//===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements C++ template argument deduction. // //===----------------------------------------------------------------------===// #include "TreeTransform.h" #include "TypeLocBuilder.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclAccessPair.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/TemplateName.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/UnresolvedSet.h" #include "clang/Basic/AddressSpaces.h" #include "clang/Basic/ExceptionSpecificationType.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "clang/Sema/EnterExpressionEvaluationContext.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/Sema.h" #include "clang/Sema/Template.h" #include "clang/Sema/TemplateDeduction.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include #include #include namespace clang { /// Various flags that control template argument deduction. /// /// These flags can be bitwise-OR'd together. enum TemplateDeductionFlags { /// No template argument deduction flags, which indicates the /// strictest results for template argument deduction (as used for, e.g., /// matching class template partial specializations). TDF_None = 0, /// Within template argument deduction from a function call, we are /// matching with a parameter type for which the original parameter was /// a reference. TDF_ParamWithReferenceType = 0x1, /// Within template argument deduction from a function call, we /// are matching in a case where we ignore cv-qualifiers. TDF_IgnoreQualifiers = 0x02, /// Within template argument deduction from a function call, /// we are matching in a case where we can perform template argument /// deduction from a template-id of a derived class of the argument type. TDF_DerivedClass = 0x04, /// Allow non-dependent types to differ, e.g., when performing /// template argument deduction from a function call where conversions /// may apply. TDF_SkipNonDependent = 0x08, /// Whether we are performing template argument deduction for /// parameters and arguments in a top-level template argument TDF_TopLevelParameterTypeList = 0x10, /// Within template argument deduction from overload resolution per /// C++ [over.over] allow matching function types that are compatible in /// terms of noreturn and default calling convention adjustments, or /// similarly matching a declared template specialization against a /// possible template, per C++ [temp.deduct.decl]. In either case, permit /// deduction where the parameter is a function type that can be converted /// to the argument type. TDF_AllowCompatibleFunctionType = 0x20, /// Within template argument deduction for a conversion function, we are /// matching with an argument type for which the original argument was /// a reference. TDF_ArgWithReferenceType = 0x40, }; } using namespace clang; using namespace sema; /// Compare two APSInts, extending and switching the sign as /// necessary to compare their values regardless of underlying type. static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { if (Y.getBitWidth() > X.getBitWidth()) X = X.extend(Y.getBitWidth()); else if (Y.getBitWidth() < X.getBitWidth()) Y = Y.extend(X.getBitWidth()); // If there is a signedness mismatch, correct it. if (X.isSigned() != Y.isSigned()) { // If the signed value is negative, then the values cannot be the same. if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) return false; Y.setIsSigned(true); X.setIsSigned(true); } return X == Y; } static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( Sema &S, TemplateParameterList *TemplateParams, QualType Param, QualType Arg, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced, unsigned TDF, bool PartialOrdering = false, bool DeducedFromArrayBound = false); static Sema::TemplateDeductionResult DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, ArrayRef Ps, ArrayRef As, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced, bool NumberOfArgumentsMustMatch); static void MarkUsedTemplateParameters(ASTContext &Ctx, const TemplateArgument &TemplateArg, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used); static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, bool OnlyDeduced, unsigned Level, llvm::SmallBitVector &Deduced); /// If the given expression is of a form that permits the deduction /// of a non-type template parameter, return the declaration of that /// non-type template parameter. static const NonTypeTemplateParmDecl * getDeducedParameterFromExpr(const Expr *E, unsigned Depth) { // If we are within an alias template, the expression may have undergone // any number of parameter substitutions already. while (true) { if (const auto *IC = dyn_cast(E)) E = IC->getSubExpr(); else if (const auto *CE = dyn_cast(E)) E = CE->getSubExpr(); else if (const auto *Subst = dyn_cast(E)) E = Subst->getReplacement(); else if (const auto *CCE = dyn_cast(E)) { // Look through implicit copy construction from an lvalue of the same type. if (CCE->getParenOrBraceRange().isValid()) break; // Note, there could be default arguments. assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg"); E = CCE->getArg(0); } else break; } if (const auto *DRE = dyn_cast(E)) if (const auto *NTTP = dyn_cast(DRE->getDecl())) if (NTTP->getDepth() == Depth) return NTTP; return nullptr; } static const NonTypeTemplateParmDecl * getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { return getDeducedParameterFromExpr(E, Info.getDeducedDepth()); } /// Determine whether two declaration pointers refer to the same /// declaration. static bool isSameDeclaration(Decl *X, Decl *Y) { if (NamedDecl *NX = dyn_cast(X)) X = NX->getUnderlyingDecl(); if (NamedDecl *NY = dyn_cast(Y)) Y = NY->getUnderlyingDecl(); return X->getCanonicalDecl() == Y->getCanonicalDecl(); } /// Verify that the given, deduced template arguments are compatible. /// /// \returns The deduced template argument, or a NULL template argument if /// the deduced template arguments were incompatible. static DeducedTemplateArgument checkDeducedTemplateArguments(ASTContext &Context, const DeducedTemplateArgument &X, const DeducedTemplateArgument &Y, bool AggregateCandidateDeduction = false) { // We have no deduction for one or both of the arguments; they're compatible. if (X.isNull()) return Y; if (Y.isNull()) return X; // If we have two non-type template argument values deduced for the same // parameter, they must both match the type of the parameter, and thus must // match each other's type. As we're only keeping one of them, we must check // for that now. The exception is that if either was deduced from an array // bound, the type is permitted to differ. if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { QualType XType = X.getNonTypeTemplateArgumentType(); if (!XType.isNull()) { QualType YType = Y.getNonTypeTemplateArgumentType(); if (YType.isNull() || !Context.hasSameType(XType, YType)) return DeducedTemplateArgument(); } } switch (X.getKind()) { case TemplateArgument::Null: llvm_unreachable("Non-deduced template arguments handled above"); case TemplateArgument::Type: { // If two template type arguments have the same type, they're compatible. QualType TX = X.getAsType(), TY = Y.getAsType(); if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY)) return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY), X.wasDeducedFromArrayBound() || Y.wasDeducedFromArrayBound()); // If one of the two arguments was deduced from an array bound, the other // supersedes it. if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) return X.wasDeducedFromArrayBound() ? Y : X; // The arguments are not compatible. return DeducedTemplateArgument(); } case TemplateArgument::Integral: // If we deduced a constant in one case and either a dependent expression or // declaration in another case, keep the integral constant. // If both are integral constants with the same value, keep that value. if (Y.getKind() == TemplateArgument::Expression || Y.getKind() == TemplateArgument::Declaration || (Y.getKind() == TemplateArgument::Integral && hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) return X.wasDeducedFromArrayBound() ? Y : X; // All other combinations are incompatible. return DeducedTemplateArgument(); case TemplateArgument::Template: if (Y.getKind() == TemplateArgument::Template && Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) return X; // All other combinations are incompatible. return DeducedTemplateArgument(); case TemplateArgument::TemplateExpansion: if (Y.getKind() == TemplateArgument::TemplateExpansion && Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), Y.getAsTemplateOrTemplatePattern())) return X; // All other combinations are incompatible. return DeducedTemplateArgument(); case TemplateArgument::Expression: { if (Y.getKind() != TemplateArgument::Expression) return checkDeducedTemplateArguments(Context, Y, X); // Compare the expressions for equality llvm::FoldingSetNodeID ID1, ID2; X.getAsExpr()->Profile(ID1, Context, true); Y.getAsExpr()->Profile(ID2, Context, true); if (ID1 == ID2) return X.wasDeducedFromArrayBound() ? Y : X; // Differing dependent expressions are incompatible. return DeducedTemplateArgument(); } case TemplateArgument::Declaration: assert(!X.wasDeducedFromArrayBound()); // If we deduced a declaration and a dependent expression, keep the // declaration. if (Y.getKind() == TemplateArgument::Expression) return X; // If we deduced a declaration and an integral constant, keep the // integral constant and whichever type did not come from an array // bound. if (Y.getKind() == TemplateArgument::Integral) { if (Y.wasDeducedFromArrayBound()) return TemplateArgument(Context, Y.getAsIntegral(), X.getParamTypeForDecl()); return Y; } // If we deduced two declarations, make sure that they refer to the // same declaration. if (Y.getKind() == TemplateArgument::Declaration && isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) return X; // All other combinations are incompatible. return DeducedTemplateArgument(); case TemplateArgument::NullPtr: // If we deduced a null pointer and a dependent expression, keep the // null pointer. if (Y.getKind() == TemplateArgument::Expression) return TemplateArgument(Context.getCommonSugaredType( X.getNullPtrType(), Y.getAsExpr()->getType()), true); // If we deduced a null pointer and an integral constant, keep the // integral constant. if (Y.getKind() == TemplateArgument::Integral) return Y; // If we deduced two null pointers, they are the same. if (Y.getKind() == TemplateArgument::NullPtr) return TemplateArgument( Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()), true); // All other combinations are incompatible. return DeducedTemplateArgument(); case TemplateArgument::Pack: { if (Y.getKind() != TemplateArgument::Pack || (!AggregateCandidateDeduction && X.pack_size() != Y.pack_size())) return DeducedTemplateArgument(); llvm::SmallVector NewPack; for (TemplateArgument::pack_iterator XA = X.pack_begin(), XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end(); XA != XAEnd; ++XA, ++YA) { if (YA != YAEnd) { TemplateArgument Merged = checkDeducedTemplateArguments( Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); if (Merged.isNull() && !(XA->isNull() && YA->isNull())) return DeducedTemplateArgument(); NewPack.push_back(Merged); } else { NewPack.push_back(*XA); } } return DeducedTemplateArgument( TemplateArgument::CreatePackCopy(Context, NewPack), X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); } } llvm_unreachable("Invalid TemplateArgument Kind!"); } /// Deduce the value of the given non-type template parameter /// as the given deduced template argument. All non-type template parameter /// deduction is funneled through here. static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( Sema &S, TemplateParameterList *TemplateParams, const NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, QualType ValueType, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { assert(NTTP->getDepth() == Info.getDeducedDepth() && "deducing non-type template argument with wrong depth"); DeducedTemplateArgument Result = checkDeducedTemplateArguments( S.Context, Deduced[NTTP->getIndex()], NewDeduced); if (Result.isNull()) { Info.Param = const_cast(NTTP); Info.FirstArg = Deduced[NTTP->getIndex()]; Info.SecondArg = NewDeduced; return Sema::TDK_Inconsistent; } Deduced[NTTP->getIndex()] = Result; if (!S.getLangOpts().CPlusPlus17) return Sema::TDK_Success; if (NTTP->isExpandedParameterPack()) // FIXME: We may still need to deduce parts of the type here! But we // don't have any way to find which slice of the type to use, and the // type stored on the NTTP itself is nonsense. Perhaps the type of an // expanded NTTP should be a pack expansion type? return Sema::TDK_Success; // Get the type of the parameter for deduction. If it's a (dependent) array // or function type, we will not have decayed it yet, so do that now. QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); if (auto *Expansion = dyn_cast(ParamType)) ParamType = Expansion->getPattern(); // FIXME: It's not clear how deduction of a parameter of reference // type from an argument (of non-reference type) should be performed. // For now, we just remove reference types from both sides and let // the final check for matching types sort out the mess. ValueType = ValueType.getNonReferenceType(); if (ParamType->isReferenceType()) ParamType = ParamType.getNonReferenceType(); else // Top-level cv-qualifiers are irrelevant for a non-reference type. ValueType = ValueType.getUnqualifiedType(); return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, ParamType, ValueType, Info, Deduced, TDF_SkipNonDependent, /*PartialOrdering=*/false, /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); } /// Deduce the value of the given non-type template parameter /// from the given integral constant. static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( Sema &S, TemplateParameterList *TemplateParams, const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, DeducedTemplateArgument(S.Context, Value, ValueType, DeducedFromArrayBound), ValueType, Info, Deduced); } /// Deduce the value of the given non-type template parameter /// from the given null pointer template argument type. static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( Sema &S, TemplateParameterList *TemplateParams, const NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { Expr *Value = S.ImpCastExprToType( new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy, NTTP->getLocation()), NullPtrType, NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer : CK_NullToPointer) .get(); return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, DeducedTemplateArgument(Value), Value->getType(), Info, Deduced); } /// Deduce the value of the given non-type template parameter /// from the given type- or value-dependent expression. /// /// \returns true if deduction succeeded, false otherwise. static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( Sema &S, TemplateParameterList *TemplateParams, const NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, DeducedTemplateArgument(Value), Value->getType(), Info, Deduced); } /// Deduce the value of the given non-type template parameter /// from the given declaration. /// /// \returns true if deduction succeeded, false otherwise. static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( Sema &S, TemplateParameterList *TemplateParams, const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { D = D ? cast(D->getCanonicalDecl()) : nullptr; TemplateArgument New(D, T); return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); } static Sema::TemplateDeductionResult DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, TemplateName Param, TemplateName Arg, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); if (!ParamDecl) { // The parameter type is dependent and is not a template template parameter, // so there is nothing that we can deduce. return Sema::TDK_Success; } if (TemplateTemplateParmDecl *TempParam = dyn_cast(ParamDecl)) { // If we're not deducing at this depth, there's nothing to deduce. if (TempParam->getDepth() != Info.getDeducedDepth()) return Sema::TDK_Success; DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, Deduced[TempParam->getIndex()], NewDeduced); if (Result.isNull()) { Info.Param = TempParam; Info.FirstArg = Deduced[TempParam->getIndex()]; Info.SecondArg = NewDeduced; return Sema::TDK_Inconsistent; } Deduced[TempParam->getIndex()] = Result; return Sema::TDK_Success; } // Verify that the two template names are equivalent. if (S.Context.hasSameTemplateName(Param, Arg)) return Sema::TDK_Success; // Mismatch of non-dependent template parameter to argument. Info.FirstArg = TemplateArgument(Param); Info.SecondArg = TemplateArgument(Arg); return Sema::TDK_NonDeducedMismatch; } /// Deduce the template arguments by comparing the template parameter /// type (which is a template-id) with the template argument type. /// /// \param S the Sema /// /// \param TemplateParams the template parameters that we are deducing /// /// \param P the parameter type /// /// \param A the argument type /// /// \param Info information about the template argument deduction itself /// /// \param Deduced the deduced template arguments /// /// \returns the result of template argument deduction so far. Note that a /// "success" result means that template argument deduction has not yet failed, /// but it may still fail, later, for other reasons. static Sema::TemplateDeductionResult DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, const QualType P, QualType A, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { QualType UP = P; if (const auto *IP = P->getAs()) UP = IP->getInjectedSpecializationType(); // FIXME: Try to preserve type sugar here, which is hard // because of the unresolved template arguments. const auto *TP = UP.getCanonicalType()->castAs(); TemplateName TNP = TP->getTemplateName(); // If the parameter is an alias template, there is nothing to deduce. if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias()) return Sema::TDK_Success; ArrayRef PResolved = TP->template_arguments(); QualType UA = A; // Treat an injected-class-name as its underlying template-id. if (const auto *Injected = A->getAs()) UA = Injected->getInjectedSpecializationType(); // Check whether the template argument is a dependent template-id. // FIXME: Should not lose sugar here. if (const auto *SA = dyn_cast(UA.getCanonicalType())) { TemplateName TNA = SA->getTemplateName(); // If the argument is an alias template, there is nothing to deduce. if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias()) return Sema::TDK_Success; // Perform template argument deduction for the template name. if (auto Result = DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info, Deduced)) return Result; // Perform template argument deduction on each template // argument. Ignore any missing/extra arguments, since they could be // filled in by default arguments. return DeduceTemplateArguments(S, TemplateParams, PResolved, SA->template_arguments(), Info, Deduced, /*NumberOfArgumentsMustMatch=*/false); } // If the argument type is a class template specialization, we // perform template argument deduction using its template // arguments. const auto *RA = UA->getAs(); const auto *SA = RA ? dyn_cast(RA->getDecl()) : nullptr; if (!SA) { Info.FirstArg = TemplateArgument(P); Info.SecondArg = TemplateArgument(A); return Sema::TDK_NonDeducedMismatch; } // Perform template argument deduction for the template name. if (auto Result = DeduceTemplateArguments( S, TemplateParams, TP->getTemplateName(), TemplateName(SA->getSpecializedTemplate()), Info, Deduced)) return Result; // Perform template argument deduction for the template arguments. return DeduceTemplateArguments(S, TemplateParams, PResolved, SA->getTemplateArgs().asArray(), Info, Deduced, /*NumberOfArgumentsMustMatch=*/true); } static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) { assert(T->isCanonicalUnqualified()); switch (T->getTypeClass()) { case Type::TypeOfExpr: case Type::TypeOf: case Type::DependentName: case Type::Decltype: case Type::UnresolvedUsing: case Type::TemplateTypeParm: return true; case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: case Type::DependentSizedArray: return IsPossiblyOpaquelyQualifiedTypeInternal( cast(T)->getElementType().getTypePtr()); default: return false; } } /// Determines whether the given type is an opaque type that /// might be more qualified when instantiated. static bool IsPossiblyOpaquelyQualifiedType(QualType T) { return IsPossiblyOpaquelyQualifiedTypeInternal( T->getCanonicalTypeInternal().getTypePtr()); } /// Helper function to build a TemplateParameter when we don't /// know its type statically. static TemplateParameter makeTemplateParameter(Decl *D) { if (TemplateTypeParmDecl *TTP = dyn_cast(D)) return TemplateParameter(TTP); if (NonTypeTemplateParmDecl *NTTP = dyn_cast(D)) return TemplateParameter(NTTP); return TemplateParameter(cast(D)); } /// A pack that we're currently deducing. struct clang::DeducedPack { // The index of the pack. unsigned Index; // The old value of the pack before we started deducing it. DeducedTemplateArgument Saved; // A deferred value of this pack from an inner deduction, that couldn't be // deduced because this deduction hadn't happened yet. DeducedTemplateArgument DeferredDeduction; // The new value of the pack. SmallVector New; // The outer deduction for this pack, if any. DeducedPack *Outer = nullptr; DeducedPack(unsigned Index) : Index(Index) {} }; namespace { /// A scope in which we're performing pack deduction. class PackDeductionScope { public: /// Prepare to deduce the packs named within Pattern. PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, SmallVectorImpl &Deduced, TemplateDeductionInfo &Info, TemplateArgument Pattern, bool DeducePackIfNotAlreadyDeduced = false) : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info), DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced){ unsigned NumNamedPacks = addPacks(Pattern); finishConstruction(NumNamedPacks); } /// Prepare to directly deduce arguments of the parameter with index \p Index. PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, SmallVectorImpl &Deduced, TemplateDeductionInfo &Info, unsigned Index) : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { addPack(Index); finishConstruction(1); } private: void addPack(unsigned Index) { // Save the deduced template argument for the parameter pack expanded // by this pack expansion, then clear out the deduction. DeducedPack Pack(Index); Pack.Saved = Deduced[Index]; Deduced[Index] = TemplateArgument(); // FIXME: What if we encounter multiple packs with different numbers of // pre-expanded expansions? (This should already have been diagnosed // during substitution.) if (std::optional ExpandedPackExpansions = getExpandedPackSize(TemplateParams->getParam(Index))) FixedNumExpansions = ExpandedPackExpansions; Packs.push_back(Pack); } unsigned addPacks(TemplateArgument Pattern) { // Compute the set of template parameter indices that correspond to // parameter packs expanded by the pack expansion. llvm::SmallBitVector SawIndices(TemplateParams->size()); llvm::SmallVector ExtraDeductions; auto AddPack = [&](unsigned Index) { if (SawIndices[Index]) return; SawIndices[Index] = true; addPack(Index); // Deducing a parameter pack that is a pack expansion also constrains the // packs appearing in that parameter to have the same deduced arity. Also, // in C++17 onwards, deducing a non-type template parameter deduces its // type, so we need to collect the pending deduced values for those packs. if (auto *NTTP = dyn_cast( TemplateParams->getParam(Index))) { if (!NTTP->isExpandedParameterPack()) if (auto *Expansion = dyn_cast(NTTP->getType())) ExtraDeductions.push_back(Expansion->getPattern()); } // FIXME: Also collect the unexpanded packs in any type and template // parameter packs that are pack expansions. }; auto Collect = [&](TemplateArgument Pattern) { SmallVector Unexpanded; S.collectUnexpandedParameterPacks(Pattern, Unexpanded); for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { unsigned Depth, Index; std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); if (Depth == Info.getDeducedDepth()) AddPack(Index); } }; // Look for unexpanded packs in the pattern. Collect(Pattern); assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); unsigned NumNamedPacks = Packs.size(); // Also look for unexpanded packs that are indirectly deduced by deducing // the sizes of the packs in this pattern. while (!ExtraDeductions.empty()) Collect(ExtraDeductions.pop_back_val()); return NumNamedPacks; } void finishConstruction(unsigned NumNamedPacks) { // Dig out the partially-substituted pack, if there is one. const TemplateArgument *PartialPackArgs = nullptr; unsigned NumPartialPackArgs = 0; std::pair PartialPackDepthIndex(-1u, -1u); if (auto *Scope = S.CurrentInstantiationScope) if (auto *Partial = Scope->getPartiallySubstitutedPack( &PartialPackArgs, &NumPartialPackArgs)) PartialPackDepthIndex = getDepthAndIndex(Partial); // This pack expansion will have been partially or fully expanded if // it only names explicitly-specified parameter packs (including the // partially-substituted one, if any). bool IsExpanded = true; for (unsigned I = 0; I != NumNamedPacks; ++I) { if (Packs[I].Index >= Info.getNumExplicitArgs()) { IsExpanded = false; IsPartiallyExpanded = false; break; } if (PartialPackDepthIndex == std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { IsPartiallyExpanded = true; } } // Skip over the pack elements that were expanded into separate arguments. // If we partially expanded, this is the number of partial arguments. if (IsPartiallyExpanded) PackElements += NumPartialPackArgs; else if (IsExpanded) PackElements += *FixedNumExpansions; for (auto &Pack : Packs) { if (Info.PendingDeducedPacks.size() > Pack.Index) Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; else Info.PendingDeducedPacks.resize(Pack.Index + 1); Info.PendingDeducedPacks[Pack.Index] = &Pack; if (PartialPackDepthIndex == std::make_pair(Info.getDeducedDepth(), Pack.Index)) { Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); // We pre-populate the deduced value of the partially-substituted // pack with the specified value. This is not entirely correct: the // value is supposed to have been substituted, not deduced, but the // cases where this is observable require an exact type match anyway. // // FIXME: If we could represent a "depth i, index j, pack elem k" // parameter, we could substitute the partially-substituted pack // everywhere and avoid this. if (!IsPartiallyExpanded) Deduced[Pack.Index] = Pack.New[PackElements]; } } } public: ~PackDeductionScope() { for (auto &Pack : Packs) Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; } /// Determine whether this pack has already been partially expanded into a /// sequence of (prior) function parameters / template arguments. bool isPartiallyExpanded() { return IsPartiallyExpanded; } /// Determine whether this pack expansion scope has a known, fixed arity. /// This happens if it involves a pack from an outer template that has /// (notionally) already been expanded. bool hasFixedArity() { return FixedNumExpansions.has_value(); } /// Determine whether the next element of the argument is still part of this /// pack. This is the case unless the pack is already expanded to a fixed /// length. bool hasNextElement() { return !FixedNumExpansions || *FixedNumExpansions > PackElements; } /// Move to deducing the next element in each pack that is being deduced. void nextPackElement() { // Capture the deduced template arguments for each parameter pack expanded // by this pack expansion, add them to the list of arguments we've deduced // for that pack, then clear out the deduced argument. for (auto &Pack : Packs) { DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; if (!Pack.New.empty() || !DeducedArg.isNull()) { while (Pack.New.size() < PackElements) Pack.New.push_back(DeducedTemplateArgument()); if (Pack.New.size() == PackElements) Pack.New.push_back(DeducedArg); else Pack.New[PackElements] = DeducedArg; DeducedArg = Pack.New.size() > PackElements + 1 ? Pack.New[PackElements + 1] : DeducedTemplateArgument(); } } ++PackElements; } /// Finish template argument deduction for a set of argument packs, /// producing the argument packs and checking for consistency with prior /// deductions. Sema::TemplateDeductionResult finish() { // Build argument packs for each of the parameter packs expanded by this // pack expansion. for (auto &Pack : Packs) { // Put back the old value for this pack. Deduced[Pack.Index] = Pack.Saved; // Always make sure the size of this pack is correct, even if we didn't // deduce any values for it. // // FIXME: This isn't required by the normative wording, but substitution // and post-substitution checking will always fail if the arity of any // pack is not equal to the number of elements we processed. (Either that // or something else has gone *very* wrong.) We're permitted to skip any // hard errors from those follow-on steps by the intent (but not the // wording) of C++ [temp.inst]p8: // // If the function selected by overload resolution can be determined // without instantiating a class template definition, it is unspecified // whether that instantiation actually takes place Pack.New.resize(PackElements); // Build or find a new value for this pack. DeducedTemplateArgument NewPack; if (Pack.New.empty()) { // If we deduced an empty argument pack, create it now. NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); } else { TemplateArgument *ArgumentPack = new (S.Context) TemplateArgument[Pack.New.size()]; std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); NewPack = DeducedTemplateArgument( TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())), // FIXME: This is wrong, it's possible that some pack elements are // deduced from an array bound and others are not: // template void g(const T (&...p)[V]); // g({1, 2, 3}, {{}, {}}); // ... should deduce T = {int, size_t (from array bound)}. Pack.New[0].wasDeducedFromArrayBound()); } // Pick where we're going to put the merged pack. DeducedTemplateArgument *Loc; if (Pack.Outer) { if (Pack.Outer->DeferredDeduction.isNull()) { // Defer checking this pack until we have a complete pack to compare // it against. Pack.Outer->DeferredDeduction = NewPack; continue; } Loc = &Pack.Outer->DeferredDeduction; } else { Loc = &Deduced[Pack.Index]; } // Check the new pack matches any previous value. DeducedTemplateArgument OldPack = *Loc; DeducedTemplateArgument Result = checkDeducedTemplateArguments( S.Context, OldPack, NewPack, DeducePackIfNotAlreadyDeduced); Info.AggregateDeductionCandidateHasMismatchedArity = OldPack.getKind() == TemplateArgument::Pack && NewPack.getKind() == TemplateArgument::Pack && OldPack.pack_size() != NewPack.pack_size() && !Result.isNull(); // If we deferred a deduction of this pack, check that one now too. if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { OldPack = Result; NewPack = Pack.DeferredDeduction; Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); } NamedDecl *Param = TemplateParams->getParam(Pack.Index); if (Result.isNull()) { Info.Param = makeTemplateParameter(Param); Info.FirstArg = OldPack; Info.SecondArg = NewPack; return Sema::TDK_Inconsistent; } // If we have a pre-expanded pack and we didn't deduce enough elements // for it, fail deduction. if (std::optional Expansions = getExpandedPackSize(Param)) { if (*Expansions != PackElements) { Info.Param = makeTemplateParameter(Param); Info.FirstArg = Result; return Sema::TDK_IncompletePack; } } *Loc = Result; } return Sema::TDK_Success; } private: Sema &S; TemplateParameterList *TemplateParams; SmallVectorImpl &Deduced; TemplateDeductionInfo &Info; unsigned PackElements = 0; bool IsPartiallyExpanded = false; bool DeducePackIfNotAlreadyDeduced = false; /// The number of expansions, if we have a fully-expanded pack in this scope. std::optional FixedNumExpansions; SmallVector Packs; }; } // namespace /// Deduce the template arguments by comparing the list of parameter /// types to the list of argument types, as in the parameter-type-lists of /// function types (C++ [temp.deduct.type]p10). /// /// \param S The semantic analysis object within which we are deducing /// /// \param TemplateParams The template parameters that we are deducing /// /// \param Params The list of parameter types /// /// \param NumParams The number of types in \c Params /// /// \param Args The list of argument types /// /// \param NumArgs The number of types in \c Args /// /// \param Info information about the template argument deduction itself /// /// \param Deduced the deduced template arguments /// /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe /// how template argument deduction is performed. /// /// \param PartialOrdering If true, we are performing template argument /// deduction for during partial ordering for a call /// (C++0x [temp.deduct.partial]). /// /// \returns the result of template argument deduction so far. Note that a /// "success" result means that template argument deduction has not yet failed, /// but it may still fail, later, for other reasons. static Sema::TemplateDeductionResult DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, const QualType *Params, unsigned NumParams, const QualType *Args, unsigned NumArgs, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced, unsigned TDF, bool PartialOrdering = false) { // C++0x [temp.deduct.type]p10: // Similarly, if P has a form that contains (T), then each parameter type // Pi of the respective parameter-type- list of P is compared with the // corresponding parameter type Ai of the corresponding parameter-type-list // of A. [...] unsigned ArgIdx = 0, ParamIdx = 0; for (; ParamIdx != NumParams; ++ParamIdx) { // Check argument types. const PackExpansionType *Expansion = dyn_cast(Params[ParamIdx]); if (!Expansion) { // Simple case: compare the parameter and argument types at this point. // Make sure we have an argument. if (ArgIdx >= NumArgs) return Sema::TDK_MiscellaneousDeductionFailure; if (isa(Args[ArgIdx])) { // C++0x [temp.deduct.type]p22: // If the original function parameter associated with A is a function // parameter pack and the function parameter associated with P is not // a function parameter pack, then template argument deduction fails. return Sema::TDK_MiscellaneousDeductionFailure; } if (Sema::TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, Params[ParamIdx].getUnqualifiedType(), Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, PartialOrdering, /*DeducedFromArrayBound=*/false)) return Result; ++ArgIdx; continue; } // C++0x [temp.deduct.type]p10: // If the parameter-declaration corresponding to Pi is a function // parameter pack, then the type of its declarator- id is compared with // each remaining parameter type in the parameter-type-list of A. Each // comparison deduces template arguments for subsequent positions in the // template parameter packs expanded by the function parameter pack. QualType Pattern = Expansion->getPattern(); PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); // A pack scope with fixed arity is not really a pack any more, so is not // a non-deduced context. if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { // Deduce template arguments from the pattern. if (Sema::TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, Pattern.getUnqualifiedType(), Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, PartialOrdering, /*DeducedFromArrayBound=*/false)) return Result; PackScope.nextPackElement(); } } else { // C++0x [temp.deduct.type]p5: // The non-deduced contexts are: // - A function parameter pack that does not occur at the end of the // parameter-declaration-clause. // // FIXME: There is no wording to say what we should do in this case. We // choose to resolve this by applying the same rule that is applied for a // function call: that is, deduce all contained packs to their // explicitly-specified values (or to <> if there is no such value). // // This is seemingly-arbitrarily different from the case of a template-id // with a non-trailing pack-expansion in its arguments, which renders the // entire template-argument-list a non-deduced context. // If the parameter type contains an explicitly-specified pack that we // could not expand, skip the number of parameters notionally created // by the expansion. std::optional NumExpansions = Expansion->getNumExpansions(); if (NumExpansions && !PackScope.isPartiallyExpanded()) { for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; ++I, ++ArgIdx) PackScope.nextPackElement(); } } // Build argument packs for each of the parameter packs expanded by this // pack expansion. if (auto Result = PackScope.finish()) return Result; } // DR692, DR1395 // C++0x [temp.deduct.type]p10: // If the parameter-declaration corresponding to P_i ... // During partial ordering, if Ai was originally a function parameter pack: // - if P does not contain a function parameter type corresponding to Ai then // Ai is ignored; if (PartialOrdering && ArgIdx + 1 == NumArgs && isa(Args[ArgIdx])) return Sema::TDK_Success; // Make sure we don't have any extra arguments. if (ArgIdx < NumArgs) return Sema::TDK_MiscellaneousDeductionFailure; return Sema::TDK_Success; } /// Determine whether the parameter has qualifiers that the argument /// lacks. Put another way, determine whether there is no way to add /// a deduced set of qualifiers to the ParamType that would result in /// its qualifiers matching those of the ArgType. static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, QualType ArgType) { Qualifiers ParamQs = ParamType.getQualifiers(); Qualifiers ArgQs = ArgType.getQualifiers(); if (ParamQs == ArgQs) return false; // Mismatched (but not missing) Objective-C GC attributes. if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && ParamQs.hasObjCGCAttr()) return true; // Mismatched (but not missing) address spaces. if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && ParamQs.hasAddressSpace()) return true; // Mismatched (but not missing) Objective-C lifetime qualifiers. if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && ParamQs.hasObjCLifetime()) return true; // CVR qualifiers inconsistent or a superset. return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; } /// Compare types for equality with respect to possibly compatible /// function types (noreturn adjustment, implicit calling conventions). If any /// of parameter and argument is not a function, just perform type comparison. /// /// \param P the template parameter type. /// /// \param A the argument type. bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) { const FunctionType *PF = P->getAs(), *AF = A->getAs(); // Just compare if not functions. if (!PF || !AF) return Context.hasSameType(P, A); // Noreturn and noexcept adjustment. QualType AdjustedParam; if (IsFunctionConversion(P, A, AdjustedParam)) return Context.hasSameType(AdjustedParam, A); // FIXME: Compatible calling conventions. return Context.hasSameType(P, A); } /// Get the index of the first template parameter that was originally from the /// innermost template-parameter-list. This is 0 except when we concatenate /// the template parameter lists of a class template and a constructor template /// when forming an implicit deduction guide. static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { auto *Guide = dyn_cast(FTD->getTemplatedDecl()); if (!Guide || !Guide->isImplicit()) return 0; return Guide->getDeducedTemplate()->getTemplateParameters()->size(); } /// Determine whether a type denotes a forwarding reference. static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { // C++1z [temp.deduct.call]p3: // A forwarding reference is an rvalue reference to a cv-unqualified // template parameter that does not represent a template parameter of a // class template. if (auto *ParamRef = Param->getAs()) { if (ParamRef->getPointeeType().getQualifiers()) return false; auto *TypeParm = ParamRef->getPointeeType()->getAs(); return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; } return false; } static CXXRecordDecl *getCanonicalRD(QualType T) { return cast( T->castAs()->getDecl()->getCanonicalDecl()); } /// Attempt to deduce the template arguments by checking the base types /// according to (C++20 [temp.deduct.call] p4b3. /// /// \param S the semantic analysis object within which we are deducing. /// /// \param RD the top level record object we are deducing against. /// /// \param TemplateParams the template parameters that we are deducing. /// /// \param P the template specialization parameter type. /// /// \param Info information about the template argument deduction itself. /// /// \param Deduced the deduced template arguments. /// /// \returns the result of template argument deduction with the bases. "invalid" /// means no matches, "success" found a single item, and the /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous. static Sema::TemplateDeductionResult DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, TemplateParameterList *TemplateParams, QualType P, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { // C++14 [temp.deduct.call] p4b3: // If P is a class and P has the form simple-template-id, then the // transformed A can be a derived class of the deduced A. Likewise if // P is a pointer to a class of the form simple-template-id, the // transformed A can be a pointer to a derived class pointed to by the // deduced A. However, if there is a class C that is a (direct or // indirect) base class of D and derived (directly or indirectly) from a // class B and that would be a valid deduced A, the deduced A cannot be // B or pointer to B, respectively. // // These alternatives are considered only if type deduction would // otherwise fail. If they yield more than one possible deduced A, the // type deduction fails. // Use a breadth-first search through the bases to collect the set of // successful matches. Visited contains the set of nodes we have already // visited, while ToVisit is our stack of records that we still need to // visit. Matches contains a list of matches that have yet to be // disqualified. llvm::SmallPtrSet Visited; SmallVector ToVisit; // We iterate over this later, so we have to use MapVector to ensure // determinism. llvm::MapVector> Matches; auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) { for (const auto &Base : RD->bases()) { QualType T = Base.getType(); assert(T->isRecordType() && "Base class that isn't a record?"); if (Visited.insert(::getCanonicalRD(T)).second) ToVisit.push_back(T); } }; // Set up the loop by adding all the bases. AddBases(RD); // Search each path of bases until we either run into a successful match // (where all bases of it are invalid), or we run out of bases. while (!ToVisit.empty()) { QualType NextT = ToVisit.pop_back_val(); SmallVector DeducedCopy(Deduced.begin(), Deduced.end()); TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info); Sema::TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments( S, TemplateParams, P, NextT, BaseInfo, DeducedCopy); // If this was a successful deduction, add it to the list of matches, // otherwise we need to continue searching its bases. const CXXRecordDecl *RD = ::getCanonicalRD(NextT); if (BaseResult == Sema::TDK_Success) Matches.insert({RD, DeducedCopy}); else AddBases(RD); } // At this point, 'Matches' contains a list of seemingly valid bases, however // in the event that we have more than 1 match, it is possible that the base // of one of the matches might be disqualified for being a base of another // valid match. We can count on cyclical instantiations being invalid to // simplify the disqualifications. That is, if A & B are both matches, and B // inherits from A (disqualifying A), we know that A cannot inherit from B. if (Matches.size() > 1) { Visited.clear(); for (const auto &Match : Matches) AddBases(Match.first); // We can give up once we have a single item (or have run out of things to // search) since cyclical inheritance isn't valid. while (Matches.size() > 1 && !ToVisit.empty()) { const CXXRecordDecl *RD = ::getCanonicalRD(ToVisit.pop_back_val()); Matches.erase(RD); // Always add all bases, since the inheritance tree can contain // disqualifications for multiple matches. AddBases(RD); } } if (Matches.empty()) return Sema::TDK_Invalid; if (Matches.size() > 1) return Sema::TDK_MiscellaneousDeductionFailure; std::swap(Matches.front().second, Deduced); return Sema::TDK_Success; } /// Deduce the template arguments by comparing the parameter type and /// the argument type (C++ [temp.deduct.type]). /// /// \param S the semantic analysis object within which we are deducing /// /// \param TemplateParams the template parameters that we are deducing /// /// \param P the parameter type /// /// \param A the argument type /// /// \param Info information about the template argument deduction itself /// /// \param Deduced the deduced template arguments /// /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe /// how template argument deduction is performed. /// /// \param PartialOrdering Whether we're performing template argument deduction /// in the context of partial ordering (C++0x [temp.deduct.partial]). /// /// \returns the result of template argument deduction so far. Note that a /// "success" result means that template argument deduction has not yet failed, /// but it may still fail, later, for other reasons. static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced, unsigned TDF, bool PartialOrdering, bool DeducedFromArrayBound) { // If the argument type is a pack expansion, look at its pattern. // This isn't explicitly called out if (const auto *AExp = dyn_cast(A)) A = AExp->getPattern(); assert(!isa(A.getCanonicalType())); if (PartialOrdering) { // C++11 [temp.deduct.partial]p5: // Before the partial ordering is done, certain transformations are // performed on the types used for partial ordering: // - If P is a reference type, P is replaced by the type referred to. const ReferenceType *PRef = P->getAs(); if (PRef) P = PRef->getPointeeType(); // - If A is a reference type, A is replaced by the type referred to. const ReferenceType *ARef = A->getAs(); if (ARef) A = A->getPointeeType(); if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) { // C++11 [temp.deduct.partial]p9: // If, for a given type, deduction succeeds in both directions (i.e., // the types are identical after the transformations above) and both // P and A were reference types [...]: // - if [one type] was an lvalue reference and [the other type] was // not, [the other type] is not considered to be at least as // specialized as [the first type] // - if [one type] is more cv-qualified than [the other type], // [the other type] is not considered to be at least as specialized // as [the first type] // Objective-C ARC adds: // - [one type] has non-trivial lifetime, [the other type] has // __unsafe_unretained lifetime, and the types are otherwise // identical // // A is "considered to be at least as specialized" as P iff deduction // succeeds, so we model this as a deduction failure. Note that // [the first type] is P and [the other type] is A here; the standard // gets this backwards. Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers(); if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) || PQuals.isStrictSupersetOf(AQuals) || (PQuals.hasNonTrivialObjCLifetime() && AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) { Info.FirstArg = TemplateArgument(P); Info.SecondArg = TemplateArgument(A); return Sema::TDK_NonDeducedMismatch; } } Qualifiers DiscardedQuals; // C++11 [temp.deduct.partial]p7: // Remove any top-level cv-qualifiers: // - If P is a cv-qualified type, P is replaced by the cv-unqualified // version of P. P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals); // - If A is a cv-qualified type, A is replaced by the cv-unqualified // version of A. A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals); } else { // C++0x [temp.deduct.call]p4 bullet 1: // - If the original P is a reference type, the deduced A (i.e., the type // referred to by the reference) can be more cv-qualified than the // transformed A. if (TDF & TDF_ParamWithReferenceType) { Qualifiers Quals; QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals); Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers()); P = S.Context.getQualifiedType(UnqualP, Quals); } if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) { // C++0x [temp.deduct.type]p10: // If P and A are function types that originated from deduction when // taking the address of a function template (14.8.2.2) or when deducing // template arguments from a function declaration (14.8.2.6) and Pi and // Ai are parameters of the top-level parameter-type-list of P and A, // respectively, Pi is adjusted if it is a forwarding reference and Ai // is an lvalue reference, in // which case the type of Pi is changed to be the template parameter // type (i.e., T&& is changed to simply T). [ Note: As a result, when // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be // deduced as X&. - end note ] TDF &= ~TDF_TopLevelParameterTypeList; if (isForwardingReference(P, /*FirstInnerIndex=*/0) && A->isLValueReferenceType()) P = P->getPointeeType(); } } // C++ [temp.deduct.type]p9: // A template type argument T, a template template argument TT or a // template non-type argument i can be deduced if P and A have one of // the following forms: // // T // cv-list T if (const auto *TTP = P->getAs()) { // Just skip any attempts to deduce from a placeholder type or a parameter // at a different depth. if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth()) return Sema::TDK_Success; unsigned Index = TTP->getIndex(); // If the argument type is an array type, move the qualifiers up to the // top level, so they can be matched with the qualifiers on the parameter. if (A->isArrayType()) { Qualifiers Quals; A = S.Context.getUnqualifiedArrayType(A, Quals); if (Quals) A = S.Context.getQualifiedType(A, Quals); } // The argument type can not be less qualified than the parameter // type. if (!(TDF & TDF_IgnoreQualifiers) && hasInconsistentOrSupersetQualifiersOf(P, A)) { Info.Param = cast(TemplateParams->getParam(Index)); Info.FirstArg = TemplateArgument(P); Info.SecondArg = TemplateArgument(A); return Sema::TDK_Underqualified; } // Do not match a function type with a cv-qualified type. // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 if (A->isFunctionType() && P.hasQualifiers()) return Sema::TDK_NonDeducedMismatch; assert(TTP->getDepth() == Info.getDeducedDepth() && "saw template type parameter with wrong depth"); assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy && "Unresolved overloaded function"); QualType DeducedType = A; // Remove any qualifiers on the parameter from the deduced type. // We checked the qualifiers for consistency above. Qualifiers DeducedQs = DeducedType.getQualifiers(); Qualifiers ParamQs = P.getQualifiers(); DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); if (ParamQs.hasObjCGCAttr()) DeducedQs.removeObjCGCAttr(); if (ParamQs.hasAddressSpace()) DeducedQs.removeAddressSpace(); if (ParamQs.hasObjCLifetime()) DeducedQs.removeObjCLifetime(); // Objective-C ARC: // If template deduction would produce a lifetime qualifier on a type // that is not a lifetime type, template argument deduction fails. if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && !DeducedType->isDependentType()) { Info.Param = cast(TemplateParams->getParam(Index)); Info.FirstArg = TemplateArgument(P); Info.SecondArg = TemplateArgument(A); return Sema::TDK_Underqualified; } // Objective-C ARC: // If template deduction would produce an argument type with lifetime type // but no lifetime qualifier, the __strong lifetime qualifier is inferred. if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() && !DeducedQs.hasObjCLifetime()) DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs); DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced); if (Result.isNull()) { Info.Param = cast(TemplateParams->getParam(Index)); Info.FirstArg = Deduced[Index]; Info.SecondArg = NewDeduced; return Sema::TDK_Inconsistent; } Deduced[Index] = Result; return Sema::TDK_Success; } // Set up the template argument deduction information for a failure. Info.FirstArg = TemplateArgument(P); Info.SecondArg = TemplateArgument(A); // If the parameter is an already-substituted template parameter // pack, do nothing: we don't know which of its arguments to look // at, so we have to wait until all of the parameter packs in this // expansion have arguments. if (P->getAs()) return Sema::TDK_Success; // Check the cv-qualifiers on the parameter and argument types. if (!(TDF & TDF_IgnoreQualifiers)) { if (TDF & TDF_ParamWithReferenceType) { if (hasInconsistentOrSupersetQualifiersOf(P, A)) return Sema::TDK_NonDeducedMismatch; } else if (TDF & TDF_ArgWithReferenceType) { // C++ [temp.deduct.conv]p4: // If the original A is a reference type, A can be more cv-qualified // than the deduced A if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers())) return Sema::TDK_NonDeducedMismatch; // Strip out all extra qualifiers from the argument to figure out the // type we're converting to, prior to the qualification conversion. Qualifiers Quals; A = S.Context.getUnqualifiedArrayType(A, Quals); A = S.Context.getQualifiedType(A, P.getQualifiers()); } else if (!IsPossiblyOpaquelyQualifiedType(P)) { if (P.getCVRQualifiers() != A.getCVRQualifiers()) return Sema::TDK_NonDeducedMismatch; } } // If the parameter type is not dependent, there is nothing to deduce. if (!P->isDependentType()) { if (TDF & TDF_SkipNonDependent) return Sema::TDK_Success; if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A) : S.Context.hasSameType(P, A)) return Sema::TDK_Success; if (TDF & TDF_AllowCompatibleFunctionType && S.isSameOrCompatibleFunctionType(P, A)) return Sema::TDK_Success; if (!(TDF & TDF_IgnoreQualifiers)) return Sema::TDK_NonDeducedMismatch; // Otherwise, when ignoring qualifiers, the types not having the same // unqualified type does not mean they do not match, so in this case we // must keep going and analyze with a non-dependent parameter type. } switch (P.getCanonicalType()->getTypeClass()) { // Non-canonical types cannot appear here. #define NON_CANONICAL_TYPE(Class, Base) \ case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); #define TYPE(Class, Base) #include "clang/AST/TypeNodes.inc" case Type::TemplateTypeParm: case Type::SubstTemplateTypeParmPack: llvm_unreachable("Type nodes handled above"); case Type::Auto: // C++23 [temp.deduct.funcaddr]/3: // A placeholder type in the return type of a function template is a // non-deduced context. // There's no corresponding wording for [temp.deduct.decl], but we treat // it the same to match other compilers. if (P->isDependentType()) return Sema::TDK_Success; [[fallthrough]]; case Type::Builtin: case Type::VariableArray: case Type::Vector: case Type::FunctionNoProto: case Type::Record: case Type::Enum: case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: case Type::BitInt: return (TDF & TDF_SkipNonDependent) || ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A) : S.Context.hasSameType(P, A)) ? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; // _Complex T [placeholder extension] case Type::Complex: { const auto *CP = P->castAs(), *CA = A->getAs(); if (!CA) return Sema::TDK_NonDeducedMismatch; return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, CP->getElementType(), CA->getElementType(), Info, Deduced, TDF); } // _Atomic T [extension] case Type::Atomic: { const auto *PA = P->castAs(), *AA = A->getAs(); if (!AA) return Sema::TDK_NonDeducedMismatch; return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, PA->getValueType(), AA->getValueType(), Info, Deduced, TDF); } // T * case Type::Pointer: { QualType PointeeType; if (const auto *PA = A->getAs()) { PointeeType = PA->getPointeeType(); } else if (const auto *PA = A->getAs()) { PointeeType = PA->getPointeeType(); } else { return Sema::TDK_NonDeducedMismatch; } return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, P->castAs()->getPointeeType(), PointeeType, Info, Deduced, TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass)); } // T & case Type::LValueReference: { const auto *RP = P->castAs(), *RA = A->getAs(); if (!RA) return Sema::TDK_NonDeducedMismatch; return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, Deduced, 0); } // T && [C++0x] case Type::RValueReference: { const auto *RP = P->castAs(), *RA = A->getAs(); if (!RA) return Sema::TDK_NonDeducedMismatch; return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, Deduced, 0); } // T [] (implied, but not stated explicitly) case Type::IncompleteArray: { const auto *IAA = S.Context.getAsIncompleteArrayType(A); if (!IAA) return Sema::TDK_NonDeducedMismatch; const auto *IAP = S.Context.getAsIncompleteArrayType(P); assert(IAP && "Template parameter not of incomplete array type"); return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, IAP->getElementType(), IAA->getElementType(), Info, Deduced, TDF & TDF_IgnoreQualifiers); } // T [integer-constant] case Type::ConstantArray: { const auto *CAA = S.Context.getAsConstantArrayType(A), *CAP = S.Context.getAsConstantArrayType(P); assert(CAP); if (!CAA || CAA->getSize() != CAP->getSize()) return Sema::TDK_NonDeducedMismatch; return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info, Deduced, TDF & TDF_IgnoreQualifiers); } // type [i] case Type::DependentSizedArray: { const auto *AA = S.Context.getAsArrayType(A); if (!AA) return Sema::TDK_NonDeducedMismatch; // Check the element type of the arrays const auto *DAP = S.Context.getAsDependentSizedArrayType(P); assert(DAP); if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, DAP->getElementType(), AA->getElementType(), Info, Deduced, TDF & TDF_IgnoreQualifiers)) return Result; // Determine the array bound is something we can deduce. const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, DAP->getSizeExpr()); if (!NTTP) return Sema::TDK_Success; // We can perform template argument deduction for the given non-type // template parameter. assert(NTTP->getDepth() == Info.getDeducedDepth() && "saw non-type template parameter with wrong depth"); if (const auto *CAA = dyn_cast(AA)) { llvm::APSInt Size(CAA->getSize()); return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, Size, S.Context.getSizeType(), /*ArrayBound=*/true, Info, Deduced); } if (const auto *DAA = dyn_cast(AA)) if (DAA->getSizeExpr()) return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, DAA->getSizeExpr(), Info, Deduced); // Incomplete type does not match a dependently-sized array type return Sema::TDK_NonDeducedMismatch; } // type(*)(T) // T(*)() // T(*)(T) case Type::FunctionProto: { const auto *FPP = P->castAs(), *FPA = A->getAs(); if (!FPA) return Sema::TDK_NonDeducedMismatch; if (FPP->getMethodQuals() != FPA->getMethodQuals() || FPP->getRefQualifier() != FPA->getRefQualifier() || FPP->isVariadic() != FPA->isVariadic()) return Sema::TDK_NonDeducedMismatch; // Check return types. if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(), Info, Deduced, 0, /*PartialOrdering=*/false, /*DeducedFromArrayBound=*/false)) return Result; // Check parameter types. if (auto Result = DeduceTemplateArguments( S, TemplateParams, FPP->param_type_begin(), FPP->getNumParams(), FPA->param_type_begin(), FPA->getNumParams(), Info, Deduced, TDF & TDF_TopLevelParameterTypeList, PartialOrdering)) return Result; if (TDF & TDF_AllowCompatibleFunctionType) return Sema::TDK_Success; // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit // deducing through the noexcept-specifier if it's part of the canonical // type. libstdc++ relies on this. Expr *NoexceptExpr = FPP->getNoexceptExpr(); if (const NonTypeTemplateParmDecl *NTTP = NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) : nullptr) { assert(NTTP->getDepth() == Info.getDeducedDepth() && "saw non-type template parameter with wrong depth"); llvm::APSInt Noexcept(1); switch (FPA->canThrow()) { case CT_Cannot: Noexcept = 1; [[fallthrough]]; case CT_Can: // We give E in noexcept(E) the "deduced from array bound" treatment. // FIXME: Should we? return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, /*DeducedFromArrayBound=*/true, Info, Deduced); case CT_Dependent: if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr()) return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); // Can't deduce anything from throw(T...). break; } } // FIXME: Detect non-deduced exception specification mismatches? // // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow // top-level differences in noexcept-specifications. return Sema::TDK_Success; } case Type::InjectedClassName: // Treat a template's injected-class-name as if the template // specialization type had been used. // template-name (where template-name refers to a class template) // template-name // TT // TT // TT<> case Type::TemplateSpecialization: { // When Arg cannot be a derived class, we can just try to deduce template // arguments from the template-id. if (!(TDF & TDF_DerivedClass) || !A->isRecordType()) return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, Deduced); SmallVector DeducedOrig(Deduced.begin(), Deduced.end()); auto Result = DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, Deduced); if (Result == Sema::TDK_Success) return Result; // We cannot inspect base classes as part of deduction when the type // is incomplete, so either instantiate any templates necessary to // complete the type, or skip over it if it cannot be completed. if (!S.isCompleteType(Info.getLocation(), A)) return Result; // Reset the incorrectly deduced argument from above. Deduced = DeducedOrig; // Check bases according to C++14 [temp.deduct.call] p4b3: auto BaseResult = DeduceTemplateBases(S, getCanonicalRD(A), TemplateParams, P, Info, Deduced); return BaseResult != Sema::TDK_Invalid ? BaseResult : Result; } // T type::* // T T::* // T (type::*)() // type (T::*)() // type (type::*)(T) // type (T::*)(T) // T (type::*)(T) // T (T::*)() // T (T::*)(T) case Type::MemberPointer: { const auto *MPP = P->castAs(), *MPA = A->getAs(); if (!MPA) return Sema::TDK_NonDeducedMismatch; QualType PPT = MPP->getPointeeType(); if (PPT->isFunctionType()) S.adjustMemberFunctionCC(PPT, /*IsStatic=*/true, /*IsCtorOrDtor=*/false, Info.getLocation()); QualType APT = MPA->getPointeeType(); if (APT->isFunctionType()) S.adjustMemberFunctionCC(APT, /*IsStatic=*/true, /*IsCtorOrDtor=*/false, Info.getLocation()); unsigned SubTDF = TDF & TDF_IgnoreQualifiers; if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, PPT, APT, Info, Deduced, SubTDF)) return Result; return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, QualType(MPP->getClass(), 0), QualType(MPA->getClass(), 0), Info, Deduced, SubTDF); } // (clang extension) // // type(^)(T) // T(^)() // T(^)(T) case Type::BlockPointer: { const auto *BPP = P->castAs(), *BPA = A->getAs(); if (!BPA) return Sema::TDK_NonDeducedMismatch; return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info, Deduced, 0); } // (clang extension) // // T __attribute__(((ext_vector_type()))) case Type::ExtVector: { const auto *VP = P->castAs(); QualType ElementType; if (const auto *VA = A->getAs()) { // Make sure that the vectors have the same number of elements. if (VP->getNumElements() != VA->getNumElements()) return Sema::TDK_NonDeducedMismatch; ElementType = VA->getElementType(); } else if (const auto *VA = A->getAs()) { // We can't check the number of elements, since the argument has a // dependent number of elements. This can only occur during partial // ordering. ElementType = VA->getElementType(); } else { return Sema::TDK_NonDeducedMismatch; } // Perform deduction on the element types. return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced, TDF); } case Type::DependentVector: { const auto *VP = P->castAs(); if (const auto *VA = A->getAs()) { // Perform deduction on the element types. if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, VP->getElementType(), VA->getElementType(), Info, Deduced, TDF)) return Result; // Perform deduction on the vector size, if we can. const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, VP->getSizeExpr()); if (!NTTP) return Sema::TDK_Success; llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); ArgSize = VA->getNumElements(); // Note that we use the "array bound" rules here; just like in that // case, we don't have any particular type for the vector size, but // we can provide one if necessary. return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, S.Context.UnsignedIntTy, true, Info, Deduced); } if (const auto *VA = A->getAs()) { // Perform deduction on the element types. if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, VP->getElementType(), VA->getElementType(), Info, Deduced, TDF)) return Result; // Perform deduction on the vector size, if we can. const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, VP->getSizeExpr()); if (!NTTP) return Sema::TDK_Success; return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, VA->getSizeExpr(), Info, Deduced); } return Sema::TDK_NonDeducedMismatch; } // (clang extension) // // T __attribute__(((ext_vector_type(N)))) case Type::DependentSizedExtVector: { const auto *VP = P->castAs(); if (const auto *VA = A->getAs()) { // Perform deduction on the element types. if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, VP->getElementType(), VA->getElementType(), Info, Deduced, TDF)) return Result; // Perform deduction on the vector size, if we can. const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, VP->getSizeExpr()); if (!NTTP) return Sema::TDK_Success; llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); ArgSize = VA->getNumElements(); // Note that we use the "array bound" rules here; just like in that // case, we don't have any particular type for the vector size, but // we can provide one if necessary. return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info, Deduced); } if (const auto *VA = A->getAs()) { // Perform deduction on the element types. if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, VP->getElementType(), VA->getElementType(), Info, Deduced, TDF)) return Result; // Perform deduction on the vector size, if we can. const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, VP->getSizeExpr()); if (!NTTP) return Sema::TDK_Success; return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, VA->getSizeExpr(), Info, Deduced); } return Sema::TDK_NonDeducedMismatch; } // (clang extension) // // T __attribute__((matrix_type(, // ))) case Type::ConstantMatrix: { const auto *MP = P->castAs(), *MA = A->getAs(); if (!MA) return Sema::TDK_NonDeducedMismatch; // Check that the dimensions are the same if (MP->getNumRows() != MA->getNumRows() || MP->getNumColumns() != MA->getNumColumns()) { return Sema::TDK_NonDeducedMismatch; } // Perform deduction on element types. return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, MP->getElementType(), MA->getElementType(), Info, Deduced, TDF); } case Type::DependentSizedMatrix: { const auto *MP = P->castAs(); const auto *MA = A->getAs(); if (!MA) return Sema::TDK_NonDeducedMismatch; // Check the element type of the matrixes. if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, MP->getElementType(), MA->getElementType(), Info, Deduced, TDF)) return Result; // Try to deduce a matrix dimension. auto DeduceMatrixArg = [&S, &Info, &Deduced, &TemplateParams]( Expr *ParamExpr, const MatrixType *A, unsigned (ConstantMatrixType::*GetArgDimension)() const, Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) { const auto *ACM = dyn_cast(A); const auto *ADM = dyn_cast(A); if (!ParamExpr->isValueDependent()) { std::optional ParamConst = ParamExpr->getIntegerConstantExpr(S.Context); if (!ParamConst) return Sema::TDK_NonDeducedMismatch; if (ACM) { if ((ACM->*GetArgDimension)() == *ParamConst) return Sema::TDK_Success; return Sema::TDK_NonDeducedMismatch; } Expr *ArgExpr = (ADM->*GetArgDimensionExpr)(); if (std::optional ArgConst = ArgExpr->getIntegerConstantExpr(S.Context)) if (*ArgConst == *ParamConst) return Sema::TDK_Success; return Sema::TDK_NonDeducedMismatch; } const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, ParamExpr); if (!NTTP) return Sema::TDK_Success; if (ACM) { llvm::APSInt ArgConst( S.Context.getTypeSize(S.Context.getSizeType())); ArgConst = (ACM->*GetArgDimension)(); return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(), /*ArrayBound=*/true, Info, Deduced); } return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, (ADM->*GetArgDimensionExpr)(), Info, Deduced); }; if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA, &ConstantMatrixType::getNumRows, &DependentSizedMatrixType::getRowExpr)) return Result; return DeduceMatrixArg(MP->getColumnExpr(), MA, &ConstantMatrixType::getNumColumns, &DependentSizedMatrixType::getColumnExpr); } // (clang extension) // // T __attribute__(((address_space(N)))) case Type::DependentAddressSpace: { const auto *ASP = P->castAs(); if (const auto *ASA = A->getAs()) { // Perform deduction on the pointer type. if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(), Info, Deduced, TDF)) return Result; // Perform deduction on the address space, if we can. const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); if (!NTTP) return Sema::TDK_Success; return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info, Deduced); } if (isTargetAddressSpace(A.getAddressSpace())) { llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), false); ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace()); // Perform deduction on the pointer types. if (auto Result = DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, ASP->getPointeeType(), S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF)) return Result; // Perform deduction on the address space, if we can. const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); if (!NTTP) return Sema::TDK_Success; return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgAddressSpace, S.Context.IntTy, true, Info, Deduced); } return Sema::TDK_NonDeducedMismatch; } case Type::DependentBitInt: { const auto *IP = P->castAs(); if (const auto *IA = A->getAs()) { if (IP->isUnsigned() != IA->isUnsigned()) return Sema::TDK_NonDeducedMismatch; const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, IP->getNumBitsExpr()); if (!NTTP) return Sema::TDK_Success; llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); ArgSize = IA->getNumBits(); return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info, Deduced); } if (const auto *IA = A->getAs()) { if (IP->isUnsigned() != IA->isUnsigned()) return Sema::TDK_NonDeducedMismatch; return Sema::TDK_Success; } return Sema::TDK_NonDeducedMismatch; } case Type::TypeOfExpr: case Type::TypeOf: case Type::DependentName: case Type::UnresolvedUsing: case Type::Decltype: case Type::UnaryTransform: case Type::DeducedTemplateSpecialization: case Type::DependentTemplateSpecialization: case Type::PackExpansion: case Type::Pipe: // No template argument deduction for these types return Sema::TDK_Success; } llvm_unreachable("Invalid Type Class!"); } static Sema::TemplateDeductionResult DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, const TemplateArgument &P, TemplateArgument A, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { // If the template argument is a pack expansion, perform template argument // deduction against the pattern of that expansion. This only occurs during // partial ordering. if (A.isPackExpansion()) A = A.getPackExpansionPattern(); switch (P.getKind()) { case TemplateArgument::Null: llvm_unreachable("Null template argument in parameter list"); case TemplateArgument::Type: if (A.getKind() == TemplateArgument::Type) return DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0); Info.FirstArg = P; Info.SecondArg = A; return Sema::TDK_NonDeducedMismatch; case TemplateArgument::Template: if (A.getKind() == TemplateArgument::Template) return DeduceTemplateArguments(S, TemplateParams, P.getAsTemplate(), A.getAsTemplate(), Info, Deduced); Info.FirstArg = P; Info.SecondArg = A; return Sema::TDK_NonDeducedMismatch; case TemplateArgument::TemplateExpansion: llvm_unreachable("caller should handle pack expansions"); case TemplateArgument::Declaration: if (A.getKind() == TemplateArgument::Declaration && isSameDeclaration(P.getAsDecl(), A.getAsDecl())) return Sema::TDK_Success; Info.FirstArg = P; Info.SecondArg = A; return Sema::TDK_NonDeducedMismatch; case TemplateArgument::NullPtr: if (A.getKind() == TemplateArgument::NullPtr && S.Context.hasSameType(P.getNullPtrType(), A.getNullPtrType())) return Sema::TDK_Success; Info.FirstArg = P; Info.SecondArg = A; return Sema::TDK_NonDeducedMismatch; case TemplateArgument::Integral: if (A.getKind() == TemplateArgument::Integral) { if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral())) return Sema::TDK_Success; } Info.FirstArg = P; Info.SecondArg = A; return Sema::TDK_NonDeducedMismatch; case TemplateArgument::Expression: if (const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, P.getAsExpr())) { if (A.getKind() == TemplateArgument::Integral) return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, A.getAsIntegral(), A.getIntegralType(), /*ArrayBound=*/false, Info, Deduced); if (A.getKind() == TemplateArgument::NullPtr) return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, A.getNullPtrType(), Info, Deduced); if (A.getKind() == TemplateArgument::Expression) return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, A.getAsExpr(), Info, Deduced); if (A.getKind() == TemplateArgument::Declaration) return DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(), Info, Deduced); Info.FirstArg = P; Info.SecondArg = A; return Sema::TDK_NonDeducedMismatch; } // Can't deduce anything, but that's okay. return Sema::TDK_Success; case TemplateArgument::Pack: llvm_unreachable("Argument packs should be expanded by the caller!"); } llvm_unreachable("Invalid TemplateArgument Kind!"); } /// Determine whether there is a template argument to be used for /// deduction. /// /// This routine "expands" argument packs in-place, overriding its input /// parameters so that \c Args[ArgIdx] will be the available template argument. /// /// \returns true if there is another template argument (which will be at /// \c Args[ArgIdx]), false otherwise. static bool hasTemplateArgumentForDeduction(ArrayRef &Args, unsigned &ArgIdx) { if (ArgIdx == Args.size()) return false; const TemplateArgument &Arg = Args[ArgIdx]; if (Arg.getKind() != TemplateArgument::Pack) return true; assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); Args = Arg.pack_elements(); ArgIdx = 0; return ArgIdx < Args.size(); } /// Determine whether the given set of template arguments has a pack /// expansion that is not the last template argument. static bool hasPackExpansionBeforeEnd(ArrayRef Args) { bool FoundPackExpansion = false; for (const auto &A : Args) { if (FoundPackExpansion) return true; if (A.getKind() == TemplateArgument::Pack) return hasPackExpansionBeforeEnd(A.pack_elements()); // FIXME: If this is a fixed-arity pack expansion from an outer level of // templates, it should not be treated as a pack expansion. if (A.isPackExpansion()) FoundPackExpansion = true; } return false; } static Sema::TemplateDeductionResult DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, ArrayRef Ps, ArrayRef As, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced, bool NumberOfArgumentsMustMatch) { // C++0x [temp.deduct.type]p9: // If the template argument list of P contains a pack expansion that is not // the last template argument, the entire template argument list is a // non-deduced context. if (hasPackExpansionBeforeEnd(Ps)) return Sema::TDK_Success; // C++0x [temp.deduct.type]p9: // If P has a form that contains or , then each argument Pi of the // respective template argument list P is compared with the corresponding // argument Ai of the corresponding template argument list of A. unsigned ArgIdx = 0, ParamIdx = 0; for (; hasTemplateArgumentForDeduction(Ps, ParamIdx); ++ParamIdx) { const TemplateArgument &P = Ps[ParamIdx]; if (!P.isPackExpansion()) { // The simple case: deduce template arguments by matching Pi and Ai. // Check whether we have enough arguments. if (!hasTemplateArgumentForDeduction(As, ArgIdx)) return NumberOfArgumentsMustMatch ? Sema::TDK_MiscellaneousDeductionFailure : Sema::TDK_Success; // C++1z [temp.deduct.type]p9: // During partial ordering, if Ai was originally a pack expansion [and] // Pi is not a pack expansion, template argument deduction fails. if (As[ArgIdx].isPackExpansion()) return Sema::TDK_MiscellaneousDeductionFailure; // Perform deduction for this Pi/Ai pair. if (auto Result = DeduceTemplateArguments(S, TemplateParams, P, As[ArgIdx], Info, Deduced)) return Result; // Move to the next argument. ++ArgIdx; continue; } // The parameter is a pack expansion. // C++0x [temp.deduct.type]p9: // If Pi is a pack expansion, then the pattern of Pi is compared with // each remaining argument in the template argument list of A. Each // comparison deduces template arguments for subsequent positions in the // template parameter packs expanded by Pi. TemplateArgument Pattern = P.getPackExpansionPattern(); // Prepare to deduce the packs within the pattern. PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); // Keep track of the deduced template arguments for each parameter pack // expanded by this pack expansion (the outer index) and for each // template argument (the inner SmallVectors). for (; hasTemplateArgumentForDeduction(As, ArgIdx) && PackScope.hasNextElement(); ++ArgIdx) { // Deduce template arguments from the pattern. if (auto Result = DeduceTemplateArguments(S, TemplateParams, Pattern, As[ArgIdx], Info, Deduced)) return Result; PackScope.nextPackElement(); } // Build argument packs for each of the parameter packs expanded by this // pack expansion. if (auto Result = PackScope.finish()) return Result; } return Sema::TDK_Success; } static Sema::TemplateDeductionResult DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, const TemplateArgumentList &ParamList, const TemplateArgumentList &ArgList, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced) { return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), ArgList.asArray(), Info, Deduced, /*NumberOfArgumentsMustMatch=*/false); } /// Determine whether two template arguments are the same. static bool isSameTemplateArg(ASTContext &Context, TemplateArgument X, const TemplateArgument &Y, bool PartialOrdering, bool PackExpansionMatchesPack = false) { // If we're checking deduced arguments (X) against original arguments (Y), // we will have flattened packs to non-expansions in X. if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) X = X.getPackExpansionPattern(); if (X.getKind() != Y.getKind()) return false; switch (X.getKind()) { case TemplateArgument::Null: llvm_unreachable("Comparing NULL template argument"); case TemplateArgument::Type: return Context.getCanonicalType(X.getAsType()) == Context.getCanonicalType(Y.getAsType()); case TemplateArgument::Declaration: return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); case TemplateArgument::NullPtr: return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: return Context.getCanonicalTemplateName( X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == Context.getCanonicalTemplateName( Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); case TemplateArgument::Integral: return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); case TemplateArgument::Expression: { llvm::FoldingSetNodeID XID, YID; X.getAsExpr()->Profile(XID, Context, true); Y.getAsExpr()->Profile(YID, Context, true); return XID == YID; } case TemplateArgument::Pack: { unsigned PackIterationSize = X.pack_size(); if (X.pack_size() != Y.pack_size()) { if (!PartialOrdering) return false; // C++0x [temp.deduct.type]p9: // During partial ordering, if Ai was originally a pack expansion: // - if P does not contain a template argument corresponding to Ai // then Ai is ignored; bool XHasMoreArg = X.pack_size() > Y.pack_size(); if (!(XHasMoreArg && X.pack_elements().back().isPackExpansion()) && !(!XHasMoreArg && Y.pack_elements().back().isPackExpansion())) return false; if (XHasMoreArg) PackIterationSize = Y.pack_size(); } ArrayRef XP = X.pack_elements(); ArrayRef YP = Y.pack_elements(); for (unsigned i = 0; i < PackIterationSize; ++i) if (!isSameTemplateArg(Context, XP[i], YP[i], PartialOrdering, PackExpansionMatchesPack)) return false; return true; } } llvm_unreachable("Invalid TemplateArgument Kind!"); } /// Allocate a TemplateArgumentLoc where all locations have /// been initialized to the given location. /// /// \param Arg The template argument we are producing template argument /// location information for. /// /// \param NTTPType For a declaration template argument, the type of /// the non-type template parameter that corresponds to this template /// argument. Can be null if no type sugar is available to add to the /// type from the template argument. /// /// \param Loc The source location to use for the resulting template /// argument. TemplateArgumentLoc Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, QualType NTTPType, SourceLocation Loc) { switch (Arg.getKind()) { case TemplateArgument::Null: llvm_unreachable("Can't get a NULL template argument here"); case TemplateArgument::Type: return TemplateArgumentLoc( Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); case TemplateArgument::Declaration: { if (NTTPType.isNull()) NTTPType = Arg.getParamTypeForDecl(); Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) .getAs(); return TemplateArgumentLoc(TemplateArgument(E), E); } case TemplateArgument::NullPtr: { if (NTTPType.isNull()) NTTPType = Arg.getNullPtrType(); Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) .getAs(); return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), E); } case TemplateArgument::Integral: { Expr *E = BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs(); return TemplateArgumentLoc(TemplateArgument(E), E); } case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: { NestedNameSpecifierLocBuilder Builder; TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); if (Arg.getKind() == TemplateArgument::Template) return TemplateArgumentLoc(Context, Arg, Builder.getWithLocInContext(Context), Loc); return TemplateArgumentLoc( Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc); } case TemplateArgument::Expression: return TemplateArgumentLoc(Arg, Arg.getAsExpr()); case TemplateArgument::Pack: return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); } llvm_unreachable("Invalid TemplateArgument Kind!"); } TemplateArgumentLoc Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm, SourceLocation Location) { return getTrivialTemplateArgumentLoc( Context.getInjectedTemplateArg(TemplateParm), QualType(), Location); } /// Convert the given deduced template argument and add it to the set of /// fully-converted template arguments. static bool ConvertDeducedTemplateArgument( Sema &S, NamedDecl *Param, DeducedTemplateArgument Arg, NamedDecl *Template, TemplateDeductionInfo &Info, bool IsDeduced, SmallVectorImpl &SugaredOutput, SmallVectorImpl &CanonicalOutput) { auto ConvertArg = [&](DeducedTemplateArgument Arg, unsigned ArgumentPackIndex) { // Convert the deduced template argument into a template // argument that we can check, almost as if the user had written // the template argument explicitly. TemplateArgumentLoc ArgLoc = S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); // Check the template argument, converting it as necessary. return S.CheckTemplateArgument( Param, ArgLoc, Template, Template->getLocation(), Template->getSourceRange().getEnd(), ArgumentPackIndex, SugaredOutput, CanonicalOutput, IsDeduced ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound : Sema::CTAK_Deduced) : Sema::CTAK_Specified); }; if (Arg.getKind() == TemplateArgument::Pack) { // This is a template argument pack, so check each of its arguments against // the template parameter. SmallVector SugaredPackedArgsBuilder, CanonicalPackedArgsBuilder; for (const auto &P : Arg.pack_elements()) { // When converting the deduced template argument, append it to the // general output list. We need to do this so that the template argument // checking logic has all of the prior template arguments available. DeducedTemplateArgument InnerArg(P); InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); assert(InnerArg.getKind() != TemplateArgument::Pack && "deduced nested pack"); if (P.isNull()) { // We deduced arguments for some elements of this pack, but not for // all of them. This happens if we get a conditionally-non-deduced // context in a pack expansion (such as an overload set in one of the // arguments). S.Diag(Param->getLocation(), diag::err_template_arg_deduced_incomplete_pack) << Arg << Param; return true; } if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size())) return true; // Move the converted template argument into our argument pack. SugaredPackedArgsBuilder.push_back(SugaredOutput.pop_back_val()); CanonicalPackedArgsBuilder.push_back(CanonicalOutput.pop_back_val()); } // If the pack is empty, we still need to substitute into the parameter // itself, in case that substitution fails. if (SugaredPackedArgsBuilder.empty()) { LocalInstantiationScope Scope(S); MultiLevelTemplateArgumentList Args(Template, SugaredOutput, /*Final=*/true); if (auto *NTTP = dyn_cast(Param)) { Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, NTTP, SugaredOutput, Template->getSourceRange()); if (Inst.isInvalid() || S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), NTTP->getDeclName()).isNull()) return true; } else if (auto *TTP = dyn_cast(Param)) { Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, TTP, SugaredOutput, Template->getSourceRange()); if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) return true; } // For type parameters, no substitution is ever required. } // Create the resulting argument pack. SugaredOutput.push_back( TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder)); CanonicalOutput.push_back(TemplateArgument::CreatePackCopy( S.Context, CanonicalPackedArgsBuilder)); return false; } return ConvertArg(Arg, 0); } // FIXME: This should not be a template, but // ClassTemplatePartialSpecializationDecl sadly does not derive from // TemplateDecl. template static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( Sema &S, TemplateDeclT *Template, bool IsDeduced, SmallVectorImpl &Deduced, TemplateDeductionInfo &Info, SmallVectorImpl &SugaredBuilder, SmallVectorImpl &CanonicalBuilder, LocalInstantiationScope *CurrentInstantiationScope = nullptr, unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { TemplateParameterList *TemplateParams = Template->getTemplateParameters(); for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { NamedDecl *Param = TemplateParams->getParam(I); // C++0x [temp.arg.explicit]p3: // A trailing template parameter pack (14.5.3) not otherwise deduced will // be deduced to an empty sequence of template arguments. // FIXME: Where did the word "trailing" come from? if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { if (auto Result = PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish()) return Result; } if (!Deduced[I].isNull()) { if (I < NumAlreadyConverted) { // We may have had explicitly-specified template arguments for a // template parameter pack (that may or may not have been extended // via additional deduced arguments). if (Param->isParameterPack() && CurrentInstantiationScope && CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { // Forget the partially-substituted pack; its substitution is now // complete. CurrentInstantiationScope->ResetPartiallySubstitutedPack(); // We still need to check the argument in case it was extended by // deduction. } else { // We have already fully type-checked and converted this // argument, because it was explicitly-specified. Just record the // presence of this argument. SugaredBuilder.push_back(Deduced[I]); CanonicalBuilder.push_back( S.Context.getCanonicalTemplateArgument(Deduced[I])); continue; } } // We may have deduced this argument, so it still needs to be // checked and converted. if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, IsDeduced, SugaredBuilder, CanonicalBuilder)) { Info.Param = makeTemplateParameter(Param); // FIXME: These template arguments are temporary. Free them! Info.reset( TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); return Sema::TDK_SubstitutionFailure; } continue; } // Substitute into the default template argument, if available. bool HasDefaultArg = false; TemplateDecl *TD = dyn_cast(Template); if (!TD) { assert(isa(Template) || isa(Template)); return Sema::TDK_Incomplete; } TemplateArgumentLoc DefArg; { Qualifiers ThisTypeQuals; CXXRecordDecl *ThisContext = nullptr; if (auto *Rec = dyn_cast(TD->getDeclContext())) if (Rec->isLambda()) if (auto *Method = dyn_cast(Rec->getDeclContext())) { ThisContext = Method->getParent(); ThisTypeQuals = Method->getMethodQualifiers(); } Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals, S.getLangOpts().CPlusPlus17); DefArg = S.SubstDefaultTemplateArgumentIfAvailable( TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, SugaredBuilder, CanonicalBuilder, HasDefaultArg); } // If there was no default argument, deduction is incomplete. if (DefArg.getArgument().isNull()) { Info.Param = makeTemplateParameter( const_cast(TemplateParams->getParam(I))); Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); if (PartialOverloading) break; return HasDefaultArg ? Sema::TDK_SubstitutionFailure : Sema::TDK_Incomplete; } // Check whether we can actually use the default argument. if (S.CheckTemplateArgument( Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(), 0, SugaredBuilder, CanonicalBuilder, Sema::CTAK_Specified)) { Info.Param = makeTemplateParameter( const_cast(TemplateParams->getParam(I))); // FIXME: These template arguments are temporary. Free them! Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); return Sema::TDK_SubstitutionFailure; } // If we get here, we successfully used the default template argument. } return Sema::TDK_Success; } static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { if (auto *DC = dyn_cast(D)) return DC; return D->getDeclContext(); } template struct IsPartialSpecialization { static constexpr bool value = false; }; template<> struct IsPartialSpecialization { static constexpr bool value = true; }; template<> struct IsPartialSpecialization { static constexpr bool value = true; }; template static bool DeducedArgsNeedReplacement(TemplateDeclT *Template) { return false; } template <> bool DeducedArgsNeedReplacement( VarTemplatePartialSpecializationDecl *Spec) { return !Spec->isClassScopeExplicitSpecialization(); } template <> bool DeducedArgsNeedReplacement( ClassTemplatePartialSpecializationDecl *Spec) { return !Spec->isClassScopeExplicitSpecialization(); } template static Sema::TemplateDeductionResult CheckDeducedArgumentConstraints(Sema &S, TemplateDeclT *Template, ArrayRef SugaredDeducedArgs, ArrayRef CanonicalDeducedArgs, TemplateDeductionInfo &Info) { llvm::SmallVector AssociatedConstraints; Template->getAssociatedConstraints(AssociatedConstraints); bool NeedsReplacement = DeducedArgsNeedReplacement(Template); TemplateArgumentList DeducedTAL{TemplateArgumentList::OnStack, CanonicalDeducedArgs}; MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( Template, /*Final=*/false, /*InnerMost=*/NeedsReplacement ? nullptr : &DeducedTAL, /*RelativeToPrimary=*/true, /*Pattern=*/ nullptr, /*ForConstraintInstantiation=*/true); // getTemplateInstantiationArgs picks up the non-deduced version of the // template args when this is a variable template partial specialization and // not class-scope explicit specialization, so replace with Deduced Args // instead of adding to inner-most. if (NeedsReplacement) MLTAL.replaceInnermostTemplateArguments(Template, CanonicalDeducedArgs); if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL, Info.getLocation(), Info.AssociatedConstraintsSatisfaction) || !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { Info.reset( TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs), TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs)); return Sema::TDK_ConstraintsNotSatisfied; } return Sema::TDK_Success; } /// Complete template argument deduction for a partial specialization. template static std::enable_if_t::value, Sema::TemplateDeductionResult> FinishTemplateArgumentDeduction( Sema &S, T *Partial, bool IsPartialOrdering, const TemplateArgumentList &TemplateArgs, SmallVectorImpl &Deduced, TemplateDeductionInfo &Info) { // Unevaluated SFINAE context. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::Unevaluated); Sema::SFINAETrap Trap(S); Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); // C++ [temp.deduct.type]p2: // [...] or if any template argument remains neither deduced nor // explicitly specified, template argument deduction fails. SmallVector SugaredBuilder, CanonicalBuilder; if (auto Result = ConvertDeducedTemplateArguments( S, Partial, IsPartialOrdering, Deduced, Info, SugaredBuilder, CanonicalBuilder)) return Result; // Form the template argument list from the deduced template arguments. TemplateArgumentList *SugaredDeducedArgumentList = TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder); TemplateArgumentList *CanonicalDeducedArgumentList = TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder); Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); // Substitute the deduced template arguments into the template // arguments of the class template partial specialization, and // verify that the instantiated template arguments are both valid // and are equivalent to the template arguments originally provided // to the class template. LocalInstantiationScope InstScope(S); auto *Template = Partial->getSpecializedTemplate(); const ASTTemplateArgumentListInfo *PartialTemplArgInfo = Partial->getTemplateArgsAsWritten(); TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, PartialTemplArgInfo->RAngleLoc); if (S.SubstTemplateArguments(PartialTemplArgInfo->arguments(), MultiLevelTemplateArgumentList(Partial, SugaredBuilder, /*Final=*/true), InstArgs)) { unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; if (ParamIdx >= Partial->getTemplateParameters()->size()) ParamIdx = Partial->getTemplateParameters()->size() - 1; Decl *Param = const_cast( Partial->getTemplateParameters()->getParam(ParamIdx)); Info.Param = makeTemplateParameter(Param); Info.FirstArg = (*PartialTemplArgInfo)[ArgIdx].getArgument(); return Sema::TDK_SubstitutionFailure; } bool ConstraintsNotSatisfied; SmallVector SugaredConvertedInstArgs, CanonicalConvertedInstArgs; if (S.CheckTemplateArgumentList( Template, Partial->getLocation(), InstArgs, false, SugaredConvertedInstArgs, CanonicalConvertedInstArgs, /*UpdateArgsWithConversions=*/true, &ConstraintsNotSatisfied)) return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied : Sema::TDK_SubstitutionFailure; TemplateParameterList *TemplateParams = Template->getTemplateParameters(); for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { TemplateArgument InstArg = SugaredConvertedInstArgs.data()[I]; if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, IsPartialOrdering)) { Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); Info.FirstArg = TemplateArgs[I]; Info.SecondArg = InstArg; return Sema::TDK_NonDeducedMismatch; } } if (Trap.hasErrorOccurred()) return Sema::TDK_SubstitutionFailure; if (auto Result = CheckDeducedArgumentConstraints(S, Partial, SugaredBuilder, CanonicalBuilder, Info)) return Result; return Sema::TDK_Success; } /// Complete template argument deduction for a class or variable template, /// when partial ordering against a partial specialization. // FIXME: Factor out duplication with partial specialization version above. static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( Sema &S, TemplateDecl *Template, bool PartialOrdering, const TemplateArgumentList &TemplateArgs, SmallVectorImpl &Deduced, TemplateDeductionInfo &Info) { // Unevaluated SFINAE context. EnterExpressionEvaluationContext Unevaluated( S, Sema::ExpressionEvaluationContext::Unevaluated); Sema::SFINAETrap Trap(S); Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); // C++ [temp.deduct.type]p2: // [...] or if any template argument remains neither deduced nor // explicitly specified, template argument deduction fails. SmallVector SugaredBuilder, CanonicalBuilder; if (auto Result = ConvertDeducedTemplateArguments( S, Template, /*IsDeduced*/ PartialOrdering, Deduced, Info, SugaredBuilder, CanonicalBuilder, /*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0U, /*PartialOverloading=*/false)) return Result; // Check that we produced the correct argument list. TemplateParameterList *TemplateParams = Template->getTemplateParameters(); for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { TemplateArgument InstArg = CanonicalBuilder[I]; if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, PartialOrdering, /*PackExpansionMatchesPack=*/true)) { Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); Info.FirstArg = TemplateArgs[I]; Info.SecondArg = InstArg; return Sema::TDK_NonDeducedMismatch; } } if (Trap.hasErrorOccurred()) return Sema::TDK_SubstitutionFailure; if (auto Result = CheckDeducedArgumentConstraints(S, Template, SugaredBuilder, CanonicalBuilder, Info)) return Result; return Sema::TDK_Success; } /// Perform template argument deduction to determine whether /// the given template arguments match the given class template /// partial specialization per C++ [temp.class.spec.match]. Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, TemplateDeductionInfo &Info) { if (Partial->isInvalidDecl()) return TDK_Invalid; // C++ [temp.class.spec.match]p2: // A partial specialization matches a given actual template // argument list if the template arguments of the partial // specialization can be deduced from the actual template argument // list (14.8.2). // Unevaluated SFINAE context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); SFINAETrap Trap(*this); // This deduction has no relation to any outer instantiation we might be // performing. LocalInstantiationScope InstantiationScope(*this); SmallVector Deduced; Deduced.resize(Partial->getTemplateParameters()->size()); if (TemplateDeductionResult Result = ::DeduceTemplateArguments(*this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), TemplateArgs, Info, Deduced)) return Result; SmallVector DeducedArgs(Deduced.begin(), Deduced.end()); InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, Info); if (Inst.isInvalid()) return TDK_InstantiationDepth; if (Trap.hasErrorOccurred()) return Sema::TDK_SubstitutionFailure; TemplateDeductionResult Result; runWithSufficientStackSpace(Info.getLocation(), [&] { Result = ::FinishTemplateArgumentDeduction(*this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); }); return Result; } /// Perform template argument deduction to determine whether /// the given template arguments match the given variable template /// partial specialization per C++ [temp.class.spec.match]. Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, TemplateDeductionInfo &Info) { if (Partial->isInvalidDecl()) return TDK_Invalid; // C++ [temp.class.spec.match]p2: // A partial specialization matches a given actual template // argument list if the template arguments of the partial // specialization can be deduced from the actual template argument // list (14.8.2). // Unevaluated SFINAE context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); SFINAETrap Trap(*this); // This deduction has no relation to any outer instantiation we might be // performing. LocalInstantiationScope InstantiationScope(*this); SmallVector Deduced; Deduced.resize(Partial->getTemplateParameters()->size()); if (TemplateDeductionResult Result = ::DeduceTemplateArguments( *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), TemplateArgs, Info, Deduced)) return Result; SmallVector DeducedArgs(Deduced.begin(), Deduced.end()); InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, Info); if (Inst.isInvalid()) return TDK_InstantiationDepth; if (Trap.hasErrorOccurred()) return Sema::TDK_SubstitutionFailure; TemplateDeductionResult Result; runWithSufficientStackSpace(Info.getLocation(), [&] { Result = ::FinishTemplateArgumentDeduction(*this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); }); return Result; } /// Determine whether the given type T is a simple-template-id type. static bool isSimpleTemplateIdType(QualType T) { if (const TemplateSpecializationType *Spec = T->getAs()) return Spec->getTemplateName().getAsTemplateDecl() != nullptr; // C++17 [temp.local]p2: // the injected-class-name [...] is equivalent to the template-name followed // by the template-arguments of the class template specialization or partial // specialization enclosed in <> // ... which means it's equivalent to a simple-template-id. // // This only arises during class template argument deduction for a copy // deduction candidate, where it permits slicing. if (T->getAs()) return true; return false; } /// Substitute the explicitly-provided template arguments into the /// given function template according to C++ [temp.arg.explicit]. /// /// \param FunctionTemplate the function template into which the explicit /// template arguments will be substituted. /// /// \param ExplicitTemplateArgs the explicitly-specified template /// arguments. /// /// \param Deduced the deduced template arguments, which will be populated /// with the converted and checked explicit template arguments. /// /// \param ParamTypes will be populated with the instantiated function /// parameters. /// /// \param FunctionType if non-NULL, the result type of the function template /// will also be instantiated and the pointed-to value will be updated with /// the instantiated function type. /// /// \param Info if substitution fails for any reason, this object will be /// populated with more information about the failure. /// /// \returns TDK_Success if substitution was successful, or some failure /// condition. Sema::TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo &ExplicitTemplateArgs, SmallVectorImpl &Deduced, SmallVectorImpl &ParamTypes, QualType *FunctionType, TemplateDeductionInfo &Info) { FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); TemplateParameterList *TemplateParams = FunctionTemplate->getTemplateParameters(); if (ExplicitTemplateArgs.size() == 0) { // No arguments to substitute; just copy over the parameter types and // fill in the function type. for (auto *P : Function->parameters()) ParamTypes.push_back(P->getType()); if (FunctionType) *FunctionType = Function->getType(); return TDK_Success; } // Unevaluated SFINAE context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); SFINAETrap Trap(*this); // C++ [temp.arg.explicit]p3: // Template arguments that are present shall be specified in the // declaration order of their corresponding template-parameters. The // template argument list shall not specify more template-arguments than // there are corresponding template-parameters. SmallVector SugaredBuilder, CanonicalBuilder; // Enter a new template instantiation context where we check the // explicitly-specified template arguments against this function template, // and then substitute them into the function parameter types. SmallVector DeducedArgs; InstantiatingTemplate Inst( *this, Info.getLocation(), FunctionTemplate, DeducedArgs, CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); if (Inst.isInvalid()) return TDK_InstantiationDepth; if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), ExplicitTemplateArgs, true, SugaredBuilder, CanonicalBuilder, /*UpdateArgsWithConversions=*/false) || Trap.hasErrorOccurred()) { unsigned Index = SugaredBuilder.size(); if (Index >= TemplateParams->size()) return TDK_SubstitutionFailure; Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); return TDK_InvalidExplicitArguments; } // Form the template argument list from the explicitly-specified // template arguments. TemplateArgumentList *SugaredExplicitArgumentList = TemplateArgumentList::CreateCopy(Context, SugaredBuilder); TemplateArgumentList *CanonicalExplicitArgumentList = TemplateArgumentList::CreateCopy(Context, CanonicalBuilder); Info.setExplicitArgs(SugaredExplicitArgumentList, CanonicalExplicitArgumentList); // Template argument deduction and the final substitution should be // done in the context of the templated declaration. Explicit // argument substitution, on the other hand, needs to happen in the // calling context. ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); // If we deduced template arguments for a template parameter pack, // note that the template argument pack is partially substituted and record // the explicit template arguments. They'll be used as part of deduction // for this template parameter pack. unsigned PartiallySubstitutedPackIndex = -1u; if (!CanonicalBuilder.empty()) { const TemplateArgument &Arg = CanonicalBuilder.back(); if (Arg.getKind() == TemplateArgument::Pack) { auto *Param = TemplateParams->getParam(CanonicalBuilder.size() - 1); // If this is a fully-saturated fixed-size pack, it should be // fully-substituted, not partially-substituted. std::optional Expansions = getExpandedPackSize(Param); if (!Expansions || Arg.pack_size() < *Expansions) { PartiallySubstitutedPackIndex = CanonicalBuilder.size() - 1; CurrentInstantiationScope->SetPartiallySubstitutedPack( Param, Arg.pack_begin(), Arg.pack_size()); } } } const FunctionProtoType *Proto = Function->getType()->getAs(); assert(Proto && "Function template does not have a prototype?"); // Isolate our substituted parameters from our caller. LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); ExtParameterInfoBuilder ExtParamInfos; MultiLevelTemplateArgumentList MLTAL(FunctionTemplate, SugaredExplicitArgumentList->asArray(), /*Final=*/true); // Instantiate the types of each of the function parameters given the // explicitly-specified template arguments. If the function has a trailing // return type, substitute it after the arguments to ensure we substitute // in lexical order. if (Proto->hasTrailingReturn()) { if (SubstParmTypes(Function->getLocation(), Function->parameters(), Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, /*params=*/nullptr, ExtParamInfos)) return TDK_SubstitutionFailure; } // Instantiate the return type. QualType ResultType; { // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. Qualifiers ThisTypeQuals; CXXRecordDecl *ThisContext = nullptr; if (CXXMethodDecl *Method = dyn_cast(Function)) { ThisContext = Method->getParent(); ThisTypeQuals = Method->getMethodQualifiers(); } CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, getLangOpts().CPlusPlus11); ResultType = SubstType(Proto->getReturnType(), MLTAL, Function->getTypeSpecStartLoc(), Function->getDeclName()); if (ResultType.isNull() || Trap.hasErrorOccurred()) return TDK_SubstitutionFailure; // CUDA: Kernel function must have 'void' return type. if (getLangOpts().CUDA) if (Function->hasAttr() && !ResultType->isVoidType()) { Diag(Function->getLocation(), diag::err_kern_type_not_void_return) << Function->getType() << Function->getSourceRange(); return TDK_SubstitutionFailure; } } // Instantiate the types of each of the function parameters given the // explicitly-specified template arguments if we didn't do so earlier. if (!Proto->hasTrailingReturn() && SubstParmTypes(Function->getLocation(), Function->parameters(), Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, /*params*/ nullptr, ExtParamInfos)) return TDK_SubstitutionFailure; if (FunctionType) { auto EPI = Proto->getExtProtoInfo(); EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); // In C++1z onwards, exception specifications are part of the function type, // so substitution into the type must also substitute into the exception // specification. SmallVector ExceptionStorage; if (getLangOpts().CPlusPlus17 && SubstExceptionSpec(Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage, MLTAL)) return TDK_SubstitutionFailure; *FunctionType = BuildFunctionType(ResultType, ParamTypes, Function->getLocation(), Function->getDeclName(), EPI); if (FunctionType->isNull() || Trap.hasErrorOccurred()) return TDK_SubstitutionFailure; } // C++ [temp.arg.explicit]p2: // Trailing template arguments that can be deduced (14.8.2) may be // omitted from the list of explicit template-arguments. If all of the // template arguments can be deduced, they may all be omitted; in this // case, the empty template argument list <> itself may also be omitted. // // Take all of the explicitly-specified arguments and put them into // the set of deduced template arguments. The partially-substituted // parameter pack, however, will be set to NULL since the deduction // mechanism handles the partially-substituted argument pack directly. Deduced.reserve(TemplateParams->size()); for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) { const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I); if (I == PartiallySubstitutedPackIndex) Deduced.push_back(DeducedTemplateArgument()); else Deduced.push_back(Arg); } return TDK_Success; } /// Check whether the deduced argument type for a call to a function /// template matches the actual argument type per C++ [temp.deduct.call]p4. static Sema::TemplateDeductionResult CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, Sema::OriginalCallArg OriginalArg, QualType DeducedA) { ASTContext &Context = S.Context; auto Failed = [&]() -> Sema::TemplateDeductionResult { Info.FirstArg = TemplateArgument(DeducedA); Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); Info.CallArgIndex = OriginalArg.ArgIdx; return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested : Sema::TDK_DeducedMismatch; }; QualType A = OriginalArg.OriginalArgType; QualType OriginalParamType = OriginalArg.OriginalParamType; // Check for type equality (top-level cv-qualifiers are ignored). if (Context.hasSameUnqualifiedType(A, DeducedA)) return Sema::TDK_Success; // Strip off references on the argument types; they aren't needed for // the following checks. if (const ReferenceType *DeducedARef = DeducedA->getAs()) DeducedA = DeducedARef->getPointeeType(); if (const ReferenceType *ARef = A->getAs()) A = ARef->getPointeeType(); // C++ [temp.deduct.call]p4: // [...] However, there are three cases that allow a difference: // - If the original P is a reference type, the deduced A (i.e., the // type referred to by the reference) can be more cv-qualified than // the transformed A. if (const ReferenceType *OriginalParamRef = OriginalParamType->getAs()) { // We don't want to keep the reference around any more. OriginalParamType = OriginalParamRef->getPointeeType(); // FIXME: Resolve core issue (no number yet): if the original P is a // reference type and the transformed A is function type "noexcept F", // the deduced A can be F. QualType Tmp; if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) return Sema::TDK_Success; Qualifiers AQuals = A.getQualifiers(); Qualifiers DeducedAQuals = DeducedA.getQualifiers(); // Under Objective-C++ ARC, the deduced type may have implicitly // been given strong or (when dealing with a const reference) // unsafe_unretained lifetime. If so, update the original // qualifiers to include this lifetime. if (S.getLangOpts().ObjCAutoRefCount && ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && AQuals.getObjCLifetime() == Qualifiers::OCL_None) || (DeducedAQuals.hasConst() && DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); } if (AQuals == DeducedAQuals) { // Qualifiers match; there's nothing to do. } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { return Failed(); } else { // Qualifiers are compatible, so have the argument type adopt the // deduced argument type's qualifiers as if we had performed the // qualification conversion. A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); } } // - The transformed A can be another pointer or pointer to member // type that can be converted to the deduced A via a function pointer // conversion and/or a qualification conversion. // // Also allow conversions which merely strip __attribute__((noreturn)) from // function types (recursively). bool ObjCLifetimeConversion = false; QualType ResultTy; if ((A->isAnyPointerType() || A->isMemberPointerType()) && (S.IsQualificationConversion(A, DeducedA, false, ObjCLifetimeConversion) || S.IsFunctionConversion(A, DeducedA, ResultTy))) return Sema::TDK_Success; // - If P is a class and P has the form simple-template-id, then the // transformed A can be a derived class of the deduced A. [...] // [...] Likewise, if P is a pointer to a class of the form // simple-template-id, the transformed A can be a pointer to a // derived class pointed to by the deduced A. if (const PointerType *OriginalParamPtr = OriginalParamType->getAs()) { if (const PointerType *DeducedAPtr = DeducedA->getAs()) { if (const PointerType *APtr = A->getAs()) { if (A->getPointeeType()->isRecordType()) { OriginalParamType = OriginalParamPtr->getPointeeType(); DeducedA = DeducedAPtr->getPointeeType(); A = APtr->getPointeeType(); } } } } if (Context.hasSameUnqualifiedType(A, DeducedA)) return Sema::TDK_Success; if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) return Sema::TDK_Success; return Failed(); } /// Find the pack index for a particular parameter index in an instantiation of /// a function template with specific arguments. /// /// \return The pack index for whichever pack produced this parameter, or -1 /// if this was not produced by a parameter. Intended to be used as the /// ArgumentPackSubstitutionIndex for further substitutions. // FIXME: We should track this in OriginalCallArgs so we don't need to // reconstruct it here. static unsigned getPackIndexForParam(Sema &S, FunctionTemplateDecl *FunctionTemplate, const MultiLevelTemplateArgumentList &Args, unsigned ParamIdx) { unsigned Idx = 0; for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { if (PD->isParameterPack()) { unsigned NumExpansions = S.getNumArgumentsInExpansion(PD->getType(), Args).value_or(1); if (Idx + NumExpansions > ParamIdx) return ParamIdx - Idx; Idx += NumExpansions; } else { if (Idx == ParamIdx) return -1; // Not a pack expansion ++Idx; } } llvm_unreachable("parameter index would not be produced from template"); } /// Finish template argument deduction for a function template, /// checking the deduced template arguments for completeness and forming /// the function template specialization. /// /// \param OriginalCallArgs If non-NULL, the original call arguments against /// which the deduced argument types should be compared. Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( FunctionTemplateDecl *FunctionTemplate, SmallVectorImpl &Deduced, unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, TemplateDeductionInfo &Info, SmallVectorImpl const *OriginalCallArgs, bool PartialOverloading, llvm::function_ref CheckNonDependent) { // Unevaluated SFINAE context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); SFINAETrap Trap(*this); // Enter a new template instantiation context while we instantiate the // actual function declaration. SmallVector DeducedArgs(Deduced.begin(), Deduced.end()); InstantiatingTemplate Inst( *this, Info.getLocation(), FunctionTemplate, DeducedArgs, CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); if (Inst.isInvalid()) return TDK_InstantiationDepth; ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); // C++ [temp.deduct.type]p2: // [...] or if any template argument remains neither deduced nor // explicitly specified, template argument deduction fails. SmallVector SugaredBuilder, CanonicalBuilder; if (auto Result = ConvertDeducedTemplateArguments( *this, FunctionTemplate, /*IsDeduced*/ true, Deduced, Info, SugaredBuilder, CanonicalBuilder, CurrentInstantiationScope, NumExplicitlySpecified, PartialOverloading)) return Result; // C++ [temp.deduct.call]p10: [DR1391] // If deduction succeeds for all parameters that contain // template-parameters that participate in template argument deduction, // and all template arguments are explicitly specified, deduced, or // obtained from default template arguments, remaining parameters are then // compared with the corresponding arguments. For each remaining parameter // P with a type that was non-dependent before substitution of any // explicitly-specified template arguments, if the corresponding argument // A cannot be implicitly converted to P, deduction fails. if (CheckNonDependent()) return TDK_NonDependentConversionFailure; // Form the template argument list from the deduced template arguments. TemplateArgumentList *SugaredDeducedArgumentList = TemplateArgumentList::CreateCopy(Context, SugaredBuilder); TemplateArgumentList *CanonicalDeducedArgumentList = TemplateArgumentList::CreateCopy(Context, CanonicalBuilder); Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); // Substitute the deduced template arguments into the function template // declaration to produce the function template specialization. DeclContext *Owner = FunctionTemplate->getDeclContext(); if (FunctionTemplate->getFriendObjectKind()) Owner = FunctionTemplate->getLexicalDeclContext(); FunctionDecl *FD = FunctionTemplate->getTemplatedDecl(); // additional check for inline friend, // ``` // template int foo(F1 X); // template struct A { // template friend int foo(F1 X) { return A1; } // }; // template struct A<1>; // int a = foo(1.0); // ``` const FunctionDecl *FDFriend; if (FD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None && FD->isDefined(FDFriend, /*CheckForPendingFriendDefinition*/ true) && FDFriend->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None) { FD = const_cast(FDFriend); Owner = FD->getLexicalDeclContext(); } MultiLevelTemplateArgumentList SubstArgs( FunctionTemplate, CanonicalDeducedArgumentList->asArray(), /*Final=*/false); Specialization = cast_or_null( SubstDecl(FD, Owner, SubstArgs)); if (!Specialization || Specialization->isInvalidDecl()) return TDK_SubstitutionFailure; assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == FunctionTemplate->getCanonicalDecl()); // If the template argument list is owned by the function template // specialization, release it. if (Specialization->getTemplateSpecializationArgs() == CanonicalDeducedArgumentList && !Trap.hasErrorOccurred()) Info.takeCanonical(); // There may have been an error that did not prevent us from constructing a // declaration. Mark the declaration invalid and return with a substitution // failure. if (Trap.hasErrorOccurred()) { Specialization->setInvalidDecl(true); return TDK_SubstitutionFailure; } // C++2a [temp.deduct]p5 // [...] When all template arguments have been deduced [...] all uses of // template parameters [...] are replaced with the corresponding deduced // or default argument values. // [...] If the function template has associated constraints // ([temp.constr.decl]), those constraints are checked for satisfaction // ([temp.constr.constr]). If the constraints are not satisfied, type // deduction fails. if (!PartialOverloading || (CanonicalBuilder.size() == FunctionTemplate->getTemplateParameters()->size())) { if (CheckInstantiatedFunctionTemplateConstraints( Info.getLocation(), Specialization, CanonicalBuilder, Info.AssociatedConstraintsSatisfaction)) return TDK_MiscellaneousDeductionFailure; if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { Info.reset(Info.takeSugared(), TemplateArgumentList::CreateCopy(Context, CanonicalBuilder)); return TDK_ConstraintsNotSatisfied; } } if (OriginalCallArgs) { // C++ [temp.deduct.call]p4: // In general, the deduction process attempts to find template argument // values that will make the deduced A identical to A (after the type A // is transformed as described above). [...] llvm::SmallDenseMap, QualType> DeducedATypes; for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; auto ParamIdx = OriginalArg.ArgIdx; if (ParamIdx >= Specialization->getNumParams()) // FIXME: This presumably means a pack ended up smaller than we // expected while deducing. Should this not result in deduction // failure? Can it even happen? continue; QualType DeducedA; if (!OriginalArg.DecomposedParam) { // P is one of the function parameters, just look up its substituted // type. DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); } else { // P is a decomposed element of a parameter corresponding to a // braced-init-list argument. Substitute back into P to find the // deduced A. QualType &CacheEntry = DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; if (CacheEntry.isNull()) { ArgumentPackSubstitutionIndexRAII PackIndex( *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, ParamIdx)); CacheEntry = SubstType(OriginalArg.OriginalParamType, SubstArgs, Specialization->getTypeSpecStartLoc(), Specialization->getDeclName()); } DeducedA = CacheEntry; } if (auto TDK = CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) return TDK; } } // If we suppressed any diagnostics while performing template argument // deduction, and if we haven't already instantiated this declaration, // keep track of these diagnostics. They'll be emitted if this specialization // is actually used. if (Info.diag_begin() != Info.diag_end()) { SuppressedDiagnosticsMap::iterator Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); if (Pos == SuppressedDiagnostics.end()) SuppressedDiagnostics[Specialization->getCanonicalDecl()] .append(Info.diag_begin(), Info.diag_end()); } return TDK_Success; } /// Gets the type of a function for template-argument-deducton /// purposes when it's considered as part of an overload set. static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, FunctionDecl *Fn) { // We may need to deduce the return type of the function now. if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) return {}; if (CXXMethodDecl *Method = dyn_cast(Fn)) if (Method->isInstance()) { // An instance method that's referenced in a form that doesn't // look like a member pointer is just invalid. if (!R.HasFormOfMemberPointer) return {}; return S.Context.getMemberPointerType(Fn->getType(), S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); } if (!R.IsAddressOfOperand) return Fn->getType(); return S.Context.getPointerType(Fn->getType()); } /// Apply the deduction rules for overload sets. /// /// \return the null type if this argument should be treated as an /// undeduced context static QualType ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, Expr *Arg, QualType ParamType, bool ParamWasReference, TemplateSpecCandidateSet *FailedTSC = nullptr) { OverloadExpr::FindResult R = OverloadExpr::find(Arg); OverloadExpr *Ovl = R.Expression; // C++0x [temp.deduct.call]p4 unsigned TDF = 0; if (ParamWasReference) TDF |= TDF_ParamWithReferenceType; if (R.IsAddressOfOperand) TDF |= TDF_IgnoreQualifiers; // C++0x [temp.deduct.call]p6: // When P is a function type, pointer to function type, or pointer // to member function type: if (!ParamType->isFunctionType() && !ParamType->isFunctionPointerType() && !ParamType->isMemberFunctionPointerType()) { if (Ovl->hasExplicitTemplateArgs()) { // But we can still look for an explicit specialization. if (FunctionDecl *ExplicitSpec = S.ResolveSingleFunctionTemplateSpecialization( Ovl, /*Complain=*/false, /*FoundDeclAccessPair=*/nullptr, FailedTSC)) return GetTypeOfFunction(S, R, ExplicitSpec); } DeclAccessPair DAP; if (FunctionDecl *Viable = S.resolveAddressOfSingleOverloadCandidate(Arg, DAP)) return GetTypeOfFunction(S, R, Viable); return {}; } // Gather the explicit template arguments, if any. TemplateArgumentListInfo ExplicitTemplateArgs; if (Ovl->hasExplicitTemplateArgs()) Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); QualType Match; for (UnresolvedSetIterator I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { NamedDecl *D = (*I)->getUnderlyingDecl(); if (FunctionTemplateDecl *FunTmpl = dyn_cast(D)) { // - If the argument is an overload set containing one or more // function templates, the parameter is treated as a // non-deduced context. if (!Ovl->hasExplicitTemplateArgs()) return {}; // Otherwise, see if we can resolve a function type FunctionDecl *Specialization = nullptr; TemplateDeductionInfo Info(Ovl->getNameLoc()); if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, Specialization, Info)) continue; D = Specialization; } FunctionDecl *Fn = cast(D); QualType ArgType = GetTypeOfFunction(S, R, Fn); if (ArgType.isNull()) continue; // Function-to-pointer conversion. if (!ParamWasReference && ParamType->isPointerType() && ArgType->isFunctionType()) ArgType = S.Context.getPointerType(ArgType); // - If the argument is an overload set (not containing function // templates), trial argument deduction is attempted using each // of the members of the set. If deduction succeeds for only one // of the overload set members, that member is used as the // argument value for the deduction. If deduction succeeds for // more than one member of the overload set the parameter is // treated as a non-deduced context. // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: // Type deduction is done independently for each P/A pair, and // the deduced template argument values are then combined. // So we do not reject deductions which were made elsewhere. SmallVector Deduced(TemplateParams->size()); TemplateDeductionInfo Info(Ovl->getNameLoc()); Sema::TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF); if (Result) continue; if (!Match.isNull()) return {}; Match = ArgType; } return Match; } /// Perform the adjustments to the parameter and argument types /// described in C++ [temp.deduct.call]. /// /// \returns true if the caller should not attempt to perform any template /// argument deduction based on this P/A pair because the argument is an /// overloaded function set that could not be resolved. static bool AdjustFunctionParmAndArgTypesForDeduction( Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF, TemplateSpecCandidateSet *FailedTSC = nullptr) { // C++0x [temp.deduct.call]p3: // If P is a cv-qualified type, the top level cv-qualifiers of P's type // are ignored for type deduction. if (ParamType.hasQualifiers()) ParamType = ParamType.getUnqualifiedType(); // [...] If P is a reference type, the type referred to by P is // used for type deduction. const ReferenceType *ParamRefType = ParamType->getAs(); if (ParamRefType) ParamType = ParamRefType->getPointeeType(); // Overload sets usually make this parameter an undeduced context, // but there are sometimes special circumstances. Typically // involving a template-id-expr. if (ArgType == S.Context.OverloadTy) { ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType, ParamRefType != nullptr, FailedTSC); if (ArgType.isNull()) return true; } if (ParamRefType) { // If the argument has incomplete array type, try to complete its type. if (ArgType->isIncompleteArrayType()) ArgType = S.getCompletedType(Arg); // C++1z [temp.deduct.call]p3: // If P is a forwarding reference and the argument is an lvalue, the type // "lvalue reference to A" is used in place of A for type deduction. if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && Arg->isLValue()) { if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace()) ArgType = S.Context.getAddrSpaceQualType( ArgType, S.Context.getDefaultOpenCLPointeeAddrSpace()); ArgType = S.Context.getLValueReferenceType(ArgType); } } else { // C++ [temp.deduct.call]p2: // If P is not a reference type: // - If A is an array type, the pointer type produced by the // array-to-pointer standard conversion (4.2) is used in place of // A for type deduction; otherwise, // - If A is a function type, the pointer type produced by the // function-to-pointer standard conversion (4.3) is used in place // of A for type deduction; otherwise, if (ArgType->canDecayToPointerType()) ArgType = S.Context.getDecayedType(ArgType); else { // - If A is a cv-qualified type, the top level cv-qualifiers of A's // type are ignored for type deduction. ArgType = ArgType.getUnqualifiedType(); } } // C++0x [temp.deduct.call]p4: // In general, the deduction process attempts to find template argument // values that will make the deduced A identical to A (after the type A // is transformed as described above). [...] TDF = TDF_SkipNonDependent; // - If the original P is a reference type, the deduced A (i.e., the // type referred to by the reference) can be more cv-qualified than // the transformed A. if (ParamRefType) TDF |= TDF_ParamWithReferenceType; // - The transformed A can be another pointer or pointer to member // type that can be converted to the deduced A via a qualification // conversion (4.4). if (ArgType->isPointerType() || ArgType->isMemberPointerType() || ArgType->isObjCObjectPointerType()) TDF |= TDF_IgnoreQualifiers; // - If P is a class and P has the form simple-template-id, then the // transformed A can be a derived class of the deduced A. Likewise, // if P is a pointer to a class of the form simple-template-id, the // transformed A can be a pointer to a derived class pointed to by // the deduced A. if (isSimpleTemplateIdType(ParamType) || (isa(ParamType) && isSimpleTemplateIdType( ParamType->castAs()->getPointeeType()))) TDF |= TDF_DerivedClass; return false; } static bool hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, QualType T); static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced, SmallVectorImpl &OriginalCallArgs, bool DecomposedParam, unsigned ArgIdx, unsigned TDF, TemplateSpecCandidateSet *FailedTSC = nullptr); /// Attempt template argument deduction from an initializer list /// deemed to be an argument in a function call. static Sema::TemplateDeductionResult DeduceFromInitializerList( Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, InitListExpr *ILE, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced, SmallVectorImpl &OriginalCallArgs, unsigned ArgIdx, unsigned TDF) { // C++ [temp.deduct.call]p1: (CWG 1591) // If removing references and cv-qualifiers from P gives // std::initializer_list or P0[N] for some P0 and N and the argument is // a non-empty initializer list, then deduction is performed instead for // each element of the initializer list, taking P0 as a function template // parameter type and the initializer element as its argument // // We've already removed references and cv-qualifiers here. if (!ILE->getNumInits()) return Sema::TDK_Success; QualType ElTy; auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); if (ArrTy) ElTy = ArrTy->getElementType(); else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { // Otherwise, an initializer list argument causes the parameter to be // considered a non-deduced context return Sema::TDK_Success; } // Resolving a core issue: a braced-init-list containing any designators is // a non-deduced context. for (Expr *E : ILE->inits()) if (isa(E)) return Sema::TDK_Success; // Deduction only needs to be done for dependent types. if (ElTy->isDependentType()) { for (Expr *E : ILE->inits()) { if (auto Result = DeduceTemplateArgumentsFromCallArgument( S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true, ArgIdx, TDF)) return Result; } } // in the P0[N] case, if N is a non-type template parameter, N is deduced // from the length of the initializer list. if (auto *DependentArrTy = dyn_cast_or_null(ArrTy)) { // Determine the array bound is something we can deduce. if (const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { // We can perform template argument deduction for the given non-type // template parameter. // C++ [temp.deduct.type]p13: // The type of N in the type T[N] is std::size_t. QualType T = S.Context.getSizeType(); llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); if (auto Result = DeduceNonTypeTemplateArgument( S, TemplateParams, NTTP, llvm::APSInt(Size), T, /*ArrayBound=*/true, Info, Deduced)) return Result; } } return Sema::TDK_Success; } /// Perform template argument deduction per [temp.deduct.call] for a /// single parameter / argument pair. static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, SmallVectorImpl &Deduced, SmallVectorImpl &OriginalCallArgs, bool DecomposedParam, unsigned ArgIdx, unsigned TDF, TemplateSpecCandidateSet *FailedTSC) { QualType ArgType = Arg->getType(); QualType OrigParamType = ParamType; // If P is a reference type [...] // If P is a cv-qualified type [...] if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF, FailedTSC)) return Sema::TDK_Success; // If [...] the argument is a non-empty initializer list [...] if (InitListExpr *ILE = dyn_cast(Arg)) return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, Deduced, OriginalCallArgs, ArgIdx, TDF); // [...] the deduction process attempts to find template argument values // that will make the deduced A identical to A // // Keep track of the argument type and corresponding parameter index, // so we can check for compatibility between the deduced A and A. OriginalCallArgs.push_back( Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF); } /// Perform template argument deduction from a function call /// (C++ [temp.deduct.call]). /// /// \param FunctionTemplate the function template for which we are performing /// template argument deduction. /// /// \param ExplicitTemplateArgs the explicit template arguments provided /// for this call. /// /// \param Args the function call arguments /// /// \param Specialization if template argument deduction was successful, /// this will be set to the function template specialization produced by /// template argument deduction. /// /// \param Info the argument will be updated to provide additional information /// about template argument deduction. /// /// \param CheckNonDependent A callback to invoke to check conversions for /// non-dependent parameters, between deduction and substitution, per DR1391. /// If this returns true, substitution will be skipped and we return /// TDK_NonDependentConversionFailure. The callback is passed the parameter /// types (after substituting explicit template arguments). /// /// \returns the result of template argument deduction. Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, FunctionDecl *&Specialization, TemplateDeductionInfo &Info, bool PartialOverloading, bool AggregateDeductionCandidate, llvm::function_ref)> CheckNonDependent) { if (FunctionTemplate->isInvalidDecl()) return TDK_Invalid; FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); unsigned NumParams = Function->getNumParams(); unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); // C++ [temp.deduct.call]p1: // Template argument deduction is done by comparing each function template // parameter type (call it P) with the type of the corresponding argument // of the call (call it A) as described below. if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) return TDK_TooFewArguments; else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { const auto *Proto = Function->getType()->castAs(); if (Proto->isTemplateVariadic()) /* Do nothing */; else if (!Proto->isVariadic()) return TDK_TooManyArguments; } // The types of the parameters from which we will perform template argument // deduction. LocalInstantiationScope InstScope(*this); TemplateParameterList *TemplateParams = FunctionTemplate->getTemplateParameters(); SmallVector Deduced; SmallVector ParamTypes; unsigned NumExplicitlySpecified = 0; if (ExplicitTemplateArgs) { TemplateDeductionResult Result; runWithSufficientStackSpace(Info.getLocation(), [&] { Result = SubstituteExplicitTemplateArguments( FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr, Info); }); if (Result) return Result; NumExplicitlySpecified = Deduced.size(); } else { // Just fill in the parameter types from the function declaration. for (unsigned I = 0; I != NumParams; ++I) ParamTypes.push_back(Function->getParamDecl(I)->getType()); } SmallVector OriginalCallArgs; // Deduce an argument of type ParamType from an expression with index ArgIdx. auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) { // C++ [demp.deduct.call]p1: (DR1391) // Template argument deduction is done by comparing each function template // parameter that contains template-parameters that participate in // template argument deduction ... if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) return Sema::TDK_Success; // ... with the type of the corresponding argument return DeduceTemplateArgumentsFromCallArgument( *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0); }; // Deduce template arguments from the function parameters. Deduced.resize(TemplateParams->size()); SmallVector ParamTypesForArgChecking; for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; ParamIdx != NumParamTypes; ++ParamIdx) { QualType ParamType = ParamTypes[ParamIdx]; const PackExpansionType *ParamExpansion = dyn_cast(ParamType); if (!ParamExpansion) { // Simple case: matching a function parameter to a function argument. if (ArgIdx >= Args.size()) break; ParamTypesForArgChecking.push_back(ParamType); if (auto Result = DeduceCallArgument(ParamType, ArgIdx++)) return Result; continue; } bool IsTrailingPack = ParamIdx + 1 == NumParamTypes; QualType ParamPattern = ParamExpansion->getPattern(); PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, ParamPattern, AggregateDeductionCandidate && IsTrailingPack); // C++0x [temp.deduct.call]p1: // For a function parameter pack that occurs at the end of the // parameter-declaration-list, the type A of each remaining argument of // the call is compared with the type P of the declarator-id of the // function parameter pack. Each comparison deduces template arguments // for subsequent positions in the template parameter packs expanded by // the function parameter pack. When a function parameter pack appears // in a non-deduced context [not at the end of the list], the type of // that parameter pack is never deduced. // // FIXME: The above rule allows the size of the parameter pack to change // after we skip it (in the non-deduced case). That makes no sense, so // we instead notionally deduce the pack against N arguments, where N is // the length of the explicitly-specified pack if it's expanded by the // parameter pack and 0 otherwise, and we treat each deduction as a // non-deduced context. if (IsTrailingPack || PackScope.hasFixedArity()) { for (; ArgIdx < Args.size() && PackScope.hasNextElement(); PackScope.nextPackElement(), ++ArgIdx) { ParamTypesForArgChecking.push_back(ParamPattern); if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx)) return Result; } } else { // If the parameter type contains an explicitly-specified pack that we // could not expand, skip the number of parameters notionally created // by the expansion. std::optional NumExpansions = ParamExpansion->getNumExpansions(); if (NumExpansions && !PackScope.isPartiallyExpanded()) { for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); ++I, ++ArgIdx) { ParamTypesForArgChecking.push_back(ParamPattern); // FIXME: Should we add OriginalCallArgs for these? What if the // corresponding argument is a list? PackScope.nextPackElement(); } } } // Build argument packs for each of the parameter packs expanded by this // pack expansion. if (auto Result = PackScope.finish()) return Result; } // Capture the context in which the function call is made. This is the context // that is needed when the accessibility of template arguments is checked. DeclContext *CallingCtx = CurContext; TemplateDeductionResult Result; runWithSufficientStackSpace(Info.getLocation(), [&] { Result = FinishTemplateArgumentDeduction( FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { ContextRAII SavedContext(*this, CallingCtx); return CheckNonDependent(ParamTypesForArgChecking); }); }); return Result; } QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType, bool AdjustExceptionSpec) { if (ArgFunctionType.isNull()) return ArgFunctionType; const auto *FunctionTypeP = FunctionType->castAs(); const auto *ArgFunctionTypeP = ArgFunctionType->castAs(); FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); bool Rebuild = false; CallingConv CC = FunctionTypeP->getCallConv(); if (EPI.ExtInfo.getCC() != CC) { EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); Rebuild = true; } bool NoReturn = FunctionTypeP->getNoReturnAttr(); if (EPI.ExtInfo.getNoReturn() != NoReturn) { EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); Rebuild = true; } if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || ArgFunctionTypeP->hasExceptionSpec())) { EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; Rebuild = true; } if (!Rebuild) return ArgFunctionType; return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), ArgFunctionTypeP->getParamTypes(), EPI); } /// Deduce template arguments when taking the address of a function /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to /// a template. /// /// \param FunctionTemplate the function template for which we are performing /// template argument deduction. /// /// \param ExplicitTemplateArgs the explicitly-specified template /// arguments. /// /// \param ArgFunctionType the function type that will be used as the /// "argument" type (A) when performing template argument deduction from the /// function template's function type. This type may be NULL, if there is no /// argument type to compare against, in C++0x [temp.arg.explicit]p3. /// /// \param Specialization if template argument deduction was successful, /// this will be set to the function template specialization produced by /// template argument deduction. /// /// \param Info the argument will be updated to provide additional information /// about template argument deduction. /// /// \param IsAddressOfFunction If \c true, we are deducing as part of taking /// the address of a function template per [temp.deduct.funcaddr] and /// [over.over]. If \c false, we are looking up a function template /// specialization based on its signature, per [temp.deduct.decl]. /// /// \returns the result of template argument deduction. Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, FunctionDecl *&Specialization, TemplateDeductionInfo &Info, bool IsAddressOfFunction) { if (FunctionTemplate->isInvalidDecl()) return TDK_Invalid; FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); TemplateParameterList *TemplateParams = FunctionTemplate->getTemplateParameters(); QualType FunctionType = Function->getType(); // Substitute any explicit template arguments. LocalInstantiationScope InstScope(*this); SmallVector Deduced; unsigned NumExplicitlySpecified = 0; SmallVector ParamTypes; if (ExplicitTemplateArgs) { TemplateDeductionResult Result; runWithSufficientStackSpace(Info.getLocation(), [&] { Result = SubstituteExplicitTemplateArguments( FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, &FunctionType, Info); }); if (Result) return Result; NumExplicitlySpecified = Deduced.size(); } // When taking the address of a function, we require convertibility of // the resulting function type. Otherwise, we allow arbitrary mismatches // of calling convention and noreturn. if (!IsAddressOfFunction) ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, /*AdjustExceptionSpec*/false); // Unevaluated SFINAE context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); SFINAETrap Trap(*this); Deduced.resize(TemplateParams->size()); // If the function has a deduced return type, substitute it for a dependent // type so that we treat it as a non-deduced context in what follows. bool HasDeducedReturnType = false; if (getLangOpts().CPlusPlus14 && Function->getReturnType()->getContainedAutoType()) { FunctionType = SubstAutoTypeDependent(FunctionType); HasDeducedReturnType = true; } if (!ArgFunctionType.isNull() && !FunctionType.isNull()) { unsigned TDF = TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; // Deduce template arguments from the function type. if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, FunctionType, ArgFunctionType, Info, Deduced, TDF)) return Result; } TemplateDeductionResult Result; runWithSufficientStackSpace(Info.getLocation(), [&] { Result = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info); }); if (Result) return Result; // If the function has a deduced return type, deduce it now, so we can check // that the deduced function type matches the requested type. if (HasDeducedReturnType && IsAddressOfFunction && Specialization->getReturnType()->isUndeducedType() && DeduceReturnType(Specialization, Info.getLocation(), false)) return TDK_MiscellaneousDeductionFailure; if (IsAddressOfFunction && getLangOpts().CPlusPlus20 && Specialization->isImmediateEscalating() && CheckIfFunctionSpecializationIsImmediate(Specialization, Info.getLocation())) return TDK_MiscellaneousDeductionFailure; // If the function has a dependent exception specification, resolve it now, // so we can check that the exception specification matches. auto *SpecializationFPT = Specialization->getType()->castAs(); if (getLangOpts().CPlusPlus17 && isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) return TDK_MiscellaneousDeductionFailure; // Adjust the exception specification of the argument to match the // substituted and resolved type we just formed. (Calling convention and // noreturn can't be dependent, so we don't actually need this for them // right now.) QualType SpecializationType = Specialization->getType(); if (!IsAddressOfFunction) { ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, /*AdjustExceptionSpec*/true); // Revert placeholder types in the return type back to undeduced types so // that the comparison below compares the declared return types. if (HasDeducedReturnType) { SpecializationType = SubstAutoType(SpecializationType, QualType()); ArgFunctionType = SubstAutoType(ArgFunctionType, QualType()); } } // If the requested function type does not match the actual type of the // specialization with respect to arguments of compatible pointer to function // types, template argument deduction fails. if (!ArgFunctionType.isNull()) { if (IsAddressOfFunction ? !isSameOrCompatibleFunctionType( Context.getCanonicalType(SpecializationType), Context.getCanonicalType(ArgFunctionType)) : !Context.hasSameType(SpecializationType, ArgFunctionType)) { Info.FirstArg = TemplateArgument(SpecializationType); Info.SecondArg = TemplateArgument(ArgFunctionType); return TDK_NonDeducedMismatch; } } return TDK_Success; } /// Deduce template arguments for a templated conversion /// function (C++ [temp.deduct.conv]) and, if successful, produce a /// conversion function template specialization. Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, QualType ToType, CXXConversionDecl *&Specialization, TemplateDeductionInfo &Info) { if (ConversionTemplate->isInvalidDecl()) return TDK_Invalid; CXXConversionDecl *ConversionGeneric = cast(ConversionTemplate->getTemplatedDecl()); QualType FromType = ConversionGeneric->getConversionType(); // Canonicalize the types for deduction. QualType P = Context.getCanonicalType(FromType); QualType A = Context.getCanonicalType(ToType); // C++0x [temp.deduct.conv]p2: // If P is a reference type, the type referred to by P is used for // type deduction. if (const ReferenceType *PRef = P->getAs()) P = PRef->getPointeeType(); // C++0x [temp.deduct.conv]p4: // [...] If A is a reference type, the type referred to by A is used // for type deduction. if (const ReferenceType *ARef = A->getAs()) { A = ARef->getPointeeType(); // We work around a defect in the standard here: cv-qualifiers are also // removed from P and A in this case, unless P was a reference type. This // seems to mostly match what other compilers are doing. if (!FromType->getAs()) { A = A.getUnqualifiedType(); P = P.getUnqualifiedType(); } // C++ [temp.deduct.conv]p3: // // If A is not a reference type: } else { assert(!A->isReferenceType() && "Reference types were handled above"); // - If P is an array type, the pointer type produced by the // array-to-pointer standard conversion (4.2) is used in place // of P for type deduction; otherwise, if (P->isArrayType()) P = Context.getArrayDecayedType(P); // - If P is a function type, the pointer type produced by the // function-to-pointer standard conversion (4.3) is used in // place of P for type deduction; otherwise, else if (P->isFunctionType()) P = Context.getPointerType(P); // - If P is a cv-qualified type, the top level cv-qualifiers of // P's type are ignored for type deduction. else P = P.getUnqualifiedType(); // C++0x [temp.deduct.conv]p4: // If A is a cv-qualified type, the top level cv-qualifiers of A's // type are ignored for type deduction. If A is a reference type, the type // referred to by A is used for type deduction. A = A.getUnqualifiedType(); } // Unevaluated SFINAE context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); SFINAETrap Trap(*this); // C++ [temp.deduct.conv]p1: // Template argument deduction is done by comparing the return // type of the template conversion function (call it P) with the // type that is required as the result of the conversion (call it // A) as described in 14.8.2.4. TemplateParameterList *TemplateParams = ConversionTemplate->getTemplateParameters(); SmallVector Deduced; Deduced.resize(TemplateParams->size()); // C++0x [temp.deduct.conv]p4: // In general, the deduction process attempts to find template // argument values that will make the deduced A identical to // A. However, there are two cases that allow a difference: unsigned TDF = 0; // - If the original A is a reference type, A can be more // cv-qualified than the deduced A (i.e., the type referred to // by the reference) if (ToType->isReferenceType()) TDF |= TDF_ArgWithReferenceType; // - The deduced A can be another pointer or pointer to member // type that can be converted to A via a qualification // conversion. // // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when // both P and A are pointers or member pointers. In this case, we // just ignore cv-qualifiers completely). if ((P->isPointerType() && A->isPointerType()) || (P->isMemberPointerType() && A->isMemberPointerType())) TDF |= TDF_IgnoreQualifiers; if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, P, A, Info, Deduced, TDF)) return Result; // Create an Instantiation Scope for finalizing the operator. LocalInstantiationScope InstScope(*this); // Finish template argument deduction. FunctionDecl *ConversionSpecialized = nullptr; TemplateDeductionResult Result; runWithSufficientStackSpace(Info.getLocation(), [&] { Result = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, ConversionSpecialized, Info); }); Specialization = cast_or_null(ConversionSpecialized); return Result; } /// Deduce template arguments for a function template when there is /// nothing to deduce against (C++0x [temp.arg.explicit]p3). /// /// \param FunctionTemplate the function template for which we are performing /// template argument deduction. /// /// \param ExplicitTemplateArgs the explicitly-specified template /// arguments. /// /// \param Specialization if template argument deduction was successful, /// this will be set to the function template specialization produced by /// template argument deduction. /// /// \param Info the argument will be updated to provide additional information /// about template argument deduction. /// /// \param IsAddressOfFunction If \c true, we are deducing as part of taking /// the address of a function template in a context where we do not have a /// target type, per [over.over]. If \c false, we are looking up a function /// template specialization based on its signature, which only happens when /// deducing a function parameter type from an argument that is a template-id /// naming a function template specialization. /// /// \returns the result of template argument deduction. Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, FunctionDecl *&Specialization, TemplateDeductionInfo &Info, bool IsAddressOfFunction) { return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, QualType(), Specialization, Info, IsAddressOfFunction); } namespace { struct DependentAuto { bool IsPack; }; /// Substitute the 'auto' specifier or deduced template specialization type /// specifier within a type for a given replacement type. class SubstituteDeducedTypeTransform : public TreeTransform { QualType Replacement; bool ReplacementIsPack; bool UseTypeSugar; public: SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) : TreeTransform(SemaRef), ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, bool UseTypeSugar = true) : TreeTransform(SemaRef), Replacement(Replacement), ReplacementIsPack(false), UseTypeSugar(UseTypeSugar) {} QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { assert(isa(Replacement) && "unexpected unsugared replacement kind"); QualType Result = Replacement; TemplateTypeParmTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { // If we're building the type pattern to deduce against, don't wrap the // substituted type in an AutoType. Certain template deduction rules // apply only when a template type parameter appears directly (and not if // the parameter is found through desugaring). For instance: // auto &&lref = lvalue; // must transform into "rvalue reference to T" not "rvalue reference to // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. // // FIXME: Is this still necessary? if (!UseTypeSugar) return TransformDesugared(TLB, TL); QualType Result = SemaRef.Context.getAutoType( Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(), TL.getTypePtr()->getTypeConstraintArguments()); auto NewTL = TLB.push(Result); NewTL.copy(TL); return Result; } QualType TransformDeducedTemplateSpecializationType( TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { if (!UseTypeSugar) return TransformDesugared(TLB, TL); QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( TL.getTypePtr()->getTemplateName(), Replacement, Replacement.isNull()); auto NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } ExprResult TransformLambdaExpr(LambdaExpr *E) { // Lambdas never need to be transformed. return E; } QualType Apply(TypeLoc TL) { // Create some scratch storage for the transformed type locations. // FIXME: We're just going to throw this information away. Don't build it. TypeLocBuilder TLB; TLB.reserve(TL.getFullDataSize()); return TransformType(TLB, TL); } }; } // namespace static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, AutoTypeLoc TypeLoc, QualType Deduced) { ConstraintSatisfaction Satisfaction; ConceptDecl *Concept = Type.getTypeConstraintConcept(); TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(), TypeLoc.getRAngleLoc()); TemplateArgs.addArgument( TemplateArgumentLoc(TemplateArgument(Deduced), S.Context.getTrivialTypeSourceInfo( Deduced, TypeLoc.getNameLoc()))); for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I) TemplateArgs.addArgument(TypeLoc.getArgLoc(I)); llvm::SmallVector SugaredConverted, CanonicalConverted; if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs, /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted)) return true; MultiLevelTemplateArgumentList MLTAL(Concept, CanonicalConverted, /*Final=*/false); if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()}, MLTAL, TypeLoc.getLocalSourceRange(), Satisfaction)) return true; if (!Satisfaction.IsSatisfied) { std::string Buf; llvm::raw_string_ostream OS(Buf); OS << "'" << Concept->getName(); if (TypeLoc.hasExplicitTemplateArgs()) { printTemplateArgumentList( OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(), Type.getTypeConstraintConcept()->getTemplateParameters()); } OS << "'"; OS.flush(); S.Diag(TypeLoc.getConceptNameLoc(), diag::err_placeholder_constraints_not_satisfied) << Deduced << Buf << TypeLoc.getLocalSourceRange(); S.DiagnoseUnsatisfiedConstraint(Satisfaction); return true; } return false; } /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) /// /// Note that this is done even if the initializer is dependent. (This is /// necessary to support partial ordering of templates using 'auto'.) /// A dependent type will be produced when deducing from a dependent type. /// /// \param Type the type pattern using the auto type-specifier. /// \param Init the initializer for the variable whose type is to be deduced. /// \param Result if type deduction was successful, this will be set to the /// deduced type. /// \param Info the argument will be updated to provide additional information /// about template argument deduction. /// \param DependentDeduction Set if we should permit deduction in /// dependent cases. This is necessary for template partial ordering with /// 'auto' template parameters. The template parameter depth to be used /// should be specified in the 'Info' parameter. /// \param IgnoreConstraints Set if we should not fail if the deduced type does /// not satisfy the type-constraint in the auto type. Sema::TemplateDeductionResult Sema::DeduceAutoType(TypeLoc Type, Expr *Init, QualType &Result, TemplateDeductionInfo &Info, bool DependentDeduction, bool IgnoreConstraints, TemplateSpecCandidateSet *FailedTSC) { assert(DependentDeduction || Info.getDeducedDepth() == 0); if (Init->containsErrors()) return TDK_AlreadyDiagnosed; const AutoType *AT = Type.getType()->getContainedAutoType(); assert(AT); if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) { ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); if (NonPlaceholder.isInvalid()) return TDK_AlreadyDiagnosed; Init = NonPlaceholder.get(); } DependentAuto DependentResult = { /*.IsPack = */ (bool)Type.getAs()}; if (!DependentDeduction && (Type.getType()->isDependentType() || Init->isTypeDependent() || Init->containsUnexpandedParameterPack())) { Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); assert(!Result.isNull() && "substituting DependentTy can't fail"); return TDK_Success; } auto *InitList = dyn_cast(Init); if (!getLangOpts().CPlusPlus && InitList) { Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c); return TDK_AlreadyDiagnosed; } // Deduce type of TemplParam in Func(Init) SmallVector Deduced; Deduced.resize(1); // If deduction failed, don't diagnose if the initializer is dependent; it // might acquire a matching type in the instantiation. auto DeductionFailed = [&](TemplateDeductionResult TDK) { if (Init->isTypeDependent()) { Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); assert(!Result.isNull() && "substituting DependentTy can't fail"); return TDK_Success; } return TDK; }; SmallVector OriginalCallArgs; QualType DeducedType; // If this is a 'decltype(auto)' specifier, do the decltype dance. if (AT->isDecltypeAuto()) { if (InitList) { Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); return TDK_AlreadyDiagnosed; } DeducedType = getDecltypeForExpr(Init); assert(!DeducedType.isNull()); } else { LocalInstantiationScope InstScope(*this); // Build template void Func(FuncParam); SourceLocation Loc = Init->getExprLoc(); TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0, nullptr, false, false, false); QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); NamedDecl *TemplParamPtr = TemplParam; FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( Context, Loc, Loc, TemplParamPtr, Loc, nullptr); if (InitList) { // Notionally, we substitute std::initializer_list for 'auto' and // deduce against that. Such deduction only succeeds if removing // cv-qualifiers and references results in std::initializer_list. if (!Type.getType().getNonReferenceType()->getAs()) return TDK_Invalid; SourceRange DeducedFromInitRange; for (Expr *Init : InitList->inits()) { // Resolving a core issue: a braced-init-list containing any designators // is a non-deduced context. if (isa(Init)) return TDK_Invalid; if (auto TDK = DeduceTemplateArgumentsFromCallArgument( *this, TemplateParamsSt.get(), 0, TemplArg, Init, Info, Deduced, OriginalCallArgs, /*Decomposed=*/true, /*ArgIdx=*/0, /*TDF=*/0)) { if (TDK == TDK_Inconsistent) { Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction) << Info.FirstArg << Info.SecondArg << DeducedFromInitRange << Init->getSourceRange(); return DeductionFailed(TDK_AlreadyDiagnosed); } return DeductionFailed(TDK); } if (DeducedFromInitRange.isInvalid() && Deduced[0].getKind() != TemplateArgument::Null) DeducedFromInitRange = Init->getSourceRange(); } } else { if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { Diag(Loc, diag::err_auto_bitfield); return TDK_AlreadyDiagnosed; } QualType FuncParam = SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type); assert(!FuncParam.isNull() && "substituting template parameter for 'auto' failed"); if (auto TDK = DeduceTemplateArgumentsFromCallArgument( *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced, OriginalCallArgs, /*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0, FailedTSC)) return DeductionFailed(TDK); } // Could be null if somehow 'auto' appears in a non-deduced context. if (Deduced[0].getKind() != TemplateArgument::Type) return DeductionFailed(TDK_Incomplete); DeducedType = Deduced[0].getAsType(); if (InitList) { DeducedType = BuildStdInitializerList(DeducedType, Loc); if (DeducedType.isNull()) return TDK_AlreadyDiagnosed; } } if (!Result.isNull()) { if (!Context.hasSameType(DeducedType, Result)) { Info.FirstArg = Result; Info.SecondArg = DeducedType; return DeductionFailed(TDK_Inconsistent); } DeducedType = Context.getCommonSugaredType(Result, DeducedType); } if (AT->isConstrained() && !IgnoreConstraints && CheckDeducedPlaceholderConstraints( *this, *AT, Type.getContainedAutoTypeLoc(), DeducedType)) return TDK_AlreadyDiagnosed; Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); if (Result.isNull()) return TDK_AlreadyDiagnosed; // Check that the deduced argument type is compatible with the original // argument type per C++ [temp.deduct.call]p4. QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { assert((bool)InitList == OriginalArg.DecomposedParam && "decomposed non-init-list in auto deduction?"); if (auto TDK = CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { Result = QualType(); return DeductionFailed(TDK); } } return TDK_Success; } QualType Sema::SubstAutoType(QualType TypeWithAuto, QualType TypeToReplaceAuto) { assert(TypeToReplaceAuto != Context.DependentTy); return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) .TransformType(TypeWithAuto); } TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType TypeToReplaceAuto) { assert(TypeToReplaceAuto != Context.DependentTy); return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) .TransformType(TypeWithAuto); } QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) { return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) .TransformType(TypeWithAuto); } TypeSourceInfo * Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) { return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) .TransformType(TypeWithAuto); } QualType Sema::ReplaceAutoType(QualType TypeWithAuto, QualType TypeToReplaceAuto) { return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, /*UseTypeSugar*/ false) .TransformType(TypeWithAuto); } TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType TypeToReplaceAuto) { return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, /*UseTypeSugar*/ false) .TransformType(TypeWithAuto); } void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { if (isa(Init)) Diag(VDecl->getLocation(), VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure_from_init_list : diag::err_auto_var_deduction_failure_from_init_list) << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); else Diag(VDecl->getLocation(), VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure : diag::err_auto_var_deduction_failure) << VDecl->getDeclName() << VDecl->getType() << Init->getType() << Init->getSourceRange(); } bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, bool Diagnose) { assert(FD->getReturnType()->isUndeducedType()); // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' // within the return type from the call operator's type. if (isLambdaConversionOperator(FD)) { CXXRecordDecl *Lambda = cast(FD)->getParent(); FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); // For a generic lambda, instantiate the call operator if needed. if (auto *Args = FD->getTemplateSpecializationArgs()) { CallOp = InstantiateFunctionDeclaration( CallOp->getDescribedFunctionTemplate(), Args, Loc); if (!CallOp || CallOp->isInvalidDecl()) return true; // We might need to deduce the return type by instantiating the definition // of the operator() function. if (CallOp->getReturnType()->isUndeducedType()) { runWithSufficientStackSpace(Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); }); } } if (CallOp->isInvalidDecl()) return true; assert(!CallOp->getReturnType()->isUndeducedType() && "failed to deduce lambda return type"); // Build the new return type from scratch. CallingConv RetTyCC = FD->getReturnType() ->getPointeeType() ->castAs() ->getCallConv(); QualType RetType = getLambdaConversionFunctionResultType( CallOp->getType()->castAs(), RetTyCC); if (FD->getReturnType()->getAs()) RetType = Context.getPointerType(RetType); else { assert(FD->getReturnType()->getAs()); RetType = Context.getBlockPointerType(RetType); } Context.adjustDeducedFunctionResultType(FD, RetType); return false; } if (FD->getTemplateInstantiationPattern()) { runWithSufficientStackSpace(Loc, [&] { InstantiateFunctionDefinition(Loc, FD); }); } bool StillUndeduced = FD->getReturnType()->isUndeducedType(); if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; Diag(FD->getLocation(), diag::note_callee_decl) << FD; } return StillUndeduced; } bool Sema::CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD, SourceLocation Loc) { assert(FD->isImmediateEscalating()); if (isLambdaConversionOperator(FD)) { CXXRecordDecl *Lambda = cast(FD)->getParent(); FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); // For a generic lambda, instantiate the call operator if needed. if (auto *Args = FD->getTemplateSpecializationArgs()) { CallOp = InstantiateFunctionDeclaration( CallOp->getDescribedFunctionTemplate(), Args, Loc); if (!CallOp || CallOp->isInvalidDecl()) return true; runWithSufficientStackSpace( Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); }); } return CallOp->isInvalidDecl(); } if (FD->getTemplateInstantiationPattern()) { runWithSufficientStackSpace( Loc, [&] { InstantiateFunctionDefinition(Loc, FD); }); } return false; } /// If this is a non-static member function, static void AddImplicitObjectParameterType(ASTContext &Context, CXXMethodDecl *Method, SmallVectorImpl &ArgTypes) { // C++11 [temp.func.order]p3: // [...] The new parameter is of type "reference to cv A," where cv are // the cv-qualifiers of the function template (if any) and A is // the class of which the function template is a member. // // The standard doesn't say explicitly, but we pick the appropriate kind of // reference type based on [over.match.funcs]p4. QualType ArgTy = Context.getTypeDeclType(Method->getParent()); ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); if (Method->getRefQualifier() == RQ_RValue) ArgTy = Context.getRValueReferenceType(ArgTy); else ArgTy = Context.getLValueReferenceType(ArgTy); ArgTypes.push_back(ArgTy); } /// Determine whether the function template \p FT1 is at least as /// specialized as \p FT2. static bool isAtLeastAsSpecializedAs(Sema &S, SourceLocation Loc, FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, bool Reversed) { assert(!Reversed || TPOC == TPOC_Call); FunctionDecl *FD1 = FT1->getTemplatedDecl(); FunctionDecl *FD2 = FT2->getTemplatedDecl(); const FunctionProtoType *Proto1 = FD1->getType()->getAs(); const FunctionProtoType *Proto2 = FD2->getType()->getAs(); assert(Proto1 && Proto2 && "Function templates must have prototypes"); TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); SmallVector Deduced; Deduced.resize(TemplateParams->size()); // C++0x [temp.deduct.partial]p3: // The types used to determine the ordering depend on the context in which // the partial ordering is done: TemplateDeductionInfo Info(Loc); SmallVector Args2; switch (TPOC) { case TPOC_Call: { // - In the context of a function call, the function parameter types are // used. CXXMethodDecl *Method1 = dyn_cast(FD1); CXXMethodDecl *Method2 = dyn_cast(FD2); // C++11 [temp.func.order]p3: // [...] If only one of the function templates is a non-static // member, that function template is considered to have a new // first parameter inserted in its function parameter list. The // new parameter is of type "reference to cv A," where cv are // the cv-qualifiers of the function template (if any) and A is // the class of which the function template is a member. // // Note that we interpret this to mean "if one of the function // templates is a non-static member and the other is a non-member"; // otherwise, the ordering rules for static functions against non-static // functions don't make any sense. // // C++98/03 doesn't have this provision but we've extended DR532 to cover // it as wording was broken prior to it. SmallVector Args1; unsigned NumComparedArguments = NumCallArguments1; if (!Method2 && Method1 && !Method1->isStatic()) { // Compare 'this' from Method1 against first parameter from Method2. AddImplicitObjectParameterType(S.Context, Method1, Args1); ++NumComparedArguments; } else if (!Method1 && Method2 && !Method2->isStatic()) { // Compare 'this' from Method2 against first parameter from Method1. AddImplicitObjectParameterType(S.Context, Method2, Args2); } else if (Method1 && Method2 && Reversed) { // Compare 'this' from Method1 against second parameter from Method2 // and 'this' from Method2 against second parameter from Method1. AddImplicitObjectParameterType(S.Context, Method1, Args1); AddImplicitObjectParameterType(S.Context, Method2, Args2); ++NumComparedArguments; } Args1.insert(Args1.end(), Proto1->param_type_begin(), Proto1->param_type_end()); Args2.insert(Args2.end(), Proto2->param_type_begin(), Proto2->param_type_end()); // C++ [temp.func.order]p5: // The presence of unused ellipsis and default arguments has no effect on // the partial ordering of function templates. if (Args1.size() > NumComparedArguments) Args1.resize(NumComparedArguments); if (Args2.size() > NumComparedArguments) Args2.resize(NumComparedArguments); if (Reversed) std::reverse(Args2.begin(), Args2.end()); if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), Args1.data(), Args1.size(), Info, Deduced, TDF_None, /*PartialOrdering=*/true)) return false; break; } case TPOC_Conversion: // - In the context of a call to a conversion operator, the return types // of the conversion function templates are used. if (DeduceTemplateArgumentsByTypeMatch( S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), Info, Deduced, TDF_None, /*PartialOrdering=*/true)) return false; break; case TPOC_Other: // - In other contexts (14.6.6.2) the function template's function type // is used. if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, FD2->getType(), FD1->getType(), Info, Deduced, TDF_None, /*PartialOrdering=*/true)) return false; break; } // C++0x [temp.deduct.partial]p11: // In most cases, all template parameters must have values in order for // deduction to succeed, but for partial ordering purposes a template // parameter may remain without a value provided it is not used in the // types being used for partial ordering. [ Note: a template parameter used // in a non-deduced context is considered used. -end note] unsigned ArgIdx = 0, NumArgs = Deduced.size(); for (; ArgIdx != NumArgs; ++ArgIdx) if (Deduced[ArgIdx].isNull()) break; // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need // to substitute the deduced arguments back into the template and check that // we get the right type. if (ArgIdx == NumArgs) { // All template arguments were deduced. FT1 is at least as specialized // as FT2. return true; } // Figure out which template parameters were used. llvm::SmallBitVector UsedParameters(TemplateParams->size()); switch (TPOC) { case TPOC_Call: for (unsigned I = 0, N = Args2.size(); I != N; ++I) ::MarkUsedTemplateParameters(S.Context, Args2[I], false, TemplateParams->getDepth(), UsedParameters); break; case TPOC_Conversion: ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, TemplateParams->getDepth(), UsedParameters); break; case TPOC_Other: ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, TemplateParams->getDepth(), UsedParameters); break; } for (; ArgIdx != NumArgs; ++ArgIdx) // If this argument had no value deduced but was used in one of the types // used for partial ordering, then deduction fails. if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) return false; return true; } /// Returns the more specialized function template according /// to the rules of function template partial ordering (C++ [temp.func.order]). /// /// \param FT1 the first function template /// /// \param FT2 the second function template /// /// \param TPOC the context in which we are performing partial ordering of /// function templates. /// /// \param NumCallArguments1 The number of arguments in the call to FT1, used /// only when \c TPOC is \c TPOC_Call. /// /// \param NumCallArguments2 The number of arguments in the call to FT2, used /// only when \c TPOC is \c TPOC_Call. /// /// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload /// candidate with a reversed parameter order. In this case, the corresponding /// P/A pairs between FT1 and FT2 are reversed. /// /// \returns the more specialized function template. If neither /// template is more specialized, returns NULL. FunctionTemplateDecl *Sema::getMoreSpecializedTemplate( FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, unsigned NumCallArguments2, bool Reversed) { bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, NumCallArguments1, Reversed); bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, NumCallArguments2, Reversed); // C++ [temp.deduct.partial]p10: // F is more specialized than G if F is at least as specialized as G and G // is not at least as specialized as F. if (Better1 != Better2) // We have a clear winner return Better1 ? FT1 : FT2; if (!Better1 && !Better2) // Neither is better than the other return nullptr; // C++ [temp.deduct.partial]p11: // ... and if G has a trailing function parameter pack for which F does not // have a corresponding parameter, and if F does not have a trailing // function parameter pack, then F is more specialized than G. FunctionDecl *FD1 = FT1->getTemplatedDecl(); FunctionDecl *FD2 = FT2->getTemplatedDecl(); unsigned NumParams1 = FD1->getNumParams(); unsigned NumParams2 = FD2->getNumParams(); bool Variadic1 = NumParams1 && FD1->parameters().back()->isParameterPack(); bool Variadic2 = NumParams2 && FD2->parameters().back()->isParameterPack(); if (Variadic1 != Variadic2) { if (Variadic1 && NumParams1 > NumParams2) return FT2; if (Variadic2 && NumParams2 > NumParams1) return FT1; } // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that // there is no wording or even resolution for this issue. for (int i = 0, e = std::min(NumParams1, NumParams2); i < e; ++i) { QualType T1 = FD1->getParamDecl(i)->getType().getCanonicalType(); QualType T2 = FD2->getParamDecl(i)->getType().getCanonicalType(); auto *TST1 = dyn_cast(T1); auto *TST2 = dyn_cast(T2); if (!TST1 || !TST2) continue; const TemplateArgument &TA1 = TST1->template_arguments().back(); if (TA1.getKind() == TemplateArgument::Pack) { assert(TST1->template_arguments().size() == TST2->template_arguments().size()); const TemplateArgument &TA2 = TST2->template_arguments().back(); assert(TA2.getKind() == TemplateArgument::Pack); unsigned PackSize1 = TA1.pack_size(); unsigned PackSize2 = TA2.pack_size(); bool IsPackExpansion1 = PackSize1 && TA1.pack_elements().back().isPackExpansion(); bool IsPackExpansion2 = PackSize2 && TA2.pack_elements().back().isPackExpansion(); if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { if (PackSize1 > PackSize2 && IsPackExpansion1) return FT2; if (PackSize1 < PackSize2 && IsPackExpansion2) return FT1; } } } if (!Context.getLangOpts().CPlusPlus20) return nullptr; // Match GCC on not implementing [temp.func.order]p6.2.1. // C++20 [temp.func.order]p6: // If deduction against the other template succeeds for both transformed // templates, constraints can be considered as follows: // C++20 [temp.func.order]p6.1: // If their template-parameter-lists (possibly including template-parameters // invented for an abbreviated function template ([dcl.fct])) or function // parameter lists differ in length, neither template is more specialized // than the other. TemplateParameterList *TPL1 = FT1->getTemplateParameters(); TemplateParameterList *TPL2 = FT2->getTemplateParameters(); if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2) return nullptr; // C++20 [temp.func.order]p6.2.2: // Otherwise, if the corresponding template-parameters of the // template-parameter-lists are not equivalent ([temp.over.link]) or if the // function parameters that positionally correspond between the two // templates are not of the same type, neither template is more specialized // than the other. if (!TemplateParameterListsAreEqual(TPL1, TPL2, false, Sema::TPL_TemplateParamsEquivalent)) return nullptr; for (unsigned i = 0; i < NumParams1; ++i) if (!Context.hasSameType(FD1->getParamDecl(i)->getType(), FD2->getParamDecl(i)->getType())) return nullptr; // C++20 [temp.func.order]p6.3: // Otherwise, if the context in which the partial ordering is done is // that of a call to a conversion function and the return types of the // templates are not the same, then neither template is more specialized // than the other. if (TPOC == TPOC_Conversion && !Context.hasSameType(FD1->getReturnType(), FD2->getReturnType())) return nullptr; llvm::SmallVector AC1, AC2; FT1->getAssociatedConstraints(AC1); FT2->getAssociatedConstraints(AC2); bool AtLeastAsConstrained1, AtLeastAsConstrained2; if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1)) return nullptr; if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2)) return nullptr; if (AtLeastAsConstrained1 == AtLeastAsConstrained2) return nullptr; return AtLeastAsConstrained1 ? FT1 : FT2; } /// Determine if the two templates are equivalent. static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { if (T1 == T2) return true; if (!T1 || !T2) return false; return T1->getCanonicalDecl() == T2->getCanonicalDecl(); } /// Retrieve the most specialized of the given function template /// specializations. /// /// \param SpecBegin the start iterator of the function template /// specializations that we will be comparing. /// /// \param SpecEnd the end iterator of the function template /// specializations, paired with \p SpecBegin. /// /// \param Loc the location where the ambiguity or no-specializations /// diagnostic should occur. /// /// \param NoneDiag partial diagnostic used to diagnose cases where there are /// no matching candidates. /// /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one /// occurs. /// /// \param CandidateDiag partial diagnostic used for each function template /// specialization that is a candidate in the ambiguous ordering. One parameter /// in this diagnostic should be unbound, which will correspond to the string /// describing the template arguments for the function template specialization. /// /// \returns the most specialized function template specialization, if /// found. Otherwise, returns SpecEnd. UnresolvedSetIterator Sema::getMostSpecialized( UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, TemplateSpecCandidateSet &FailedCandidates, SourceLocation Loc, const PartialDiagnostic &NoneDiag, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, bool Complain, QualType TargetType) { if (SpecBegin == SpecEnd) { if (Complain) { Diag(Loc, NoneDiag); FailedCandidates.NoteCandidates(*this, Loc); } return SpecEnd; } if (SpecBegin + 1 == SpecEnd) return SpecBegin; // Find the function template that is better than all of the templates it // has been compared to. UnresolvedSetIterator Best = SpecBegin; FunctionTemplateDecl *BestTemplate = cast(*Best)->getPrimaryTemplate(); assert(BestTemplate && "Not a function template specialization?"); for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { FunctionTemplateDecl *Challenger = cast(*I)->getPrimaryTemplate(); assert(Challenger && "Not a function template specialization?"); if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, Loc, TPOC_Other, 0, 0), Challenger)) { Best = I; BestTemplate = Challenger; } } // Make sure that the "best" function template is more specialized than all // of the others. bool Ambiguous = false; for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { FunctionTemplateDecl *Challenger = cast(*I)->getPrimaryTemplate(); if (I != Best && !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, Loc, TPOC_Other, 0, 0), BestTemplate)) { Ambiguous = true; break; } } if (!Ambiguous) { // We found an answer. Return it. return Best; } // Diagnose the ambiguity. if (Complain) { Diag(Loc, AmbigDiag); // FIXME: Can we order the candidates in some sane way? for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { PartialDiagnostic PD = CandidateDiag; const auto *FD = cast(*I); PD << FD << getTemplateArgumentBindingsText( FD->getPrimaryTemplate()->getTemplateParameters(), *FD->getTemplateSpecializationArgs()); if (!TargetType.isNull()) HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); Diag((*I)->getLocation(), PD); } } return SpecEnd; } /// Determine whether one partial specialization, P1, is at least as /// specialized than another, P2. /// /// \tparam TemplateLikeDecl The kind of P2, which must be a /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. /// \param T1 The injected-class-name of P1 (faked for a variable template). /// \param T2 The injected-class-name of P2 (faked for a variable template). template static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P2, TemplateDeductionInfo &Info) { // C++ [temp.class.order]p1: // For two class template partial specializations, the first is at least as // specialized as the second if, given the following rewrite to two // function templates, the first function template is at least as // specialized as the second according to the ordering rules for function // templates (14.6.6.2): // - the first function template has the same template parameters as the // first partial specialization and has a single function parameter // whose type is a class template specialization with the template // arguments of the first partial specialization, and // - the second function template has the same template parameters as the // second partial specialization and has a single function parameter // whose type is a class template specialization with the template // arguments of the second partial specialization. // // Rather than synthesize function templates, we merely perform the // equivalent partial ordering by performing deduction directly on // the template arguments of the class template partial // specializations. This computation is slightly simpler than the // general problem of function template partial ordering, because // class template partial specializations are more constrained. We // know that every template parameter is deducible from the class // template partial specialization's template arguments, for // example. SmallVector Deduced; // Determine whether P1 is at least as specialized as P2. Deduced.resize(P2->getTemplateParameters()->size()); if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), T2, T1, Info, Deduced, TDF_None, /*PartialOrdering=*/true)) return false; SmallVector DeducedArgs(Deduced.begin(), Deduced.end()); Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, Info); if (Inst.isInvalid()) return false; const auto *TST1 = cast(T1); bool AtLeastAsSpecialized; S.runWithSufficientStackSpace(Info.getLocation(), [&] { AtLeastAsSpecialized = !FinishTemplateArgumentDeduction( S, P2, /*IsPartialOrdering=*/true, TemplateArgumentList(TemplateArgumentList::OnStack, TST1->template_arguments()), Deduced, Info); }); return AtLeastAsSpecialized; } namespace { // A dummy class to return nullptr instead of P2 when performing "more // specialized than primary" check. struct GetP2 { template , bool> = true> T2 *operator()(T1 *, T2 *P2) { return P2; } template , bool> = true> T1 *operator()(T1 *, T2 *) { return nullptr; } }; // The assumption is that two template argument lists have the same size. struct TemplateArgumentListAreEqual { ASTContext &Ctx; TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {} template , bool> = true> bool operator()(T1 *PS1, T2 *PS2) { ArrayRef Args1 = PS1->getTemplateArgs().asArray(), Args2 = PS2->getTemplateArgs().asArray(); for (unsigned I = 0, E = Args1.size(); I < E; ++I) { // We use profile, instead of structural comparison of the arguments, // because canonicalization can't do the right thing for dependent // expressions. llvm::FoldingSetNodeID IDA, IDB; Args1[I].Profile(IDA, Ctx); Args2[I].Profile(IDB, Ctx); if (IDA != IDB) return false; } return true; } template , bool> = true> bool operator()(T1 *Spec, T2 *Primary) { ArrayRef Args1 = Spec->getTemplateArgs().asArray(), Args2 = Primary->getInjectedTemplateArgs(); for (unsigned I = 0, E = Args1.size(); I < E; ++I) { // We use profile, instead of structural comparison of the arguments, // because canonicalization can't do the right thing for dependent // expressions. llvm::FoldingSetNodeID IDA, IDB; Args1[I].Profile(IDA, Ctx); // Unlike the specialization arguments, the injected arguments are not // always canonical. Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx); if (IDA != IDB) return false; } return true; } }; } // namespace /// Returns the more specialized template specialization between T1/P1 and /// T2/P2. /// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial /// specialization and T2/P2 is the primary template. /// - otherwise, both T1/P1 and T2/P2 are the partial specialization. /// /// \param T1 the type of the first template partial specialization /// /// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second /// template partial specialization; otherwise, the type of the /// primary template. /// /// \param P1 the first template partial specialization /// /// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template /// partial specialization; otherwise, the primary template. /// /// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is /// more specialized, returns nullptr if P1 is not more specialized. /// - otherwise, returns the more specialized template partial /// specialization. If neither partial specialization is more /// specialized, returns NULL. template static TemplateLikeDecl * getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1, PrimaryDel *P2, TemplateDeductionInfo &Info) { constexpr bool IsMoreSpecialThanPrimaryCheck = !std::is_same_v; bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, Info); if (IsMoreSpecialThanPrimaryCheck && !Better1) return nullptr; bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1, Info); if (IsMoreSpecialThanPrimaryCheck && !Better2) return P1; // C++ [temp.deduct.partial]p10: // F is more specialized than G if F is at least as specialized as G and G // is not at least as specialized as F. if (Better1 != Better2) // We have a clear winner return Better1 ? P1 : GetP2()(P1, P2); if (!Better1 && !Better2) return nullptr; // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that // there is no wording or even resolution for this issue. auto *TST1 = cast(T1); auto *TST2 = cast(T2); const TemplateArgument &TA1 = TST1->template_arguments().back(); if (TA1.getKind() == TemplateArgument::Pack) { assert(TST1->template_arguments().size() == TST2->template_arguments().size()); const TemplateArgument &TA2 = TST2->template_arguments().back(); assert(TA2.getKind() == TemplateArgument::Pack); unsigned PackSize1 = TA1.pack_size(); unsigned PackSize2 = TA2.pack_size(); bool IsPackExpansion1 = PackSize1 && TA1.pack_elements().back().isPackExpansion(); bool IsPackExpansion2 = PackSize2 && TA2.pack_elements().back().isPackExpansion(); if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { if (PackSize1 > PackSize2 && IsPackExpansion1) return GetP2()(P1, P2); if (PackSize1 < PackSize2 && IsPackExpansion2) return P1; } } if (!S.Context.getLangOpts().CPlusPlus20) return nullptr; // Match GCC on not implementing [temp.func.order]p6.2.1. // C++20 [temp.func.order]p6: // If deduction against the other template succeeds for both transformed // templates, constraints can be considered as follows: TemplateParameterList *TPL1 = P1->getTemplateParameters(); TemplateParameterList *TPL2 = P2->getTemplateParameters(); if (TPL1->size() != TPL2->size()) return nullptr; // C++20 [temp.func.order]p6.2.2: // Otherwise, if the corresponding template-parameters of the // template-parameter-lists are not equivalent ([temp.over.link]) or if the // function parameters that positionally correspond between the two // templates are not of the same type, neither template is more specialized // than the other. if (!S.TemplateParameterListsAreEqual(TPL1, TPL2, false, Sema::TPL_TemplateParamsEquivalent)) return nullptr; if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2)) return nullptr; llvm::SmallVector AC1, AC2; P1->getAssociatedConstraints(AC1); P2->getAssociatedConstraints(AC2); bool AtLeastAsConstrained1, AtLeastAsConstrained2; if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) || (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1)) return nullptr; if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2)) return nullptr; if (AtLeastAsConstrained1 == AtLeastAsConstrained2) return nullptr; return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2); } /// Returns the more specialized class template partial specialization /// according to the rules of partial ordering of class template partial /// specializations (C++ [temp.class.order]). /// /// \param PS1 the first class template partial specialization /// /// \param PS2 the second class template partial specialization /// /// \returns the more specialized class template partial specialization. If /// neither partial specialization is more specialized, returns NULL. ClassTemplatePartialSpecializationDecl * Sema::getMoreSpecializedPartialSpecialization( ClassTemplatePartialSpecializationDecl *PS1, ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { QualType PT1 = PS1->getInjectedSpecializationType(); QualType PT2 = PS2->getInjectedSpecializationType(); TemplateDeductionInfo Info(Loc); return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); } bool Sema::isMoreSpecializedThanPrimary( ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); QualType PartialT = Spec->getInjectedSpecializationType(); ClassTemplatePartialSpecializationDecl *MaybeSpec = getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); if (MaybeSpec) Info.clearSFINAEDiagnostic(); return MaybeSpec; } VarTemplatePartialSpecializationDecl * Sema::getMoreSpecializedPartialSpecialization( VarTemplatePartialSpecializationDecl *PS1, VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { // Pretend the variable template specializations are class template // specializations and form a fake injected class name type for comparison. assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && "the partial specializations being compared should specialize" " the same template."); TemplateName Name(PS1->getSpecializedTemplate()); TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); QualType PT1 = Context.getTemplateSpecializationType( CanonTemplate, PS1->getTemplateArgs().asArray()); QualType PT2 = Context.getTemplateSpecializationType( CanonTemplate, PS2->getTemplateArgs().asArray()); TemplateDeductionInfo Info(Loc); return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); } bool Sema::isMoreSpecializedThanPrimary( VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { VarTemplateDecl *Primary = Spec->getSpecializedTemplate(); TemplateName CanonTemplate = Context.getCanonicalTemplateName(TemplateName(Primary)); QualType PrimaryT = Context.getTemplateSpecializationType( CanonTemplate, Primary->getInjectedTemplateArgs()); QualType PartialT = Context.getTemplateSpecializationType( CanonTemplate, Spec->getTemplateArgs().asArray()); VarTemplatePartialSpecializationDecl *MaybeSpec = getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); if (MaybeSpec) Info.clearSFINAEDiagnostic(); return MaybeSpec; } bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { // C++1z [temp.arg.template]p4: (DR 150) // A template template-parameter P is at least as specialized as a // template template-argument A if, given the following rewrite to two // function templates... // Rather than synthesize function templates, we merely perform the // equivalent partial ordering by performing deduction directly on // the template parameter lists of the template template parameters. // // Given an invented class template X with the template parameter list of // A (including default arguments): TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); TemplateParameterList *A = AArg->getTemplateParameters(); // - Each function template has a single function parameter whose type is // a specialization of X with template arguments corresponding to the // template parameters from the respective function template SmallVector AArgs; Context.getInjectedTemplateArgs(A, AArgs); // Check P's arguments against A's parameter list. This will fill in default // template arguments as needed. AArgs are already correct by construction. // We can't just use CheckTemplateIdType because that will expand alias // templates. SmallVector PArgs; { SFINAETrap Trap(*this); Context.getInjectedTemplateArgs(P, PArgs); TemplateArgumentListInfo PArgList(P->getLAngleLoc(), P->getRAngleLoc()); for (unsigned I = 0, N = P->size(); I != N; ++I) { // Unwrap packs that getInjectedTemplateArgs wrapped around pack // expansions, to form an "as written" argument list. TemplateArgument Arg = PArgs[I]; if (Arg.getKind() == TemplateArgument::Pack) { assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); Arg = *Arg.pack_begin(); } PArgList.addArgument(getTrivialTemplateArgumentLoc( Arg, QualType(), P->getParam(I)->getLocation())); } PArgs.clear(); // C++1z [temp.arg.template]p3: // If the rewrite produces an invalid type, then P is not at least as // specialized as A. SmallVector SugaredPArgs; if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, SugaredPArgs, PArgs) || Trap.hasErrorOccurred()) return false; } QualType AType = Context.getCanonicalTemplateSpecializationType(X, AArgs); QualType PType = Context.getCanonicalTemplateSpecializationType(X, PArgs); // ... the function template corresponding to P is at least as specialized // as the function template corresponding to A according to the partial // ordering rules for function templates. TemplateDeductionInfo Info(Loc, A->getDepth()); return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); } namespace { struct MarkUsedTemplateParameterVisitor : RecursiveASTVisitor { llvm::SmallBitVector &Used; unsigned Depth; MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, unsigned Depth) : Used(Used), Depth(Depth) { } bool VisitTemplateTypeParmType(TemplateTypeParmType *T) { if (T->getDepth() == Depth) Used[T->getIndex()] = true; return true; } bool TraverseTemplateName(TemplateName Template) { if (auto *TTP = llvm::dyn_cast_or_null( Template.getAsTemplateDecl())) if (TTP->getDepth() == Depth) Used[TTP->getIndex()] = true; RecursiveASTVisitor:: TraverseTemplateName(Template); return true; } bool VisitDeclRefExpr(DeclRefExpr *E) { if (auto *NTTP = dyn_cast(E->getDecl())) if (NTTP->getDepth() == Depth) Used[NTTP->getIndex()] = true; return true; } }; } /// Mark the template parameters that are used by the given /// expression. static void MarkUsedTemplateParameters(ASTContext &Ctx, const Expr *E, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used) { if (!OnlyDeduced) { MarkUsedTemplateParameterVisitor(Used, Depth) .TraverseStmt(const_cast(E)); return; } // We can deduce from a pack expansion. if (const PackExpansionExpr *Expansion = dyn_cast(E)) E = Expansion->getPattern(); const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth); if (!NTTP) return; if (NTTP->getDepth() == Depth) Used[NTTP->getIndex()] = true; // In C++17 mode, additional arguments may be deduced from the type of a // non-type argument. if (Ctx.getLangOpts().CPlusPlus17) MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); } /// Mark the template parameters that are used by the given /// nested name specifier. static void MarkUsedTemplateParameters(ASTContext &Ctx, NestedNameSpecifier *NNS, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used) { if (!NNS) return; MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, Used); MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), OnlyDeduced, Depth, Used); } /// Mark the template parameters that are used by the given /// template name. static void MarkUsedTemplateParameters(ASTContext &Ctx, TemplateName Name, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used) { if (TemplateDecl *Template = Name.getAsTemplateDecl()) { if (TemplateTemplateParmDecl *TTP = dyn_cast(Template)) { if (TTP->getDepth() == Depth) Used[TTP->getIndex()] = true; } return; } if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, Depth, Used); if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, Depth, Used); } /// Mark the template parameters that are used by the given /// type. static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used) { if (T.isNull()) return; // Non-dependent types have nothing deducible if (!T->isDependentType()) return; T = Ctx.getCanonicalType(T); switch (T->getTypeClass()) { case Type::Pointer: MarkUsedTemplateParameters(Ctx, cast(T)->getPointeeType(), OnlyDeduced, Depth, Used); break; case Type::BlockPointer: MarkUsedTemplateParameters(Ctx, cast(T)->getPointeeType(), OnlyDeduced, Depth, Used); break; case Type::LValueReference: case Type::RValueReference: MarkUsedTemplateParameters(Ctx, cast(T)->getPointeeType(), OnlyDeduced, Depth, Used); break; case Type::MemberPointer: { const MemberPointerType *MemPtr = cast(T.getTypePtr()); MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, Depth, Used); MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), OnlyDeduced, Depth, Used); break; } case Type::DependentSizedArray: MarkUsedTemplateParameters(Ctx, cast(T)->getSizeExpr(), OnlyDeduced, Depth, Used); // Fall through to check the element type [[fallthrough]]; case Type::ConstantArray: case Type::IncompleteArray: MarkUsedTemplateParameters(Ctx, cast(T)->getElementType(), OnlyDeduced, Depth, Used); break; case Type::Vector: case Type::ExtVector: MarkUsedTemplateParameters(Ctx, cast(T)->getElementType(), OnlyDeduced, Depth, Used); break; case Type::DependentVector: { const auto *VecType = cast(T); MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, Depth, Used); MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, Used); break; } case Type::DependentSizedExtVector: { const DependentSizedExtVectorType *VecType = cast(T); MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, Depth, Used); MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, Used); break; } case Type::DependentAddressSpace: { const DependentAddressSpaceType *DependentASType = cast(T); MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), OnlyDeduced, Depth, Used); MarkUsedTemplateParameters(Ctx, DependentASType->getAddrSpaceExpr(), OnlyDeduced, Depth, Used); break; } case Type::ConstantMatrix: { const ConstantMatrixType *MatType = cast(T); MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, Depth, Used); break; } case Type::DependentSizedMatrix: { const DependentSizedMatrixType *MatType = cast(T); MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, Depth, Used); MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth, Used); MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced, Depth, Used); break; } case Type::FunctionProto: { const FunctionProtoType *Proto = cast(T); MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, Used); for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { // C++17 [temp.deduct.type]p5: // The non-deduced contexts are: [...] // -- A function parameter pack that does not occur at the end of the // parameter-declaration-list. if (!OnlyDeduced || I + 1 == N || !Proto->getParamType(I)->getAs()) { MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, Depth, Used); } else { // FIXME: C++17 [temp.deduct.call]p1: // When a function parameter pack appears in a non-deduced context, // the type of that pack is never deduced. // // We should also track a set of "never deduced" parameters, and // subtract that from the list of deduced parameters after marking. } } if (auto *E = Proto->getNoexceptExpr()) MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); break; } case Type::TemplateTypeParm: { const TemplateTypeParmType *TTP = cast(T); if (TTP->getDepth() == Depth) Used[TTP->getIndex()] = true; break; } case Type::SubstTemplateTypeParmPack: { const SubstTemplateTypeParmPackType *Subst = cast(T); if (Subst->getReplacedParameter()->getDepth() == Depth) Used[Subst->getIndex()] = true; MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), OnlyDeduced, Depth, Used); break; } case Type::InjectedClassName: T = cast(T)->getInjectedSpecializationType(); [[fallthrough]]; case Type::TemplateSpecialization: { const TemplateSpecializationType *Spec = cast(T); MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, Depth, Used); // C++0x [temp.deduct.type]p9: // If the template argument list of P contains a pack expansion that is // not the last template argument, the entire template argument list is a // non-deduced context. if (OnlyDeduced && hasPackExpansionBeforeEnd(Spec->template_arguments())) break; for (const auto &Arg : Spec->template_arguments()) MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); break; } case Type::Complex: if (!OnlyDeduced) MarkUsedTemplateParameters(Ctx, cast(T)->getElementType(), OnlyDeduced, Depth, Used); break; case Type::Atomic: if (!OnlyDeduced) MarkUsedTemplateParameters(Ctx, cast(T)->getValueType(), OnlyDeduced, Depth, Used); break; case Type::DependentName: if (!OnlyDeduced) MarkUsedTemplateParameters(Ctx, cast(T)->getQualifier(), OnlyDeduced, Depth, Used); break; case Type::DependentTemplateSpecialization: { // C++14 [temp.deduct.type]p5: // The non-deduced contexts are: // -- The nested-name-specifier of a type that was specified using a // qualified-id // // C++14 [temp.deduct.type]p6: // When a type name is specified in a way that includes a non-deduced // context, all of the types that comprise that type name are also // non-deduced. if (OnlyDeduced) break; const DependentTemplateSpecializationType *Spec = cast(T); MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), OnlyDeduced, Depth, Used); for (const auto &Arg : Spec->template_arguments()) MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); break; } case Type::TypeOf: if (!OnlyDeduced) MarkUsedTemplateParameters(Ctx, cast(T)->getUnmodifiedType(), OnlyDeduced, Depth, Used); break; case Type::TypeOfExpr: if (!OnlyDeduced) MarkUsedTemplateParameters(Ctx, cast(T)->getUnderlyingExpr(), OnlyDeduced, Depth, Used); break; case Type::Decltype: if (!OnlyDeduced) MarkUsedTemplateParameters(Ctx, cast(T)->getUnderlyingExpr(), OnlyDeduced, Depth, Used); break; case Type::UnaryTransform: if (!OnlyDeduced) MarkUsedTemplateParameters(Ctx, cast(T)->getUnderlyingType(), OnlyDeduced, Depth, Used); break; case Type::PackExpansion: MarkUsedTemplateParameters(Ctx, cast(T)->getPattern(), OnlyDeduced, Depth, Used); break; case Type::Auto: case Type::DeducedTemplateSpecialization: MarkUsedTemplateParameters(Ctx, cast(T)->getDeducedType(), OnlyDeduced, Depth, Used); break; case Type::DependentBitInt: MarkUsedTemplateParameters(Ctx, cast(T)->getNumBitsExpr(), OnlyDeduced, Depth, Used); break; // None of these types have any template parameters in them. case Type::Builtin: case Type::VariableArray: case Type::FunctionNoProto: case Type::Record: case Type::Enum: case Type::ObjCInterface: case Type::ObjCObject: case Type::ObjCObjectPointer: case Type::UnresolvedUsing: case Type::Pipe: case Type::BitInt: #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define DEPENDENT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.inc" break; } } /// Mark the template parameters that are used by this /// template argument. static void MarkUsedTemplateParameters(ASTContext &Ctx, const TemplateArgument &TemplateArg, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used) { switch (TemplateArg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: break; case TemplateArgument::NullPtr: MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, Depth, Used); break; case TemplateArgument::Type: MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, Depth, Used); break; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: MarkUsedTemplateParameters(Ctx, TemplateArg.getAsTemplateOrTemplatePattern(), OnlyDeduced, Depth, Used); break; case TemplateArgument::Expression: MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, Depth, Used); break; case TemplateArgument::Pack: for (const auto &P : TemplateArg.pack_elements()) MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); break; } } /// Mark which template parameters are used in a given expression. /// /// \param E the expression from which template parameters will be deduced. /// /// \param Used a bit vector whose elements will be set to \c true /// to indicate when the corresponding template parameter will be /// deduced. void Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used) { ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used); } /// Mark which template parameters can be deduced from a given /// template argument list. /// /// \param TemplateArgs the template argument list from which template /// parameters will be deduced. /// /// \param Used a bit vector whose elements will be set to \c true /// to indicate when the corresponding template parameter will be /// deduced. void Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used) { // C++0x [temp.deduct.type]p9: // If the template argument list of P contains a pack expansion that is not // the last template argument, the entire template argument list is a // non-deduced context. if (OnlyDeduced && hasPackExpansionBeforeEnd(TemplateArgs.asArray())) return; for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, Depth, Used); } /// Marks all of the template parameters that will be deduced by a /// call to the given function template. void Sema::MarkDeducedTemplateParameters( ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced) { TemplateParameterList *TemplateParams = FunctionTemplate->getTemplateParameters(); Deduced.clear(); Deduced.resize(TemplateParams->size()); FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), true, TemplateParams->getDepth(), Deduced); } bool hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, QualType T) { if (!T->isDependentType()) return false; TemplateParameterList *TemplateParams = FunctionTemplate->getTemplateParameters(); llvm::SmallBitVector Deduced(TemplateParams->size()); ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), Deduced); return Deduced.any(); }