->getLocation(), Vars, Clauses, Owner); if (Res.get().isNull()) return nullptr; return Res.get().getSingleDecl(); } Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) { llvm_unreachable( "Requires directive cannot be instantiated within a dependent context"); } Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( OMPDeclareReductionDecl *D) { // Instantiate type and check if it is allowed. const bool RequiresInstantiation = D->getType()->isDependentType() || D->getType()->isInstantiationDependentType() || D->getType()->containsUnexpandedParameterPack(); QualType SubstReductionType; if (RequiresInstantiation) { SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType( D->getLocation(), ParsedType::make(SemaRef.SubstType( D->getType(), TemplateArgs, D->getLocation(), DeclarationName()))); } else { SubstReductionType = D->getType(); } if (SubstReductionType.isNull()) return nullptr; Expr *Combiner = D->getCombiner(); Expr *Init = D->getInitializer(); bool IsCorrect = true; // Create instantiated copy. std::pair ReductionTypes[] = { std::make_pair(SubstReductionType, D->getLocation())}; auto *PrevDeclInScope = D->getPrevDeclInScope(); if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { PrevDeclInScope = cast( SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) ->get()); } auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart( /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), PrevDeclInScope); auto *NewDRD = cast(DRD.get().getSingleDecl()); SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); Expr *SubstCombiner = nullptr; Expr *SubstInitializer = nullptr; // Combiners instantiation sequence. if (Combiner) { SemaRef.ActOnOpenMPDeclareReductionCombinerStart( /*S=*/nullptr, NewDRD); SemaRef.CurrentInstantiationScope->InstantiatedLocal( cast(D->getCombinerIn())->getDecl(), cast(NewDRD->getCombinerIn())->getDecl()); SemaRef.CurrentInstantiationScope->InstantiatedLocal( cast(D->getCombinerOut())->getDecl(), cast(NewDRD->getCombinerOut())->getDecl()); auto *ThisContext = dyn_cast_or_null(Owner); Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), ThisContext); SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get(); SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner); } // Initializers instantiation sequence. if (Init) { VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart( /*S=*/nullptr, NewDRD); SemaRef.CurrentInstantiationScope->InstantiatedLocal( cast(D->getInitOrig())->getDecl(), cast(NewDRD->getInitOrig())->getDecl()); SemaRef.CurrentInstantiationScope->InstantiatedLocal( cast(D->getInitPriv())->getDecl(), cast(NewDRD->getInitPriv())->getDecl()); if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) { SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get(); } else { auto *OldPrivParm = cast(cast(D->getInitPriv())->getDecl()); IsCorrect = IsCorrect && OldPrivParm->hasInit(); if (IsCorrect) SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm, TemplateArgs); } SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer, OmpPrivParm); } IsCorrect = IsCorrect && SubstCombiner && (!Init || (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit && SubstInitializer) || (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit && !SubstInitializer)); (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd( /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl()); return NewDRD; } Decl * TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) { // Instantiate type and check if it is allowed. const bool RequiresInstantiation = D->getType()->isDependentType() || D->getType()->isInstantiationDependentType() || D->getType()->containsUnexpandedParameterPack(); QualType SubstMapperTy; DeclarationName VN = D->getVarName(); if (RequiresInstantiation) { SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType( D->getLocation(), ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, D->getLocation(), VN))); } else { SubstMapperTy = D->getType(); } if (SubstMapperTy.isNull()) return nullptr; // Create an instantiated copy of mapper. auto *PrevDeclInScope = D->getPrevDeclInScope(); if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { PrevDeclInScope = cast( SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) ->get()); } bool IsCorrect = true; SmallVector Clauses; // Instantiate the mapper variable. DeclarationNameInfo DirName; SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName, /*S=*/nullptr, (*D->clauselist_begin())->getBeginLoc()); ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl( /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN); SemaRef.CurrentInstantiationScope->InstantiatedLocal( cast(D->getMapperVarRef())->getDecl(), cast(MapperVarRef.get())->getDecl()); auto *ThisContext = dyn_cast_or_null(Owner); Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), ThisContext); // Instantiate map clauses. for (OMPClause *C : D->clauselists()) { auto *OldC = cast(C); SmallVector NewVars; for (Expr *OE : OldC->varlists()) { Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get(); if (!NE) { IsCorrect = false; break; } NewVars.push_back(NE); } if (!IsCorrect) break; NestedNameSpecifierLoc NewQualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(), TemplateArgs); CXXScopeSpec SS; SS.Adopt(NewQualifierLoc); DeclarationNameInfo NewNameInfo = SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs); OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(), OldC->getEndLoc()); OMPClause *NewC = SemaRef.ActOnOpenMPMapClause( OldC->getMapTypeModifiers(), OldC->getMapTypeModifiersLoc(), SS, NewNameInfo, OldC->getMapType(), OldC->isImplicitMapType(), OldC->getMapLoc(), OldC->getColonLoc(), NewVars, Locs); Clauses.push_back(NewC); } SemaRef.EndOpenMPDSABlock(nullptr); if (!IsCorrect) return nullptr; Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective( /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(), VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope); Decl *NewDMD = DG.get().getSingleDecl(); SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD); return NewDMD; } Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( OMPCapturedExprDecl * /*D*/) { llvm_unreachable("Should not be met in templates"); } Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { return VisitFunctionDecl(D, nullptr); } Decl * TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { Decl *Inst = VisitFunctionDecl(D, nullptr); if (Inst && !D->getDescribedFunctionTemplate()) Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { return VisitCXXMethodDecl(D, nullptr); } Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { llvm_unreachable("There are only CXXRecordDecls in C++"); } Decl * TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { // As a MS extension, we permit class-scope explicit specialization // of member class templates. ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); assert(ClassTemplate->getDeclContext()->isRecord() && D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && "can only instantiate an explicit specialization " "for a member class template"); // Lookup the already-instantiated declaration in the instantiation // of the class template. ClassTemplateDecl *InstClassTemplate = cast_or_null(SemaRef.FindInstantiatedDecl( D->getLocation(), ClassTemplate, TemplateArgs)); if (!InstClassTemplate) return nullptr; // Substitute into the template arguments of the class template explicit // specialization. TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). castAs(); TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), Loc.getRAngleLoc()); SmallVector ArgLocs; for (unsigned I = 0; I != Loc.getNumArgs(); ++I) ArgLocs.push_back(Loc.getArgLoc(I)); if (SemaRef.SubstTemplateArguments(ArgLocs, TemplateArgs, InstTemplateArgs)) return nullptr; // Check that the template argument list is well-formed for this // class template. SmallVector Converted; if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, D->getLocation(), InstTemplateArgs, false, Converted, /*UpdateArgsWithConversions=*/true)) return nullptr; // Figure out where to insert this class template explicit specialization // in the member template's set of class template explicit specializations. void *InsertPos = nullptr; ClassTemplateSpecializationDecl *PrevDecl = InstClassTemplate->findSpecialization(Converted, InsertPos); // Check whether we've already seen a conflicting instantiation of this // declaration (for instance, if there was a prior implicit instantiation). bool Ignored; if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), D->getSpecializationKind(), PrevDecl, PrevDecl->getSpecializationKind(), PrevDecl->getPointOfInstantiation(), Ignored)) return nullptr; // If PrevDecl was a definition and D is also a definition, diagnose. // This happens in cases like: // // template // struct Outer { // template struct Inner; // template<> struct Inner {}; // template<> struct Inner {}; // }; // // Outer outer; // error: the explicit specializations of Inner // // have the same signature. if (PrevDecl && PrevDecl->getDefinition() && D->isThisDeclarationADefinition()) { SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), diag::note_previous_definition); return nullptr; } // Create the class template partial specialization declaration. ClassTemplateSpecializationDecl *InstD = ClassTemplateSpecializationDecl::Create( SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), D->getLocation(), InstClassTemplate, Converted, PrevDecl); // Add this partial specialization to the set of class template partial // specializations. if (!PrevDecl) InstClassTemplate->AddSpecialization(InstD, InsertPos); // Substitute the nested name specifier, if any. if (SubstQualifier(D, InstD)) return nullptr; // Build the canonical type that describes the converted template // arguments of the class template explicit specialization. QualType CanonType = SemaRef.Context.getTemplateSpecializationType( TemplateName(InstClassTemplate), Converted, SemaRef.Context.getRecordType(InstD)); // Build the fully-sugared type for this class template // specialization as the user wrote in the specialization // itself. This means that we'll pretty-print the type retrieved // from the specialization's declaration the way that the user // actually wrote the specialization, rather than formatting the // name based on the "canonical" representation used to store the // template arguments in the specialization. TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, CanonType); InstD->setAccess(D->getAccess()); InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); InstD->setSpecializationKind(D->getSpecializationKind()); InstD->setTypeAsWritten(WrittenTy); InstD->setExternLoc(D->getExternLoc()); InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); Owner->addDecl(InstD); // Instantiate the members of the class-scope explicit specialization eagerly. // We don't have support for lazy instantiation of an explicit specialization // yet, and MSVC eagerly instantiates in this case. // FIXME: This is wrong in standard C++. if (D->isThisDeclarationADefinition() && SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, TSK_ImplicitInstantiation, /*Complain=*/true)) return nullptr; return InstD; } Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( VarTemplateSpecializationDecl *D) { TemplateArgumentListInfo VarTemplateArgsInfo; VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); assert(VarTemplate && "A template specialization without specialized template?"); VarTemplateDecl *InstVarTemplate = cast_or_null(SemaRef.FindInstantiatedDecl( D->getLocation(), VarTemplate, TemplateArgs)); if (!InstVarTemplate) return nullptr; // Substitute the current template arguments. const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo(); VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc()); VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc()); if (SemaRef.SubstTemplateArguments(TemplateArgsInfo.arguments(), TemplateArgs, VarTemplateArgsInfo)) return nullptr; // Check that the template argument list is well-formed for this template. SmallVector Converted; if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(), VarTemplateArgsInfo, false, Converted, /*UpdateArgsWithConversions=*/true)) return nullptr; // Check whether we've already seen a declaration of this specialization. void *InsertPos = nullptr; VarTemplateSpecializationDecl *PrevDecl = InstVarTemplate->findSpecialization(Converted, InsertPos); // Check whether we've already seen a conflicting instantiation of this // declaration (for instance, if there was a prior implicit instantiation). bool Ignored; if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl( D->getLocation(), D->getSpecializationKind(), PrevDecl, PrevDecl->getSpecializationKind(), PrevDecl->getPointOfInstantiation(), Ignored)) return nullptr; return VisitVarTemplateSpecializationDecl( InstVarTemplate, D, VarTemplateArgsInfo, Converted, PrevDecl); } Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( VarTemplateDecl *VarTemplate, VarDecl *D, const TemplateArgumentListInfo &TemplateArgsInfo, ArrayRef Converted, VarTemplateSpecializationDecl *PrevDecl) { // Do substitution on the type of the declaration TypeSourceInfo *DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName()); if (!DI) return nullptr; if (DI->getType()->isFunctionType()) { SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) << D->isStaticDataMember() << DI->getType(); return nullptr; } // Build the instantiated declaration VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); Var->setTemplateArgsInfo(TemplateArgsInfo); if (!PrevDecl) { void *InsertPos = nullptr; VarTemplate->findSpecialization(Converted, InsertPos); VarTemplate->AddSpecialization(Var, InsertPos); } if (SemaRef.getLangOpts().OpenCL) SemaRef.deduceOpenCLAddressSpace(Var); // Substitute the nested name specifier, if any. if (SubstQualifier(D, Var)) return nullptr; SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, StartingScope, false, PrevDecl); return Var; } Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { llvm_unreachable("@defs is not supported in Objective-C++"); } Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { // FIXME: We need to be able to instantiate FriendTemplateDecls. unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( DiagnosticsEngine::Error, "cannot instantiate %0 yet"); SemaRef.Diag(D->getLocation(), DiagID) << D->getDeclKindName(); return nullptr; } Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) { llvm_unreachable("Concept definitions cannot reside inside a template"); } Decl * TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) { return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(), D->getBeginLoc()); } Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { llvm_unreachable("Unexpected decl"); } Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs) { TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); if (D->isInvalidDecl()) return nullptr; Decl *SubstD; runWithSufficientStackSpace(D->getLocation(), [&] { SubstD = Instantiator.Visit(D); }); return SubstD; } void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK, FunctionDecl *Orig, QualType &T, TypeSourceInfo *&TInfo, DeclarationNameInfo &NameInfo) { assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual); // C++2a [class.compare.default]p3: // the return type is replaced with bool auto *FPT = T->castAs(); T = SemaRef.Context.getFunctionType( SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo()); // Update the return type in the source info too. The most straightforward // way is to create new TypeSourceInfo for the new type. Use the location of // the '= default' as the location of the new type. // // FIXME: Set the correct return type when we initially transform the type, // rather than delaying it to now. TypeSourceInfo *NewTInfo = SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc()); auto OldLoc = TInfo->getTypeLoc().getAsAdjusted(); assert(OldLoc && "type of function is not a function type?"); auto NewLoc = NewTInfo->getTypeLoc().castAs(); for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I) NewLoc.setParam(I, OldLoc.getParam(I)); TInfo = NewTInfo; // and the declarator-id is replaced with operator== NameInfo.setName( SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual)); } FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, FunctionDecl *Spaceship) { if (Spaceship->isInvalidDecl()) return nullptr; // C++2a [class.compare.default]p3: // an == operator function is declared implicitly [...] with the same // access and function-definition and in the same class scope as the // three-way comparison operator function MultiLevelTemplateArgumentList NoTemplateArgs; NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite); NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth()); TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs); Decl *R; if (auto *MD = dyn_cast(Spaceship)) { R = Instantiator.VisitCXXMethodDecl( MD, nullptr, None, TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); } else { assert(Spaceship->getFriendObjectKind() && "defaulted spaceship is neither a member nor a friend"); R = Instantiator.VisitFunctionDecl( Spaceship, nullptr, TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); if (!R) return nullptr; FriendDecl *FD = FriendDecl::Create(Context, RD, Spaceship->getLocation(), cast(R), Spaceship->getBeginLoc()); FD->setAccess(AS_public); RD->addDecl(FD); } return cast_or_null(R); } /// Instantiates a nested template parameter list in the current /// instantiation context. /// /// \param L The parameter list to instantiate /// /// \returns NULL if there was an error TemplateParameterList * TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { // Get errors for all the parameters before bailing out. bool Invalid = false; unsigned N = L->size(); typedef SmallVector ParamVector; ParamVector Params; Params.reserve(N); for (auto &P : *L) { NamedDecl *D = cast_or_null(Visit(P)); Params.push_back(D); Invalid = Invalid || !D || D->isInvalidDecl(); } // Clean up if we had an error. if (Invalid) return nullptr; // FIXME: Concepts: Substitution into requires clause should only happen when // checking satisfaction. Expr *InstRequiresClause = nullptr; if (Expr *E = L->getRequiresClause()) { EnterExpressionEvaluationContext ConstantEvaluated( SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); ExprResult Res = SemaRef.SubstExpr(E, TemplateArgs); if (Res.isInvalid() || !Res.isUsable()) { return nullptr; } InstRequiresClause = Res.get(); } TemplateParameterList *InstL = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), L->getLAngleLoc(), Params, L->getRAngleLoc(), InstRequiresClause); return InstL; } TemplateParameterList * Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs) { TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); return Instantiator.SubstTemplateParams(Params); } /// Instantiate the declaration of a class template partial /// specialization. /// /// \param ClassTemplate the (instantiated) class template that is partially // specialized by the instantiation of \p PartialSpec. /// /// \param PartialSpec the (uninstantiated) class template partial /// specialization that we are instantiating. /// /// \returns The instantiated partial specialization, if successful; otherwise, /// NULL to indicate an error. ClassTemplatePartialSpecializationDecl * TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( ClassTemplateDecl *ClassTemplate, ClassTemplatePartialSpecializationDecl *PartialSpec) { // Create a local instantiation scope for this class template partial // specialization, which will contain the instantiations of the template // parameters. LocalInstantiationScope Scope(SemaRef); // Substitute into the template parameters of the class template partial // specialization. TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; // Substitute into the template arguments of the class template partial // specialization. const ASTTemplateArgumentListInfo *TemplArgInfo = PartialSpec->getTemplateArgsAsWritten(); TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, TemplArgInfo->RAngleLoc); if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, InstTemplateArgs)) return nullptr; // Check that the template argument list is well-formed for this // class template. SmallVector Converted; if (SemaRef.CheckTemplateArgumentList(ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs, false, Converted)) return nullptr; // Check these arguments are valid for a template partial specialization. if (SemaRef.CheckTemplatePartialSpecializationArgs( PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), Converted)) return nullptr; // Figure out where to insert this class template partial specialization // in the member template's set of class template partial specializations. void *InsertPos = nullptr; ClassTemplateSpecializationDecl *PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InstParams, InsertPos); // Build the canonical type that describes the converted template // arguments of the class template partial specialization. QualType CanonType = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), Converted); // Build the fully-sugared type for this class template // specialization as the user wrote in the specialization // itself. This means that we'll pretty-print the type retrieved // from the specialization's declaration the way that the user // actually wrote the specialization, rather than formatting the // name based on the "canonical" representation used to store the // template arguments in the specialization. TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( TemplateName(ClassTemplate), PartialSpec->getLocation(), InstTemplateArgs, CanonType); if (PrevDecl) { // We've already seen a partial specialization with the same template // parameters and template arguments. This can happen, for example, when // substituting the outer template arguments ends up causing two // class template partial specializations of a member class template // to have identical forms, e.g., // // template // struct Outer { // template struct Inner; // template struct Inner; // template struct Inner; // }; // // Outer outer; // error: the partial specializations of Inner // // have the same signature. SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) << WrittenTy->getType(); SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) << SemaRef.Context.getTypeDeclType(PrevDecl); return nullptr; } // Create the class template partial specialization declaration. ClassTemplatePartialSpecializationDecl *InstPartialSpec = ClassTemplatePartialSpecializationDecl::Create( SemaRef.Context, PartialSpec->getTagKind(), Owner, PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams, ClassTemplate, Converted, InstTemplateArgs, CanonType, nullptr); // Substitute the nested name specifier, if any. if (SubstQualifier(PartialSpec, InstPartialSpec)) return nullptr; InstPartialSpec->setInstantiatedFromMember(PartialSpec); InstPartialSpec->setTypeAsWritten(WrittenTy); // Check the completed partial specialization. SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); // Add this partial specialization to the set of class template partial // specializations. ClassTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); return InstPartialSpec; } /// Instantiate the declaration of a variable template partial /// specialization. /// /// \param VarTemplate the (instantiated) variable template that is partially /// specialized by the instantiation of \p PartialSpec. /// /// \param PartialSpec the (uninstantiated) variable template partial /// specialization that we are instantiating. /// /// \returns The instantiated partial specialization, if successful; otherwise, /// NULL to indicate an error. VarTemplatePartialSpecializationDecl * TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( VarTemplateDecl *VarTemplate, VarTemplatePartialSpecializationDecl *PartialSpec) { // Create a local instantiation scope for this variable template partial // specialization, which will contain the instantiations of the template // parameters. LocalInstantiationScope Scope(SemaRef); // Substitute into the template parameters of the variable template partial // specialization. TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; // Substitute into the template arguments of the variable template partial // specialization. const ASTTemplateArgumentListInfo *TemplArgInfo = PartialSpec->getTemplateArgsAsWritten(); TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, TemplArgInfo->RAngleLoc); if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, InstTemplateArgs)) return nullptr; // Check that the template argument list is well-formed for this // class template. SmallVector Converted; if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(), InstTemplateArgs, false, Converted)) return nullptr; // Check these arguments are valid for a template partial specialization. if (SemaRef.CheckTemplatePartialSpecializationArgs( PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), Converted)) return nullptr; // Figure out where to insert this variable template partial specialization // in the member template's set of variable template partial specializations. void *InsertPos = nullptr; VarTemplateSpecializationDecl *PrevDecl = VarTemplate->findPartialSpecialization(Converted, InstParams, InsertPos); // Build the canonical type that describes the converted template // arguments of the variable template partial specialization. QualType CanonType = SemaRef.Context.getTemplateSpecializationType( TemplateName(VarTemplate), Converted); // Build the fully-sugared type for this variable template // specialization as the user wrote in the specialization // itself. This means that we'll pretty-print the type retrieved // from the specialization's declaration the way that the user // actually wrote the specialization, rather than formatting the // name based on the "canonical" representation used to store the // template arguments in the specialization. TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, CanonType); if (PrevDecl) { // We've already seen a partial specialization with the same template // parameters and template arguments. This can happen, for example, when // substituting the outer template arguments ends up causing two // variable template partial specializations of a member variable template // to have identical forms, e.g., // // template // struct Outer { // template pair p; // template pair p; // template pair p; // }; // // Outer outer; // error: the partial specializations of Inner // // have the same signature. SemaRef.Diag(PartialSpec->getLocation(), diag::err_var_partial_spec_redeclared) << WrittenTy->getType(); SemaRef.Diag(PrevDecl->getLocation(), diag::note_var_prev_partial_spec_here); return nullptr; } // Do substitution on the type of the declaration TypeSourceInfo *DI = SemaRef.SubstType( PartialSpec->getTypeSourceInfo(), TemplateArgs, PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); if (!DI) return nullptr; if (DI->getType()->isFunctionType()) { SemaRef.Diag(PartialSpec->getLocation(), diag::err_variable_instantiates_to_function) << PartialSpec->isStaticDataMember() << DI->getType(); return nullptr; } // Create the variable template partial specialization declaration. VarTemplatePartialSpecializationDecl *InstPartialSpec = VarTemplatePartialSpecializationDecl::Create( SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs); // Substitute the nested name specifier, if any. if (SubstQualifier(PartialSpec, InstPartialSpec)) return nullptr; InstPartialSpec->setInstantiatedFromMember(PartialSpec); InstPartialSpec->setTypeAsWritten(WrittenTy); // Check the completed partial specialization. SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); // Add this partial specialization to the set of variable template partial // specializations. The instantiation of the initializer is not necessary. VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, LateAttrs, Owner, StartingScope); return InstPartialSpec; } TypeSourceInfo* TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, SmallVectorImpl &Params) { TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); assert(OldTInfo && "substituting function without type source info"); assert(Params.empty() && "parameter vector is non-empty at start"); CXXRecordDecl *ThisContext = nullptr; Qualifiers ThisTypeQuals; if (CXXMethodDecl *Method = dyn_cast(D)) { ThisContext = cast(Owner); ThisTypeQuals = Method->getMethodQualifiers(); } TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(), ThisContext, ThisTypeQuals); if (!NewTInfo) return nullptr; TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs()) { if (NewTInfo != OldTInfo) { // Get parameters from the new type info. TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs(); unsigned NewIdx = 0; for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); OldIdx != NumOldParams; ++OldIdx) { ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); if (!OldParam) return nullptr; LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; Optional NumArgumentsInExpansion; if (OldParam->isParameterPack()) NumArgumentsInExpansion = SemaRef.getNumArgumentsInExpansion(OldParam->getType(), TemplateArgs); if (!NumArgumentsInExpansion) { // Simple case: normal parameter, or a parameter pack that's // instantiated to a (still-dependent) parameter pack. ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); Params.push_back(NewParam); Scope->InstantiatedLocal(OldParam, NewParam); } else { // Parameter pack expansion: make the instantiation an argument pack. Scope->MakeInstantiatedLocalArgPack(OldParam); for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); Params.push_back(NewParam); Scope->InstantiatedLocalPackArg(OldParam, NewParam); } } } } else { // The function type itself was not dependent and therefore no // substitution occurred. However, we still need to instantiate // the function parameters themselves. const FunctionProtoType *OldProto = cast(OldProtoLoc.getType()); for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; ++i) { ParmVarDecl *OldParam = OldProtoLoc.getParam(i); if (!OldParam) { Params.push_back(SemaRef.BuildParmVarDeclForTypedef( D, D->getLocation(), OldProto->getParamType(i))); continue; } ParmVarDecl *Parm = cast_or_null(VisitParmVarDecl(OldParam)); if (!Parm) return nullptr; Params.push_back(Parm); } } } else { // If the type of this function, after ignoring parentheses, is not // *directly* a function type, then we're instantiating a function that // was declared via a typedef or with attributes, e.g., // // typedef int functype(int, int); // functype func; // int __cdecl meth(int, int); // // In this case, we'll just go instantiate the ParmVarDecls that we // synthesized in the method declaration. SmallVector ParamTypes; Sema::ExtParameterInfoBuilder ExtParamInfos; if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, TemplateArgs, ParamTypes, &Params, ExtParamInfos)) return nullptr; } return NewTInfo; } /// Introduce the instantiated function parameters into the local /// instantiation scope, and set the parameter names to those used /// in the template. static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function, const FunctionDecl *PatternDecl, LocalInstantiationScope &Scope, const MultiLevelTemplateArgumentList &TemplateArgs) { unsigned FParamIdx = 0; for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); if (!PatternParam->isParameterPack()) { // Simple case: not a parameter pack. assert(FParamIdx < Function->getNumParams()); ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); FunctionParam->setDeclName(PatternParam->getDeclName()); // If the parameter's type is not dependent, update it to match the type // in the pattern. They can differ in top-level cv-qualifiers, and we want // the pattern's type here. If the type is dependent, they can't differ, // per core issue 1668. Substitute into the type from the pattern, in case // it's instantiation-dependent. // FIXME: Updating the type to work around this is at best fragile. if (!PatternDecl->getType()->isDependentType()) { QualType T = S.SubstType(PatternParam->getType(), TemplateArgs, FunctionParam->getLocation(), FunctionParam->getDeclName()); if (T.isNull()) return true; FunctionParam->setType(T); } Scope.InstantiatedLocal(PatternParam, FunctionParam); ++FParamIdx; continue; } // Expand the parameter pack. Scope.MakeInstantiatedLocalArgPack(PatternParam); Optional NumArgumentsInExpansion = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); if (NumArgumentsInExpansion) { QualType PatternType = PatternParam->getType()->castAs()->getPattern(); for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); FunctionParam->setDeclName(PatternParam->getDeclName()); if (!PatternDecl->getType()->isDependentType()) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg); QualType T = S.SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(), FunctionParam->getDeclName()); if (T.isNull()) return true; FunctionParam->setType(T); } Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); ++FParamIdx; } } } return false; } bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param) { assert(Param->hasUninstantiatedDefaultArg()); Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); EnterExpressionEvaluationContext EvalContext( *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); // Instantiate the expression. // // FIXME: Pass in a correct Pattern argument, otherwise // getTemplateInstantiationArgs uses the lexical context of FD, e.g. // // template // struct A { // static int FooImpl(); // // template // // bug: default argument A::FooImpl() is evaluated with 2-level // // template argument list [[T], [Tp]], should be [[Tp]]. // friend A Foo(int a); // }; // // template // A Foo(int a = A::FooImpl()); MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true); InstantiatingTemplate Inst(*this, CallLoc, Param, TemplateArgs.getInnermost()); if (Inst.isInvalid()) return true; if (Inst.isAlreadyInstantiating()) { Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; Param->setInvalidDecl(); return true; } ExprResult Result; { // C++ [dcl.fct.default]p5: // The names in the [default argument] expression are bound, and // the semantic constraints are checked, at the point where the // default argument expression appears. ContextRAII SavedContext(*this, FD); LocalInstantiationScope Local(*this); FunctionDecl *Pattern = FD->getTemplateInstantiationPattern( /*ForDefinition*/ false); if (addInstantiatedParametersToScope(*this, FD, Pattern, Local, TemplateArgs)) return true; runWithSufficientStackSpace(CallLoc, [&] { Result = SubstInitializer(UninstExpr, TemplateArgs, /*DirectInit*/false); }); } if (Result.isInvalid()) return true; // Check the expression as an initializer for the parameter. InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, Param); InitializationKind Kind = InitializationKind::CreateCopy( Param->getLocation(), /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc()); Expr *ResultE = Result.getAs(); InitializationSequence InitSeq(*this, Entity, Kind, ResultE); Result = InitSeq.Perform(*this, Entity, Kind, ResultE); if (Result.isInvalid()) return true; Result = ActOnFinishFullExpr(Result.getAs(), Param->getOuterLocStart(), /*DiscardedValue*/ false); if (Result.isInvalid()) return true; // Remember the instantiated default argument. Param->setDefaultArg(Result.getAs()); if (ASTMutationListener *L = getASTMutationListener()) L->DefaultArgumentInstantiated(Param); return false; } void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, FunctionDecl *Decl) { const FunctionProtoType *Proto = Decl->getType()->castAs(); if (Proto->getExceptionSpecType() != EST_Uninstantiated) return; InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, InstantiatingTemplate::ExceptionSpecification()); if (Inst.isInvalid()) { // We hit the instantiation depth limit. Clear the exception specification // so that our callers don't have to cope with EST_Uninstantiated. UpdateExceptionSpec(Decl, EST_None); return; } if (Inst.isAlreadyInstantiating()) { // This exception specification indirectly depends on itself. Reject. // FIXME: Corresponding rule in the standard? Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; UpdateExceptionSpec(Decl, EST_None); return; } // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. Sema::ContextRAII savedContext(*this, Decl); LocalInstantiationScope Scope(*this); MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true); // FIXME: We can't use getTemplateInstantiationPattern(false) in general // here, because for a non-defining friend declaration in a class template, // we don't store enough information to map back to the friend declaration in // the template. FunctionDecl *Template = Proto->getExceptionSpecTemplate(); if (addInstantiatedParametersToScope(*this, Decl, Template, Scope, TemplateArgs)) { UpdateExceptionSpec(Decl, EST_None); return; } SubstExceptionSpec(Decl, Template->getType()->castAs(), TemplateArgs); } bool Sema::CheckInstantiatedFunctionTemplateConstraints( SourceLocation PointOfInstantiation, FunctionDecl *Decl, ArrayRef TemplateArgs, ConstraintSatisfaction &Satisfaction) { // In most cases we're not going to have constraints, so check for that first. FunctionTemplateDecl *Template = Decl->getPrimaryTemplate(); // Note - code synthesis context for the constraints check is created // inside CheckConstraintsSatisfaction. SmallVector TemplateAC; Template->getAssociatedConstraints(TemplateAC); if (TemplateAC.empty()) { Satisfaction.IsSatisfied = true; return false; } // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. Sema::ContextRAII savedContext(*this, Decl); LocalInstantiationScope Scope(*this); // If this is not an explicit specialization - we need to get the instantiated // version of the template arguments and add them to scope for the // substitution. if (Decl->isTemplateInstantiation()) { InstantiatingTemplate Inst(*this, Decl->getPointOfInstantiation(), InstantiatingTemplate::ConstraintsCheck{}, Decl->getPrimaryTemplate(), TemplateArgs, SourceRange()); if (Inst.isInvalid()) return true; MultiLevelTemplateArgumentList MLTAL( *Decl->getTemplateSpecializationArgs()); if (addInstantiatedParametersToScope( *this, Decl, Decl->getPrimaryTemplate()->getTemplatedDecl(), Scope, MLTAL)) return true; } Qualifiers ThisQuals; CXXRecordDecl *Record = nullptr; if (auto *Method = dyn_cast(Decl)) { ThisQuals = Method->getMethodQualifiers(); Record = Method->getParent(); } CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr); return CheckConstraintSatisfaction(Template, TemplateAC, TemplateArgs, PointOfInstantiation, Satisfaction); } /// Initializes the common fields of an instantiation function /// declaration (New) from the corresponding fields of its template (Tmpl). /// /// \returns true if there was an error bool TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, FunctionDecl *Tmpl) { New->setImplicit(Tmpl->isImplicit()); // Forward the mangling number from the template to the instantiated decl. SemaRef.Context.setManglingNumber(New, SemaRef.Context.getManglingNumber(Tmpl)); // If we are performing substituting explicitly-specified template arguments // or deduced template arguments into a function template and we reach this // point, we are now past the point where SFINAE applies and have committed // to keeping the new function template specialization. We therefore // convert the active template instantiation for the function template // into a template instantiation for this specific function template // specialization, which is not a SFINAE context, so that we diagnose any // further errors in the declaration itself. // // FIXME: This is a hack. typedef Sema::CodeSynthesisContext ActiveInstType; ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { if (FunctionTemplateDecl *FunTmpl = dyn_cast(ActiveInst.Entity)) { assert(FunTmpl->getTemplatedDecl() == Tmpl && "Deduction from the wrong function template?"); (void) FunTmpl; SemaRef.InstantiatingSpecializations.erase( {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind}); atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); ActiveInst.Kind = ActiveInstType::TemplateInstantiation; ActiveInst.Entity = New; atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); } } const FunctionProtoType *Proto = Tmpl->getType()->getAs(); assert(Proto && "Function template without prototype?"); if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); // DR1330: In C++11, defer instantiation of a non-trivial // exception specification. // DR1484: Local classes and their members are instantiated along with the // containing function. if (SemaRef.getLangOpts().CPlusPlus11 && EPI.ExceptionSpec.Type != EST_None && EPI.ExceptionSpec.Type != EST_DynamicNone && EPI.ExceptionSpec.Type != EST_BasicNoexcept && !Tmpl->isInLocalScopeForInstantiation()) { FunctionDecl *ExceptionSpecTemplate = Tmpl; if (EPI.ExceptionSpec.Type == EST_Uninstantiated) ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; ExceptionSpecificationType NewEST = EST_Uninstantiated; if (EPI.ExceptionSpec.Type == EST_Unevaluated) NewEST = EST_Unevaluated; // Mark the function has having an uninstantiated exception specification. const FunctionProtoType *NewProto = New->getType()->getAs(); assert(NewProto && "Template instantiation without function prototype?"); EPI = NewProto->getExtProtoInfo(); EPI.ExceptionSpec.Type = NewEST; EPI.ExceptionSpec.SourceDecl = New; EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; New->setType(SemaRef.Context.getFunctionType( NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); } else { Sema::ContextRAII SwitchContext(SemaRef, New); SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); } } // Get the definition. Leaves the variable unchanged if undefined. const FunctionDecl *Definition = Tmpl; Tmpl->isDefined(Definition); SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, LateAttrs, StartingScope); return false; } /// Initializes common fields of an instantiated method /// declaration (New) from the corresponding fields of its template /// (Tmpl). /// /// \returns true if there was an error bool TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, CXXMethodDecl *Tmpl) { if (InitFunctionInstantiation(New, Tmpl)) return true; if (isa(New) && SemaRef.getLangOpts().CPlusPlus11) SemaRef.AdjustDestructorExceptionSpec(cast(New)); New->setAccess(Tmpl->getAccess()); if (Tmpl->isVirtualAsWritten()) New->setVirtualAsWritten(true); // FIXME: New needs a pointer to Tmpl return false; } bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New, FunctionDecl *Tmpl) { // Transfer across any unqualified lookups. if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) { SmallVector Lookups; Lookups.reserve(DFI->getUnqualifiedLookups().size()); bool AnyChanged = false; for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) { NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(), DA.getDecl(), TemplateArgs); if (!D) return true; AnyChanged |= (D != DA.getDecl()); Lookups.push_back(DeclAccessPair::make(D, DA.getAccess())); } // It's unlikely that substitution will change any declarations. Don't // store an unnecessary copy in that case. New->setDefaultedFunctionInfo( AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create( SemaRef.Context, Lookups) : DFI); } SemaRef.SetDeclDefaulted(New, Tmpl->getLocation()); return false; } /// Instantiate (or find existing instantiation of) a function template with a /// given set of template arguments. /// /// Usually this should not be used, and template argument deduction should be /// used in its place. FunctionDecl * Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, const TemplateArgumentList *Args, SourceLocation Loc) { FunctionDecl *FD = FTD->getTemplatedDecl(); sema::TemplateDeductionInfo Info(Loc); InstantiatingTemplate Inst( *this, Loc, FTD, Args->asArray(), CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); if (Inst.isInvalid()) return nullptr; ContextRAII SavedContext(*this, FD); MultiLevelTemplateArgumentList MArgs(*Args); return cast_or_null(SubstDecl(FD, FD->getParent(), MArgs)); } /// Instantiate the definition of the given function from its /// template. /// /// \param PointOfInstantiation the point at which the instantiation was /// required. Note that this is not precisely a "point of instantiation" /// for the function, but it's close. /// /// \param Function the already-instantiated declaration of a /// function template specialization or member function of a class template /// specialization. /// /// \param Recursive if true, recursively instantiates any functions that /// are required by this instantiation. /// /// \param DefinitionRequired if true, then we are performing an explicit /// instantiation where the body of the function is required. Complain if /// there is no such body. void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive, bool DefinitionRequired, bool AtEndOfTU) { if (Function->isInvalidDecl() || isa(Function)) return; // Never instantiate an explicit specialization except if it is a class scope // explicit specialization. TemplateSpecializationKind TSK = Function->getTemplateSpecializationKindForInstantiation(); if (TSK == TSK_ExplicitSpecialization) return; // Don't instantiate a definition if we already have one. const FunctionDecl *ExistingDefn = nullptr; if (Function->isDefined(ExistingDefn, /*CheckForPendingFriendDefinition=*/true)) { if (ExistingDefn->isThisDeclarationADefinition()) return; // If we're asked to instantiate a function whose body comes from an // instantiated friend declaration, attach the instantiated body to the // corresponding declaration of the function. assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition()); Function = const_cast(ExistingDefn); } // Find the function body that we'll be substituting. const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); assert(PatternDecl && "instantiating a non-template"); const FunctionDecl *PatternDef = PatternDecl->getDefinition(); Stmt *Pattern = nullptr; if (PatternDef) { Pattern = PatternDef->getBody(PatternDef); PatternDecl = PatternDef; if (PatternDef->willHaveBody()) PatternDef = nullptr; } // FIXME: We need to track the instantiation stack in order to know which // definitions should be visible within this instantiation. if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, Function->getInstantiatedFromMemberFunction(), PatternDecl, PatternDef, TSK, /*Complain*/DefinitionRequired)) { if (DefinitionRequired) Function->setInvalidDecl(); else if (TSK == TSK_ExplicitInstantiationDefinition) { // Try again at the end of the translation unit (at which point a // definition will be required). assert(!Recursive); Function->setInstantiationIsPending(true); PendingInstantiations.push_back( std::make_pair(Function, PointOfInstantiation)); } else if (TSK == TSK_ImplicitInstantiation) { if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { Diag(PointOfInstantiation, diag::warn_func_template_missing) << Function; Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); if (getLangOpts().CPlusPlus11) Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Function; } } return; } // Postpone late parsed template instantiations. if (PatternDecl->isLateTemplateParsed() && !LateTemplateParser) { Function->setInstantiationIsPending(true); LateParsedInstantiations.push_back( std::make_pair(Function, PointOfInstantiation)); return; } llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() { std::string Name; llvm::raw_string_ostream OS(Name); Function->getNameForDiagnostic(OS, getPrintingPolicy(), /*Qualified=*/true); return Name; }); // If we're performing recursive template instantiation, create our own // queue of pending implicit instantiations that we will instantiate later, // while we're still within our own instantiation context. // This has to happen before LateTemplateParser below is called, so that // it marks vtables used in late parsed templates as used. GlobalEagerInstantiationScope GlobalInstantiations(*this, /*Enabled=*/Recursive); LocalEagerInstantiationScope LocalInstantiations(*this); // Call the LateTemplateParser callback if there is a need to late parse // a templated function definition. if (!Pattern && PatternDecl->isLateTemplateParsed() && LateTemplateParser) { // FIXME: Optimize to allow individual templates to be deserialized. if (PatternDecl->isFromASTFile()) ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); auto LPTIter = LateParsedTemplateMap.find(PatternDecl); assert(LPTIter != LateParsedTemplateMap.end() && "missing LateParsedTemplate"); LateTemplateParser(OpaqueParser, *LPTIter->second); Pattern = PatternDecl->getBody(PatternDecl); } // Note, we should never try to instantiate a deleted function template. assert((Pattern || PatternDecl->isDefaulted() || PatternDecl->hasSkippedBody()) && "unexpected kind of function template definition"); // C++1y [temp.explicit]p10: // Except for inline functions, declarations with types deduced from their // initializer or return value, and class template specializations, other // explicit instantiation declarations have the effect of suppressing the // implicit instantiation of the entity to which they refer. if (TSK == TSK_ExplicitInstantiationDeclaration && !PatternDecl->isInlined() && !PatternDecl->getReturnType()->getContainedAutoType()) return; if (PatternDecl->isInlined()) { // Function, and all later redeclarations of it (from imported modules, // for instance), are now implicitly inline. for (auto *D = Function->getMostRecentDecl(); /**/; D = D->getPreviousDecl()) { D->setImplicitlyInline(); if (D == Function) break; } } InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) return; PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(), "instantiating function definition"); // The instantiation is visible here, even if it was first declared in an // unimported module. Function->setVisibleDespiteOwningModule(); // Copy the inner loc start from the pattern. Function->setInnerLocStart(PatternDecl->getInnerLocStart()); EnterExpressionEvaluationContext EvalContext( *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); // Introduce a new scope where local variable instantiations will be // recorded, unless we're actually a member function within a local // class, in which case we need to merge our results with the parent // scope (of the enclosing function). The exception is instantiating // a function template specialization, since the template to be // instantiated already has references to locals properly substituted. bool MergeWithParentScope = false; if (CXXRecordDecl *Rec = dyn_cast(Function->getDeclContext())) MergeWithParentScope = Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization(); LocalInstantiationScope Scope(*this, MergeWithParentScope); auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() { // Special members might get their TypeSourceInfo set up w.r.t the // PatternDecl context, in which case parameters could still be pointing // back to the original class, make sure arguments are bound to the // instantiated record instead. assert(PatternDecl->isDefaulted() && "Special member needs to be defaulted"); auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember(); if (!(PatternSM == Sema::CXXCopyConstructor || PatternSM == Sema::CXXCopyAssignment || PatternSM == Sema::CXXMoveConstructor || PatternSM == Sema::CXXMoveAssignment)) return; auto *NewRec = dyn_cast(Function->getDeclContext()); const auto *PatternRec = dyn_cast(PatternDecl->getDeclContext()); if (!NewRec || !PatternRec) return; if (!PatternRec->isLambda()) return; struct SpecialMemberTypeInfoRebuilder : TreeTransform { using Base = TreeTransform; const CXXRecordDecl *OldDecl; CXXRecordDecl *NewDecl; SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O, CXXRecordDecl *N) : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {} bool TransformExceptionSpec(SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI, SmallVectorImpl &Exceptions, bool &Changed) { return false; } QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) { const RecordType *T = TL.getTypePtr(); RecordDecl *Record = cast_or_null( getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (Record != OldDecl) return Base::TransformRecordType(TLB, TL); QualType Result = getDerived().RebuildRecordType(NewDecl); if (Result.isNull()) return QualType(); RecordTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } } IR{*this, PatternRec, NewRec}; TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo()); Function->setType(NewSI->getType()); Function->setTypeSourceInfo(NewSI); ParmVarDecl *Parm = Function->getParamDecl(0); TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo()); Parm->setType(NewParmSI->getType()); Parm->setTypeSourceInfo(NewParmSI); }; if (PatternDecl->isDefaulted()) { RebuildTypeSourceInfoForDefaultSpecialMembers(); SetDeclDefaulted(Function, PatternDecl->getLocation()); } else { MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl); // Substitute into the qualifier; we can get a substitution failure here // through evil use of alias templates. // FIXME: Is CurContext correct for this? Should we go to the (instantiation // of the) lexical context of the pattern? SubstQualifier(*this, PatternDecl, Function, TemplateArgs); ActOnStartOfFunctionDef(nullptr, Function); // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. Sema::ContextRAII savedContext(*this, Function); if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope, TemplateArgs)) return; StmtResult Body; if (PatternDecl->hasSkippedBody()) { ActOnSkippedFunctionBody(Function); Body = nullptr; } else { if (CXXConstructorDecl *Ctor = dyn_cast(Function)) { // If this is a constructor, instantiate the member initializers. InstantiateMemInitializers(Ctor, cast(PatternDecl), TemplateArgs); // If this is an MS ABI dllexport default constructor, instantiate any // default arguments. if (Context.getTargetInfo().getCXXABI().isMicrosoft() && Ctor->isDefaultConstructor()) { InstantiateDefaultCtorDefaultArgs(Ctor); } } // Instantiate the function body. Body = SubstStmt(Pattern, TemplateArgs); if (Body.isInvalid()) Function->setInvalidDecl(); } // FIXME: finishing the function body while in an expression evaluation // context seems wrong. Investigate more. ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); PerformDependentDiagnostics(PatternDecl, TemplateArgs); if (auto *Listener = getASTMutationListener()) Listener->FunctionDefinitionInstantiated(Function); savedContext.pop(); } DeclGroupRef DG(Function); Consumer.HandleTopLevelDecl(DG); // This class may have local implicit instantiations that need to be // instantiation within this scope. LocalInstantiations.perform(); Scope.Exit(); GlobalInstantiations.perform(); } VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( VarTemplateDecl *VarTemplate, VarDecl *FromVar, const TemplateArgumentList &TemplateArgList, const TemplateArgumentListInfo &TemplateArgsInfo, SmallVectorImpl &Converted, SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs, LocalInstantiationScope *StartingScope) { if (FromVar->isInvalidDecl()) return nullptr; InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); if (Inst.isInvalid()) return nullptr; MultiLevelTemplateArgumentList TemplateArgLists; TemplateArgLists.addOuterTemplateArguments(&TemplateArgList); // Instantiate the first declaration of the variable template: for a partial // specialization of a static data member template, the first declaration may // or may not be the declaration in the class; if it's in the class, we want // to instantiate a member in the class (a declaration), and if it's outside, // we want to instantiate a definition. // // If we're instantiating an explicitly-specialized member template or member // partial specialization, don't do this. The member specialization completely // replaces the original declaration in this case. bool IsMemberSpec = false; if (VarTemplatePartialSpecializationDecl *PartialSpec = dyn_cast(FromVar)) IsMemberSpec = PartialSpec->isMemberSpecialization(); else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate()) IsMemberSpec = FromTemplate->isMemberSpecialization(); if (!IsMemberSpec) FromVar = FromVar->getFirstDecl(); MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList); TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), MultiLevelList); // TODO: Set LateAttrs and StartingScope ... return cast_or_null( Instantiator.VisitVarTemplateSpecializationDecl( VarTemplate, FromVar, TemplateArgsInfo, Converted)); } /// Instantiates a variable template specialization by completing it /// with appropriate type information and initializer. VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, const MultiLevelTemplateArgumentList &TemplateArgs) { assert(PatternDecl->isThisDeclarationADefinition() && "don't have a definition to instantiate from"); // Do substitution on the type of the declaration TypeSourceInfo *DI = SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); if (!DI) return nullptr; // Update the type of this variable template specialization. VarSpec->setType(DI->getType()); // Convert the declaration into a definition now. VarSpec->setCompleteDefinition(); // Instantiate the initializer. InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); if (getLangOpts().OpenCL) deduceOpenCLAddressSpace(VarSpec); return VarSpec; } /// BuildVariableInstantiation - Used after a new variable has been created. /// Sets basic variable data and decides whether to postpone the /// variable instantiation. void Sema::BuildVariableInstantiation( VarDecl *NewVar, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs, LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, LocalInstantiationScope *StartingScope, bool InstantiatingVarTemplate, VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) { // Instantiating a partial specialization to produce a partial // specialization. bool InstantiatingVarTemplatePartialSpec = isa(OldVar) && isa(NewVar); // Instantiating from a variable template (or partial specialization) to // produce a variable template specialization. bool InstantiatingSpecFromTemplate = isa(NewVar) && (OldVar->getDescribedVarTemplate() || isa(OldVar)); // If we are instantiating a local extern declaration, the // instantiation belongs lexically to the containing function. // If we are instantiating a static data member defined // out-of-line, the instantiation will have the same lexical // context (which will be a namespace scope) as the template. if (OldVar->isLocalExternDecl()) { NewVar->setLocalExternDecl(); NewVar->setLexicalDeclContext(Owner); } else if (OldVar->isOutOfLine()) NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); NewVar->setTSCSpec(OldVar->getTSCSpec()); NewVar->setInitStyle(OldVar->getInitStyle()); NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); NewVar->setObjCForDecl(OldVar->isObjCForDecl()); NewVar->setConstexpr(OldVar->isConstexpr()); NewVar->setInitCapture(OldVar->isInitCapture()); NewVar->setPreviousDeclInSameBlockScope( OldVar->isPreviousDeclInSameBlockScope()); NewVar->setAccess(OldVar->getAccess()); if (!OldVar->isStaticDataMember()) { if (OldVar->isUsed(false)) NewVar->setIsUsed(); NewVar->setReferenced(OldVar->isReferenced()); } InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); LookupResult Previous( *this, NewVar->getDeclName(), NewVar->getLocation(), NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage : Sema::LookupOrdinaryName, NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration : forRedeclarationInCurContext()); if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { // We have a previous declaration. Use that one, so we merge with the // right type. if (NamedDecl *NewPrev = FindInstantiatedDecl( NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) Previous.addDecl(NewPrev); } else if (!isa(NewVar) && OldVar->hasLinkage()) { LookupQualifiedName(Previous, NewVar->getDeclContext(), false); } else if (PrevDeclForVarTemplateSpecialization) { Previous.addDecl(PrevDeclForVarTemplateSpecialization); } CheckVariableDeclaration(NewVar, Previous); if (!InstantiatingVarTemplate) { NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); } if (!OldVar->isOutOfLine()) { if (NewVar->getDeclContext()->isFunctionOrMethod()) CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); } // Link instantiations of static data members back to the template from // which they were instantiated. // // Don't do this when instantiating a template (we link the template itself // back in that case) nor when instantiating a static data member template // (that's not a member specialization). if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate && !InstantiatingSpecFromTemplate) NewVar->setInstantiationOfStaticDataMember(OldVar, TSK_ImplicitInstantiation); // If the pattern is an (in-class) explicit specialization, then the result // is also an explicit specialization. if (VarTemplateSpecializationDecl *OldVTSD = dyn_cast(OldVar)) { if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization && !isa(OldVTSD)) cast(NewVar)->setSpecializationKind( TSK_ExplicitSpecialization); } // Forward the mangling number from the template to the instantiated decl. Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); // Figure out whether to eagerly instantiate the initializer. if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) { // We're producing a template. Don't instantiate the initializer yet. } else if (NewVar->getType()->isUndeducedType()) { // We need the type to complete the declaration of the variable. InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); } else if (InstantiatingSpecFromTemplate || (OldVar->isInline() && OldVar->isThisDeclarationADefinition() && !NewVar->isThisDeclarationADefinition())) { // Delay instantiation of the initializer for variable template // specializations or inline static data members until a definition of the // variable is needed. } else { InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); } // Diagnose unused local variables with dependent types, where the diagnostic // will have been deferred. if (!NewVar->isInvalidDecl() && NewVar->getDeclContext()->isFunctionOrMethod() && OldVar->getType()->isDependentType()) DiagnoseUnusedDecl(NewVar); } /// Instantiate the initializer of a variable. void Sema::InstantiateVariableInitializer( VarDecl *Var, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs) { if (ASTMutationListener *L = getASTContext().getASTMutationListener()) L->VariableDefinitionInstantiated(Var); // We propagate the 'inline' flag with the initializer, because it // would otherwise imply that the variable is a definition for a // non-static data member. if (OldVar->isInlineSpecified()) Var->setInlineSpecified(); else if (OldVar->isInline()) Var->setImplicitlyInline(); if (OldVar->getInit()) { EnterExpressionEvaluationContext Evaluated( *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); // Instantiate the initializer. ExprResult Init; { ContextRAII SwitchContext(*this, Var->getDeclContext()); Init = SubstInitializer(OldVar->getInit(), TemplateArgs, OldVar->getInitStyle() == VarDecl::CallInit); } if (!Init.isInvalid()) { Expr *InitExpr = Init.get(); if (Var->hasAttr() && (!InitExpr || !InitExpr->isConstantInitializer(getASTContext(), false))) { // Do not dynamically initialize dllimport variables. } else if (InitExpr) { bool DirectInit = OldVar->isDirectInit(); AddInitializerToDecl(Var, InitExpr, DirectInit); } else ActOnUninitializedDecl(Var); } else { // FIXME: Not too happy about invalidating the declaration // because of a bogus initializer. Var->setInvalidDecl(); } } else { // `inline` variables are a definition and declaration all in one; we won't // pick up an initializer from anywhere else. if (Var->isStaticDataMember() && !Var->isInline()) { if (!Var->isOutOfLine()) return; // If the declaration inside the class had an initializer, don't add // another one to the out-of-line definition. if (OldVar->getFirstDecl()->hasInit()) return; } // We'll add an initializer to a for-range declaration later. if (Var->isCXXForRangeDecl() || Var->isObjCForDecl()) return; ActOnUninitializedDecl(Var); } if (getLangOpts().CUDA) checkAllowedCUDAInitializer(Var); } /// Instantiate the definition of the given variable from its /// template. /// /// \param PointOfInstantiation the point at which the instantiation was /// required. Note that this is not precisely a "point of instantiation" /// for the variable, but it's close. /// /// \param Var the already-instantiated declaration of a templated variable. /// /// \param Recursive if true, recursively instantiates any functions that /// are required by this instantiation. /// /// \param DefinitionRequired if true, then we are performing an explicit /// instantiation where a definition of the variable is required. Complain /// if there is no such definition. void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive, bool DefinitionRequired, bool AtEndOfTU) { if (Var->isInvalidDecl()) return; // Never instantiate an explicitly-specialized entity. TemplateSpecializationKind TSK = Var->getTemplateSpecializationKindForInstantiation(); if (TSK == TSK_ExplicitSpecialization) return; // Find the pattern and the arguments to substitute into it. VarDecl *PatternDecl = Var->getTemplateInstantiationPattern(); assert(PatternDecl && "no pattern for templated variable"); MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(Var); VarTemplateSpecializationDecl *VarSpec = dyn_cast(Var); if (VarSpec) { // If this is a static data member template, there might be an // uninstantiated initializer on the declaration. If so, instantiate // it now. // // FIXME: This largely duplicates what we would do below. The difference // is that along this path we may instantiate an initializer from an // in-class declaration of the template and instantiate the definition // from a separate out-of-class definition. if (PatternDecl->isStaticDataMember() && (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && !Var->hasInit()) { // FIXME: Factor out the duplicated instantiation context setup/tear down // code here. InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) return; PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), "instantiating variable initializer"); // The instantiation is visible here, even if it was first declared in an // unimported module. Var->setVisibleDespiteOwningModule(); // If we're performing recursive template instantiation, create our own // queue of pending implicit instantiations that we will instantiate // later, while we're still within our own instantiation context. GlobalEagerInstantiationScope GlobalInstantiations(*this, /*Enabled=*/Recursive); LocalInstantiationScope Local(*this); LocalEagerInstantiationScope LocalInstantiations(*this); // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. ContextRAII PreviousContext(*this, Var->getDeclContext()); InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); PreviousContext.pop(); // This variable may have local implicit instantiations that need to be // instantiated within this scope. LocalInstantiations.perform(); Local.Exit(); GlobalInstantiations.perform(); } } else { assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && "not a static data member?"); } VarDecl *Def = PatternDecl->getDefinition(getASTContext()); // If we don't have a definition of the variable template, we won't perform // any instantiation. Rather, we rely on the user to instantiate this // definition (or provide a specialization for it) in another translation // unit. if (!Def && !DefinitionRequired) { if (TSK == TSK_ExplicitInstantiationDefinition) { PendingInstantiations.push_back( std::make_pair(Var, PointOfInstantiation)); } else if (TSK == TSK_ImplicitInstantiation) { // Warn about missing definition at the end of translation unit. if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { Diag(PointOfInstantiation, diag::warn_var_template_missing) << Var; Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); if (getLangOpts().CPlusPlus11) Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; } return; } } // FIXME: We need to track the instantiation stack in order to know which // definitions should be visible within this instantiation. // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, /*InstantiatedFromMember*/false, PatternDecl, Def, TSK, /*Complain*/DefinitionRequired)) return; // C++11 [temp.explicit]p10: // Except for inline functions, const variables of literal types, variables // of reference types, [...] explicit instantiation declarations // have the effect of suppressing the implicit instantiation of the entity // to which they refer. // // FIXME: That's not exactly the same as "might be usable in constant // expressions", which only allows constexpr variables and const integral // types, not arbitrary const literal types. if (TSK == TSK_ExplicitInstantiationDeclaration && !Var->mightBeUsableInConstantExpressions(getASTContext())) return; // Make sure to pass the instantiated variable to the consumer at the end. struct PassToConsumerRAII { ASTConsumer &Consumer; VarDecl *Var; PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) : Consumer(Consumer), Var(Var) { } ~PassToConsumerRAII() { Consumer.HandleCXXStaticMemberVarInstantiation(Var); } } PassToConsumerRAII(Consumer, Var); // If we already have a definition, we're done. if (VarDecl *Def = Var->getDefinition()) { // We may be explicitly instantiating something we've already implicitly // instantiated. Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), PointOfInstantiation); return; } InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) return; PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), "instantiating variable definition"); // If we're performing recursive template instantiation, create our own // queue of pending implicit instantiations that we will instantiate later, // while we're still within our own instantiation context. GlobalEagerInstantiationScope GlobalInstantiations(*this, /*Enabled=*/Recursive); // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. ContextRAII PreviousContext(*this, Var->getDeclContext()); LocalInstantiationScope Local(*this); LocalEagerInstantiationScope LocalInstantiations(*this); VarDecl *OldVar = Var; if (Def->isStaticDataMember() && !Def->isOutOfLine()) { // We're instantiating an inline static data member whose definition was // provided inside the class. InstantiateVariableInitializer(Var, Def, TemplateArgs); } else if (!VarSpec) { Var = cast_or_null(SubstDecl(Def, Var->getDeclContext(), TemplateArgs)); } else if (Var->isStaticDataMember() && Var->getLexicalDeclContext()->isRecord()) { // We need to instantiate the definition of a static data member template, // and all we have is the in-class declaration of it. Instantiate a separate // declaration of the definition. TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), TemplateArgs); Var = cast_or_null(Instantiator.VisitVarTemplateSpecializationDecl( VarSpec->getSpecializedTemplate(), Def, VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray(), VarSpec)); if (Var) { llvm::PointerUnion PatternPtr = VarSpec->getSpecializedTemplateOrPartial(); if (VarTemplatePartialSpecializationDecl *Partial = PatternPtr.dyn_cast()) cast(Var)->setInstantiationOf( Partial, &VarSpec->getTemplateInstantiationArgs()); // Attach the initializer. InstantiateVariableInitializer(Var, Def, TemplateArgs); } } else // Complete the existing variable's definition with an appropriately // substituted type and initializer. Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); PreviousContext.pop(); if (Var) { PassToConsumerRAII.Var = Var; Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), OldVar->getPointOfInstantiation()); } // This variable may have local implicit instantiations that need to be // instantiated within this scope. LocalInstantiations.perform(); Local.Exit(); GlobalInstantiations.perform(); } void Sema::InstantiateMemInitializers(CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl, const MultiLevelTemplateArgumentList &TemplateArgs) { SmallVector NewInits; bool AnyErrors = Tmpl->isInvalidDecl(); // Instantiate all the initializers. for (const auto *Init : Tmpl->inits()) { // Only instantiate written initializers, let Sema re-construct implicit // ones. if (!Init->isWritten()) continue; SourceLocation EllipsisLoc; if (Init->isPackExpansion()) { // This is a pack expansion. We should expand it now. TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); SmallVector Unexpanded; collectUnexpandedParameterPacks(BaseTL, Unexpanded); collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); bool ShouldExpand = false; bool RetainExpansion = false; Optional NumExpansions; if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), BaseTL.getSourceRange(), Unexpanded, TemplateArgs, ShouldExpand, RetainExpansion, NumExpansions)) { AnyErrors = true; New->setInvalidDecl(); continue; } assert(ShouldExpand && "Partial instantiation of base initializer?"); // Loop over all of the arguments in the argument pack(s), for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); // Instantiate the initializer. ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, /*CXXDirectInit=*/true); if (TempInit.isInvalid()) { AnyErrors = true; break; } // Instantiate the base type. TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), TemplateArgs, Init->getSourceLocation(), New->getDeclName()); if (!BaseTInfo) { AnyErrors = true; break; } // Build the initializer. MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), BaseTInfo, TempInit.get(), New->getParent(), SourceLocation()); if (NewInit.isInvalid()) { AnyErrors = true; break; } NewInits.push_back(NewInit.get()); } continue; } // Instantiate the initializer. ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, /*CXXDirectInit=*/true); if (TempInit.isInvalid()) { AnyErrors = true; continue; } MemInitResult NewInit; if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), TemplateArgs, Init->getSourceLocation(), New->getDeclName()); if (!TInfo) { AnyErrors = true; New->setInvalidDecl(); continue; } if (Init->isBaseInitializer()) NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), New->getParent(), EllipsisLoc); else NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), cast(CurContext->getParent())); } else if (Init->isMemberInitializer()) { FieldDecl *Member = cast_or_null(FindInstantiatedDecl( Init->getMemberLocation(), Init->getMember(), TemplateArgs)); if (!Member) { AnyErrors = true; New->setInvalidDecl(); continue; } NewInit = BuildMemberInitializer(Member, TempInit.get(), Init->getSourceLocation()); } else if (Init->isIndirectMemberInitializer()) { IndirectFieldDecl *IndirectMember = cast_or_null(FindInstantiatedDecl( Init->getMemberLocation(), Init->getIndirectMember(), TemplateArgs)); if (!IndirectMember) { AnyErrors = true; New->setInvalidDecl(); continue; } NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), Init->getSourceLocation()); } if (NewInit.isInvalid()) { AnyErrors = true; New->setInvalidDecl(); } else { NewInits.push_back(NewInit.get()); } } // Assign all the initializers to the new constructor. ActOnMemInitializers(New, /*FIXME: ColonLoc */ SourceLocation(), NewInits, AnyErrors); } // TODO: this could be templated if the various decl types used the // same method name. static bool isInstantiationOf(ClassTemplateDecl *Pattern, ClassTemplateDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberTemplate(); } while (Instance); return false; } static bool isInstantiationOf(FunctionTemplateDecl *Pattern, FunctionTemplateDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberTemplate(); } while (Instance); return false; } static bool isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, ClassTemplatePartialSpecializationDecl *Instance) { Pattern = cast(Pattern->getCanonicalDecl()); do { Instance = cast( Instance->getCanonicalDecl()); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMember(); } while (Instance); return false; } static bool isInstantiationOf(CXXRecordDecl *Pattern, CXXRecordDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberClass(); } while (Instance); return false; } static bool isInstantiationOf(FunctionDecl *Pattern, FunctionDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberFunction(); } while (Instance); return false; } static bool isInstantiationOf(EnumDecl *Pattern, EnumDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberEnum(); } while (Instance); return false; } static bool isInstantiationOf(UsingShadowDecl *Pattern, UsingShadowDecl *Instance, ASTContext &C) { return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), Pattern); } static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, ASTContext &C) { return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); } template static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, ASTContext &Ctx) { // An unresolved using declaration can instantiate to an unresolved using // declaration, or to a using declaration or a using declaration pack. // // Multiple declarations can claim to be instantiated from an unresolved // using declaration if it's a pack expansion. We want the UsingPackDecl // in that case, not the individual UsingDecls within the pack. bool OtherIsPackExpansion; NamedDecl *OtherFrom; if (auto *OtherUUD = dyn_cast(Other)) { OtherIsPackExpansion = OtherUUD->isPackExpansion(); OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); } else if (auto *OtherUPD = dyn_cast(Other)) { OtherIsPackExpansion = true; OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); } else if (auto *OtherUD = dyn_cast(Other)) { OtherIsPackExpansion = false; OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); } else { return false; } return Pattern->isPackExpansion() == OtherIsPackExpansion && declaresSameEntity(OtherFrom, Pattern); } static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, VarDecl *Instance) { assert(Instance->isStaticDataMember()); Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromStaticDataMember(); } while (Instance); return false; } // Other is the prospective instantiation // D is the prospective pattern static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { if (auto *UUD = dyn_cast(D)) return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); if (auto *UUD = dyn_cast(D)) return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); if (D->getKind() != Other->getKind()) return false; if (auto *Record = dyn_cast(Other)) return isInstantiationOf(cast(D), Record); if (auto *Function = dyn_cast(Other)) return isInstantiationOf(cast(D), Function); if (auto *Enum = dyn_cast(Other)) return isInstantiationOf(cast(D), Enum); if (auto *Var = dyn_cast(Other)) if (Var->isStaticDataMember()) return isInstantiationOfStaticDataMember(cast(D), Var); if (auto *Temp = dyn_cast(Other)) return isInstantiationOf(cast(D), Temp); if (auto *Temp = dyn_cast(Other)) return isInstantiationOf(cast(D), Temp); if (auto *PartialSpec = dyn_cast(Other)) return isInstantiationOf(cast(D), PartialSpec); if (auto *Field = dyn_cast(Other)) { if (!Field->getDeclName()) { // This is an unnamed field. return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), cast(D)); } } if (auto *Using = dyn_cast(Other)) return isInstantiationOf(cast(D), Using, Ctx); if (auto *Shadow = dyn_cast(Other)) return isInstantiationOf(cast(D), Shadow, Ctx); return D->getDeclName() && D->getDeclName() == cast(Other)->getDeclName(); } template static NamedDecl *findInstantiationOf(ASTContext &Ctx, NamedDecl *D, ForwardIterator first, ForwardIterator last) { for (; first != last; ++first) if (isInstantiationOf(Ctx, D, *first)) return cast(*first); return nullptr; } /// Finds the instantiation of the given declaration context /// within the current instantiation. /// /// \returns NULL if there was an error DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, const MultiLevelTemplateArgumentList &TemplateArgs) { if (NamedDecl *D = dyn_cast(DC)) { Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); return cast_or_null(ID); } else return DC; } /// Determine whether the given context is dependent on template parameters at /// level \p Level or below. /// /// Sometimes we only substitute an inner set of template arguments and leave /// the outer templates alone. In such cases, contexts dependent only on the /// outer levels are not effectively dependent. static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) { if (!DC->isDependentContext()) return false; if (!Level) return true; return cast(DC)->getTemplateDepth() > Level; } /// Find the instantiation of the given declaration within the /// current instantiation. /// /// This routine is intended to be used when \p D is a declaration /// referenced from within a template, that needs to mapped into the /// corresponding declaration within an instantiation. For example, /// given: /// /// \code /// template /// struct X { /// enum Kind { /// KnownValue = sizeof(T) /// }; /// /// bool getKind() const { return KnownValue; } /// }; /// /// template struct X; /// \endcode /// /// In the instantiation of X::getKind(), we need to map the \p /// EnumConstantDecl for \p KnownValue (which refers to /// X::::KnownValue) to its instantiation (X::::KnownValue). /// \p FindInstantiatedDecl performs this mapping from within the instantiation /// of X. NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs, bool FindingInstantiatedContext) { DeclContext *ParentDC = D->getDeclContext(); // Determine whether our parent context depends on any of the template // arguments we're currently substituting. bool ParentDependsOnArgs = isDependentContextAtLevel( ParentDC, TemplateArgs.getNumRetainedOuterLevels()); // FIXME: Parameters of pointer to functions (y below) that are themselves // parameters (p below) can have their ParentDC set to the translation-unit // - thus we can not consistently check if the ParentDC of such a parameter // is Dependent or/and a FunctionOrMethod. // For e.g. this code, during Template argument deduction tries to // find an instantiated decl for (T y) when the ParentDC for y is // the translation unit. // e.g. template void Foo(auto (*p)(T y) -> decltype(y())) {} // float baz(float(*)()) { return 0.0; } // Foo(baz); // The better fix here is perhaps to ensure that a ParmVarDecl, by the time // it gets here, always has a FunctionOrMethod as its ParentDC?? // For now: // - as long as we have a ParmVarDecl whose parent is non-dependent and // whose type is not instantiation dependent, do nothing to the decl // - otherwise find its instantiated decl. if (isa(D) && !ParentDependsOnArgs && !cast(D)->getType()->isInstantiationDependentType()) return D; if (isa(D) || isa(D) || isa(D) || isa(D) || (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() || isa(ParentDC) || isa(ParentDC))) || (isa(D) && cast(D)->isLambda() && cast(D)->getTemplateDepth() > TemplateArgs.getNumRetainedOuterLevels())) { // D is a local of some kind. Look into the map of local // declarations to their instantiations. if (CurrentInstantiationScope) { if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { if (Decl *FD = Found->dyn_cast()) return cast(FD); int PackIdx = ArgumentPackSubstitutionIndex; assert(PackIdx != -1 && "found declaration pack but not pack expanding"); typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; return cast((*Found->get())[PackIdx]); } } // If we're performing a partial substitution during template argument // deduction, we may not have values for template parameters yet. They // just map to themselves. if (isa(D) || isa(D) || isa(D)) return D; if (D->isInvalidDecl()) return nullptr; // Normally this function only searches for already instantiated declaration // however we have to make an exclusion for local types used before // definition as in the code: // // template void f1() { // void g1(struct x1); // struct x1 {}; // } // // In this case instantiation of the type of 'g1' requires definition of // 'x1', which is defined later. Error recovery may produce an enum used // before definition. In these cases we need to instantiate relevant // declarations here. bool NeedInstantiate = false; if (CXXRecordDecl *RD = dyn_cast(D)) NeedInstantiate = RD->isLocalClass(); else if (isa(D) && isa(D->getDeclContext())) NeedInstantiate = true; else NeedInstantiate = isa(D); if (NeedInstantiate) { Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); CurrentInstantiationScope->InstantiatedLocal(D, Inst); return cast(Inst); } // If we didn't find the decl, then we must have a label decl that hasn't // been found yet. Lazily instantiate it and return it now. assert(isa(D)); Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); assert(Inst && "Failed to instantiate label??"); CurrentInstantiationScope->InstantiatedLocal(D, Inst); return cast(Inst); } if (CXXRecordDecl *Record = dyn_cast(D)) { if (!Record->isDependentContext()) return D; // Determine whether this record is the "templated" declaration describing // a class template or class template partial specialization. ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); if (ClassTemplate) ClassTemplate = ClassTemplate->getCanonicalDecl(); else if (ClassTemplatePartialSpecializationDecl *PartialSpec = dyn_cast(Record)) ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl(); // Walk the current context to find either the record or an instantiation of // it. DeclContext *DC = CurContext; while (!DC->isFileContext()) { // If we're performing substitution while we're inside the template // definition, we'll find our own context. We're done. if (DC->Equals(Record)) return Record; if (CXXRecordDecl *InstRecord = dyn_cast(DC)) { // Check whether we're in the process of instantiating a class template // specialization of the template we're mapping. if (ClassTemplateSpecializationDecl *InstSpec = dyn_cast(InstRecord)){ ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) return InstRecord; } // Check whether we're in the process of instantiating a member class. if (isInstantiationOf(Record, InstRecord)) return InstRecord; } // Move to the outer template scope. if (FunctionDecl *FD = dyn_cast(DC)) { if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){ DC = FD->getLexicalDeclContext(); continue; } // An implicit deduction guide acts as if it's within the class template // specialization described by its name and first N template params. auto *Guide = dyn_cast(FD); if (Guide && Guide->isImplicit()) { TemplateDecl *TD = Guide->getDeducedTemplate(); // Convert the arguments to an "as-written" list. TemplateArgumentListInfo Args(Loc, Loc); for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( TD->getTemplateParameters()->size())) { ArrayRef Unpacked(Arg); if (Arg.getKind() == TemplateArgument::Pack) Unpacked = Arg.pack_elements(); for (TemplateArgument UnpackedArg : Unpacked) Args.addArgument( getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); } QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); if (T.isNull()) return nullptr; auto *SubstRecord = T->getAsCXXRecordDecl(); assert(SubstRecord && "class template id not a class type?"); // Check that this template-id names the primary template and not a // partial or explicit specialization. (In the latter cases, it's // meaningless to attempt to find an instantiation of D within the // specialization.) // FIXME: The standard doesn't say what should happen here. if (FindingInstantiatedContext && usesPartialOrExplicitSpecialization( Loc, cast(SubstRecord))) { Diag(Loc, diag::err_specialization_not_primary_template) << T << (SubstRecord->getTemplateSpecializationKind() == TSK_ExplicitSpecialization); return nullptr; } DC = SubstRecord; continue; } } DC = DC->getParent(); } // Fall through to deal with other dependent record types (e.g., // anonymous unions in class templates). } if (!ParentDependsOnArgs) return D; ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); if (!ParentDC) return nullptr; if (ParentDC != D->getDeclContext()) { // We performed some kind of instantiation in the parent context, // so now we need to look into the instantiated parent context to // find the instantiation of the declaration D. // If our context used to be dependent, we may need to instantiate // it before performing lookup into that context. bool IsBeingInstantiated = false; if (CXXRecordDecl *Spec = dyn_cast(ParentDC)) { if (!Spec->isDependentContext()) { QualType T = Context.getTypeDeclType(Spec); const RecordType *Tag = T->getAs(); assert(Tag && "type of non-dependent record is not a RecordType"); if (Tag->isBeingDefined()) IsBeingInstantiated = true; if (!Tag->isBeingDefined() && RequireCompleteType(Loc, T, diag::err_incomplete_type)) return nullptr; ParentDC = Tag->getDecl(); } } NamedDecl *Result = nullptr; // FIXME: If the name is a dependent name, this lookup won't necessarily // find it. Does that ever matter? if (auto Name = D->getDeclName()) { DeclarationNameInfo NameInfo(Name, D->getLocation()); DeclarationNameInfo NewNameInfo = SubstDeclarationNameInfo(NameInfo, TemplateArgs); Name = NewNameInfo.getName(); if (!Name) return nullptr; DeclContext::lookup_result Found = ParentDC->lookup(Name); Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); } else { // Since we don't have a name for the entity we're looking for, // our only option is to walk through all of the declarations to // find that name. This will occur in a few cases: // // - anonymous struct/union within a template // - unnamed class/struct/union/enum within a template // // FIXME: Find a better way to find these instantiations! Result = findInstantiationOf(Context, D, ParentDC->decls_begin(), ParentDC->decls_end()); } if (!Result) { if (isa(D)) { // UsingShadowDecls can instantiate to nothing because of using hiding. } else if (hasUncompilableErrorOccurred()) { // We've already complained about some ill-formed code, so most likely // this declaration failed to instantiate. There's no point in // complaining further, since this is normal in invalid code. // FIXME: Use more fine-grained 'invalid' tracking for this. } else if (IsBeingInstantiated) { // The class in which this member exists is currently being // instantiated, and we haven't gotten around to instantiating this // member yet. This can happen when the code uses forward declarations // of member classes, and introduces ordering dependencies via // template instantiation. Diag(Loc, diag::err_member_not_yet_instantiated) << D->getDeclName() << Context.getTypeDeclType(cast(ParentDC)); Diag(D->getLocation(), diag::note_non_instantiated_member_here); } else if (EnumConstantDecl *ED = dyn_cast(D)) { // This enumeration constant was found when the template was defined, // but can't be found in the instantiation. This can happen if an // unscoped enumeration member is explicitly specialized. EnumDecl *Enum = cast(ED->getLexicalDeclContext()); EnumDecl *Spec = cast(FindInstantiatedDecl(Loc, Enum, TemplateArgs)); assert(Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization); Diag(Loc, diag::err_enumerator_does_not_exist) << D->getDeclName() << Context.getTypeDeclType(cast(Spec->getDeclContext())); Diag(Spec->getLocation(), diag::note_enum_specialized_here) << Context.getTypeDeclType(Spec); } else { // We should have found something, but didn't. llvm_unreachable("Unable to find instantiation of declaration!"); } } D = Result; } return D; } /// Performs template instantiation for all implicit template /// instantiations we have seen until this point. void Sema::PerformPendingInstantiations(bool LocalOnly) { std::deque delayedPCHInstantiations; while (!PendingLocalImplicitInstantiations.empty() || (!LocalOnly && !PendingInstantiations.empty())) { PendingImplicitInstantiation Inst; if (PendingLocalImplicitInstantiations.empty()) { Inst = PendingInstantiations.front(); PendingInstantiations.pop_front(); } else { Inst = PendingLocalImplicitInstantiations.front(); PendingLocalImplicitInstantiations.pop_front(); } // Instantiate function definitions if (FunctionDecl *Function = dyn_cast(Inst.first)) { bool DefinitionRequired = Function->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDefinition; if (Function->isMultiVersion()) { getASTContext().forEachMultiversionedFunctionVersion( Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) { InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true, DefinitionRequired, true); if (CurFD->isDefined()) CurFD->setInstantiationIsPending(false); }); } else { InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true, DefinitionRequired, true); if (Function->isDefined()) Function->setInstantiationIsPending(false); } // Definition of a PCH-ed template declaration may be available only in the TU. if (!LocalOnly && LangOpts.PCHInstantiateTemplates && TUKind == TU_Prefix && Function->instantiationIsPending()) delayedPCHInstantiations.push_back(Inst); continue; } // Instantiate variable definitions VarDecl *Var = cast(Inst.first); assert((Var->isStaticDataMember() || isa(Var)) && "Not a static data member, nor a variable template" " specialization?"); // Don't try to instantiate declarations if the most recent redeclaration // is invalid. if (Var->getMostRecentDecl()->isInvalidDecl()) continue; // Check if the most recent declaration has changed the specialization kind // and removed the need for implicit instantiation. switch (Var->getMostRecentDecl() ->getTemplateSpecializationKindForInstantiation()) { case TSK_Undeclared: llvm_unreachable("Cannot instantitiate an undeclared specialization."); case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitSpecialization: continue; // No longer need to instantiate this type. case TSK_ExplicitInstantiationDefinition: // We only need an instantiation if the pending instantiation *is* the // explicit instantiation. if (Var != Var->getMostRecentDecl()) continue; break; case TSK_ImplicitInstantiation: break; } PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), "instantiating variable definition"); bool DefinitionRequired = Var->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDefinition; // Instantiate static data member definitions or variable template // specializations. InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, DefinitionRequired, true); } if (!LocalOnly && LangOpts.PCHInstantiateTemplates) PendingInstantiations.swap(delayedPCHInstantiations); } void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs) { for (auto DD : Pattern->ddiags()) { switch (DD->getKind()) { case DependentDiagnostic::Access: HandleDependentAccessCheck(*DD, TemplateArgs); break; } } }