//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ declarations. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/CharUnits.h" #include "clang/AST/ComparisonCategories.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/TypeOrdering.h" #include "clang/Basic/AttributeCommonInfo.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/CXXFieldCollector.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/EnterExpressionEvaluationContext.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaCUDA.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/SemaObjC.h" #include "clang/Sema/SemaOpenMP.h" #include "clang/Sema/Template.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/STLForwardCompat.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/SaveAndRestore.h" #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // CheckDefaultArgumentVisitor //===----------------------------------------------------------------------===// namespace { /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses /// the default argument of a parameter to determine whether it /// contains any ill-formed subexpressions. For example, this will /// diagnose the use of local variables or parameters within the /// default argument expression. class CheckDefaultArgumentVisitor : public ConstStmtVisitor { Sema &S; const Expr *DefaultArg; public: CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) : S(S), DefaultArg(DefaultArg) {} bool VisitExpr(const Expr *Node); bool VisitDeclRefExpr(const DeclRefExpr *DRE); bool VisitCXXThisExpr(const CXXThisExpr *ThisE); bool VisitLambdaExpr(const LambdaExpr *Lambda); bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); }; /// VisitExpr - Visit all of the children of this expression. bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { bool IsInvalid = false; for (const Stmt *SubStmt : Node->children()) if (SubStmt) IsInvalid |= Visit(SubStmt); return IsInvalid; } /// VisitDeclRefExpr - Visit a reference to a declaration, to /// determine whether this declaration can be used in the default /// argument expression. bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { const ValueDecl *Decl = dyn_cast(DRE->getDecl()); if (!isa(Decl)) return false; if (const auto *Param = dyn_cast(Decl)) { // C++ [dcl.fct.default]p9: // [...] parameters of a function shall not be used in default // argument expressions, even if they are not evaluated. [...] // // C++17 [dcl.fct.default]p9 (by CWG 2082): // [...] A parameter shall not appear as a potentially-evaluated // expression in a default argument. [...] // if (DRE->isNonOdrUse() != NOUR_Unevaluated) return S.Diag(DRE->getBeginLoc(), diag::err_param_default_argument_references_param) << Param->getDeclName() << DefaultArg->getSourceRange(); } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) { // C++ [dcl.fct.default]p7: // Local variables shall not be used in default argument // expressions. // // C++17 [dcl.fct.default]p7 (by CWG 2082): // A local variable shall not appear as a potentially-evaluated // expression in a default argument. // // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): // Note: A local variable cannot be odr-used (6.3) in a default // argument. // if (VD->isLocalVarDecl() && !DRE->isNonOdrUse()) return S.Diag(DRE->getBeginLoc(), diag::err_param_default_argument_references_local) << Decl << DefaultArg->getSourceRange(); } return false; } /// VisitCXXThisExpr - Visit a C++ "this" expression. bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { // C++ [dcl.fct.default]p8: // The keyword this shall not be used in a default argument of a // member function. return S.Diag(ThisE->getBeginLoc(), diag::err_param_default_argument_references_this) << ThisE->getSourceRange(); } bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( const PseudoObjectExpr *POE) { bool Invalid = false; for (const Expr *E : POE->semantics()) { // Look through bindings. if (const auto *OVE = dyn_cast(E)) { E = OVE->getSourceExpr(); assert(E && "pseudo-object binding without source expression?"); } Invalid |= Visit(E); } return Invalid; } bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { // [expr.prim.lambda.capture]p9 // a lambda-expression appearing in a default argument cannot implicitly or // explicitly capture any local entity. Such a lambda-expression can still // have an init-capture if any full-expression in its initializer satisfies // the constraints of an expression appearing in a default argument. bool Invalid = false; for (const LambdaCapture &LC : Lambda->captures()) { if (!Lambda->isInitCapture(&LC)) return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg); // Init captures are always VarDecl. auto *D = cast(LC.getCapturedVar()); Invalid |= Visit(D->getInit()); } return Invalid; } } // namespace void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method) { // If we have an MSAny spec already, don't bother. if (!Method || ComputedEST == EST_MSAny) return; const FunctionProtoType *Proto = Method->getType()->getAs(); Proto = Self->ResolveExceptionSpec(CallLoc, Proto); if (!Proto) return; ExceptionSpecificationType EST = Proto->getExceptionSpecType(); // If we have a throw-all spec at this point, ignore the function. if (ComputedEST == EST_None) return; if (EST == EST_None && Method->hasAttr()) EST = EST_BasicNoexcept; switch (EST) { case EST_Unparsed: case EST_Uninstantiated: case EST_Unevaluated: llvm_unreachable("should not see unresolved exception specs here"); // If this function can throw any exceptions, make a note of that. case EST_MSAny: case EST_None: // FIXME: Whichever we see last of MSAny and None determines our result. // We should make a consistent, order-independent choice here. ClearExceptions(); ComputedEST = EST; return; case EST_NoexceptFalse: ClearExceptions(); ComputedEST = EST_None; return; // FIXME: If the call to this decl is using any of its default arguments, we // need to search them for potentially-throwing calls. // If this function has a basic noexcept, it doesn't affect the outcome. case EST_BasicNoexcept: case EST_NoexceptTrue: case EST_NoThrow: return; // If we're still at noexcept(true) and there's a throw() callee, // change to that specification. case EST_DynamicNone: if (ComputedEST == EST_BasicNoexcept) ComputedEST = EST_DynamicNone; return; case EST_DependentNoexcept: llvm_unreachable( "should not generate implicit declarations for dependent cases"); case EST_Dynamic: break; } assert(EST == EST_Dynamic && "EST case not considered earlier."); assert(ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."); ComputedEST = EST_Dynamic; // Record the exceptions in this function's exception specification. for (const auto &E : Proto->exceptions()) if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) Exceptions.push_back(E); } void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { if (!S || ComputedEST == EST_MSAny) return; // FIXME: // // C++0x [except.spec]p14: // [An] implicit exception-specification specifies the type-id T if and // only if T is allowed by the exception-specification of a function directly // invoked by f's implicit definition; f shall allow all exceptions if any // function it directly invokes allows all exceptions, and f shall allow no // exceptions if every function it directly invokes allows no exceptions. // // Note in particular that if an implicit exception-specification is generated // for a function containing a throw-expression, that specification can still // be noexcept(true). // // Note also that 'directly invoked' is not defined in the standard, and there // is no indication that we should only consider potentially-evaluated calls. // // Ultimately we should implement the intent of the standard: the exception // specification should be the set of exceptions which can be thrown by the // implicit definition. For now, we assume that any non-nothrow expression can // throw any exception. if (Self->canThrow(S)) ComputedEST = EST_None; } ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, SourceLocation EqualLoc) { if (RequireCompleteType(Param->getLocation(), Param->getType(), diag::err_typecheck_decl_incomplete_type)) return true; // C++ [dcl.fct.default]p5 // A default argument expression is implicitly converted (clause // 4) to the parameter type. The default argument expression has // the same semantic constraints as the initializer expression in // a declaration of a variable of the parameter type, using the // copy-initialization semantics (8.5). InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, Param); InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), EqualLoc); InitializationSequence InitSeq(*this, Entity, Kind, Arg); ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); if (Result.isInvalid()) return true; Arg = Result.getAs(); CheckCompletedExpr(Arg, EqualLoc); Arg = MaybeCreateExprWithCleanups(Arg); return Arg; } void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, SourceLocation EqualLoc) { // Add the default argument to the parameter Param->setDefaultArg(Arg); // We have already instantiated this parameter; provide each of the // instantiations with the uninstantiated default argument. UnparsedDefaultArgInstantiationsMap::iterator InstPos = UnparsedDefaultArgInstantiations.find(Param); if (InstPos != UnparsedDefaultArgInstantiations.end()) { for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) InstPos->second[I]->setUninstantiatedDefaultArg(Arg); // We're done tracking this parameter's instantiations. UnparsedDefaultArgInstantiations.erase(InstPos); } } void Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, Expr *DefaultArg) { if (!param || !DefaultArg) return; ParmVarDecl *Param = cast(param); UnparsedDefaultArgLocs.erase(Param); // Default arguments are only permitted in C++ if (!getLangOpts().CPlusPlus) { Diag(EqualLoc, diag::err_param_default_argument) << DefaultArg->getSourceRange(); return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); } // Check for unexpanded parameter packs. if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); // C++11 [dcl.fct.default]p3 // A default argument expression [...] shall not be specified for a // parameter pack. if (Param->isParameterPack()) { Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) << DefaultArg->getSourceRange(); // Recover by discarding the default argument. Param->setDefaultArg(nullptr); return; } ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); if (Result.isInvalid()) return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); DefaultArg = Result.getAs(); // Check that the default argument is well-formed CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); if (DefaultArgChecker.Visit(DefaultArg)) return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); SetParamDefaultArgument(Param, DefaultArg, EqualLoc); } void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc, SourceLocation ArgLoc) { if (!param) return; ParmVarDecl *Param = cast(param); Param->setUnparsedDefaultArg(); UnparsedDefaultArgLocs[Param] = ArgLoc; } void Sema::ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc, Expr *DefaultArg) { if (!param) return; ParmVarDecl *Param = cast(param); Param->setInvalidDecl(); UnparsedDefaultArgLocs.erase(Param); ExprResult RE; if (DefaultArg) { RE = CreateRecoveryExpr(EqualLoc, DefaultArg->getEndLoc(), {DefaultArg}, Param->getType().getNonReferenceType()); } else { RE = CreateRecoveryExpr(EqualLoc, EqualLoc, {}, Param->getType().getNonReferenceType()); } Param->setDefaultArg(RE.get()); } void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { // C++ [dcl.fct.default]p3 // A default argument expression shall be specified only in the // parameter-declaration-clause of a function declaration or in a // template-parameter (14.1). It shall not be specified for a // parameter pack. If it is specified in a // parameter-declaration-clause, it shall not occur within a // declarator or abstract-declarator of a parameter-declaration. bool MightBeFunction = D.isFunctionDeclarationContext(); for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { DeclaratorChunk &chunk = D.getTypeObject(i); if (chunk.Kind == DeclaratorChunk::Function) { if (MightBeFunction) { // This is a function declaration. It can have default arguments, but // keep looking in case its return type is a function type with default // arguments. MightBeFunction = false; continue; } for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; ++argIdx) { ParmVarDecl *Param = cast(chunk.Fun.Params[argIdx].Param); if (Param->hasUnparsedDefaultArg()) { std::unique_ptr Toks = std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); SourceRange SR; if (Toks->size() > 1) SR = SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); else SR = UnparsedDefaultArgLocs[Param]; Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) << SR; } else if (Param->getDefaultArg()) { Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) << Param->getDefaultArg()->getSourceRange(); Param->setDefaultArg(nullptr); } } } else if (chunk.Kind != DeclaratorChunk::Paren) { MightBeFunction = false; } } } static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) { return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); }); } bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S) { bool Invalid = false; // The declaration context corresponding to the scope is the semantic // parent, unless this is a local function declaration, in which case // it is that surrounding function. DeclContext *ScopeDC = New->isLocalExternDecl() ? New->getLexicalDeclContext() : New->getDeclContext(); // Find the previous declaration for the purpose of default arguments. FunctionDecl *PrevForDefaultArgs = Old; for (/**/; PrevForDefaultArgs; // Don't bother looking back past the latest decl if this is a local // extern declaration; nothing else could work. PrevForDefaultArgs = New->isLocalExternDecl() ? nullptr : PrevForDefaultArgs->getPreviousDecl()) { // Ignore hidden declarations. if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) continue; if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && !New->isCXXClassMember()) { // Ignore default arguments of old decl if they are not in // the same scope and this is not an out-of-line definition of // a member function. continue; } if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { // If only one of these is a local function declaration, then they are // declared in different scopes, even though isDeclInScope may think // they're in the same scope. (If both are local, the scope check is // sufficient, and if neither is local, then they are in the same scope.) continue; } // We found the right previous declaration. break; } // C++ [dcl.fct.default]p4: // For non-template functions, default arguments can be added in // later declarations of a function in the same // scope. Declarations in different scopes have completely // distinct sets of default arguments. That is, declarations in // inner scopes do not acquire default arguments from // declarations in outer scopes, and vice versa. In a given // function declaration, all parameters subsequent to a // parameter with a default argument shall have default // arguments supplied in this or previous declarations. A // default argument shall not be redefined by a later // declaration (not even to the same value). // // C++ [dcl.fct.default]p6: // Except for member functions of class templates, the default arguments // in a member function definition that appears outside of the class // definition are added to the set of default arguments provided by the // member function declaration in the class definition. for (unsigned p = 0, NumParams = PrevForDefaultArgs ? PrevForDefaultArgs->getNumParams() : 0; p < NumParams; ++p) { ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); ParmVarDecl *NewParam = New->getParamDecl(p); bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; bool NewParamHasDfl = NewParam->hasDefaultArg(); if (OldParamHasDfl && NewParamHasDfl) { unsigned DiagDefaultParamID = diag::err_param_default_argument_redefinition; // MSVC accepts that default parameters be redefined for member functions // of template class. The new default parameter's value is ignored. Invalid = true; if (getLangOpts().MicrosoftExt) { CXXMethodDecl *MD = dyn_cast(New); if (MD && MD->getParent()->getDescribedClassTemplate()) { // Merge the old default argument into the new parameter. NewParam->setHasInheritedDefaultArg(); if (OldParam->hasUninstantiatedDefaultArg()) NewParam->setUninstantiatedDefaultArg( OldParam->getUninstantiatedDefaultArg()); else NewParam->setDefaultArg(OldParam->getInit()); DiagDefaultParamID = diag::ext_param_default_argument_redefinition; Invalid = false; } } // FIXME: If we knew where the '=' was, we could easily provide a fix-it // hint here. Alternatively, we could walk the type-source information // for NewParam to find the last source location in the type... but it // isn't worth the effort right now. This is the kind of test case that // is hard to get right: // int f(int); // void g(int (*fp)(int) = f); // void g(int (*fp)(int) = &f); Diag(NewParam->getLocation(), DiagDefaultParamID) << NewParam->getDefaultArgRange(); // Look for the function declaration where the default argument was // actually written, which may be a declaration prior to Old. for (auto Older = PrevForDefaultArgs; OldParam->hasInheritedDefaultArg(); /**/) { Older = Older->getPreviousDecl(); OldParam = Older->getParamDecl(p); } Diag(OldParam->getLocation(), diag::note_previous_definition) << OldParam->getDefaultArgRange(); } else if (OldParamHasDfl) { // Merge the old default argument into the new parameter unless the new // function is a friend declaration in a template class. In the latter // case the default arguments will be inherited when the friend // declaration will be instantiated. if (New->getFriendObjectKind() == Decl::FOK_None || !New->getLexicalDeclContext()->isDependentContext()) { // It's important to use getInit() here; getDefaultArg() // strips off any top-level ExprWithCleanups. NewParam->setHasInheritedDefaultArg(); if (OldParam->hasUnparsedDefaultArg()) NewParam->setUnparsedDefaultArg(); else if (OldParam->hasUninstantiatedDefaultArg()) NewParam->setUninstantiatedDefaultArg( OldParam->getUninstantiatedDefaultArg()); else NewParam->setDefaultArg(OldParam->getInit()); } } else if (NewParamHasDfl) { if (New->getDescribedFunctionTemplate()) { // Paragraph 4, quoted above, only applies to non-template functions. Diag(NewParam->getLocation(), diag::err_param_default_argument_template_redecl) << NewParam->getDefaultArgRange(); Diag(PrevForDefaultArgs->getLocation(), diag::note_template_prev_declaration) << false; } else if (New->getTemplateSpecializationKind() != TSK_ImplicitInstantiation && New->getTemplateSpecializationKind() != TSK_Undeclared) { // C++ [temp.expr.spec]p21: // Default function arguments shall not be specified in a declaration // or a definition for one of the following explicit specializations: // - the explicit specialization of a function template; // - the explicit specialization of a member function template; // - the explicit specialization of a member function of a class // template where the class template specialization to which the // member function specialization belongs is implicitly // instantiated. Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) << New->getDeclName() << NewParam->getDefaultArgRange(); } else if (New->getDeclContext()->isDependentContext()) { // C++ [dcl.fct.default]p6 (DR217): // Default arguments for a member function of a class template shall // be specified on the initial declaration of the member function // within the class template. // // Reading the tea leaves a bit in DR217 and its reference to DR205 // leads me to the conclusion that one cannot add default function // arguments for an out-of-line definition of a member function of a // dependent type. int WhichKind = 2; if (CXXRecordDecl *Record = dyn_cast(New->getDeclContext())) { if (Record->getDescribedClassTemplate()) WhichKind = 0; else if (isa(Record)) WhichKind = 1; else WhichKind = 2; } Diag(NewParam->getLocation(), diag::err_param_default_argument_member_template_redecl) << WhichKind << NewParam->getDefaultArgRange(); } } } // DR1344: If a default argument is added outside a class definition and that // default argument makes the function a special member function, the program // is ill-formed. This can only happen for constructors. if (isa(New) && New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { CXXSpecialMemberKind NewSM = getSpecialMember(cast(New)), OldSM = getSpecialMember(cast(Old)); if (NewSM != OldSM) { ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); assert(NewParam->hasDefaultArg()); Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) << NewParam->getDefaultArgRange() << llvm::to_underlying(NewSM); Diag(Old->getLocation(), diag::note_previous_declaration); } } const FunctionDecl *Def; // C++11 [dcl.constexpr]p1: If any declaration of a function or function // template has a constexpr specifier then all its declarations shall // contain the constexpr specifier. if (New->getConstexprKind() != Old->getConstexprKind()) { Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) << New << static_cast(New->getConstexprKind()) << static_cast(Old->getConstexprKind()); Diag(Old->getLocation(), diag::note_previous_declaration); Invalid = true; } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && Old->isDefined(Def) && // If a friend function is inlined but does not have 'inline' // specifier, it is a definition. Do not report attribute conflict // in this case, redefinition will be diagnosed later. (New->isInlineSpecified() || New->getFriendObjectKind() == Decl::FOK_None)) { // C++11 [dcl.fcn.spec]p4: // If the definition of a function appears in a translation unit before its // first declaration as inline, the program is ill-formed. Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; Diag(Def->getLocation(), diag::note_previous_definition); Invalid = true; } // C++17 [temp.deduct.guide]p3: // Two deduction guide declarations in the same translation unit // for the same class template shall not have equivalent // parameter-declaration-clauses. if (isa(New) && !New->isFunctionTemplateSpecialization() && isVisible(Old)) { Diag(New->getLocation(), diag::err_deduction_guide_redeclared); Diag(Old->getLocation(), diag::note_previous_declaration); } // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default // argument expression, that declaration shall be a definition and shall be // the only declaration of the function or function template in the // translation unit. if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && functionDeclHasDefaultArgument(Old)) { Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); Diag(Old->getLocation(), diag::note_previous_declaration); Invalid = true; } // C++11 [temp.friend]p4 (DR329): // When a function is defined in a friend function declaration in a class // template, the function is instantiated when the function is odr-used. // The same restrictions on multiple declarations and definitions that // apply to non-template function declarations and definitions also apply // to these implicit definitions. const FunctionDecl *OldDefinition = nullptr; if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && Old->isDefined(OldDefinition, true)) CheckForFunctionRedefinition(New, OldDefinition); return Invalid; } void Sema::DiagPlaceholderVariableDefinition(SourceLocation Loc) { Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_placeholder_var_definition : diag::ext_placeholder_var_definition); } NamedDecl * Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists) { assert(D.isDecompositionDeclarator()); const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); // The syntax only allows a decomposition declarator as a simple-declaration, // a for-range-declaration, or a condition in Clang, but we parse it in more // cases than that. if (!D.mayHaveDecompositionDeclarator()) { Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) << Decomp.getSourceRange(); return nullptr; } if (!TemplateParamLists.empty()) { // FIXME: There's no rule against this, but there are also no rules that // would actually make it usable, so we reject it for now. Diag(TemplateParamLists.front()->getTemplateLoc(), diag::err_decomp_decl_template); return nullptr; } Diag(Decomp.getLSquareLoc(), !getLangOpts().CPlusPlus17 ? diag::ext_decomp_decl : D.getContext() == DeclaratorContext::Condition ? diag::ext_decomp_decl_cond : diag::warn_cxx14_compat_decomp_decl) << Decomp.getSourceRange(); // The semantic context is always just the current context. DeclContext *const DC = CurContext; // C++17 [dcl.dcl]/8: // The decl-specifier-seq shall contain only the type-specifier auto // and cv-qualifiers. // C++20 [dcl.dcl]/8: // If decl-specifier-seq contains any decl-specifier other than static, // thread_local, auto, or cv-qualifiers, the program is ill-formed. // C++23 [dcl.pre]/6: // Each decl-specifier in the decl-specifier-seq shall be static, // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier. auto &DS = D.getDeclSpec(); { // Note: While constrained-auto needs to be checked, we do so separately so // we can emit a better diagnostic. SmallVector BadSpecifiers; SmallVector BadSpecifierLocs; SmallVector CPlusPlus20Specifiers; SmallVector CPlusPlus20SpecifierLocs; if (auto SCS = DS.getStorageClassSpec()) { if (SCS == DeclSpec::SCS_static) { CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); } else { BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); } } if (auto TSCS = DS.getThreadStorageClassSpec()) { CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); } if (DS.hasConstexprSpecifier()) { BadSpecifiers.push_back( DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); } if (DS.isInlineSpecified()) { BadSpecifiers.push_back("inline"); BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); } if (!BadSpecifiers.empty()) { auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); Err << (int)BadSpecifiers.size() << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); // Don't add FixItHints to remove the specifiers; we do still respect // them when building the underlying variable. for (auto Loc : BadSpecifierLocs) Err << SourceRange(Loc, Loc); } else if (!CPlusPlus20Specifiers.empty()) { auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_decomp_decl_spec : diag::ext_decomp_decl_spec); Warn << (int)CPlusPlus20Specifiers.size() << llvm::join(CPlusPlus20Specifiers.begin(), CPlusPlus20Specifiers.end(), " "); for (auto Loc : CPlusPlus20SpecifierLocs) Warn << SourceRange(Loc, Loc); } // We can't recover from it being declared as a typedef. if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) return nullptr; } // C++2a [dcl.struct.bind]p1: // A cv that includes volatile is deprecated if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && getLangOpts().CPlusPlus20) Diag(DS.getVolatileSpecLoc(), diag::warn_deprecated_volatile_structured_binding); TypeSourceInfo *TInfo = GetTypeForDeclarator(D); QualType R = TInfo->getType(); if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, UPPC_DeclarationType)) D.setInvalidType(); // The syntax only allows a single ref-qualifier prior to the decomposition // declarator. No other declarator chunks are permitted. Also check the type // specifier here. if (DS.getTypeSpecType() != DeclSpec::TST_auto || D.hasGroupingParens() || D.getNumTypeObjects() > 1 || (D.getNumTypeObjects() == 1 && D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { Diag(Decomp.getLSquareLoc(), (D.hasGroupingParens() || (D.getNumTypeObjects() && D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) ? diag::err_decomp_decl_parens : diag::err_decomp_decl_type) << R; // In most cases, there's no actual problem with an explicitly-specified // type, but a function type won't work here, and ActOnVariableDeclarator // shouldn't be called for such a type. if (R->isFunctionType()) D.setInvalidType(); } // Constrained auto is prohibited by [decl.pre]p6, so check that here. if (DS.isConstrainedAuto()) { TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId(); assert(TemplRep->Kind == TNK_Concept_template && "No other template kind should be possible for a constrained auto"); SourceRange TemplRange{TemplRep->TemplateNameLoc, TemplRep->RAngleLoc.isValid() ? TemplRep->RAngleLoc : TemplRep->TemplateNameLoc}; Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint) << TemplRange << FixItHint::CreateRemoval(TemplRange); } // Build the BindingDecls. SmallVector Bindings; // Build the BindingDecls. for (auto &B : D.getDecompositionDeclarator().bindings()) { // Check for name conflicts. DeclarationNameInfo NameInfo(B.Name, B.NameLoc); IdentifierInfo *VarName = B.Name; assert(VarName && "Cannot have an unnamed binding declaration"); LookupResult Previous(*this, NameInfo, LookupOrdinaryName, RedeclarationKind::ForVisibleRedeclaration); LookupName(Previous, S, /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); // It's not permitted to shadow a template parameter name. if (Previous.isSingleResult() && Previous.getFoundDecl()->isTemplateParameter()) { DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), Previous.getFoundDecl()); Previous.clear(); } auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, VarName); ProcessDeclAttributeList(S, BD, *B.Attrs); // Find the shadowed declaration before filtering for scope. NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() ? getShadowedDeclaration(BD, Previous) : nullptr; bool ConsiderLinkage = DC->isFunctionOrMethod() && DS.getStorageClassSpec() == DeclSpec::SCS_extern; FilterLookupForScope(Previous, DC, S, ConsiderLinkage, /*AllowInlineNamespace*/false); bool IsPlaceholder = DS.getStorageClassSpec() != DeclSpec::SCS_static && DC->isFunctionOrMethod() && VarName->isPlaceholder(); if (!Previous.empty()) { if (IsPlaceholder) { bool sameDC = (Previous.end() - 1) ->getDeclContext() ->getRedeclContext() ->Equals(DC->getRedeclContext()); if (sameDC && isDeclInScope(*(Previous.end() - 1), CurContext, S, false)) { Previous.clear(); DiagPlaceholderVariableDefinition(B.NameLoc); } } else { auto *Old = Previous.getRepresentativeDecl(); Diag(B.NameLoc, diag::err_redefinition) << B.Name; Diag(Old->getLocation(), diag::note_previous_definition); } } else if (ShadowedDecl && !D.isRedeclaration()) { CheckShadow(BD, ShadowedDecl, Previous); } PushOnScopeChains(BD, S, true); Bindings.push_back(BD); ParsingInitForAutoVars.insert(BD); } // There are no prior lookup results for the variable itself, because it // is unnamed. DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, Decomp.getLSquareLoc()); LookupResult Previous(*this, NameInfo, LookupOrdinaryName, RedeclarationKind::ForVisibleRedeclaration); // Build the variable that holds the non-decomposed object. bool AddToScope = true; NamedDecl *New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, MultiTemplateParamsArg(), AddToScope, Bindings); if (AddToScope) { S->AddDecl(New); CurContext->addHiddenDecl(New); } if (OpenMP().isInOpenMPDeclareTargetContext()) OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New); return New; } static bool checkSimpleDecomposition( Sema &S, ArrayRef Bindings, ValueDecl *Src, QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, llvm::function_ref GetInit) { if ((int64_t)Bindings.size() != NumElems) { S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) << DecompType << (unsigned)Bindings.size() << (unsigned)NumElems.getLimitedValue(UINT_MAX) << toString(NumElems, 10) << (NumElems < Bindings.size()); return true; } unsigned I = 0; for (auto *B : Bindings) { SourceLocation Loc = B->getLocation(); ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); if (E.isInvalid()) return true; E = GetInit(Loc, E.get(), I++); if (E.isInvalid()) return true; B->setBinding(ElemType, E.get()); } return false; } static bool checkArrayLikeDecomposition(Sema &S, ArrayRef Bindings, ValueDecl *Src, QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType) { return checkSimpleDecomposition( S, Bindings, Src, DecompType, NumElems, ElemType, [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { ExprResult E = S.ActOnIntegerConstant(Loc, I); if (E.isInvalid()) return ExprError(); return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); }); } static bool checkArrayDecomposition(Sema &S, ArrayRef Bindings, ValueDecl *Src, QualType DecompType, const ConstantArrayType *CAT) { return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, llvm::APSInt(CAT->getSize()), CAT->getElementType()); } static bool checkVectorDecomposition(Sema &S, ArrayRef Bindings, ValueDecl *Src, QualType DecompType, const VectorType *VT) { return checkArrayLikeDecomposition( S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), S.Context.getQualifiedType(VT->getElementType(), DecompType.getQualifiers())); } static bool checkComplexDecomposition(Sema &S, ArrayRef Bindings, ValueDecl *Src, QualType DecompType, const ComplexType *CT) { return checkSimpleDecomposition( S, Bindings, Src, DecompType, llvm::APSInt::get(2), S.Context.getQualifiedType(CT->getElementType(), DecompType.getQualifiers()), [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); }); } static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, TemplateArgumentListInfo &Args, const TemplateParameterList *Params) { SmallString<128> SS; llvm::raw_svector_ostream OS(SS); bool First = true; unsigned I = 0; for (auto &Arg : Args.arguments()) { if (!First) OS << ", "; Arg.getArgument().print(PrintingPolicy, OS, TemplateParameterList::shouldIncludeTypeForArgument( PrintingPolicy, Params, I)); First = false; I++; } return std::string(OS.str()); } static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, SourceLocation Loc, StringRef Trait, TemplateArgumentListInfo &Args, unsigned DiagID) { auto DiagnoseMissing = [&] { if (DiagID) S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), Args, /*Params*/ nullptr); return true; }; // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. NamespaceDecl *Std = S.getStdNamespace(); if (!Std) return DiagnoseMissing(); // Look up the trait itself, within namespace std. We can diagnose various // problems with this lookup even if we've been asked to not diagnose a // missing specialization, because this can only fail if the user has been // declaring their own names in namespace std or we don't support the // standard library implementation in use. LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), Loc, Sema::LookupOrdinaryName); if (!S.LookupQualifiedName(Result, Std)) return DiagnoseMissing(); if (Result.isAmbiguous()) return true; ClassTemplateDecl *TraitTD = Result.getAsSingle(); if (!TraitTD) { Result.suppressDiagnostics(); NamedDecl *Found = *Result.begin(); S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; S.Diag(Found->getLocation(), diag::note_declared_at); return true; } // Build the template-id. QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); if (TraitTy.isNull()) return true; if (!S.isCompleteType(Loc, TraitTy)) { if (DiagID) S.RequireCompleteType( Loc, TraitTy, DiagID, printTemplateArgs(S.Context.getPrintingPolicy(), Args, TraitTD->getTemplateParameters())); return true; } CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); assert(RD && "specialization of class template is not a class?"); // Look up the member of the trait type. S.LookupQualifiedName(TraitMemberLookup, RD); return TraitMemberLookup.isAmbiguous(); } static TemplateArgumentLoc getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, uint64_t I) { TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); } static TemplateArgumentLoc getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); } namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, llvm::APSInt &Size) { EnterExpressionEvaluationContext ContextRAII( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); DeclarationName Value = S.PP.getIdentifierInfo("value"); LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); // Form template argument list for tuple_size. TemplateArgumentListInfo Args(Loc, Loc); Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); // If there's no tuple_size specialization or the lookup of 'value' is empty, // it's not tuple-like. if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || R.empty()) return IsTupleLike::NotTupleLike; // If we get this far, we've committed to the tuple interpretation, but // we can still fail if there actually isn't a usable ::value. struct ICEDiagnoser : Sema::VerifyICEDiagnoser { LookupResult &R; TemplateArgumentListInfo &Args; ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) : R(R), Args(Args) {} Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) << printTemplateArgs(S.Context.getPrintingPolicy(), Args, /*Params*/ nullptr); } } Diagnoser(R, Args); ExprResult E = S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); if (E.isInvalid()) return IsTupleLike::Error; E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); if (E.isInvalid()) return IsTupleLike::Error; return IsTupleLike::TupleLike; } /// \return std::tuple_element::type. static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, unsigned I, QualType T) { // Form template argument list for tuple_element. TemplateArgumentListInfo Args(Loc, Loc); Args.addArgument( getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); if (lookupStdTypeTraitMember( S, R, Loc, "tuple_element", Args, diag::err_decomp_decl_std_tuple_element_not_specialized)) return QualType(); auto *TD = R.getAsSingle(); if (!TD) { R.suppressDiagnostics(); S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) << printTemplateArgs(S.Context.getPrintingPolicy(), Args, /*Params*/ nullptr); if (!R.empty()) S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); return QualType(); } return S.Context.getTypeDeclType(TD); } namespace { struct InitializingBinding { Sema &S; InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; Ctx.PointOfInstantiation = BD->getLocation(); Ctx.Entity = BD; S.pushCodeSynthesisContext(Ctx); } ~InitializingBinding() { S.popCodeSynthesisContext(); } }; } static bool checkTupleLikeDecomposition(Sema &S, ArrayRef Bindings, VarDecl *Src, QualType DecompType, const llvm::APSInt &TupleSize) { if ((int64_t)Bindings.size() != TupleSize) { S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) << DecompType << (unsigned)Bindings.size() << (unsigned)TupleSize.getLimitedValue(UINT_MAX) << toString(TupleSize, 10) << (TupleSize < Bindings.size()); return true; } if (Bindings.empty()) return false; DeclarationName GetDN = S.PP.getIdentifierInfo("get"); // [dcl.decomp]p3: // The unqualified-id get is looked up in the scope of E by class member // access lookup ... LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); bool UseMemberGet = false; if (S.isCompleteType(Src->getLocation(), DecompType)) { if (auto *RD = DecompType->getAsCXXRecordDecl()) S.LookupQualifiedName(MemberGet, RD); if (MemberGet.isAmbiguous()) return true; // ... and if that finds at least one declaration that is a function // template whose first template parameter is a non-type parameter ... for (NamedDecl *D : MemberGet) { if (FunctionTemplateDecl *FTD = dyn_cast(D->getUnderlyingDecl())) { TemplateParameterList *TPL = FTD->getTemplateParameters(); if (TPL->size() != 0 && isa(TPL->getParam(0))) { // ... the initializer is e.get(). UseMemberGet = true; break; } } } } unsigned I = 0; for (auto *B : Bindings) { InitializingBinding InitContext(S, B); SourceLocation Loc = B->getLocation(); ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); if (E.isInvalid()) return true; // e is an lvalue if the type of the entity is an lvalue reference and // an xvalue otherwise if (!Src->getType()->isLValueReferenceType()) E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, E.get(), nullptr, VK_XValue, FPOptionsOverride()); TemplateArgumentListInfo Args(Loc, Loc); Args.addArgument( getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); if (UseMemberGet) { // if [lookup of member get] finds at least one declaration, the // initializer is e.get(). E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, CXXScopeSpec(), SourceLocation(), nullptr, MemberGet, &Args, nullptr); if (E.isInvalid()) return true; E = S.BuildCallExpr(nullptr, E.get(), Loc, std::nullopt, Loc); } else { // Otherwise, the initializer is get(e), where get is looked up // in the associated namespaces. Expr *Get = UnresolvedLookupExpr::Create( S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), DeclarationNameInfo(GetDN, Loc), /*RequiresADL=*/true, &Args, UnresolvedSetIterator(), UnresolvedSetIterator(), /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false); Expr *Arg = E.get(); E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); } if (E.isInvalid()) return true; Expr *Init = E.get(); // Given the type T designated by std::tuple_element::type, QualType T = getTupleLikeElementType(S, Loc, I, DecompType); if (T.isNull()) return true; // each vi is a variable of type "reference to T" initialized with the // initializer, where the reference is an lvalue reference if the // initializer is an lvalue and an rvalue reference otherwise QualType RefType = S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); if (RefType.isNull()) return true; auto *RefVD = VarDecl::Create( S.Context, Src->getDeclContext(), Loc, Loc, B->getDeclName().getAsIdentifierInfo(), RefType, S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); RefVD->setTSCSpec(Src->getTSCSpec()); RefVD->setImplicit(); if (Src->isInlineSpecified()) RefVD->setInlineSpecified(); RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); InitializationSequence Seq(S, Entity, Kind, Init); E = Seq.Perform(S, Entity, Kind, Init); if (E.isInvalid()) return true; E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); if (E.isInvalid()) return true; RefVD->setInit(E.get()); S.CheckCompleteVariableDeclaration(RefVD); E = S.BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(B->getDeclName(), Loc), RefVD); if (E.isInvalid()) return true; B->setBinding(T, E.get()); I++; } return false; } /// Find the base class to decompose in a built-in decomposition of a class type. /// This base class search is, unfortunately, not quite like any other that we /// perform anywhere else in C++. static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, const CXXRecordDecl *RD, CXXCastPath &BasePath) { auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); }; const CXXRecordDecl *ClassWithFields = nullptr; AccessSpecifier AS = AS_public; if (RD->hasDirectFields()) // [dcl.decomp]p4: // Otherwise, all of E's non-static data members shall be public direct // members of E ... ClassWithFields = RD; else { // ... or of ... CXXBasePaths Paths; Paths.setOrigin(const_cast(RD)); if (!RD->lookupInBases(BaseHasFields, Paths)) { // If no classes have fields, just decompose RD itself. (This will work // if and only if zero bindings were provided.) return DeclAccessPair::make(const_cast(RD), AS_public); } CXXBasePath *BestPath = nullptr; for (auto &P : Paths) { if (!BestPath) BestPath = &P; else if (!S.Context.hasSameType(P.back().Base->getType(), BestPath->back().Base->getType())) { // ... the same ... S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) << false << RD << BestPath->back().Base->getType() << P.back().Base->getType(); return DeclAccessPair(); } else if (P.Access < BestPath->Access) { BestPath = &P; } } // ... unambiguous ... QualType BaseType = BestPath->back().Base->getType(); if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); return DeclAccessPair(); } // ... [accessible, implied by other rules] base class of E. S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), *BestPath, diag::err_decomp_decl_inaccessible_base); AS = BestPath->Access; ClassWithFields = BaseType->getAsCXXRecordDecl(); S.BuildBasePathArray(Paths, BasePath); } // The above search did not check whether the selected class itself has base // classes with fields, so check that now. CXXBasePaths Paths; if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) << (ClassWithFields == RD) << RD << ClassWithFields << Paths.front().back().Base->getType(); return DeclAccessPair(); } return DeclAccessPair::make(const_cast(ClassWithFields), AS); } static bool checkMemberDecomposition(Sema &S, ArrayRef Bindings, ValueDecl *Src, QualType DecompType, const CXXRecordDecl *OrigRD) { if (S.RequireCompleteType(Src->getLocation(), DecompType, diag::err_incomplete_type)) return true; CXXCastPath BasePath; DeclAccessPair BasePair = findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); const CXXRecordDecl *RD = cast_or_null(BasePair.getDecl()); if (!RD) return true; QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), DecompType.getQualifiers()); auto DiagnoseBadNumberOfBindings = [&]() -> bool { unsigned NumFields = llvm::count_if( RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitField(); }); assert(Bindings.size() != NumFields); S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) << DecompType << (unsigned)Bindings.size() << NumFields << NumFields << (NumFields < Bindings.size()); return true; }; // all of E's non-static data members shall be [...] well-formed // when named as e.name in the context of the structured binding, // E shall not have an anonymous union member, ... unsigned I = 0; for (auto *FD : RD->fields()) { if (FD->isUnnamedBitField()) continue; // All the non-static data members are required to be nameable, so they // must all have names. if (!FD->getDeclName()) { if (RD->isLambda()) { S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); S.Diag(RD->getLocation(), diag::note_lambda_decl); return true; } if (FD->isAnonymousStructOrUnion()) { S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) << DecompType << FD->getType()->isUnionType(); S.Diag(FD->getLocation(), diag::note_declared_at); return true; } // FIXME: Are there any other ways we could have an anonymous member? } // We have a real field to bind. if (I >= Bindings.size()) return DiagnoseBadNumberOfBindings(); auto *B = Bindings[I++]; SourceLocation Loc = B->getLocation(); // The field must be accessible in the context of the structured binding. // We already checked that the base class is accessible. // FIXME: Add 'const' to AccessedEntity's classes so we can remove the // const_cast here. S.CheckStructuredBindingMemberAccess( Loc, const_cast(OrigRD), DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( BasePair.getAccess(), FD->getAccess()))); // Initialize the binding to Src.FD. ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); if (E.isInvalid()) return true; E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, VK_LValue, &BasePath); if (E.isInvalid()) return true; E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, CXXScopeSpec(), FD, DeclAccessPair::make(FD, FD->getAccess()), DeclarationNameInfo(FD->getDeclName(), Loc)); if (E.isInvalid()) return true; // If the type of the member is T, the referenced type is cv T, where cv is // the cv-qualification of the decomposition expression. // // FIXME: We resolve a defect here: if the field is mutable, we do not add // 'const' to the type of the field. Qualifiers Q = DecompType.getQualifiers(); if (FD->isMutable()) Q.removeConst(); B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); } if (I != Bindings.size()) return DiagnoseBadNumberOfBindings(); return false; } void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { QualType DecompType = DD->getType(); // If the type of the decomposition is dependent, then so is the type of // each binding. if (DecompType->isDependentType()) { for (auto *B : DD->bindings()) B->setType(Context.DependentTy); return; } DecompType = DecompType.getNonReferenceType(); ArrayRef Bindings = DD->bindings(); // C++1z [dcl.decomp]/2: // If E is an array type [...] // As an extension, we also support decomposition of built-in complex and // vector types. if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) DD->setInvalidDecl(); return; } if (auto *VT = DecompType->getAs()) { if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) DD->setInvalidDecl(); return; } if (auto *CT = DecompType->getAs()) { if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) DD->setInvalidDecl(); return; } // C++1z [dcl.decomp]/3: // if the expression std::tuple_size::value is a well-formed integral // constant expression, [...] llvm::APSInt TupleSize(32); switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { case IsTupleLike::Error: DD->setInvalidDecl(); return; case IsTupleLike::TupleLike: if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) DD->setInvalidDecl(); return; case IsTupleLike::NotTupleLike: break; } // C++1z [dcl.dcl]/8: // [E shall be of array or non-union class type] CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); if (!RD || RD->isUnion()) { Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) << DD << !RD << DecompType; DD->setInvalidDecl(); return; } // C++1z [dcl.decomp]/4: // all of E's non-static data members shall be [...] direct members of // E or of the same unambiguous public base class of E, ... if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) DD->setInvalidDecl(); } void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { // Shortcut if exceptions are disabled. if (!getLangOpts().CXXExceptions) return; assert(Context.hasSameType(New->getType(), Old->getType()) && "Should only be called if types are otherwise the same."); QualType NewType = New->getType(); QualType OldType = Old->getType(); // We're only interested in pointers and references to functions, as well // as pointers to member functions. if (const ReferenceType *R = NewType->getAs()) { NewType = R->getPointeeType(); OldType = OldType->castAs()->getPointeeType(); } else if (const PointerType *P = NewType->getAs()) { NewType = P->getPointeeType(); OldType = OldType->castAs()->getPointeeType(); } else if (const MemberPointerType *M = NewType->getAs()) { NewType = M->getPointeeType(); OldType = OldType->castAs()->getPointeeType(); } if (!NewType->isFunctionProtoType()) return; // There's lots of special cases for functions. For function pointers, system // libraries are hopefully not as broken so that we don't need these // workarounds. if (CheckEquivalentExceptionSpec( OldType->getAs(), Old->getLocation(), NewType->getAs(), New->getLocation())) { New->setInvalidDecl(); } } /// CheckCXXDefaultArguments - Verify that the default arguments for a /// function declaration are well-formed according to C++ /// [dcl.fct.default]. void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { // This checking doesn't make sense for explicit specializations; their // default arguments are determined by the declaration we're specializing, // not by FD. if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) return; if (auto *FTD = FD->getDescribedFunctionTemplate()) if (FTD->isMemberSpecialization()) return; unsigned NumParams = FD->getNumParams(); unsigned ParamIdx = 0; // Find first parameter with a default argument for (; ParamIdx < NumParams; ++ParamIdx) { ParmVarDecl *Param = FD->getParamDecl(ParamIdx); if (Param->hasDefaultArg()) break; } // C++20 [dcl.fct.default]p4: // In a given function declaration, each parameter subsequent to a parameter // with a default argument shall have a default argument supplied in this or // a previous declaration, unless the parameter was expanded from a // parameter pack, or shall be a function parameter pack. for (++ParamIdx; ParamIdx < NumParams; ++ParamIdx) { ParmVarDecl *Param = FD->getParamDecl(ParamIdx); if (Param->hasDefaultArg() || Param->isParameterPack() || (CurrentInstantiationScope && CurrentInstantiationScope->isLocalPackExpansion(Param))) continue; if (Param->isInvalidDecl()) /* We already complained about this parameter. */; else if (Param->getIdentifier()) Diag(Param->getLocation(), diag::err_param_default_argument_missing_name) << Param->getIdentifier(); else Diag(Param->getLocation(), diag::err_param_default_argument_missing); } } /// Check that the given type is a literal type. Issue a diagnostic if not, /// if Kind is Diagnose. /// \return \c true if a problem has been found (and optionally diagnosed). template static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, SourceLocation Loc, QualType T, unsigned DiagID, Ts &&...DiagArgs) { if (T->isDependentType()) return false; switch (Kind) { case Sema::CheckConstexprKind::Diagnose: return SemaRef.RequireLiteralType(Loc, T, DiagID, std::forward(DiagArgs)...); case Sema::CheckConstexprKind::CheckValid: return !T->isLiteralType(SemaRef.Context); } llvm_unreachable("unknown CheckConstexprKind"); } /// Determine whether a destructor cannot be constexpr due to static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, const CXXDestructorDecl *DD, Sema::CheckConstexprKind Kind) { assert(!SemaRef.getLangOpts().CPlusPlus23 && "this check is obsolete for C++23"); auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { const CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); if (!RD || RD->hasConstexprDestructor()) return true; if (Kind == Sema::CheckConstexprKind::Diagnose) { SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) << static_cast(DD->getConstexprKind()) << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; } return false; }; const CXXRecordDecl *RD = DD->getParent(); for (const CXXBaseSpecifier &B : RD->bases()) if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) return false; for (const FieldDecl *FD : RD->fields()) if (!Check(FD->getLocation(), FD->getType(), FD)) return false; return true; } /// Check whether a function's parameter types are all literal types. If so, /// return true. If not, produce a suitable diagnostic and return false. static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD, Sema::CheckConstexprKind Kind) { assert(!SemaRef.getLangOpts().CPlusPlus23 && "this check is obsolete for C++23"); unsigned ArgIndex = 0; const auto *FT = FD->getType()->castAs(); for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), e = FT->param_type_end(); i != e; ++i, ++ArgIndex) { const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); assert(PD && "null in a parameter list"); SourceLocation ParamLoc = PD->getLocation(); if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, diag::err_constexpr_non_literal_param, ArgIndex + 1, PD->getSourceRange(), isa(FD), FD->isConsteval())) return false; } return true; } /// Check whether a function's return type is a literal type. If so, return /// true. If not, produce a suitable diagnostic and return false. static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, Sema::CheckConstexprKind Kind) { assert(!SemaRef.getLangOpts().CPlusPlus23 && "this check is obsolete for C++23"); if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), diag::err_constexpr_non_literal_return, FD->isConsteval())) return false; return true; } /// Get diagnostic %select index for tag kind for /// record diagnostic message. /// WARNING: Indexes apply to particular diagnostics only! /// /// \returns diagnostic %select index. static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { switch (Tag) { case TagTypeKind::Struct: return 0; case TagTypeKind::Interface: return 1; case TagTypeKind::Class: return 2; default: llvm_unreachable("Invalid tag kind for record diagnostic!"); } } static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *Body, Sema::CheckConstexprKind Kind); static bool CheckConstexprMissingReturn(Sema &SemaRef, const FunctionDecl *Dcl); bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, CheckConstexprKind Kind) { const CXXMethodDecl *MD = dyn_cast(NewFD); if (MD && MD->isInstance()) { // C++11 [dcl.constexpr]p4: // The definition of a constexpr constructor shall satisfy the following // constraints: // - the class shall not have any virtual base classes; // // FIXME: This only applies to constructors and destructors, not arbitrary // member functions. const CXXRecordDecl *RD = MD->getParent(); if (RD->getNumVBases()) { if (Kind == CheckConstexprKind::CheckValid) return false; Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) << isa(NewFD) << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); for (const auto &I : RD->vbases()) Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) << I.getSourceRange(); return false; } } if (!isa(NewFD)) { // C++11 [dcl.constexpr]p3: // The definition of a constexpr function shall satisfy the following // constraints: // - it shall not be virtual; (removed in C++20) const CXXMethodDecl *Method = dyn_cast(NewFD); if (Method && Method->isVirtual()) { if (getLangOpts().CPlusPlus20) { if (Kind == CheckConstexprKind::Diagnose) Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); } else { if (Kind == CheckConstexprKind::CheckValid) return false; Method = Method->getCanonicalDecl(); Diag(Method->getLocation(), diag::err_constexpr_virtual); // If it's not obvious why this function is virtual, find an overridden // function which uses the 'virtual' keyword. const CXXMethodDecl *WrittenVirtual = Method; while (!WrittenVirtual->isVirtualAsWritten()) WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); if (WrittenVirtual != Method) Diag(WrittenVirtual->getLocation(), diag::note_overridden_virtual_function); return false; } } // - its return type shall be a literal type; (removed in C++23) if (!getLangOpts().CPlusPlus23 && !CheckConstexprReturnType(*this, NewFD, Kind)) return false; } if (auto *Dtor = dyn_cast(NewFD)) { // A destructor can be constexpr only if the defaulted destructor could be; // we don't need to check the members and bases if we already know they all // have constexpr destructors. (removed in C++23) if (!getLangOpts().CPlusPlus23 && !Dtor->getParent()->defaultedDestructorIsConstexpr()) { if (Kind == CheckConstexprKind::CheckValid) return false; if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) return false; } } // - each of its parameter types shall be a literal type; (removed in C++23) if (!getLangOpts().CPlusPlus23 && !CheckConstexprParameterTypes(*this, NewFD, Kind)) return false; Stmt *Body = NewFD->getBody(); assert(Body && "CheckConstexprFunctionDefinition called on function with no body"); return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); } /// Check the given declaration statement is legal within a constexpr function /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. /// /// \return true if the body is OK (maybe only as an extension), false if we /// have diagnosed a problem. static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, DeclStmt *DS, SourceLocation &Cxx1yLoc, Sema::CheckConstexprKind Kind) { // C++11 [dcl.constexpr]p3 and p4: // The definition of a constexpr function(p3) or constructor(p4) [...] shall // contain only for (const auto *DclIt : DS->decls()) { switch (DclIt->getKind()) { case Decl::StaticAssert: case Decl::Using: case Decl::UsingShadow: case Decl::UsingDirective: case Decl::UnresolvedUsingTypename: case Decl::UnresolvedUsingValue: case Decl::UsingEnum: // - static_assert-declarations // - using-declarations, // - using-directives, // - using-enum-declaration continue; case Decl::Typedef: case Decl::TypeAlias: { // - typedef declarations and alias-declarations that do not define // classes or enumerations, const auto *TN = cast(DclIt); if (TN->getUnderlyingType()->isVariablyModifiedType()) { // Don't allow variably-modified types in constexpr functions. if (Kind == Sema::CheckConstexprKind::Diagnose) { TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) << TL.getSourceRange() << TL.getType() << isa(Dcl); } return false; } continue; } case Decl::Enum: case Decl::CXXRecord: // C++1y allows types to be defined, not just declared. if (cast(DclIt)->isThisDeclarationADefinition()) { if (Kind == Sema::CheckConstexprKind::Diagnose) { SemaRef.Diag(DS->getBeginLoc(), SemaRef.getLangOpts().CPlusPlus14 ? diag::warn_cxx11_compat_constexpr_type_definition : diag::ext_constexpr_type_definition) << isa(Dcl); } else if (!SemaRef.getLangOpts().CPlusPlus14) { return false; } } continue; case Decl::EnumConstant: case Decl::IndirectField: case Decl::ParmVar: // These can only appear with other declarations which are banned in // C++11 and permitted in C++1y, so ignore them. continue; case Decl::Var: case Decl::Decomposition: { // C++1y [dcl.constexpr]p3 allows anything except: // a definition of a variable of non-literal type or of static or // thread storage duration or [before C++2a] for which no // initialization is performed. const auto *VD = cast(DclIt); if (VD->isThisDeclarationADefinition()) { if (VD->isStaticLocal()) { if (Kind == Sema::CheckConstexprKind::Diagnose) { SemaRef.Diag(VD->getLocation(), SemaRef.getLangOpts().CPlusPlus23 ? diag::warn_cxx20_compat_constexpr_var : diag::ext_constexpr_static_var) << isa(Dcl) << (VD->getTLSKind() == VarDecl::TLS_Dynamic); } else if (!SemaRef.getLangOpts().CPlusPlus23) { return false; } } if (SemaRef.LangOpts.CPlusPlus23) { CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), diag::warn_cxx20_compat_constexpr_var, isa(Dcl), /*variable of non-literal type*/ 2); } else if (CheckLiteralType( SemaRef, Kind, VD->getLocation(), VD->getType(), diag::err_constexpr_local_var_non_literal_type, isa(Dcl))) { return false; } if (!VD->getType()->isDependentType() && !VD->hasInit() && !VD->isCXXForRangeDecl()) { if (Kind == Sema::CheckConstexprKind::Diagnose) { SemaRef.Diag( VD->getLocation(), SemaRef.getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_constexpr_local_var_no_init : diag::ext_constexpr_local_var_no_init) << isa(Dcl); } else if (!SemaRef.getLangOpts().CPlusPlus20) { return false; } continue; } } if (Kind == Sema::CheckConstexprKind::Diagnose) { SemaRef.Diag(VD->getLocation(), SemaRef.getLangOpts().CPlusPlus14 ? diag::warn_cxx11_compat_constexpr_local_var : diag::ext_constexpr_local_var) << isa(Dcl); } else if (!SemaRef.getLangOpts().CPlusPlus14) { return false; } continue; } case Decl::NamespaceAlias: case Decl::Function: // These are disallowed in C++11 and permitted in C++1y. Allow them // everywhere as an extension. if (!Cxx1yLoc.isValid()) Cxx1yLoc = DS->getBeginLoc(); continue; default: if (Kind == Sema::CheckConstexprKind::Diagnose) { SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) << isa(Dcl) << Dcl->isConsteval(); } return false; } } return true; } /// Check that the given field is initialized within a constexpr constructor. /// /// \param Dcl The constexpr constructor being checked. /// \param Field The field being checked. This may be a member of an anonymous /// struct or union nested within the class being checked. /// \param Inits All declarations, including anonymous struct/union members and /// indirect members, for which any initialization was provided. /// \param Diagnosed Whether we've emitted the error message yet. Used to attach /// multiple notes for different members to the same error. /// \param Kind Whether we're diagnosing a constructor as written or determining /// whether the formal requirements are satisfied. /// \return \c false if we're checking for validity and the constructor does /// not satisfy the requirements on a constexpr constructor. static bool CheckConstexprCtorInitializer(Sema &SemaRef, const FunctionDecl *Dcl, FieldDecl *Field, llvm::SmallSet &Inits, bool &Diagnosed, Sema::CheckConstexprKind Kind) { // In C++20 onwards, there's nothing to check for validity. if (Kind == Sema::CheckConstexprKind::CheckValid && SemaRef.getLangOpts().CPlusPlus20) return true; if (Field->isInvalidDecl()) return true; if (Field->isUnnamedBitField()) return true; // Anonymous unions with no variant members and empty anonymous structs do not // need to be explicitly initialized. FIXME: Anonymous structs that contain no // indirect fields don't need initializing. if (Field->isAnonymousStructOrUnion() && (Field->getType()->isUnionType() ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() : Field->getType()->getAsCXXRecordDecl()->isEmpty())) return true; if (!Inits.count(Field)) { if (Kind == Sema::CheckConstexprKind::Diagnose) { if (!Diagnosed) { SemaRef.Diag(Dcl->getLocation(), SemaRef.getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init : diag::ext_constexpr_ctor_missing_init); Diagnosed = true; } SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init); } else if (!SemaRef.getLangOpts().CPlusPlus20) { return false; } } else if (Field->isAnonymousStructOrUnion()) { const RecordDecl *RD = Field->getType()->castAs()->getDecl(); for (auto *I : RD->fields()) // If an anonymous union contains an anonymous struct of which any member // is initialized, all members must be initialized. if (!RD->isUnion() || Inits.count(I)) if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, Kind)) return false; } return true; } /// Check the provided statement is allowed in a constexpr function /// definition. static bool CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, SmallVectorImpl &ReturnStmts, SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, SourceLocation &Cxx2bLoc, Sema::CheckConstexprKind Kind) { // - its function-body shall be [...] a compound-statement that contains only switch (S->getStmtClass()) { case Stmt::NullStmtClass: // - null statements, return true; case Stmt::DeclStmtClass: // - static_assert-declarations // - using-declarations, // - using-directives, // - typedef declarations and alias-declarations that do not define // classes or enumerations, if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast(S), Cxx1yLoc, Kind)) return false; return true; case Stmt::ReturnStmtClass: // - and exactly one return statement; if (isa(Dcl)) { // C++1y allows return statements in constexpr constructors. if (!Cxx1yLoc.isValid()) Cxx1yLoc = S->getBeginLoc(); return true; } ReturnStmts.push_back(S->getBeginLoc()); return true; case Stmt::AttributedStmtClass: // Attributes on a statement don't affect its formal kind and hence don't // affect its validity in a constexpr function. return CheckConstexprFunctionStmt( SemaRef, Dcl, cast(S)->getSubStmt(), ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind); case Stmt::CompoundStmtClass: { // C++1y allows compound-statements. if (!Cxx1yLoc.isValid()) Cxx1yLoc = S->getBeginLoc(); CompoundStmt *CompStmt = cast(S); for (auto *BodyIt : CompStmt->body()) { if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; } return true; } case Stmt::IfStmtClass: { // C++1y allows if-statements. if (!Cxx1yLoc.isValid()) Cxx1yLoc = S->getBeginLoc(); IfStmt *If = cast(S); if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; if (If->getElse() && !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; return true; } case Stmt::WhileStmtClass: case Stmt::DoStmtClass: case Stmt::ForStmtClass: case Stmt::CXXForRangeStmtClass: case Stmt::ContinueStmtClass: // C++1y allows all of these. We don't allow them as extensions in C++11, // because they don't make sense without variable mutation. if (!SemaRef.getLangOpts().CPlusPlus14) break; if (!Cxx1yLoc.isValid()) Cxx1yLoc = S->getBeginLoc(); for (Stmt *SubStmt : S->children()) { if (SubStmt && !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; } return true; case Stmt::SwitchStmtClass: case Stmt::CaseStmtClass: case Stmt::DefaultStmtClass: case Stmt::BreakStmtClass: // C++1y allows switch-statements, and since they don't need variable // mutation, we can reasonably allow them in C++11 as an extension. if (!Cxx1yLoc.isValid()) Cxx1yLoc = S->getBeginLoc(); for (Stmt *SubStmt : S->children()) { if (SubStmt && !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; } return true; case Stmt::LabelStmtClass: case Stmt::GotoStmtClass: if (Cxx2bLoc.isInvalid()) Cxx2bLoc = S->getBeginLoc(); for (Stmt *SubStmt : S->children()) { if (SubStmt && !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; } return true; case Stmt::GCCAsmStmtClass: case Stmt::MSAsmStmtClass: // C++2a allows inline assembly statements. case Stmt::CXXTryStmtClass: if (Cxx2aLoc.isInvalid()) Cxx2aLoc = S->getBeginLoc(); for (Stmt *SubStmt : S->children()) { if (SubStmt && !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; } return true; case Stmt::CXXCatchStmtClass: // Do not bother checking the language mode (already covered by the // try block check). if (!CheckConstexprFunctionStmt( SemaRef, Dcl, cast(S)->getHandlerBlock(), ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; return true; default: if (!isa(S)) break; // C++1y allows expression-statements. if (!Cxx1yLoc.isValid()) Cxx1yLoc = S->getBeginLoc(); return true; } if (Kind == Sema::CheckConstexprKind::Diagnose) { SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) << isa(Dcl) << Dcl->isConsteval(); } return false; } /// Check the body for the given constexpr function declaration only contains /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. /// /// \return true if the body is OK, false if we have found or diagnosed a /// problem. static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *Body, Sema::CheckConstexprKind Kind) { SmallVector ReturnStmts; if (isa(Body)) { // C++11 [dcl.constexpr]p3: // The definition of a constexpr function shall satisfy the following // constraints: [...] // - its function-body shall be = delete, = default, or a // compound-statement // // C++11 [dcl.constexpr]p4: // In the definition of a constexpr constructor, [...] // - its function-body shall not be a function-try-block; // // This restriction is lifted in C++2a, as long as inner statements also // apply the general constexpr rules. switch (Kind) { case Sema::CheckConstexprKind::CheckValid: if (!SemaRef.getLangOpts().CPlusPlus20) return false; break; case Sema::CheckConstexprKind::Diagnose: SemaRef.Diag(Body->getBeginLoc(), !SemaRef.getLangOpts().CPlusPlus20 ? diag::ext_constexpr_function_try_block_cxx20 : diag::warn_cxx17_compat_constexpr_function_try_block) << isa(Dcl); break; } } // - its function-body shall be [...] a compound-statement that contains only // [... list of cases ...] // // Note that walking the children here is enough to properly check for // CompoundStmt and CXXTryStmt body. SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc; for (Stmt *SubStmt : Body->children()) { if (SubStmt && !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) return false; } if (Kind == Sema::CheckConstexprKind::CheckValid) { // If this is only valid as an extension, report that we don't satisfy the // constraints of the current language. if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) || (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) return false; } else if (Cxx2bLoc.isValid()) { SemaRef.Diag(Cxx2bLoc, SemaRef.getLangOpts().CPlusPlus23 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt : diag::ext_constexpr_body_invalid_stmt_cxx23) << isa(Dcl); } else if (Cxx2aLoc.isValid()) { SemaRef.Diag(Cxx2aLoc, SemaRef.getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt : diag::ext_constexpr_body_invalid_stmt_cxx20) << isa(Dcl); } else if (Cxx1yLoc.isValid()) { SemaRef.Diag(Cxx1yLoc, SemaRef.getLangOpts().CPlusPlus14 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt : diag::ext_constexpr_body_invalid_stmt) << isa(Dcl); } if (const CXXConstructorDecl *Constructor = dyn_cast(Dcl)) { const CXXRecordDecl *RD = Constructor->getParent(); // DR1359: // - every non-variant non-static data member and base class sub-object // shall be initialized; // DR1460: // - if the class is a union having variant members, exactly one of them // shall be initialized; if (RD->isUnion()) { if (Constructor->getNumCtorInitializers() == 0 && RD->hasVariantMembers()) { if (Kind == Sema::CheckConstexprKind::Diagnose) { SemaRef.Diag( Dcl->getLocation(), SemaRef.getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init : diag::ext_constexpr_union_ctor_no_init); } else if (!SemaRef.getLangOpts().CPlusPlus20) { return false; } } } else if (!Constructor->isDependentContext() && !Constructor->isDelegatingConstructor()) { assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); // Skip detailed checking if we have enough initializers, and we would // allow at most one initializer per member. bool AnyAnonStructUnionMembers = false; unsigned Fields = 0; for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Fields) { if (I->isAnonymousStructOrUnion()) { AnyAnonStructUnionMembers = true; break; } } // DR1460: // - if the class is a union-like class, but is not a union, for each of // its anonymous union members having variant members, exactly one of // them shall be initialized; if (AnyAnonStructUnionMembers || Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { // Check initialization of non-static data members. Base classes are // always initialized so do not need to be checked. Dependent bases // might not have initializers in the member initializer list. llvm::SmallSet Inits; for (const auto *I: Constructor->inits()) { if (FieldDecl *FD = I->getMember()) Inits.insert(FD); else if (IndirectFieldDecl *ID = I->getIndirectMember()) Inits.insert(ID->chain_begin(), ID->chain_end()); } bool Diagnosed = false; for (auto *I : RD->fields()) if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, Kind)) return false; } } } else { if (ReturnStmts.empty()) { switch (Kind) { case Sema::CheckConstexprKind::Diagnose: if (!CheckConstexprMissingReturn(SemaRef, Dcl)) return false; break; case Sema::CheckConstexprKind::CheckValid: // The formal requirements don't include this rule in C++14, even // though the "must be able to produce a constant expression" rules // still imply it in some cases. if (!SemaRef.getLangOpts().CPlusPlus14) return false; break; } } else if (ReturnStmts.size() > 1) { switch (Kind) { case Sema::CheckConstexprKind::Diagnose: SemaRef.Diag( ReturnStmts.back(), SemaRef.getLangOpts().CPlusPlus14 ? diag::warn_cxx11_compat_constexpr_body_multiple_return : diag::ext_constexpr_body_multiple_return); for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) SemaRef.Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return); break; case Sema::CheckConstexprKind::CheckValid: if (!SemaRef.getLangOpts().CPlusPlus14) return false; break; } } } // C++11 [dcl.constexpr]p5: // if no function argument values exist such that the function invocation // substitution would produce a constant expression, the program is // ill-formed; no diagnostic required. // C++11 [dcl.constexpr]p3: // - every constructor call and implicit conversion used in initializing the // return value shall be one of those allowed in a constant expression. // C++11 [dcl.constexpr]p4: // - every constructor involved in initializing non-static data members and // base class sub-objects shall be a constexpr constructor. // // Note that this rule is distinct from the "requirements for a constexpr // function", so is not checked in CheckValid mode. Because the check for // constexpr potential is expensive, skip the check if the diagnostic is // disabled, the function is declared in a system header, or we're in C++23 // or later mode (see https://wg21.link/P2448). bool SkipCheck = !SemaRef.getLangOpts().CheckConstexprFunctionBodies || SemaRef.getSourceManager().isInSystemHeader(Dcl->getLocation()) || SemaRef.getDiagnostics().isIgnored( diag::ext_constexpr_function_never_constant_expr, Dcl->getLocation()); SmallVector Diags; if (Kind == Sema::CheckConstexprKind::Diagnose && !SkipCheck && !Expr::isPotentialConstantExpr(Dcl, Diags)) { SemaRef.Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr) << isa(Dcl) << Dcl->isConsteval() << Dcl->getNameInfo().getSourceRange(); for (size_t I = 0, N = Diags.size(); I != N; ++I) SemaRef.Diag(Diags[I].first, Diags[I].second); // Don't return false here: we allow this for compatibility in // system headers. } return true; } static bool CheckConstexprMissingReturn(Sema &SemaRef, const FunctionDecl *Dcl) { bool IsVoidOrDependentType = Dcl->getReturnType()->isVoidType() || Dcl->getReturnType()->isDependentType(); // Skip emitting a missing return error diagnostic for non-void functions // since C++23 no longer mandates constexpr functions to yield constant // expressions. if (SemaRef.getLangOpts().CPlusPlus23 && !IsVoidOrDependentType) return true; // C++14 doesn't require constexpr functions to contain a 'return' // statement. We still do, unless the return type might be void, because // otherwise if there's no return statement, the function cannot // be used in a core constant expression. bool OK = SemaRef.getLangOpts().CPlusPlus14 && IsVoidOrDependentType; SemaRef.Diag(Dcl->getLocation(), OK ? diag::warn_cxx11_compat_constexpr_body_no_return : diag::err_constexpr_body_no_return) << Dcl->isConsteval(); return OK; } bool Sema::CheckImmediateEscalatingFunctionDefinition( FunctionDecl *FD, const sema::FunctionScopeInfo *FSI) { if (!getLangOpts().CPlusPlus20 || !FD->isImmediateEscalating()) return true; FD->setBodyContainsImmediateEscalatingExpressions( FSI->FoundImmediateEscalatingExpression); if (FSI->FoundImmediateEscalatingExpression) { auto it = UndefinedButUsed.find(FD->getCanonicalDecl()); if (it != UndefinedButUsed.end()) { Diag(it->second, diag::err_immediate_function_used_before_definition) << it->first; Diag(FD->getLocation(), diag::note_defined_here) << FD; if (FD->isImmediateFunction() && !FD->isConsteval()) DiagnoseImmediateEscalatingReason(FD); return false; } } return true; } void Sema::DiagnoseImmediateEscalatingReason(FunctionDecl *FD) { assert(FD->isImmediateEscalating() && !FD->isConsteval() && "expected an immediate function"); assert(FD->hasBody() && "expected the function to have a body"); struct ImmediateEscalatingExpressionsVisitor : public RecursiveASTVisitor { using Base = RecursiveASTVisitor; Sema &SemaRef; const FunctionDecl *ImmediateFn; bool ImmediateFnIsConstructor; CXXConstructorDecl *CurrentConstructor = nullptr; CXXCtorInitializer *CurrentInit = nullptr; ImmediateEscalatingExpressionsVisitor(Sema &SemaRef, FunctionDecl *FD) : SemaRef(SemaRef), ImmediateFn(FD), ImmediateFnIsConstructor(isa(FD)) {} bool shouldVisitImplicitCode() const { return true; } bool shouldVisitLambdaBody() const { return false; } void Diag(const Expr *E, const FunctionDecl *Fn, bool IsCall) { SourceLocation Loc = E->getBeginLoc(); SourceRange Range = E->getSourceRange(); if (CurrentConstructor && CurrentInit) { Loc = CurrentConstructor->getLocation(); Range = CurrentInit->isWritten() ? CurrentInit->getSourceRange() : SourceRange(); } FieldDecl* InitializedField = CurrentInit ? CurrentInit->getAnyMember() : nullptr; SemaRef.Diag(Loc, diag::note_immediate_function_reason) << ImmediateFn << Fn << Fn->isConsteval() << IsCall << isa(Fn) << ImmediateFnIsConstructor << (InitializedField != nullptr) << (CurrentInit && !CurrentInit->isWritten()) << InitializedField << Range; } bool TraverseCallExpr(CallExpr *E) { if (const auto *DR = dyn_cast(E->getCallee()->IgnoreImplicit()); DR && DR->isImmediateEscalating()) { Diag(E, E->getDirectCallee(), /*IsCall=*/true); return false; } for (Expr *A : E->arguments()) if (!getDerived().TraverseStmt(A)) return false; return true; } bool VisitDeclRefExpr(DeclRefExpr *E) { if (const auto *ReferencedFn = dyn_cast(E->getDecl()); ReferencedFn && E->isImmediateEscalating()) { Diag(E, ReferencedFn, /*IsCall=*/false); return false; } return true; } bool VisitCXXConstructExpr(CXXConstructExpr *E) { CXXConstructorDecl *D = E->getConstructor(); if (E->isImmediateEscalating()) { Diag(E, D, /*IsCall=*/true); return false; } return true; } bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { llvm::SaveAndRestore RAII(CurrentInit, Init); return Base::TraverseConstructorInitializer(Init); } bool TraverseCXXConstructorDecl(CXXConstructorDecl *Ctr) { llvm::SaveAndRestore RAII(CurrentConstructor, Ctr); return Base::TraverseCXXConstructorDecl(Ctr); } bool TraverseType(QualType T) { return true; } bool VisitBlockExpr(BlockExpr *T) { return true; } } Visitor(*this, FD); Visitor.TraverseDecl(FD); } CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { assert(getLangOpts().CPlusPlus && "No class names in C!"); if (SS && SS->isInvalid()) return nullptr; if (SS && SS->isNotEmpty()) { DeclContext *DC = computeDeclContext(*SS, true); return dyn_cast_or_null(DC); } return dyn_cast_or_null(CurContext); } bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS) { CXXRecordDecl *CurDecl = getCurrentClass(S, SS); return CurDecl && &II == CurDecl->getIdentifier(); } bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { assert(getLangOpts().CPlusPlus && "No class names in C!"); if (!getLangOpts().SpellChecking) return false; CXXRecordDecl *CurDecl; if (SS && SS->isSet() && !SS->isInvalid()) { DeclContext *DC = computeDeclContext(*SS, true); CurDecl = dyn_cast_or_null(DC); } else CurDecl = dyn_cast_or_null(CurContext); if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) < II->getLength()) { II = CurDecl->getIdentifier(); return true; } return false; } CXXBaseSpecifier *Sema::CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeSourceInfo *TInfo, SourceLocation EllipsisLoc) { QualType BaseType = TInfo->getType(); SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); if (BaseType->containsErrors()) { // Already emitted a diagnostic when parsing the error type. return nullptr; } if (EllipsisLoc.isValid() && !BaseType->containsUnexpandedParameterPack()) { Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) << TInfo->getTypeLoc().getSourceRange(); EllipsisLoc = SourceLocation(); } auto *BaseDecl = dyn_cast_if_present(computeDeclContext(BaseType)); // C++ [class.derived.general]p2: // A class-or-decltype shall denote a (possibly cv-qualified) class type // that is not an incompletely defined class; any cv-qualifiers are // ignored. if (BaseDecl) { // C++ [class.union.general]p4: // [...] A union shall not be used as a base class. if (BaseDecl->isUnion()) { Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; return nullptr; } // For the MS ABI, propagate DLL attributes to base class templates. if (Context.getTargetInfo().getCXXABI().isMicrosoft() || Context.getTargetInfo().getTriple().isPS()) { if (Attr *ClassAttr = getDLLAttr(Class)) { if (auto *BaseSpec = dyn_cast(BaseDecl)) { propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseSpec, BaseLoc); } } } if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class, SpecifierRange)) { Class->setInvalidDecl(); return nullptr; } BaseDecl = BaseDecl->getDefinition(); assert(BaseDecl && "Base type is not incomplete, but has no definition"); // Microsoft docs say: // "If a base-class has a code_seg attribute, derived classes must have the // same attribute." const auto *BaseCSA = BaseDecl->getAttr(); const auto *DerivedCSA = Class->getAttr(); if ((DerivedCSA || BaseCSA) && (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); Diag(BaseDecl->getLocation(), diag::note_base_class_specified_here) << BaseDecl; return nullptr; } // A class which contains a flexible array member is not suitable for use as // a base class: // - If the layout determines that a base comes before another base, // the flexible array member would index into the subsequent base. // - If the layout determines that base comes before the derived class, // the flexible array member would index into the derived class. if (BaseDecl->hasFlexibleArrayMember()) { Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) << BaseDecl->getDeclName(); return nullptr; } // C++ [class]p3: // If a class is marked final and it appears as a base-type-specifier in // base-clause, the program is ill-formed. if (FinalAttr *FA = BaseDecl->getAttr()) { Diag(BaseLoc, diag::err_class_marked_final_used_as_base) << BaseDecl->getDeclName() << FA->isSpelledAsSealed(); Diag(BaseDecl->getLocation(), diag::note_entity_declared_at) << BaseDecl->getDeclName() << FA->getRange(); return nullptr; } // If the base class is invalid the derived class is as well. if (BaseDecl->isInvalidDecl()) Class->setInvalidDecl(); } else if (BaseType->isDependentType()) { // Make sure that we don't make an ill-formed AST where the type of the // Class is non-dependent and its attached base class specifier is an // dependent type, which violates invariants in many clang code paths (e.g. // constexpr evaluator). If this case happens (in errory-recovery mode), we // explicitly mark the Class decl invalid. The diagnostic was already // emitted. if (!Class->isDependentContext()) Class->setInvalidDecl(); } else { // The base class is some non-dependent non-class type. Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; return nullptr; } // In HLSL, unspecified class access is public rather than private. if (getLangOpts().HLSL && Class->getTagKind() == TagTypeKind::Class && Access == AS_none) Access = AS_public; // Create the base specifier. return new (Context) CXXBaseSpecifier( SpecifierRange, Virtual, Class->getTagKind() == TagTypeKind::Class, Access, TInfo, EllipsisLoc); } BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, const ParsedAttributesView &Attributes, bool Virtual, AccessSpecifier Access, ParsedType basetype, SourceLocation BaseLoc, SourceLocation EllipsisLoc) { if (!classdecl) return true; AdjustDeclIfTemplate(classdecl); CXXRecordDecl *Class = dyn_cast(classdecl); if (!Class) return true; // We haven't yet attached the base specifiers. Class->setIsParsingBaseSpecifiers(); // We do not support any C++11 attributes on base-specifiers yet. // Diagnose any attributes we see. for (const ParsedAttr &AL : Attributes) { if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) continue; if (AL.getKind() == ParsedAttr::UnknownAttribute) Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); else Diag(AL.getLoc(), diag::err_base_specifier_attribute) << AL << AL.isRegularKeywordAttribute() << AL.getRange(); } TypeSourceInfo *TInfo = nullptr; GetTypeFromParser(basetype, &TInfo); if (EllipsisLoc.isInvalid() && DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, UPPC_BaseType)) return true; // C++ [class.union.general]p4: // [...] A union shall not have base classes. if (Class->isUnion()) { Diag(Class->getLocation(), diag::err_base_clause_on_union) << SpecifierRange; return true; } if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, Virtual, Access, TInfo, EllipsisLoc)) return BaseSpec; Class->setInvalidDecl(); return true; } /// Use small set to collect indirect bases. As this is only used /// locally, there's no need to abstract the small size parameter. typedef llvm::SmallPtrSet IndirectBaseSet; /// Recursively add the bases of Type. Don't add Type itself. static void NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, const QualType &Type) { // Even though the incoming type is a base, it might not be // a class -- it could be a template parm, for instance. if (auto Rec = Type->getAs()) { auto Decl = Rec->getAsCXXRecordDecl(); // Iterate over its bases. for (const auto &BaseSpec : Decl->bases()) { QualType Base = Context.getCanonicalType(BaseSpec.getType()) .getUnqualifiedType(); if (Set.insert(Base).second) // If we've not already seen it, recurse. NoteIndirectBases(Context, Set, Base); } } } bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, MutableArrayRef Bases) { if (Bases.empty()) return false; // Used to keep track of which base types we have already seen, so // that we can properly diagnose redundant direct base types. Note // that the key is always the unqualified canonical type of the base // class. std::map KnownBaseTypes; // Used to track indirect bases so we can see if a direct base is // ambiguous. IndirectBaseSet IndirectBaseTypes; // Copy non-redundant base specifiers into permanent storage. unsigned NumGoodBases = 0; bool Invalid = false; for (unsigned idx = 0; idx < Bases.size(); ++idx) { QualType NewBaseType = Context.getCanonicalType(Bases[idx]->getType()); NewBaseType = NewBaseType.getLocalUnqualifiedType(); CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; if (KnownBase) { // C++ [class.mi]p3: // A class shall not be specified as a direct base class of a // derived class more than once. Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) << KnownBase->getType() << Bases[idx]->getSourceRange(); // Delete the duplicate base class specifier; we're going to // overwrite its pointer later. Context.Deallocate(Bases[idx]); Invalid = true; } else { // Okay, add this new base class. KnownBase = Bases[idx]; Bases[NumGoodBases++] = Bases[idx]; if (NewBaseType->isDependentType()) continue; // Note this base's direct & indirect bases, if there could be ambiguity. if (Bases.size() > 1) NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); if (const RecordType *Record = NewBaseType->getAs()) { const CXXRecordDecl *RD = cast(Record->getDecl()); if (Class->isInterface() && (!RD->isInterfaceLike() || KnownBase->getAccessSpecifier() != AS_public)) { // The Microsoft extension __interface does not permit bases that // are not themselves public interfaces. Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) << getRecordDiagFromTagKind(RD->getTagKind()) << RD << RD->getSourceRange(); Invalid = true; } if (RD->hasAttr()) Class->addAttr(WeakAttr::CreateImplicit(Context)); } } } // Attach the remaining base class specifiers to the derived class. Class->setBases(Bases.data(), NumGoodBases); // Check that the only base classes that are duplicate are virtual. for (unsigned idx = 0; idx < NumGoodBases; ++idx) { // Check whether this direct base is inaccessible due to ambiguity. QualType BaseType = Bases[idx]->getType(); // Skip all dependent types in templates being used as base specifiers. // Checks below assume that the base specifier is a CXXRecord. if (BaseType->isDependentType()) continue; CanQualType CanonicalBase = Context.getCanonicalType(BaseType) .getUnqualifiedType(); if (IndirectBaseTypes.count(CanonicalBase)) { CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/true); bool found = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); assert(found); (void)found; if (Paths.isAmbiguous(CanonicalBase)) Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) << BaseType << getAmbiguousPathsDisplayString(Paths) << Bases[idx]->getSourceRange(); else assert(Bases[idx]->isVirtual()); } // Delete the base class specifier, since its data has been copied // into the CXXRecordDecl. Context.Deallocate(Bases[idx]); } return Invalid; } void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, MutableArrayRef Bases) { if (!ClassDecl || Bases.empty()) return; AdjustDeclIfTemplate(ClassDecl); AttachBaseSpecifiers(cast(ClassDecl), Bases); } bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { if (!getLangOpts().CPlusPlus) return false; CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); if (!DerivedRD) return false; CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); if (!BaseRD) return false; // If either the base or the derived type is invalid, don't try to // check whether one is derived from the other. if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) return false; // FIXME: In a modules build, do we need the entire path to be visible for us // to be able to use the inheritance relationship? if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) return false; return DerivedRD->isDerivedFrom(BaseRD); } bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, CXXBasePaths &Paths) { if (!getLangOpts().CPlusPlus) return false; CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); if (!DerivedRD) return false; CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); if (!BaseRD) return false; if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) return false; return DerivedRD->isDerivedFrom(BaseRD, Paths); } static void BuildBasePathArray(const CXXBasePath &Path, CXXCastPath &BasePathArray) { // We first go backward and check if we have a virtual base. // FIXME: It would be better if CXXBasePath had the base specifier for // the nearest virtual base. unsigned Start = 0; for (unsigned I = Path.size(); I != 0; --I) { if (Path[I - 1].Base->isVirtual()) { Start = I - 1; break; } } // Now add all bases. for (unsigned I = Start, E = Path.size(); I != E; ++I) BasePathArray.push_back(const_cast(Path[I].Base)); } void Sema::BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePathArray) { assert(BasePathArray.empty() && "Base path array must be empty!"); assert(Paths.isRecordingPaths() && "Must record paths!"); return ::BuildBasePathArray(Paths.front(), BasePathArray); } bool Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbiguousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name, CXXCastPath *BasePath, bool IgnoreAccess) { // First, determine whether the path from Derived to Base is // ambiguous. This is slightly more expensive than checking whether // the Derived to Base conversion exists, because here we need to // explore multiple paths to determine if there is an ambiguity. CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); if (!DerivationOkay) return true; const CXXBasePath *Path = nullptr; if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) Path = &Paths.front(); // For MSVC compatibility, check if Derived directly inherits from Base. Clang // warns about this hierarchy under -Winaccessible-base, but MSVC allows the // user to access such bases. if (!Path && getLangOpts().MSVCCompat) { for (const CXXBasePath &PossiblePath : Paths) { if (PossiblePath.size() == 1) { Path = &PossiblePath; if (AmbiguousBaseConvID) Diag(Loc, diag::ext_ms_ambiguous_direct_base) << Base << Derived << Range; break; } } } if (Path) { if (!IgnoreAccess) { // Check that the base class can be accessed. switch ( CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { case AR_inaccessible: return true; case AR_accessible: case AR_dependent: case AR_delayed: break; } } // Build a base path if necessary. if (BasePath) ::BuildBasePathArray(*Path, *BasePath); return false; } if (AmbiguousBaseConvID) { // We know that the derived-to-base conversion is ambiguous, and // we're going to produce a diagnostic. Perform the derived-to-base // search just one more time to compute all of the possible paths so // that we can print them out. This is more expensive than any of // the previous derived-to-base checks we've done, but at this point // performance isn't as much of an issue. Paths.clear(); Paths.setRecordingPaths(true); bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); assert(StillOkay && "Can only be used with a derived-to-base conversion"); (void)StillOkay; // Build up a textual representation of the ambiguous paths, e.g., // D -> B -> A, that will be used to illustrate the ambiguous // conversions in the diagnostic. We only print one of the paths // to each base class subobject. std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); Diag(Loc, AmbiguousBaseConvID) << Derived << Base << PathDisplayStr << Range << Name; } return true; } bool Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range, CXXCastPath *BasePath, bool IgnoreAccess) { return CheckDerivedToBaseConversion( Derived, Base, diag::err_upcast_to_inaccessible_base, diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), BasePath, IgnoreAccess); } std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { std::string PathDisplayStr; std::set DisplayedPaths; for (CXXBasePaths::paths_iterator Path = Paths.begin(); Path != Paths.end(); ++Path) { if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { // We haven't displayed a path to this particular base // class subobject yet. PathDisplayStr += "\n "; PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); for (CXXBasePath::const_iterator Element = Path->begin(); Element != Path->end(); ++Element) PathDisplayStr += " -> " + Element->Base->getType().getAsString(); } } return PathDisplayStr; } //===----------------------------------------------------------------------===// // C++ class member Handling //===----------------------------------------------------------------------===// bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, SourceLocation ColonLoc, const ParsedAttributesView &Attrs) { assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, ASLoc, ColonLoc); CurContext->addHiddenDecl(ASDecl); return ProcessAccessDeclAttributeList(ASDecl, Attrs); } void Sema::CheckOverrideControl(NamedDecl *D) { if (D->isInvalidDecl()) return; // We only care about "override" and "final" declarations. if (!D->hasAttr() && !D->hasAttr()) return; CXXMethodDecl *MD = dyn_cast(D); // We can't check dependent instance methods. if (MD && MD->isInstance() && (MD->getParent()->hasAnyDependentBases() || MD->getType()->isDependentType())) return; if (MD && !MD->isVirtual()) { // If we have a non-virtual method, check if it hides a virtual method. // (In that case, it's most likely the method has the wrong type.) SmallVector OverloadedMethods; FindHiddenVirtualMethods(MD, OverloadedMethods); if (!OverloadedMethods.empty()) { if (OverrideAttr *OA = D->getAttr()) { Diag(OA->getLocation(), diag::override_keyword_hides_virtual_member_function) << "override" << (OverloadedMethods.size() > 1); } else if (FinalAttr *FA = D->getAttr()) { Diag(FA->getLocation(), diag::override_keyword_hides_virtual_member_function) << (FA->isSpelledAsSealed() ? "sealed" : "final") << (OverloadedMethods.size() > 1); } NoteHiddenVirtualMethods(MD, OverloadedMethods); MD->setInvalidDecl(); return; } // Fall through into the general case diagnostic. // FIXME: We might want to attempt typo correction here. } if (!MD || !MD->isVirtual()) { if (OverrideAttr *OA = D->getAttr()) { Diag(OA->getLocation(), diag::override_keyword_only_allowed_on_virtual_member_functions) << "override" << FixItHint::CreateRemoval(OA->getLocation()); D->dropAttr(); } if (FinalAttr *FA = D->getAttr()) { Diag(FA->getLocation(), diag::override_keyword_only_allowed_on_virtual_member_functions) << (FA->isSpelledAsSealed() ? "sealed" : "final") << FixItHint::CreateRemoval(FA->getLocation()); D->dropAttr(); } return; } // C++11 [class.virtual]p5: // If a function is marked with the virt-specifier override and // does not override a member function of a base class, the program is // ill-formed. bool HasOverriddenMethods = MD->size_overridden_methods() != 0; if (MD->hasAttr() && !HasOverriddenMethods) Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) << MD->getDeclName(); } void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { if (D->isInvalidDecl() || D->hasAttr()) return; CXXMethodDecl *MD = dyn_cast(D); if (!MD || MD->isImplicit() || MD->hasAttr()) return; SourceLocation Loc = MD->getLocation(); SourceLocation SpellingLoc = Loc; if (getSourceManager().isMacroArgExpansion(Loc)) SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) return; if (MD->size_overridden_methods() > 0) { auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { unsigned DiagID = Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) ? DiagInconsistent : DiagSuggest; Diag(MD->getLocation(), DiagID) << MD->getDeclName(); const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); Diag(OMD->getLocation(), diag::note_overridden_virtual_function); }; if (isa(MD)) EmitDiag( diag::warn_inconsistent_destructor_marked_not_override_overriding, diag::warn_suggest_destructor_marked_not_override_overriding); else EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, diag::warn_suggest_function_marked_not_override_overriding); } } bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, const CXXMethodDecl *Old) { FinalAttr *FA = Old->getAttr(); if (!FA) return false; Diag(New->getLocation(), diag::err_final_function_overridden) << New->getDeclName() << FA->isSpelledAsSealed(); Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } static bool InitializationHasSideEffects(const FieldDecl &FD) { const Type *T = FD.getType()->getBaseElementTypeUnsafe(); // FIXME: Destruction of ObjC lifetime types has side-effects. if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) return !RD->isCompleteDefinition() || !RD->hasTrivialDefaultConstructor() || !RD->hasTrivialDestructor(); return false; } void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, DeclarationName FieldName, const CXXRecordDecl *RD, bool DeclIsField) { if (Diags.isIgnored(diag::warn_shadow_field, Loc)) return; // To record a shadowed field in a base std::map Bases; auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { const auto Base = Specifier->getType()->getAsCXXRecordDecl(); // Record an ambiguous path directly if (Bases.find(Base) != Bases.end()) return true; for (const auto Field : Base->lookup(FieldName)) { if ((isa(Field) || isa(Field)) && Field->getAccess() != AS_private) { assert(Field->getAccess() != AS_none); assert(Bases.find(Base) == Bases.end()); Bases[Base] = Field; return true; } } return false; }; CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/true); if (!RD->lookupInBases(FieldShadowed, Paths)) return; for (const auto &P : Paths) { auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); auto It = Bases.find(Base); // Skip duplicated bases if (It == Bases.end()) continue; auto BaseField = It->second; assert(BaseField->getAccess() != AS_private); if (AS_none != CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { Diag(Loc, diag::warn_shadow_field) << FieldName << RD << Base << DeclIsField; Diag(BaseField->getLocation(), diag::note_shadow_field); Bases.erase(It); } } } NamedDecl * Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, Expr *BW, const VirtSpecifiers &VS, InClassInitStyle InitStyle) { const DeclSpec &DS = D.getDeclSpec(); DeclarationNameInfo NameInfo = GetNameForDeclarator(D); DeclarationName Name = NameInfo.getName(); SourceLocation Loc = NameInfo.getLoc(); // For anonymous bitfields, the location should point to the type. if (Loc.isInvalid()) Loc = D.getBeginLoc(); Expr *BitWidth = static_cast(BW); assert(isa(CurContext)); assert(!DS.isFriendSpecified()); bool isFunc = D.isDeclarationOfFunction(); const ParsedAttr *MSPropertyAttr = D.getDeclSpec().getAttributes().getMSPropertyAttr(); if (cast(CurContext)->isInterface()) { // The Microsoft extension __interface only permits public member functions // and prohibits constructors, destructors, operators, non-public member // functions, static methods and data members. unsigned InvalidDecl; bool ShowDeclName = true; if (!isFunc && (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) InvalidDecl = 0; else if (!isFunc) InvalidDecl = 1; else if (AS != AS_public) InvalidDecl = 2; else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) InvalidDecl = 3; else switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: InvalidDecl = 4; ShowDeclName = false; break; case DeclarationName::CXXDestructorName: InvalidDecl = 5; ShowDeclName = false; break; case DeclarationName::CXXOperatorName: case DeclarationName::CXXConversionFunctionName: InvalidDecl = 6; break; default: InvalidDecl = 0; break; } if (InvalidDecl) { if (ShowDeclName) Diag(Loc, diag::err_invalid_member_in_interface) << (InvalidDecl-1) << Name; else Diag(Loc, diag::err_invalid_member_in_interface) << (InvalidDecl-1) << ""; return nullptr; } } // C++ 9.2p6: A member shall not be declared to have automatic storage // duration (auto, register) or with the extern storage-class-specifier. // C++ 7.1.1p8: The mutable specifier can be applied only to names of class // data members and cannot be applied to names declared const or static, // and cannot be applied to reference members. switch (DS.getStorageClassSpec()) { case DeclSpec::SCS_unspecified: case DeclSpec::SCS_typedef: case DeclSpec::SCS_static: break; case DeclSpec::SCS_mutable: if (isFunc) { Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); // FIXME: It would be nicer if the keyword was ignored only for this // declarator. Otherwise we could get follow-up errors. D.getMutableDeclSpec().ClearStorageClassSpecs(); } break; default: Diag(DS.getStorageClassSpecLoc(), diag::err_storageclass_invalid_for_member); D.getMutableDeclSpec().ClearStorageClassSpecs(); break; } bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && !isFunc && TemplateParameterLists.empty(); if (DS.hasConstexprSpecifier() && isInstField) { SemaDiagnosticBuilder B = Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); if (InitStyle == ICIS_NoInit) { B << 0 << 0; if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) B << FixItHint::CreateRemoval(ConstexprLoc); else { B << FixItHint::CreateReplacement(ConstexprLoc, "const"); D.getMutableDeclSpec().ClearConstexprSpec(); const char *PrevSpec; unsigned DiagID; bool Failed = D.getMutableDeclSpec().SetTypeQual( DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); (void)Failed; assert(!Failed && "Making a constexpr member const shouldn't fail"); } } else { B << 1; const char *PrevSpec; unsigned DiagID; if (D.getMutableDeclSpec().SetStorageClassSpec( *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, Context.getPrintingPolicy())) { assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && "This is the only DeclSpec that should fail to be applied"); B << 1; } else { B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); isInstField = false; } } } NamedDecl *Member; if (isInstField) { CXXScopeSpec &SS = D.getCXXScopeSpec(); // Data members must have identifiers for names. if (!Name.isIdentifier()) { Diag(Loc, diag::err_bad_variable_name) << Name; return nullptr; } IdentifierInfo *II = Name.getAsIdentifierInfo(); if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments) << II << SourceRange(D.getName().TemplateId->LAngleLoc, D.getName().TemplateId->RAngleLoc) << D.getName().TemplateId->LAngleLoc; D.SetIdentifier(II, Loc); } if (SS.isSet() && !SS.isInvalid()) { // The user provided a superfluous scope specifier inside a class // definition: // // class X { // int X::member; // }; if (DeclContext *DC = computeDeclContext(SS, false)) { TemplateIdAnnotation *TemplateId = D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId ? D.getName().TemplateId : nullptr; diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), TemplateId, /*IsMemberSpecialization=*/false); } else { Diag(D.getIdentifierLoc(), diag::err_member_qualification) << Name << SS.getRange(); } SS.clear(); } if (MSPropertyAttr) { Member = HandleMSProperty(S, cast(CurContext), Loc, D, BitWidth, InitStyle, AS, *MSPropertyAttr); if (!Member) return nullptr; isInstField = false; } else { Member = HandleField(S, cast(CurContext), Loc, D, BitWidth, InitStyle, AS); if (!Member) return nullptr; } CheckShadowInheritedFields(Loc, Name, cast(CurContext)); } else { Member = HandleDeclarator(S, D, TemplateParameterLists); if (!Member) return nullptr; // Non-instance-fields can't have a bitfield. if (BitWidth) { if (Member->isInvalidDecl()) { // don't emit another diagnostic. } else if (isa(Member) || isa(Member)) { // C++ 9.6p3: A bit-field shall not be a static member. // "static member 'A' cannot be a bit-field" Diag(Loc, diag::err_static_not_bitfield) << Name << BitWidth->getSourceRange(); } else if (isa(Member)) { // "typedef member 'x' cannot be a bit-field" Diag(Loc, diag::err_typedef_not_bitfield) << Name << BitWidth->getSourceRange(); } else { // A function typedef ("typedef int f(); f a;"). // C++ 9.6p3: A bit-field shall have integral or enumeration type. Diag(Loc, diag::err_not_integral_type_bitfield) << Name << cast(Member)->getType() << BitWidth->getSourceRange(); } BitWidth = nullptr; Member->setInvalidDecl(); } NamedDecl *NonTemplateMember = Member; if (FunctionTemplateDecl *FunTmpl = dyn_cast(Member)) NonTemplateMember = FunTmpl->getTemplatedDecl(); else if (VarTemplateDecl *VarTmpl = dyn_cast(Member)) NonTemplateMember = VarTmpl->getTemplatedDecl(); Member->setAccess(AS); // If we have declared a member function template or static data member // template, set the access of the templated declaration as well. if (NonTemplateMember != Member) NonTemplateMember->setAccess(AS); // C++ [temp.deduct.guide]p3: // A deduction guide [...] for a member class template [shall be // declared] with the same access [as the template]. if (auto *DG = dyn_cast(NonTemplateMember)) { auto *TD = DG->getDeducedTemplate(); // Access specifiers are only meaningful if both the template and the // deduction guide are from the same scope. if (AS != TD->getAccess() && TD->getDeclContext()->getRedeclContext()->Equals( DG->getDeclContext()->getRedeclContext())) { Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) << TD->getAccess(); const AccessSpecDecl *LastAccessSpec = nullptr; for (const auto *D : cast(CurContext)->decls()) { if (const auto *AccessSpec = dyn_cast(D)) LastAccessSpec = AccessSpec; } assert(LastAccessSpec && "differing access with no access specifier"); Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) << AS; } } } if (VS.isOverrideSpecified()) Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc())); if (VS.isFinalSpecified()) Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(), VS.isFinalSpelledSealed() ? FinalAttr::Keyword_sealed : FinalAttr::Keyword_final)); if (VS.getLastLocation().isValid()) { // Update the end location of a method that has a virt-specifiers. if (CXXMethodDecl *MD = dyn_cast_or_null(Member)) MD->setRangeEnd(VS.getLastLocation()); } CheckOverrideControl(Member); assert((Name || isInstField) && "No identifier for non-field ?"); if (isInstField) { FieldDecl *FD = cast(Member); FieldCollector->Add(FD); if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { // Remember all explicit private FieldDecls that have a name, no side // effects and are not part of a dependent type declaration. auto DeclHasUnusedAttr = [](const QualType &T) { if (const TagDecl *TD = T->getAsTagDecl()) return TD->hasAttr(); if (const TypedefType *TDT = T->getAs()) return TDT->getDecl()->hasAttr(); return false; }; if (!FD->isImplicit() && FD->getDeclName() && FD->getAccess() == AS_private && !FD->hasAttr() && !FD->getParent()->isDependentContext() && !DeclHasUnusedAttr(FD->getType()) && !InitializationHasSideEffects(*FD)) UnusedPrivateFields.insert(FD); } } return Member; } namespace { class UninitializedFieldVisitor : public EvaluatedExprVisitor { Sema &S; // List of Decls to generate a warning on. Also remove Decls that become // initialized. llvm::SmallPtrSetImpl &Decls; // List of base classes of the record. Classes are removed after their // initializers. llvm::SmallPtrSetImpl &BaseClasses; // Vector of decls to be removed from the Decl set prior to visiting the // nodes. These Decls may have been initialized in the prior initializer. llvm::SmallVector DeclsToRemove; // If non-null, add a note to the warning pointing back to the constructor. const CXXConstructorDecl *Constructor; // Variables to hold state when processing an initializer list. When // InitList is true, special case initialization of FieldDecls matching // InitListFieldDecl. bool InitList; FieldDecl *InitListFieldDecl; llvm::SmallVector InitFieldIndex; public: typedef EvaluatedExprVisitor Inherited; UninitializedFieldVisitor(Sema &S, llvm::SmallPtrSetImpl &Decls, llvm::SmallPtrSetImpl &BaseClasses) : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} // Returns true if the use of ME is not an uninitialized use. bool IsInitListMemberExprInitialized(MemberExpr *ME, bool CheckReferenceOnly) { llvm::SmallVector Fields; bool ReferenceField = false; while (ME) { FieldDecl *FD = dyn_cast(ME->getMemberDecl()); if (!FD) return false; Fields.push_back(FD); if (FD->getType()->isReferenceType()) ReferenceField = true; ME = dyn_cast(ME->getBase()->IgnoreParenImpCasts()); } // Binding a reference to an uninitialized field is not an // uninitialized use. if (CheckReferenceOnly && !ReferenceField) return true; llvm::SmallVector UsedFieldIndex; // Discard the first field since it is the field decl that is being // initialized. for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields))) UsedFieldIndex.push_back(FD->getFieldIndex()); for (auto UsedIter = UsedFieldIndex.begin(), UsedEnd = UsedFieldIndex.end(), OrigIter = InitFieldIndex.begin(), OrigEnd = InitFieldIndex.end(); UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { if (*UsedIter < *OrigIter) return true; if (*UsedIter > *OrigIter) break; } return false; } void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, bool AddressOf) { if (isa(ME->getMemberDecl())) return; // FieldME is the inner-most MemberExpr that is not an anonymous struct // or union. MemberExpr *FieldME = ME; bool AllPODFields = FieldME->getType().isPODType(S.Context); Expr *Base = ME; while (MemberExpr *SubME = dyn_cast(Base->IgnoreParenImpCasts())) { if (isa(SubME->getMemberDecl())) return; if (FieldDecl *FD = dyn_cast(SubME->getMemberDecl())) if (!FD->isAnonymousStructOrUnion()) FieldME = SubME; if (!FieldME->getType().isPODType(S.Context)) AllPODFields = false; Base = SubME->getBase(); } if (!isa(Base->IgnoreParenImpCasts())) { Visit(Base); return; } if (AddressOf && AllPODFields) return; ValueDecl* FoundVD = FieldME->getMemberDecl(); if (ImplicitCastExpr *BaseCast = dyn_cast(Base)) { while (isa(BaseCast->getSubExpr())) { BaseCast = cast(BaseCast->getSubExpr()); } if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { QualType T = BaseCast->getType(); if (T->isPointerType() && BaseClasses.count(T->getPointeeType())) { S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) << T->getPointeeType() << FoundVD; } } } if (!Decls.count(FoundVD)) return; const bool IsReference = FoundVD->getType()->isReferenceType(); if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { // Special checking for initializer lists. if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { return; } } else { // Prevent double warnings on use of unbounded references. if (CheckReferenceOnly && !IsReference) return; } unsigned diag = IsReference ? diag::warn_reference_field_is_uninit : diag::warn_field_is_uninit; S.Diag(FieldME->getExprLoc(), diag) << FoundVD; if (Constructor) S.Diag(Constructor->getLocation(), diag::note_uninit_in_this_constructor) << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); } void HandleValue(Expr *E, bool AddressOf) { E = E->IgnoreParens(); if (MemberExpr *ME = dyn_cast(E)) { HandleMemberExpr(ME, false /*CheckReferenceOnly*/, AddressOf /*AddressOf*/); return; } if (ConditionalOperator *CO = dyn_cast(E)) { Visit(CO->getCond()); HandleValue(CO->getTrueExpr(), AddressOf); HandleValue(CO->getFalseExpr(), AddressOf); return; } if (BinaryConditionalOperator *BCO = dyn_cast(E)) { Visit(BCO->getCond()); HandleValue(BCO->getFalseExpr(), AddressOf); return; } if (OpaqueValueExpr *OVE = dyn_cast(E)) { HandleValue(OVE->getSourceExpr(), AddressOf); return; } if (BinaryOperator *BO = dyn_cast(E)) { switch (BO->getOpcode()) { default: break; case(BO_PtrMemD): case(BO_PtrMemI): HandleValue(BO->getLHS(), AddressOf); Visit(BO->getRHS()); return; case(BO_Comma): Visit(BO->getLHS()); HandleValue(BO->getRHS(), AddressOf); return; } } Visit(E); } void CheckInitListExpr(InitListExpr *ILE) { InitFieldIndex.push_back(0); for (auto *Child : ILE->children()) { if (InitListExpr *SubList = dyn_cast(Child)) { CheckInitListExpr(SubList); } else { Visit(Child); } ++InitFieldIndex.back(); } InitFieldIndex.pop_back(); } void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, FieldDecl *Field, const Type *BaseClass) { // Remove Decls that may have been initialized in the previous // initializer. for (ValueDecl* VD : DeclsToRemove) Decls.erase(VD); DeclsToRemove.clear(); Constructor = FieldConstructor; InitListExpr *ILE = dyn_cast(E); if (ILE && Field) { InitList = true; InitListFieldDecl = Field; InitFieldIndex.clear(); CheckInitListExpr(ILE); } else { InitList = false; Visit(E); } if (Field) Decls.erase(Field); if (BaseClass) BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); } void VisitMemberExpr(MemberExpr *ME) { // All uses of unbounded reference fields will warn. HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); } void VisitImplicitCastExpr(ImplicitCastExpr *E) { if (E->getCastKind() == CK_LValueToRValue) { HandleValue(E->getSubExpr(), false /*AddressOf*/); return; } Inherited::VisitImplicitCastExpr(E); } void VisitCXXConstructExpr(CXXConstructExpr *E) { if (E->getConstructor()->isCopyConstructor()) { Expr *ArgExpr = E->getArg(0); if (InitListExpr *ILE = dyn_cast(ArgExpr)) if (ILE->getNumInits() == 1) ArgExpr = ILE->getInit(0); if (ImplicitCastExpr *ICE = dyn_cast(ArgExpr)) if (ICE->getCastKind() == CK_NoOp) ArgExpr = ICE->getSubExpr(); HandleValue(ArgExpr, false /*AddressOf*/); return; } Inherited::VisitCXXConstructExpr(E); } void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { Expr *Callee = E->getCallee(); if (isa(Callee)) { HandleValue(Callee, false /*AddressOf*/); for (auto *Arg : E->arguments()) Visit(Arg); return; } Inherited::VisitCXXMemberCallExpr(E); } void VisitCallExpr(CallExpr *E) { // Treat std::move as a use. if (E->isCallToStdMove()) { HandleValue(E->getArg(0), /*AddressOf=*/false); return; } Inherited::VisitCallExpr(E); } void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { Expr *Callee = E->getCallee(); if (isa(Callee)) return Inherited::VisitCXXOperatorCallExpr(E); Visit(Callee); for (auto *Arg : E->arguments()) HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); } void VisitBinaryOperator(BinaryOperator *E) { // If a field assignment is detected, remove the field from the // uninitiailized field set. if (E->getOpcode() == BO_Assign) if (MemberExpr *ME = dyn_cast(E->getLHS())) if (FieldDecl *FD = dyn_cast(ME->getMemberDecl())) if (!FD->getType()->isReferenceType()) DeclsToRemove.push_back(FD); if (E->isCompoundAssignmentOp()) { HandleValue(E->getLHS(), false /*AddressOf*/); Visit(E->getRHS()); return; } Inherited::VisitBinaryOperator(E); } void VisitUnaryOperator(UnaryOperator *E) { if (E->isIncrementDecrementOp()) { HandleValue(E->getSubExpr(), false /*AddressOf*/); return; } if (E->getOpcode() == UO_AddrOf) { if (MemberExpr *ME = dyn_cast(E->getSubExpr())) { HandleValue(ME->getBase(), true /*AddressOf*/); return; } } Inherited::VisitUnaryOperator(E); } }; // Diagnose value-uses of fields to initialize themselves, e.g. // foo(foo) // where foo is not also a parameter to the constructor. // Also diagnose across field uninitialized use such as // x(y), y(x) // TODO: implement -Wuninitialized and fold this into that framework. static void DiagnoseUninitializedFields( Sema &SemaRef, const CXXConstructorDecl *Constructor) { if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, Constructor->getLocation())) { return; } if (Constructor->isInvalidDecl()) return; const CXXRecordDecl *RD = Constructor->getParent(); if (RD->isDependentContext()) return; // Holds fields that are uninitialized. llvm::SmallPtrSet UninitializedFields; // At the beginning, all fields are uninitialized. for (auto *I : RD->decls()) { if (auto *FD = dyn_cast(I)) { UninitializedFields.insert(FD); } else if (auto *IFD = dyn_cast(I)) { UninitializedFields.insert(IFD->getAnonField()); } } llvm::SmallPtrSet UninitializedBaseClasses; for (const auto &I : RD->bases()) UninitializedBaseClasses.insert(I.getType().getCanonicalType()); if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) return; UninitializedFieldVisitor UninitializedChecker(SemaRef, UninitializedFields, UninitializedBaseClasses); for (const auto *FieldInit : Constructor->inits()) { if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) break; Expr *InitExpr = FieldInit->getInit(); if (!InitExpr) continue; if (CXXDefaultInitExpr *Default = dyn_cast(InitExpr)) { InitExpr = Default->getExpr(); if (!InitExpr) continue; // In class initializers will point to the constructor. UninitializedChecker.CheckInitializer(InitExpr, Constructor, FieldInit->getAnyMember(), FieldInit->getBaseClass()); } else { UninitializedChecker.CheckInitializer(InitExpr, nullptr, FieldInit->getAnyMember(), FieldInit->getBaseClass()); } } } } // namespace void Sema::ActOnStartCXXInClassMemberInitializer() { // Create a synthetic function scope to represent the call to the constructor // that notionally surrounds a use of this initializer. PushFunctionScope(); } void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { if (!D.isFunctionDeclarator()) return; auto &FTI = D.getFunctionTypeInfo(); if (!FTI.Params) return; for (auto &Param : ArrayRef(FTI.Params, FTI.NumParams)) { auto *ParamDecl = cast(Param.Param); if (ParamDecl->getDeclName()) PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); } } ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { return ActOnRequiresClause(ConstraintExpr); } ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { if (ConstraintExpr.isInvalid()) return ExprError(); ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); if (ConstraintExpr.isInvalid()) return ExprError(); if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), UPPC_RequiresClause)) return ExprError(); return ConstraintExpr; } ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD, Expr *InitExpr, SourceLocation InitLoc) { InitializedEntity Entity = InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), InitExpr->getBeginLoc(), InitExpr->getEndLoc()) : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); InitializationSequence Seq(*this, Entity, Kind, InitExpr); return Seq.Perform(*this, Entity, Kind, InitExpr); } void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc, Expr *InitExpr) { // Pop the notional constructor scope we created earlier. PopFunctionScopeInfo(nullptr, D); FieldDecl *FD = dyn_cast(D); assert((isa(D) || FD->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"); if (!InitExpr) { D->setInvalidDecl(); if (FD) FD->removeInClassInitializer(); return; } if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { FD->setInvalidDecl(); FD->removeInClassInitializer(); return; } ExprResult Init = CorrectDelayedTyposInExpr(InitExpr, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/true); assert(Init.isUsable() && "Init should at least have a RecoveryExpr"); if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) { Init = ConvertMemberDefaultInitExpression(FD, Init.get(), InitLoc); // C++11 [class.base.init]p7: // The initialization of each base and member constitutes a // full-expression. if (!Init.isInvalid()) Init = ActOnFinishFullExpr(Init.get(), /*DiscarededValue=*/false); if (Init.isInvalid()) { FD->setInvalidDecl(); return; } } FD->setInClassInitializer(Init.get()); } /// Find the direct and/or virtual base specifiers that /// correspond to the given base type, for use in base initialization /// within a constructor. static bool FindBaseInitializer(Sema &SemaRef, CXXRecordDecl *ClassDecl, QualType BaseType, const CXXBaseSpecifier *&DirectBaseSpec, const CXXBaseSpecifier *&VirtualBaseSpec) { // First, check for a direct base class. DirectBaseSpec = nullptr; for (const auto &Base : ClassDecl->bases()) { if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { // We found a direct base of this type. That's what we're // initializing. DirectBaseSpec = &Base; break; } } // Check for a virtual base class. // FIXME: We might be able to short-circuit this if we know in advance that // there are no virtual bases. VirtualBaseSpec = nullptr; if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { // We haven't found a base yet; search the class hierarchy for a // virtual base class. CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), SemaRef.Context.getTypeDeclType(ClassDecl), BaseType, Paths)) { for (CXXBasePaths::paths_iterator Path = Paths.begin(); Path != Paths.end(); ++Path) { if (Path->back().Base->isVirtual()) { VirtualBaseSpec = Path->back().Base; break; } } } } return DirectBaseSpec || VirtualBaseSpec; } MemInitResult Sema::ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *InitList, SourceLocation EllipsisLoc) { return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, DS, IdLoc, InitList, EllipsisLoc); } MemInitResult Sema::ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, SourceLocation LParenLoc, ArrayRef Args, SourceLocation RParenLoc, SourceLocation EllipsisLoc) { Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, DS, IdLoc, List, EllipsisLoc); } namespace { // Callback to only accept typo corrections that can be a valid C++ member // initializer: either a non-static field member or a base class. class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { public: explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) : ClassDecl(ClassDecl) {} bool ValidateCandidate(const TypoCorrection &candidate) override { if (NamedDecl *ND = candidate.getCorrectionDecl()) { if (FieldDecl *Member = dyn_cast(ND)) return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); return isa(ND); } return false; } std::unique_ptr clone() override { return std::make_unique(*this); } private: CXXRecordDecl *ClassDecl; }; } bool Sema::DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc, RecordDecl *ClassDecl, const IdentifierInfo *Name) { DeclContextLookupResult Result = ClassDecl->lookup(Name); DeclContextLookupResult::iterator Found = llvm::find_if(Result, [this](const NamedDecl *Elem) { return isa(Elem) && Elem->isPlaceholderVar(getLangOpts()); }); // We did not find a placeholder variable if (Found == Result.end()) return false; Diag(Loc, diag::err_using_placeholder_variable) << Name; for (DeclContextLookupResult::iterator It = Found; It != Result.end(); It++) { const NamedDecl *ND = *It; if (ND->getDeclContext() != ND->getDeclContext()) break; if (isa(ND) && ND->isPlaceholderVar(getLangOpts())) Diag(ND->getLocation(), diag::note_reference_placeholder) << ND; } return true; } ValueDecl * Sema::tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl, const IdentifierInfo *MemberOrBase) { ValueDecl *ND = nullptr; for (auto *D : ClassDecl->lookup(MemberOrBase)) { if (isa(D)) { bool IsPlaceholder = D->isPlaceholderVar(getLangOpts()); if (ND) { if (IsPlaceholder && D->getDeclContext() == ND->getDeclContext()) return nullptr; break; } if (!IsPlaceholder) return cast(D); ND = cast(D); } } return ND; } ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, CXXScopeSpec &SS, ParsedType TemplateTypeTy, IdentifierInfo *MemberOrBase) { if (SS.getScopeRep() || TemplateTypeTy) return nullptr; return tryLookupUnambiguousFieldDecl(ClassDecl, MemberOrBase); } MemInitResult Sema::BuildMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *Init, SourceLocation EllipsisLoc) { ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/true); if (!Res.isUsable()) return true; Init = Res.get(); if (!ConstructorD) return true; AdjustDeclIfTemplate(ConstructorD); CXXConstructorDecl *Constructor = dyn_cast(ConstructorD); if (!Constructor) { // The user wrote a constructor initializer on a function that is // not a C++ constructor. Ignore the error for now, because we may // have more member initializers coming; we'll diagnose it just // once in ActOnMemInitializers. return true; } CXXRecordDecl *ClassDecl = Constructor->getParent(); // C++ [class.base.init]p2: // Names in a mem-initializer-id are looked up in the scope of the // constructor's class and, if not found in that scope, are looked // up in the scope containing the constructor's definition. // [Note: if the constructor's class contains a member with the // same name as a direct or virtual base class of the class, a // mem-initializer-id naming the member or base class and composed // of a single identifier refers to the class member. A // mem-initializer-id for the hidden base class may be specified // using a qualified name. ] // Look for a member, first. if (ValueDecl *Member = tryLookupCtorInitMemberDecl( ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { if (EllipsisLoc.isValid()) Diag(EllipsisLoc, diag::err_pack_expansion_member_init) << MemberOrBase << SourceRange(IdLoc, Init->getSourceRange().getEnd()); return BuildMemberInitializer(Member, Init, IdLoc); } // It didn't name a member, so see if it names a class. QualType BaseType; TypeSourceInfo *TInfo = nullptr; if (TemplateTypeTy) { BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); if (BaseType.isNull()) return true; } else if (DS.getTypeSpecType() == TST_decltype) { BaseType = BuildDecltypeType(DS.getRepAsExpr()); } else if (DS.getTypeSpecType() == TST_decltype_auto) { Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); return true; } else if (DS.getTypeSpecType() == TST_typename_pack_indexing) { BaseType = BuildPackIndexingType(DS.getRepAsType().get(), DS.getPackIndexingExpr(), DS.getBeginLoc(), DS.getEllipsisLoc()); } else { LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); TypeDecl *TyD = R.getAsSingle(); if (!TyD) { if (R.isAmbiguous()) return true; // We don't want access-control diagnostics here. R.suppressDiagnostics(); if (SS.isSet() && isDependentScopeSpecifier(SS)) { bool NotUnknownSpecialization = false; DeclContext *DC = computeDeclContext(SS, false); if (CXXRecordDecl *Record = dyn_cast_or_null(DC)) NotUnknownSpecialization = !Record->hasAnyDependentBases(); if (!NotUnknownSpecialization) { // When the scope specifier can refer to a member of an unknown // specialization, we take it as a type name. BaseType = CheckTypenameType( ElaboratedTypeKeyword::None, SourceLocation(), SS.getWithLocInContext(Context), *MemberOrBase, IdLoc); if (BaseType.isNull()) return true; TInfo = Context.CreateTypeSourceInfo(BaseType); DependentNameTypeLoc TL = TInfo->getTypeLoc().castAs(); if (!TL.isNull()) { TL.setNameLoc(IdLoc); TL.setElaboratedKeywordLoc(SourceLocation()); TL.setQualifierLoc(SS.getWithLocInContext(Context)); } R.clear(); R.setLookupName(MemberOrBase); } } if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) { if (auto UnqualifiedBase = R.getAsSingle()) { auto *TempSpec = cast( UnqualifiedBase->getInjectedClassNameSpecialization()); TemplateName TN = TempSpec->getTemplateName(); for (auto const &Base : ClassDecl->bases()) { auto BaseTemplate = Base.getType()->getAs(); if (BaseTemplate && Context.hasSameTemplateName( BaseTemplate->getTemplateName(), TN)) { Diag(IdLoc, diag::ext_unqualified_base_class) << SourceRange(IdLoc, Init->getSourceRange().getEnd()); BaseType = Base.getType(); break; } } } } // If no results were found, try to correct typos. TypoCorrection Corr; MemInitializerValidatorCCC CCC(ClassDecl); if (R.empty() && BaseType.isNull() && (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, CTK_ErrorRecovery, ClassDecl))) { if (FieldDecl *Member = Corr.getCorrectionDeclAs()) { // We have found a non-static data member with a similar // name to what was typed; complain and initialize that // member. diagnoseTypo(Corr, PDiag(diag::err_mem_init_not_member_or_class_suggest) << MemberOrBase << true); return BuildMemberInitializer(Member, Init, IdLoc); } else if (TypeDecl *Type = Corr.getCorrectionDeclAs()) { const CXXBaseSpecifier *DirectBaseSpec; const CXXBaseSpecifier *VirtualBaseSpec; if (FindBaseInitializer(*this, ClassDecl, Context.getTypeDeclType(Type), DirectBaseSpec, VirtualBaseSpec)) { // We have found a direct or virtual base class with a // similar name to what was typed; complain and initialize // that base class. diagnoseTypo(Corr, PDiag(diag::err_mem_init_not_member_or_class_suggest) << MemberOrBase << false, PDiag() /*Suppress note, we provide our own.*/); const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec : VirtualBaseSpec; Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) << BaseSpec->getType() << BaseSpec->getSourceRange(); TyD = Type; } } } if (!TyD && BaseType.isNull()) { Diag(IdLoc, diag::err_mem_init_not_member_or_class) << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); return true; } } if (BaseType.isNull()) { BaseType = getElaboratedType(ElaboratedTypeKeyword::None, SS, Context.getTypeDeclType(TyD)); MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); TInfo = Context.CreateTypeSourceInfo(BaseType); ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs(); TL.getNamedTypeLoc().castAs().setNameLoc(IdLoc); TL.setElaboratedKeywordLoc(SourceLocation()); TL.setQualifierLoc(SS.getWithLocInContext(Context)); } } if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); } MemInitResult Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, SourceLocation IdLoc) { FieldDecl *DirectMember = dyn_cast(Member); IndirectFieldDecl *IndirectMember = dyn_cast(Member); assert((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"); if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) return true; if (Member->isInvalidDecl()) return true; MultiExprArg Args; if (ParenListExpr *ParenList = dyn_cast(Init)) { Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); } else if (InitListExpr *InitList = dyn_cast(Init)) { Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); } else { // Template instantiation doesn't reconstruct ParenListExprs for us. Args = Init; } SourceRange InitRange = Init->getSourceRange(); if (Member->getType()->isDependentType() || Init->isTypeDependent()) { // Can't check initialization for a member of dependent type or when // any of the arguments are type-dependent expressions. DiscardCleanupsInEvaluationContext(); } else { bool InitList = false; if (isa(Init)) { InitList = true; Args = Init; } // Initialize the member. InitializedEntity MemberEntity = DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) : InitializedEntity::InitializeMember(IndirectMember, nullptr); InitializationKind Kind = InitList ? InitializationKind::CreateDirectList( IdLoc, Init->getBeginLoc(), Init->getEndLoc()) : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), InitRange.getEnd()); InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, nullptr); if (!MemberInit.isInvalid()) { // C++11 [class.base.init]p7: // The initialization of each base and member constitutes a // full-expression. MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); } if (MemberInit.isInvalid()) { // Args were sensible expressions but we couldn't initialize the member // from them. Preserve them in a RecoveryExpr instead. Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, Member->getType()) .get(); if (!Init) return true; } else { Init = MemberInit.get(); } } if (DirectMember) { return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, InitRange.getBegin(), Init, InitRange.getEnd()); } else { return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, InitRange.getBegin(), Init, InitRange.getEnd()); } } MemInitResult Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, CXXRecordDecl *ClassDecl) { SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin(); if (!LangOpts.CPlusPlus11) return Diag(NameLoc, diag::err_delegating_ctor) << TInfo->getTypeLoc().getSourceRange(); Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); bool InitList = true; MultiExprArg Args = Init; if (ParenListExpr *ParenList = dyn_cast(Init)) { InitList = false; Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); } SourceRange InitRange = Init->getSourceRange(); // Initialize the object. InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( QualType(ClassDecl->getTypeForDecl(), 0)); InitializationKind Kind = InitList ? InitializationKind::CreateDirectList( NameLoc, Init->getBeginLoc(), Init->getEndLoc()) : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), InitRange.getEnd()); InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, Args, nullptr); if (!DelegationInit.isInvalid()) { assert((DelegationInit.get()->containsErrors() || cast(DelegationInit.get())->getConstructor()) && "Delegating constructor with no target?"); // C++11 [class.base.init]p7: // The initialization of each base and member constitutes a // full-expression. DelegationInit = ActOnFinishFullExpr( DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); } if (DelegationInit.isInvalid()) { DelegationInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, QualType(ClassDecl->getTypeForDecl(), 0)); if (DelegationInit.isInvalid()) return true; } else { // If we are in a dependent context, template instantiation will // perform this type-checking again. Just save the arguments that we // received in a ParenListExpr. // FIXME: This isn't quite ideal, since our ASTs don't capture all // of the information that we have about the base // initializer. However, deconstructing the ASTs is a dicey process, // and this approach is far more likely to get the corner cases right. if (CurContext->isDependentContext()) DelegationInit = Init; } return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), DelegationInit.getAs(), InitRange.getEnd()); } MemInitResult Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, Expr *Init, CXXRecordDecl *ClassDecl, SourceLocation EllipsisLoc) { SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc(); if (!BaseType->isDependentType() && !BaseType->isRecordType()) return Diag(BaseLoc, diag::err_base_init_does_not_name_class) << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); // C++ [class.base.init]p2: // [...] Unless the mem-initializer-id names a nonstatic data // member of the constructor's class or a direct or virtual base // of that class, the mem-initializer is ill-formed. A // mem-initializer-list can initialize a base class using any // name that denotes that base class type. // We can store the initializers in "as-written" form and delay analysis until // instantiation if the constructor is dependent. But not for dependent // (broken) code in a non-template! SetCtorInitializers does not expect this. bool Dependent = CurContext->isDependentContext() && (BaseType->isDependentType() || Init->isTypeDependent()); SourceRange InitRange = Init->getSourceRange(); if (EllipsisLoc.isValid()) { // This is a pack expansion. if (!BaseType->containsUnexpandedParameterPack()) { Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) << SourceRange(BaseLoc, InitRange.getEnd()); EllipsisLoc = SourceLocation(); } } else { // Check for any unexpanded parameter packs. if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) return true; if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) return true; } // Check for direct and virtual base classes. const CXXBaseSpecifier *DirectBaseSpec = nullptr; const CXXBaseSpecifier *VirtualBaseSpec = nullptr; if (!Dependent) { if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), BaseType)) return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, VirtualBaseSpec); // C++ [base.class.init]p2: // Unless the mem-initializer-id names a nonstatic data member of the // constructor's class or a direct or virtual base of that class, the // mem-initializer is ill-formed. if (!DirectBaseSpec && !VirtualBaseSpec) { // If the class has any dependent bases, then it's possible that // one of those types will resolve to the same type as // BaseType. Therefore, just treat this as a dependent base // class initialization. FIXME: Should we try to check the // initialization anyway? It seems odd. if (ClassDecl->hasAnyDependentBases()) Dependent = true; else return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) << BaseType << Context.getTypeDeclType(ClassDecl) << BaseTInfo->getTypeLoc().getSourceRange(); } } if (Dependent) { DiscardCleanupsInEvaluationContext(); return new (Context) CXXCtorInitializer(Context, BaseTInfo, /*IsVirtual=*/false, InitRange.getBegin(), Init, InitRange.getEnd(), EllipsisLoc); } // C++ [base.class.init]p2: // If a mem-initializer-id is ambiguous because it designates both // a direct non-virtual base class and an inherited virtual base // class, the mem-initializer is ill-formed. if (DirectBaseSpec && VirtualBaseSpec) return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; if (!BaseSpec) BaseSpec = VirtualBaseSpec; // Initialize the base. bool InitList = true; MultiExprArg Args = Init; if (ParenListExpr *ParenList = dyn_cast(Init)) { InitList = false; Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); } InitializedEntity BaseEntity = InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); InitializationKind Kind = InitList ? InitializationKind::CreateDirectList(BaseLoc) : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), InitRange.getEnd()); InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); if (!BaseInit.isInvalid()) { // C++11 [class.base.init]p7: // The initialization of each base and member constitutes a // full-expression. BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); } if (BaseInit.isInvalid()) { BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, BaseType); if (BaseInit.isInvalid()) return true; } else { // If we are in a dependent context, template instantiation will // perform this type-checking again. Just save the arguments that we // received in a ParenListExpr. // FIXME: This isn't quite ideal, since our ASTs don't capture all // of the information that we have about the base // initializer. However, deconstructing the ASTs is a dicey process, // and this approach is far more likely to get the corner cases right. if (CurContext->isDependentContext()) BaseInit = Init; } return new (Context) CXXCtorInitializer(Context, BaseTInfo, BaseSpec->isVirtual(), InitRange.getBegin(), BaseInit.getAs(), InitRange.getEnd(), EllipsisLoc); } // Create a static_cast\(expr). static Expr *CastForMoving(Sema &SemaRef, Expr *E) { QualType TargetType = SemaRef.BuildReferenceType(E->getType(), /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); SourceLocation ExprLoc = E->getBeginLoc(); TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( TargetType, ExprLoc); return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, SourceRange(ExprLoc, ExprLoc), E->getSourceRange()).get(); } /// ImplicitInitializerKind - How an implicit base or member initializer should /// initialize its base or member. enum ImplicitInitializerKind { IIK_Default, IIK_Copy, IIK_Move, IIK_Inherit }; static bool BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, ImplicitInitializerKind ImplicitInitKind, CXXBaseSpecifier *BaseSpec, bool IsInheritedVirtualBase, CXXCtorInitializer *&CXXBaseInit) { InitializedEntity InitEntity = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, IsInheritedVirtualBase); ExprResult BaseInit; switch (ImplicitInitKind) { case IIK_Inherit: case IIK_Default: { InitializationKind InitKind = InitializationKind::CreateDefault(Constructor->getLocation()); InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt); BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt); break; } case IIK_Move: case IIK_Copy: { bool Moving = ImplicitInitKind == IIK_Move; ParmVarDecl *Param = Constructor->getParamDecl(0); QualType ParamType = Param->getType().getNonReferenceType(); Expr *CopyCtorArg = DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), SourceLocation(), Param, false, Constructor->getLocation(), ParamType, VK_LValue, nullptr); SemaRef.MarkDeclRefReferenced(cast(CopyCtorArg)); // Cast to the base class to avoid ambiguities. QualType ArgTy = SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), ParamType.getQualifiers()); if (Moving) { CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); } CXXCastPath BasePath; BasePath.push_back(BaseSpec); CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, CK_UncheckedDerivedToBase, Moving ? VK_XValue : VK_LValue, &BasePath).get(); InitializationKind InitKind = InitializationKind::CreateDirect(Constructor->getLocation(), SourceLocation(), SourceLocation()); InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); break; } } BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); if (BaseInit.isInvalid()) return true; CXXBaseInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), SourceLocation()), BaseSpec->isVirtual(), SourceLocation(), BaseInit.getAs(), SourceLocation(), SourceLocation()); return false; } static bool RefersToRValueRef(Expr *MemRef) { ValueDecl *Referenced = cast(MemRef)->getMemberDecl(); return Referenced->getType()->isRValueReferenceType(); } static bool BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, ImplicitInitializerKind ImplicitInitKind, FieldDecl *Field, IndirectFieldDecl *Indirect, CXXCtorInitializer *&CXXMemberInit) { if (Field->isInvalidDecl()) return true; SourceLocation Loc = Constructor->getLocation(); if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { bool Moving = ImplicitInitKind == IIK_Move; ParmVarDecl *Param = Constructor->getParamDecl(0); QualType ParamType = Param->getType().getNonReferenceType(); // Suppress copying zero-width bitfields. if (Field->isZeroLengthBitField(SemaRef.Context)) return false; Expr *MemberExprBase = DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), SourceLocation(), Param, false, Loc, ParamType, VK_LValue, nullptr); SemaRef.MarkDeclRefReferenced(cast(MemberExprBase)); if (Moving) { MemberExprBase = CastForMoving(SemaRef, MemberExprBase); } // Build a reference to this field within the parameter. CXXScopeSpec SS; LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, Sema::LookupMemberName); MemberLookup.addDecl(Indirect ? cast(Indirect) : cast(Field), AS_public); MemberLookup.resolveKind(); ExprResult CtorArg = SemaRef.BuildMemberReferenceExpr(MemberExprBase, ParamType, Loc, /*IsArrow=*/false, SS, /*TemplateKWLoc=*/SourceLocation(), /*FirstQualifierInScope=*/nullptr, MemberLookup, /*TemplateArgs=*/nullptr, /*S*/nullptr); if (CtorArg.isInvalid()) return true; // C++11 [class.copy]p15: // - if a member m has rvalue reference type T&&, it is direct-initialized // with static_cast(x.m); if (RefersToRValueRef(CtorArg.get())) { CtorArg = CastForMoving(SemaRef, CtorArg.get()); } InitializedEntity Entity = Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, /*Implicit*/ true) : InitializedEntity::InitializeMember(Field, nullptr, /*Implicit*/ true); // Direct-initialize to use the copy constructor. InitializationKind InitKind = InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); Expr *CtorArgE = CtorArg.getAs(); InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); ExprResult MemberInit = InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); if (MemberInit.isInvalid()) return true; if (Indirect) CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs(), Loc); else CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( SemaRef.Context, Field, Loc, Loc, MemberInit.getAs(), Loc); return false; } assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"); QualType FieldBaseElementType = SemaRef.Context.getBaseElementType(Field->getType()); if (FieldBaseElementType->isRecordType()) { InitializedEntity InitEntity = Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, /*Implicit*/ true) : InitializedEntity::InitializeMember(Field, nullptr, /*Implicit*/ true); InitializationKind InitKind = InitializationKind::CreateDefault(Loc); InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt); ExprResult MemberInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt); MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); if (MemberInit.isInvalid()) return true; if (Indirect) CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect, Loc, Loc, MemberInit.get(), Loc); else CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, Loc, Loc, MemberInit.get(), Loc); return false; } if (!Field->getParent()->isUnion()) { if (FieldBaseElementType->isReferenceType()) { SemaRef.Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor) << (int)Constructor->isImplicit() << SemaRef.Context.getTagDeclType(Constructor->getParent()) << 0 << Field->getDeclName(); SemaRef.Diag(Field->getLocation(), diag::note_declared_at); return true; } if (FieldBaseElementType.isConstQualified()) { SemaRef.Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor) << (int)Constructor->isImplicit() << SemaRef.Context.getTagDeclType(Constructor->getParent()) << 1 << Field->getDeclName(); SemaRef.Diag(Field->getLocation(), diag::note_declared_at); return true; } } if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { // ARC and Weak: // Default-initialize Objective-C pointers to NULL. CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, Loc, Loc, new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), Loc); return false; } // Nothing to initialize. CXXMemberInit = nullptr; return false; } namespace { struct BaseAndFieldInfo { Sema &S; CXXConstructorDecl *Ctor; bool AnyErrorsInInits; ImplicitInitializerKind IIK; llvm::DenseMap AllBaseFields; SmallVector AllToInit; llvm::DenseMap ActiveUnionMember; BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); if (Ctor->getInheritedConstructor()) IIK = IIK_Inherit; else if (Generated && Ctor->isCopyConstructor()) IIK = IIK_Copy; else if (Generated && Ctor->isMoveConstructor()) IIK = IIK_Move; else IIK = IIK_Default; } bool isImplicitCopyOrMove() const { switch (IIK) { case IIK_Copy: case IIK_Move: return true; case IIK_Default: case IIK_Inherit: return false; } llvm_unreachable("Invalid ImplicitInitializerKind!"); } bool addFieldInitializer(CXXCtorInitializer *Init) { AllToInit.push_back(Init); // Check whether this initializer makes the field "used". if (Init->getInit()->HasSideEffects(S.Context)) S.UnusedPrivateFields.remove(Init->getAnyMember()); return false; } bool isInactiveUnionMember(FieldDecl *Field) { RecordDecl *Record = Field->getParent(); if (!Record->isUnion()) return false; if (FieldDecl *Active = ActiveUnionMember.lookup(Record->getCanonicalDecl())) return Active != Field->getCanonicalDecl(); // In an implicit copy or move constructor, ignore any in-class initializer. if (isImplicitCopyOrMove()) return true; // If there's no explicit initialization, the field is active only if it // has an in-class initializer... if (Field->hasInClassInitializer()) return false; // ... or it's an anonymous struct or union whose class has an in-class // initializer. if (!Field->isAnonymousStructOrUnion()) return true; CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); return !FieldRD->hasInClassInitializer(); } /// Determine whether the given field is, or is within, a union member /// that is inactive (because there was an initializer given for a different /// member of the union, or because the union was not initialized at all). bool isWithinInactiveUnionMember(FieldDecl *Field, IndirectFieldDecl *Indirect) { if (!Indirect) return isInactiveUnionMember(Field); for (auto *C : Indirect->chain()) { FieldDecl *Field = dyn_cast(C); if (Field && isInactiveUnionMember(Field)) return true; } return false; } }; } /// Determine whether the given type is an incomplete or zero-lenfgth /// array type. static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { if (T->isIncompleteArrayType()) return true; while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { if (ArrayT->isZeroSize()) return true; T = ArrayT->getElementType(); } return false; } static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, FieldDecl *Field, IndirectFieldDecl *Indirect = nullptr) { if (Field->isInvalidDecl()) return false; // Overwhelmingly common case: we have a direct initializer for this field. if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field->getCanonicalDecl())) return Info.addFieldInitializer(Init); // C++11 [class.base.init]p8: // if the entity is a non-static data member that has a // brace-or-equal-initializer and either // -- the constructor's class is a union and no other variant member of that // union is designated by a mem-initializer-id or // -- the constructor's class is not a union, and, if the entity is a member // of an anonymous union, no other member of that union is designated by // a mem-initializer-id, // the entity is initialized as specified in [dcl.init]. // // We also apply the same rules to handle anonymous structs within anonymous // unions. if (Info.isWithinInactiveUnionMember(Field, Indirect)) return false; if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); if (DIE.isInvalid()) return true; auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); SemaRef.checkInitializerLifetime(Entity, DIE.get()); CXXCtorInitializer *Init; if (Indirect) Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), SourceLocation(), DIE.get(), SourceLocation()); else Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), SourceLocation(), DIE.get(), SourceLocation()); return Info.addFieldInitializer(Init); } // Don't initialize incomplete or zero-length arrays. if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) return false; // Don't try to build an implicit initializer if there were semantic // errors in any of the initializers (and therefore we might be // missing some that the user actually wrote). if (Info.AnyErrorsInInits) return false; CXXCtorInitializer *Init = nullptr; if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Indirect, Init)) return true; if (!Init) return false; return Info.addFieldInitializer(Init); } bool Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, CXXCtorInitializer *Initializer) { assert(Initializer->isDelegatingInitializer()); Constructor->setNumCtorInitializers(1); CXXCtorInitializer **initializer = new (Context) CXXCtorInitializer*[1]; memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); Constructor->setCtorInitializers(initializer); if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); } DelegatingCtorDecls.push_back(Constructor); DiagnoseUninitializedFields(*this, Constructor); return false; } bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, ArrayRef Initializers) { if (Constructor->isDependentContext()) { // Just store the initializers as written, they will be checked during // instantiation. if (!Initializers.empty()) { Constructor->setNumCtorInitializers(Initializers.size()); CXXCtorInitializer **baseOrMemberInitializers = new (Context) CXXCtorInitializer*[Initializers.size()]; memcpy(baseOrMemberInitializers, Initializers.data(), Initializers.size() * sizeof(CXXCtorInitializer*)); Constructor->setCtorInitializers(baseOrMemberInitializers); } // Let template instantiation know whether we had errors. if (AnyErrors) Constructor->setInvalidDecl(); return false; } BaseAndFieldInfo Info(*this, Constructor, AnyErrors); // We need to build the initializer AST according to order of construction // and not what user specified in the Initializers list. CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); if (!ClassDecl) return true; bool HadError = false; for (unsigned i = 0; i < Initializers.size(); i++) { CXXCtorInitializer *Member = Initializers[i]; if (Member->isBaseInitializer()) Info.AllBaseFields[Member->getBaseClass()->getAs()] = Member; else { Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; if (IndirectFieldDecl *F = Member->getIndirectMember()) { for (auto *C : F->chain()) { FieldDecl *FD = dyn_cast(C); if (FD && FD->getParent()->isUnion()) Info.ActiveUnionMember.insert(std::make_pair( FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); } } else if (FieldDecl *FD = Member->getMember()) { if (FD->getParent()->isUnion()) Info.ActiveUnionMember.insert(std::make_pair( FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); } } } // Keep track of the direct virtual bases. llvm::SmallPtrSet DirectVBases; for (auto &I : ClassDecl->bases()) { if (I.isVirtual()) DirectVBases.insert(&I); } // Push virtual bases before others. for (auto &VBase : ClassDecl->vbases()) { if (CXXCtorInitializer *Value = Info.AllBaseFields.lookup(VBase.getType()->getAs())) { // [class.base.init]p7, per DR257: // A mem-initializer where the mem-initializer-id names a virtual base // class is ignored during execution of a constructor of any class that // is not the most derived class. if (ClassDecl->isAbstract()) { // FIXME: Provide a fixit to remove the base specifier. This requires // tracking the location of the associated comma for a base specifier. Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) << VBase.getType() << ClassDecl; DiagnoseAbstractType(ClassDecl); } Info.AllToInit.push_back(Value); } else if (!AnyErrors && !ClassDecl->isAbstract()) { // [class.base.init]p8, per DR257: // If a given [...] base class is not named by a mem-initializer-id // [...] and the entity is not a virtual base class of an abstract // class, then [...] the entity is default-initialized. bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); CXXCtorInitializer *CXXBaseInit; if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, &VBase, IsInheritedVirtualBase, CXXBaseInit)) { HadError = true; continue; } Info.AllToInit.push_back(CXXBaseInit); } } // Non-virtual bases. for (auto &Base : ClassDecl->bases()) { // Virtuals are in the virtual base list and already constructed. if (Base.isVirtual()) continue; if (CXXCtorInitializer *Value = Info.AllBaseFields.lookup(Base.getType()->getAs())) { Info.AllToInit.push_back(Value); } else if (!AnyErrors) { CXXCtorInitializer *CXXBaseInit; if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, &Base, /*IsInheritedVirtualBase=*/false, CXXBaseInit)) { HadError = true; continue; } Info.AllToInit.push_back(CXXBaseInit); } } // Fields. for (auto *Mem : ClassDecl->decls()) { if (auto *F = dyn_cast(Mem)) { // C++ [class.bit]p2: // A declaration for a bit-field that omits the identifier declares an // unnamed bit-field. Unnamed bit-fields are not members and cannot be // initialized. if (F->isUnnamedBitField()) continue; // If we're not generating the implicit copy/move constructor, then we'll // handle anonymous struct/union fields based on their individual // indirect fields. if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) continue; if (CollectFieldInitializer(*this, Info, F)) HadError = true; continue; } // Beyond this point, we only consider default initialization. if (Info.isImplicitCopyOrMove()) continue; if (auto *F = dyn_cast(Mem)) { if (F->getType()->isIncompleteArrayType()) { assert(ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"); continue; } // Initialize each field of an anonymous struct individually. if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) HadError = true; continue; } } unsigned NumInitializers = Info.AllToInit.size(); if (NumInitializers > 0) { Constructor->setNumCtorInitializers(NumInitializers); CXXCtorInitializer **baseOrMemberInitializers = new (Context) CXXCtorInitializer*[NumInitializers]; memcpy(baseOrMemberInitializers, Info.AllToInit.data(), NumInitializers * sizeof(CXXCtorInitializer*)); Constructor->setCtorInitializers(baseOrMemberInitializers); // Constructors implicitly reference the base and member // destructors. MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), Constructor->getParent()); } return HadError; } static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl &IdealInits) { if (const RecordType *RT = Field->getType()->getAs()) { const RecordDecl *RD = RT->getDecl(); if (RD->isAnonymousStructOrUnion()) { for (auto *Field : RD->fields()) PopulateKeysForFields(Field, IdealInits); return; } } IdealInits.push_back(Field->getCanonicalDecl()); } static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { return Context.getCanonicalType(BaseType).getTypePtr(); } static const void *GetKeyForMember(ASTContext &Context, CXXCtorInitializer *Member) { if (!Member->isAnyMemberInitializer()) return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); return Member->getAnyMember()->getCanonicalDecl(); } static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, const CXXCtorInitializer *Previous, const CXXCtorInitializer *Current) { if (Previous->isAnyMemberInitializer()) Diag << 0 << Previous->getAnyMember(); else Diag << 1 << Previous->getTypeSourceInfo()->getType(); if (Current->isAnyMemberInitializer()) Diag << 0 << Current->getAnyMember(); else Diag << 1 << Current->getTypeSourceInfo()->getType(); } static void DiagnoseBaseOrMemInitializerOrder( Sema &SemaRef, const CXXConstructorDecl *Constructor, ArrayRef Inits) { if (Constructor->getDeclContext()->isDependentContext()) return; // Don't check initializers order unless the warning is enabled at the // location of at least one initializer. bool ShouldCheckOrder = false; for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { CXXCtorInitializer *Init = Inits[InitIndex]; if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, Init->getSourceLocation())) { ShouldCheckOrder = true; break; } } if (!ShouldCheckOrder) return; // Build the list of bases and members in the order that they'll // actually be initialized. The explicit initializers should be in // this same order but may be missing things. SmallVector IdealInitKeys; const CXXRecordDecl *ClassDecl = Constructor->getParent(); // 1. Virtual bases. for (const auto &VBase : ClassDecl->vbases()) IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); // 2. Non-virtual bases. for (const auto &Base : ClassDecl->bases()) { if (Base.isVirtual()) continue; IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); } // 3. Direct fields. for (auto *Field : ClassDecl->fields()) { if (Field->isUnnamedBitField()) continue; PopulateKeysForFields(Field, IdealInitKeys); } unsigned NumIdealInits = IdealInitKeys.size(); unsigned IdealIndex = 0; // Track initializers that are in an incorrect order for either a warning or // note if multiple ones occur. SmallVector WarnIndexes; // Correlates the index of an initializer in the init-list to the index of // the field/base in the class. SmallVector, 32> CorrelatedInitOrder; for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); // Scan forward to try to find this initializer in the idealized // initializers list. for (; IdealIndex != NumIdealInits; ++IdealIndex) if (InitKey == IdealInitKeys[IdealIndex]) break; // If we didn't find this initializer, it must be because we // scanned past it on a previous iteration. That can only // happen if we're out of order; emit a warning. if (IdealIndex == NumIdealInits && InitIndex) { WarnIndexes.push_back(InitIndex); // Move back to the initializer's location in the ideal list. for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) if (InitKey == IdealInitKeys[IdealIndex]) break; assert(IdealIndex < NumIdealInits && "initializer not found in initializer list"); } CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); } if (WarnIndexes.empty()) return; // Sort based on the ideal order, first in the pair. llvm::sort(CorrelatedInitOrder, llvm::less_first()); // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to // emit the diagnostic before we can try adding notes. { Sema::SemaDiagnosticBuilder D = SemaRef.Diag( Inits[WarnIndexes.front() - 1]->getSourceLocation(), WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order : diag::warn_some_initializers_out_of_order); for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { if (CorrelatedInitOrder[I].second == I) continue; // Ideally we would be using InsertFromRange here, but clang doesn't // appear to handle InsertFromRange correctly when the source range is // modified by another fix-it. D << FixItHint::CreateReplacement( Inits[I]->getSourceRange(), Lexer::getSourceText( CharSourceRange::getTokenRange( Inits[CorrelatedInitOrder[I].second]->getSourceRange()), SemaRef.getSourceManager(), SemaRef.getLangOpts())); } // If there is only 1 item out of order, the warning expects the name and // type of each being added to it. if (WarnIndexes.size() == 1) { AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], Inits[WarnIndexes.front()]); return; } } // More than 1 item to warn, create notes letting the user know which ones // are bad. for (unsigned WarnIndex : WarnIndexes) { const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; auto D = SemaRef.Diag(PrevInit->getSourceLocation(), diag::note_initializer_out_of_order); AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); D << PrevInit->getSourceRange(); } } namespace { bool CheckRedundantInit(Sema &S, CXXCtorInitializer *Init, CXXCtorInitializer *&PrevInit) { if (!PrevInit) { PrevInit = Init; return false; } if (FieldDecl *Field = Init->getAnyMember()) S.Diag(Init->getSourceLocation(), diag::err_multiple_mem_initialization) << Field->getDeclName() << Init->getSourceRange(); else { const Type *BaseClass = Init->getBaseClass(); assert(BaseClass && "neither field nor base"); S.Diag(Init->getSourceLocation(), diag::err_multiple_base_initialization) << QualType(BaseClass, 0) << Init->getSourceRange(); } S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) << 0 << PrevInit->getSourceRange(); return true; } typedef std::pair UnionEntry; typedef llvm::DenseMap RedundantUnionMap; bool CheckRedundantUnionInit(Sema &S, CXXCtorInitializer *Init, RedundantUnionMap &Unions) { FieldDecl *Field = Init->getAnyMember(); RecordDecl *Parent = Field->getParent(); NamedDecl *Child = Field; while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { if (Parent->isUnion()) { UnionEntry &En = Unions[Parent]; if (En.first && En.first != Child) { S.Diag(Init->getSourceLocation(), diag::err_multiple_mem_union_initialization) << Field->getDeclName() << Init->getSourceRange(); S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) << 0 << En.second->getSourceRange(); return true; } if (!En.first) { En.first = Child; En.second = Init; } if (!Parent->isAnonymousStructOrUnion()) return false; } Child = Parent; Parent = cast(Parent->getDeclContext()); } return false; } } // namespace void Sema::ActOnMemInitializers(Decl *ConstructorDecl, SourceLocation ColonLoc, ArrayRef MemInits, bool AnyErrors) { if (!ConstructorDecl) return; AdjustDeclIfTemplate(ConstructorDecl); CXXConstructorDecl *Constructor = dyn_cast(ConstructorDecl); if (!Constructor) { Diag(ColonLoc, diag::err_only_constructors_take_base_inits); return; } // Mapping for the duplicate initializers check. // For member initializers, this is keyed with a FieldDecl*. // For base initializers, this is keyed with a Type*. llvm::DenseMap Members; // Mapping for the inconsistent anonymous-union initializers check. RedundantUnionMap MemberUnions; bool HadError = false; for (unsigned i = 0; i < MemInits.size(); i++) { CXXCtorInitializer *Init = MemInits[i]; // Set the source order index. Init->setSourceOrder(i); if (Init->isAnyMemberInitializer()) { const void *Key = GetKeyForMember(Context, Init); if (CheckRedundantInit(*this, Init, Members[Key]) || CheckRedundantUnionInit(*this, Init, MemberUnions)) HadError = true; } else if (Init->isBaseInitializer()) { const void *Key = GetKeyForMember(Context, Init); if (CheckRedundantInit(*this, Init, Members[Key])) HadError = true; } else { assert(Init->isDelegatingInitializer()); // This must be the only initializer if (MemInits.size() != 1) { Diag(Init->getSourceLocation(), diag::err_delegating_initializer_alone) << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); // We will treat this as being the only initializer. } SetDelegatingInitializer(Constructor, MemInits[i]); // Return immediately as the initializer is set. return; } } if (HadError) return; DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); SetCtorInitializers(Constructor, AnyErrors, MemInits); DiagnoseUninitializedFields(*this, Constructor); } void Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, CXXRecordDecl *ClassDecl) { // Ignore dependent contexts. Also ignore unions, since their members never // have destructors implicitly called. if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) return; // FIXME: all the access-control diagnostics are positioned on the // field/base declaration. That's probably good; that said, the // user might reasonably want to know why the destructor is being // emitted, and we currently don't say. // Non-static data members. for (auto *Field : ClassDecl->fields()) { if (Field->isInvalidDecl()) continue; // Don't destroy incomplete or zero-length arrays. if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) continue; QualType FieldType = Context.getBaseElementType(Field->getType()); const RecordType* RT = FieldType->getAs(); if (!RT) continue; CXXRecordDecl *FieldClassDecl = cast(RT->getDecl()); if (FieldClassDecl->isInvalidDecl()) continue; if (FieldClassDecl->hasIrrelevantDestructor()) continue; // The destructor for an implicit anonymous union member is never invoked. if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) continue; CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); // Dtor might still be missing, e.g because it's invalid. if (!Dtor) continue; CheckDestructorAccess(Field->getLocation(), Dtor, PDiag(diag::err_access_dtor_field) << Field->getDeclName() << FieldType); MarkFunctionReferenced(Location, Dtor); DiagnoseUseOfDecl(Dtor, Location); } // We only potentially invoke the destructors of potentially constructed // subobjects. bool VisitVirtualBases = !ClassDecl->isAbstract(); // If the destructor exists and has already been marked used in the MS ABI, // then virtual base destructors have already been checked and marked used. // Skip checking them again to avoid duplicate diagnostics. if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); if (Dtor && Dtor->isUsed()) VisitVirtualBases = false; } llvm::SmallPtrSet DirectVirtualBases; // Bases. for (const auto &Base : ClassDecl->bases()) { const RecordType *RT = Base.getType()->getAs(); if (!RT) continue; // Remember direct virtual bases. if (Base.isVirtual()) { if (!VisitVirtualBases) continue; DirectVirtualBases.insert(RT); } CXXRecordDecl *BaseClassDecl = cast(RT->getDecl()); // If our base class is invalid, we probably can't get its dtor anyway. if (BaseClassDecl->isInvalidDecl()) continue; if (BaseClassDecl->hasIrrelevantDestructor()) continue; CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); // Dtor might still be missing, e.g because it's invalid. if (!Dtor) continue; // FIXME: caret should be on the start of the class name CheckDestructorAccess(Base.getBeginLoc(), Dtor, PDiag(diag::err_access_dtor_base) << Base.getType() << Base.getSourceRange(), Context.getTypeDeclType(ClassDecl)); MarkFunctionReferenced(Location, Dtor); DiagnoseUseOfDecl(Dtor, Location); } if (VisitVirtualBases) MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, &DirectVirtualBases); } void Sema::MarkVirtualBaseDestructorsReferenced( SourceLocation Location, CXXRecordDecl *ClassDecl, llvm::SmallPtrSetImpl *DirectVirtualBases) { // Virtual bases. for (const auto &VBase : ClassDecl->vbases()) { // Bases are always records in a well-formed non-dependent class. const RecordType *RT = VBase.getType()->castAs(); // Ignore already visited direct virtual bases. if (DirectVirtualBases && DirectVirtualBases->count(RT)) continue; CXXRecordDecl *BaseClassDecl = cast(RT->getDecl()); // If our base class is invalid, we probably can't get its dtor anyway. if (BaseClassDecl->isInvalidDecl()) continue; if (BaseClassDecl->hasIrrelevantDestructor()) continue; CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); // Dtor might still be missing, e.g because it's invalid. if (!Dtor) continue; if (CheckDestructorAccess( ClassDecl->getLocation(), Dtor, PDiag(diag::err_access_dtor_vbase) << Context.getTypeDeclType(ClassDecl) << VBase.getType(), Context.getTypeDeclType(ClassDecl)) == AR_accessible) { CheckDerivedToBaseConversion( Context.getTypeDeclType(ClassDecl), VBase.getType(), diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), SourceRange(), DeclarationName(), nullptr); } MarkFunctionReferenced(Location, Dtor); DiagnoseUseOfDecl(Dtor, Location); } } void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { if (!CDtorDecl) return; if (CXXConstructorDecl *Constructor = dyn_cast(CDtorDecl)) { if (CXXRecordDecl *ClassDecl = Constructor->getParent(); !ClassDecl || ClassDecl->isInvalidDecl()) { return; } SetCtorInitializers(Constructor, /*AnyErrors=*/false); DiagnoseUninitializedFields(*this, Constructor); } } bool Sema::isAbstractType(SourceLocation Loc, QualType T) { if (!getLangOpts().CPlusPlus) return false; const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); if (!RD) return false; // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a // class template specialization here, but doing so breaks a lot of code. // We can't answer whether something is abstract until it has a // definition. If it's currently being defined, we'll walk back // over all the declarations when we have a full definition. const CXXRecordDecl *Def = RD->getDefinition(); if (!Def || Def->isBeingDefined()) return false; return RD->isAbstract(); } bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser) { if (!isAbstractType(Loc, T)) return false; T = Context.getBaseElementType(T); Diagnoser.diagnose(*this, Loc, T); DiagnoseAbstractType(T->getAsCXXRecordDecl()); return true; } void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { // Check if we've already emitted the list of pure virtual functions // for this class. if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) return; // If the diagnostic is suppressed, don't emit the notes. We're only // going to emit them once, so try to attach them to a diagnostic we're // actually going to show. if (Diags.isLastDiagnosticIgnored()) return; CXXFinalOverriderMap FinalOverriders; RD->getFinalOverriders(FinalOverriders); // Keep a set of seen pure methods so we won't diagnose the same method // more than once. llvm::SmallPtrSet SeenPureMethods; for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), MEnd = FinalOverriders.end(); M != MEnd; ++M) { for (OverridingMethods::iterator SO = M->second.begin(), SOEnd = M->second.end(); SO != SOEnd; ++SO) { // C++ [class.abstract]p4: // A class is abstract if it contains or inherits at least one // pure virtual function for which the final overrider is pure // virtual. // if (SO->second.size() != 1) continue; if (!SO->second.front().Method->isPureVirtual()) continue; if (!SeenPureMethods.insert(SO->second.front().Method).second) continue; Diag(SO->second.front().Method->getLocation(), diag::note_pure_virtual_function) << SO->second.front().Method->getDeclName() << RD->getDeclName(); } } if (!PureVirtualClassDiagSet) PureVirtualClassDiagSet.reset(new RecordDeclSetTy); PureVirtualClassDiagSet->insert(RD); } namespace { struct AbstractUsageInfo { Sema &S; CXXRecordDecl *Record; CanQualType AbstractType; bool Invalid; AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) : S(S), Record(Record), AbstractType(S.Context.getCanonicalType( S.Context.getTypeDeclType(Record))), Invalid(false) {} void DiagnoseAbstractType() { if (Invalid) return; S.DiagnoseAbstractType(Record); Invalid = true; } void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); }; struct CheckAbstractUsage { AbstractUsageInfo &Info; const NamedDecl *Ctx; CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) : Info(Info), Ctx(Ctx) {} void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { switch (TL.getTypeLocClass()) { #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ case TypeLoc::CLASS: Check(TL.castAs(), Sel); break; #include "clang/AST/TypeLocNodes.def" } } void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getReturnLoc(), Sema::AbstractReturnType); for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { if (!TL.getParam(I)) continue; TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); } } void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getElementLoc(), Sema::AbstractArrayType); } void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { // Visit the type parameters from a permissive context. for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TemplateArgumentLoc TAL = TL.getArgLoc(I); if (TAL.getArgument().getKind() == TemplateArgument::Type) if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) Visit(TSI->getTypeLoc(), Sema::AbstractNone); // TODO: other template argument types? } } // Visit pointee types from a permissive context. #define CheckPolymorphic(Type) \ void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ } CheckPolymorphic(PointerTypeLoc) CheckPolymorphic(ReferenceTypeLoc) CheckPolymorphic(MemberPointerTypeLoc) CheckPolymorphic(BlockPointerTypeLoc) CheckPolymorphic(AtomicTypeLoc) /// Handle all the types we haven't given a more specific /// implementation for above. void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { // Every other kind of type that we haven't called out already // that has an inner type is either (1) sugar or (2) contains that // inner type in some way as a subobject. if (TypeLoc Next = TL.getNextTypeLoc()) return Visit(Next, Sel); // If there's no inner type and we're in a permissive context, // don't diagnose. if (Sel == Sema::AbstractNone) return; // Check whether the type matches the abstract type. QualType T = TL.getType(); if (T->isArrayType()) { Sel = Sema::AbstractArrayType; T = Info.S.Context.getBaseElementType(T); } CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); if (CT != Info.AbstractType) return; // It matched; do some magic. // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. if (Sel == Sema::AbstractArrayType) { Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) << T << TL.getSourceRange(); } else { Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) << Sel << T << TL.getSourceRange(); } Info.DiagnoseAbstractType(); } }; void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel) { CheckAbstractUsage(*this, D).Visit(TL, Sel); } } /// Check for invalid uses of an abstract type in a function declaration. static void CheckAbstractClassUsage(AbstractUsageInfo &Info, FunctionDecl *FD) { // Only definitions are required to refer to complete and // non-abstract types. if (!FD->doesThisDeclarationHaveABody()) return; // For safety's sake, just ignore it if we don't have type source // information. This should never happen for non-implicit methods, // but... if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); } /// Check for invalid uses of an abstract type in a variable0 declaration. static void CheckAbstractClassUsage(AbstractUsageInfo &Info, VarDecl *VD) { // No need to do the check on definitions, which require that // the type is complete. if (VD->isThisDeclarationADefinition()) return; Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(), Sema::AbstractVariableType); } /// Check for invalid uses of an abstract type within a class definition. static void CheckAbstractClassUsage(AbstractUsageInfo &Info, CXXRecordDecl *RD) { for (auto *D : RD->decls()) { if (D->isImplicit()) continue; // Step through friends to the befriended declaration. if (auto *FD = dyn_cast(D)) { D = FD->getFriendDecl(); if (!D) continue; } // Functions and function templates. if (auto *FD = dyn_cast(D)) { CheckAbstractClassUsage(Info, FD); } else if (auto *FTD = dyn_cast(D)) { CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); // Fields and static variables. } else if (auto *FD = dyn_cast(D)) { if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); } else if (auto *VD = dyn_cast(D)) { CheckAbstractClassUsage(Info, VD); } else if (auto *VTD = dyn_cast(D)) { CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); // Nested classes and class templates. } else if (auto *RD = dyn_cast(D)) { CheckAbstractClassUsage(Info, RD); } else if (auto *CTD = dyn_cast(D)) { CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); } } } static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { Attr *ClassAttr = getDLLAttr(Class); if (!ClassAttr) return; assert(ClassAttr->getKind() == attr::DLLExport); TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); if (TSK == TSK_ExplicitInstantiationDeclaration) // Don't go any further if this is just an explicit instantiation // declaration. return; // Add a context note to explain how we got to any diagnostics produced below. struct MarkingClassDllexported { Sema &S; MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, SourceLocation AttrLoc) : S(S) { Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; Ctx.PointOfInstantiation = AttrLoc; Ctx.Entity = Class; S.pushCodeSynthesisContext(Ctx); } ~MarkingClassDllexported() { S.popCodeSynthesisContext(); } } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) S.MarkVTableUsed(Class->getLocation(), Class, true); for (Decl *Member : Class->decls()) { // Skip members that were not marked exported. if (!Member->hasAttr()) continue; // Defined static variables that are members of an exported base // class must be marked export too. auto *VD = dyn_cast(Member); if (VD && VD->getStorageClass() == SC_Static && TSK == TSK_ImplicitInstantiation) S.MarkVariableReferenced(VD->getLocation(), VD); auto *MD = dyn_cast(Member); if (!MD) continue; if (MD->isUserProvided()) { // Instantiate non-default class member functions ... // .. except for certain kinds of template specializations. if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) continue; // If this is an MS ABI dllexport default constructor, instantiate any // default arguments. if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { auto *CD = dyn_cast(MD); if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { S.InstantiateDefaultCtorDefaultArgs(CD); } } S.MarkFunctionReferenced(Class->getLocation(), MD); // The function will be passed to the consumer when its definition is // encountered. } else if (MD->isExplicitlyDefaulted()) { // Synthesize and instantiate explicitly defaulted methods. S.MarkFunctionReferenced(Class->getLocation(), MD); if (TSK != TSK_ExplicitInstantiationDefinition) { // Except for explicit instantiation defs, we will not see the // definition again later, so pass it to the consumer now. S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); } } else if (!MD->isTrivial() || MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { // Synthesize and instantiate non-trivial implicit methods, and the copy // and move assignment operators. The latter are exported even if they // are trivial, because the address of an operator can be taken and // should compare equal across libraries. S.MarkFunctionReferenced(Class->getLocation(), MD); // There is no later point when we will see the definition of this // function, so pass it to the consumer now. S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); } } } static void checkForMultipleExportedDefaultConstructors(Sema &S, CXXRecordDecl *Class) { // Only the MS ABI has default constructor closures, so we don't need to do // this semantic checking anywhere else. if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) return; CXXConstructorDecl *LastExportedDefaultCtor = nullptr; for (Decl *Member : Class->decls()) { // Look for exported default constructors. auto *CD = dyn_cast(Member); if (!CD || !CD->isDefaultConstructor()) continue; auto *Attr = CD->getAttr(); if (!Attr) continue; // If the class is non-dependent, mark the default arguments as ODR-used so // that we can properly codegen the constructor closure. if (!Class->isDependentContext()) { for (ParmVarDecl *PD : CD->parameters()) { (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); S.DiscardCleanupsInEvaluationContext(); } } if (LastExportedDefaultCtor) { S.Diag(LastExportedDefaultCtor->getLocation(), diag::err_attribute_dll_ambiguous_default_ctor) << Class; S.Diag(CD->getLocation(), diag::note_entity_declared_at) << CD->getDeclName(); return; } LastExportedDefaultCtor = CD; } } static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, CXXRecordDecl *Class) { bool ErrorReported = false; auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, ClassTemplateDecl *TD) { if (ErrorReported) return; S.Diag(TD->getLocation(), diag::err_cuda_device_builtin_surftex_cls_template) << /*surface*/ 0 << TD; ErrorReported = true; }; ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); if (!TD) { auto *SD = dyn_cast(Class); if (!SD) { S.Diag(Class->getLocation(), diag::err_cuda_device_builtin_surftex_ref_decl) << /*surface*/ 0 << Class; S.Diag(Class->getLocation(), diag::note_cuda_device_builtin_surftex_should_be_template_class) << Class; return; } TD = SD->getSpecializedTemplate(); } TemplateParameterList *Params = TD->getTemplateParameters(); unsigned N = Params->size(); if (N != 2) { reportIllegalClassTemplate(S, TD); S.Diag(TD->getLocation(), diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) << TD << 2; } if (N > 0 && !isa(Params->getParam(0))) { reportIllegalClassTemplate(S, TD); S.Diag(TD->getLocation(), diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) << TD << /*1st*/ 0 << /*type*/ 0; } if (N > 1) { auto *NTTP = dyn_cast(Params->getParam(1)); if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { reportIllegalClassTemplate(S, TD); S.Diag(TD->getLocation(), diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) << TD << /*2nd*/ 1 << /*integer*/ 1; } } } static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, CXXRecordDecl *Class) { bool ErrorReported = false; auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, ClassTemplateDecl *TD) { if (ErrorReported) return; S.Diag(TD->getLocation(), diag::err_cuda_device_builtin_surftex_cls_template) << /*texture*/ 1 << TD; ErrorReported = true; }; ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); if (!TD) { auto *SD = dyn_cast(Class); if (!SD) { S.Diag(Class->getLocation(), diag::err_cuda_device_builtin_surftex_ref_decl) << /*texture*/ 1 << Class; S.Diag(Class->getLocation(), diag::note_cuda_device_builtin_surftex_should_be_template_class) << Class; return; } TD = SD->getSpecializedTemplate(); } TemplateParameterList *Params = TD->getTemplateParameters(); unsigned N = Params->size(); if (N != 3) { reportIllegalClassTemplate(S, TD); S.Diag(TD->getLocation(), diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) << TD << 3; } if (N > 0 && !isa(Params->getParam(0))) { reportIllegalClassTemplate(S, TD); S.Diag(TD->getLocation(), diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) << TD << /*1st*/ 0 << /*type*/ 0; } if (N > 1) { auto *NTTP = dyn_cast(Params->getParam(1)); if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { reportIllegalClassTemplate(S, TD); S.Diag(TD->getLocation(), diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) << TD << /*2nd*/ 1 << /*integer*/ 1; } } if (N > 2) { auto *NTTP = dyn_cast(Params->getParam(2)); if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { reportIllegalClassTemplate(S, TD); S.Diag(TD->getLocation(), diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) << TD << /*3rd*/ 2 << /*integer*/ 1; } } } void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { // Mark any compiler-generated routines with the implicit code_seg attribute. for (auto *Method : Class->methods()) { if (Method->isUserProvided()) continue; if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) Method->addAttr(A); } } void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { Attr *ClassAttr = getDLLAttr(Class); // MSVC inherits DLL attributes to partial class template specializations. if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { if (auto *Spec = dyn_cast(Class)) { if (Attr *TemplateAttr = getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { auto *A = cast(TemplateAttr->clone(getASTContext())); A->setInherited(true); ClassAttr = A; } } } if (!ClassAttr) return; // MSVC allows imported or exported template classes that have UniqueExternal // linkage. This occurs when the template class has been instantiated with // a template parameter which itself has internal linkage. // We drop the attribute to avoid exporting or importing any members. if ((Context.getTargetInfo().getCXXABI().isMicrosoft() || Context.getTargetInfo().getTriple().isPS()) && (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) { Class->dropAttrs(); return; } if (!Class->isExternallyVisible()) { Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) << Class << ClassAttr; return; } if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr->isInherited()) { // Diagnose dll attributes on members of class with dll attribute. for (Decl *Member : Class->decls()) { if (!isa(Member) && !isa(Member)) continue; InheritableAttr *MemberAttr = getDLLAttr(Member); if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) continue; Diag(MemberAttr->getLocation(), diag::err_attribute_dll_member_of_dll_class) << MemberAttr << ClassAttr; Diag(ClassAttr->getLocation(), diag::note_previous_attribute); Member->setInvalidDecl(); } } if (Class->getDescribedClassTemplate()) // Don't inherit dll attribute until the template is instantiated. return; // The class is either imported or exported. const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; // Check if this was a dllimport attribute propagated from a derived class to // a base class template specialization. We don't apply these attributes to // static data members. const bool PropagatedImport = !ClassExported && cast(ClassAttr)->wasPropagatedToBaseTemplate(); TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); // Ignore explicit dllexport on explicit class template instantiation // declarations, except in MinGW mode. if (ClassExported && !ClassAttr->isInherited() && TSK == TSK_ExplicitInstantiationDeclaration && !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { Class->dropAttr(); return; } // Force declaration of implicit members so they can inherit the attribute. ForceDeclarationOfImplicitMembers(Class); // FIXME: MSVC's docs say all bases must be exportable, but this doesn't // seem to be true in practice? for (Decl *Member : Class->decls()) { VarDecl *VD = dyn_cast(Member); CXXMethodDecl *MD = dyn_cast(Member); // Only methods and static fields inherit the attributes. if (!VD && !MD) continue; if (MD) { // Don't process deleted methods. if (MD->isDeleted()) continue; if (MD->isInlined()) { // MinGW does not import or export inline methods. But do it for // template instantiations. if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && TSK != TSK_ExplicitInstantiationDeclaration && TSK != TSK_ExplicitInstantiationDefinition) continue; // MSVC versions before 2015 don't export the move assignment operators // and move constructor, so don't attempt to import/export them if // we have a definition. auto *Ctor = dyn_cast(MD); if ((MD->isMoveAssignmentOperator() || (Ctor && Ctor->isMoveConstructor())) && !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) continue; // MSVC2015 doesn't export trivial defaulted x-tor but copy assign // operator is exported anyway. if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && (Ctor || isa(MD)) && MD->isTrivial()) continue; } } // Don't apply dllimport attributes to static data members of class template // instantiations when the attribute is propagated from a derived class. if (VD && PropagatedImport) continue; if (!cast(Member)->isExternallyVisible()) continue; if (!getDLLAttr(Member)) { InheritableAttr *NewAttr = nullptr; // Do not export/import inline function when -fno-dllexport-inlines is // passed. But add attribute for later local static var check. if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && TSK != TSK_ExplicitInstantiationDeclaration && TSK != TSK_ExplicitInstantiationDefinition) { if (ClassExported) { NewAttr = ::new (getASTContext()) DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); } else { NewAttr = ::new (getASTContext()) DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); } } else { NewAttr = cast(ClassAttr->clone(getASTContext())); } NewAttr->setInherited(true); Member->addAttr(NewAttr); if (MD) { // Propagate DLLAttr to friend re-declarations of MD that have already // been constructed. for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; FD = FD->getPreviousDecl()) { if (FD->getFriendObjectKind() == Decl::FOK_None) continue; assert(!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"); NewAttr = cast(ClassAttr->clone(getASTContext())); NewAttr->setInherited(true); FD->addAttr(NewAttr); } } } } if (ClassExported) DelayedDllExportClasses.push_back(Class); } void Sema::propagateDLLAttrToBaseClassTemplate( CXXRecordDecl *Class, Attr *ClassAttr, ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { if (getDLLAttr( BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { // If the base class template has a DLL attribute, don't try to change it. return; } auto TSK = BaseTemplateSpec->getSpecializationKind(); if (!getDLLAttr(BaseTemplateSpec) && (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || TSK == TSK_ImplicitInstantiation)) { // The template hasn't been instantiated yet (or it has, but only as an // explicit instantiation declaration or implicit instantiation, which means // we haven't codegenned any members yet), so propagate the attribute. auto *NewAttr = cast(ClassAttr->clone(getASTContext())); NewAttr->setInherited(true); BaseTemplateSpec->addAttr(NewAttr); // If this was an import, mark that we propagated it from a derived class to // a base class template specialization. if (auto *ImportAttr = dyn_cast(NewAttr)) ImportAttr->setPropagatedToBaseTemplate(); // If the template is already instantiated, checkDLLAttributeRedeclaration() // needs to be run again to work see the new attribute. Otherwise this will // get run whenever the template is instantiated. if (TSK != TSK_Undeclared) checkClassLevelDLLAttribute(BaseTemplateSpec); return; } if (getDLLAttr(BaseTemplateSpec)) { // The template has already been specialized or instantiated with an // attribute, explicitly or through propagation. We should not try to change // it. return; } // The template was previously instantiated or explicitly specialized without // a dll attribute, It's too late for us to add an attribute, so warn that // this is unsupported. Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) << BaseTemplateSpec->isExplicitSpecialization(); Diag(ClassAttr->getLocation(), diag::note_attribute); if (BaseTemplateSpec->isExplicitSpecialization()) { Diag(BaseTemplateSpec->getLocation(), diag::note_template_class_explicit_specialization_was_here) << BaseTemplateSpec; } else { Diag(BaseTemplateSpec->getPointOfInstantiation(), diag::note_template_class_instantiation_was_here) << BaseTemplateSpec; } } Sema::DefaultedFunctionKind Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { if (auto *MD = dyn_cast(FD)) { if (const CXXConstructorDecl *Ctor = dyn_cast(FD)) { if (Ctor->isDefaultConstructor()) return CXXSpecialMemberKind::DefaultConstructor; if (Ctor->isCopyConstructor()) return CXXSpecialMemberKind::CopyConstructor; if (Ctor->isMoveConstructor()) return CXXSpecialMemberKind::MoveConstructor; } if (MD->isCopyAssignmentOperator()) return CXXSpecialMemberKind::CopyAssignment; if (MD->isMoveAssignmentOperator()) return CXXSpecialMemberKind::MoveAssignment; if (isa(FD)) return CXXSpecialMemberKind::Destructor; } switch (FD->getDeclName().getCXXOverloadedOperator()) { case OO_EqualEqual: return DefaultedComparisonKind::Equal; case OO_ExclaimEqual: return DefaultedComparisonKind::NotEqual; case OO_Spaceship: // No point allowing this if <=> doesn't exist in the current language mode. if (!getLangOpts().CPlusPlus20) break; return DefaultedComparisonKind::ThreeWay; case OO_Less: case OO_LessEqual: case OO_Greater: case OO_GreaterEqual: // No point allowing this if <=> doesn't exist in the current language mode. if (!getLangOpts().CPlusPlus20) break; return DefaultedComparisonKind::Relational; default: break; } // Not defaultable. return DefaultedFunctionKind(); } static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, SourceLocation DefaultLoc) { Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); if (DFK.isComparison()) return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); switch (DFK.asSpecialMember()) { case CXXSpecialMemberKind::DefaultConstructor: S.DefineImplicitDefaultConstructor(DefaultLoc, cast(FD)); break; case CXXSpecialMemberKind::CopyConstructor: S.DefineImplicitCopyConstructor(DefaultLoc, cast(FD)); break; case CXXSpecialMemberKind::CopyAssignment: S.DefineImplicitCopyAssignment(DefaultLoc, cast(FD)); break; case CXXSpecialMemberKind::Destructor: S.DefineImplicitDestructor(DefaultLoc, cast(FD)); break; case CXXSpecialMemberKind::MoveConstructor: S.DefineImplicitMoveConstructor(DefaultLoc, cast(FD)); break; case CXXSpecialMemberKind::MoveAssignment: S.DefineImplicitMoveAssignment(DefaultLoc, cast(FD)); break; case CXXSpecialMemberKind::Invalid: llvm_unreachable("Invalid special member."); } } /// Determine whether a type is permitted to be passed or returned in /// registers, per C++ [class.temporary]p3. static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, TargetInfo::CallingConvKind CCK) { if (D->isDependentType() || D->isInvalidDecl()) return false; // Clang <= 4 used the pre-C++11 rule, which ignores move operations. // The PS4 platform ABI follows the behavior of Clang 3.2. if (CCK == TargetInfo::CCK_ClangABI4OrPS4) return !D->hasNonTrivialDestructorForCall() && !D->hasNonTrivialCopyConstructorForCall(); if (CCK == TargetInfo::CCK_MicrosoftWin64) { bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; bool DtorIsTrivialForCall = false; // If a class has at least one eligible, trivial copy constructor, it // is passed according to the C ABI. Otherwise, it is passed indirectly. // // Note: This permits classes with non-trivial copy or move ctors to be // passed in registers, so long as they *also* have a trivial copy ctor, // which is non-conforming. if (D->needsImplicitCopyConstructor()) { if (!D->defaultedCopyConstructorIsDeleted()) { if (D->hasTrivialCopyConstructor()) CopyCtorIsTrivial = true; if (D->hasTrivialCopyConstructorForCall()) CopyCtorIsTrivialForCall = true; } } else { for (const CXXConstructorDecl *CD : D->ctors()) { if (CD->isCopyConstructor() && !CD->isDeleted() && !CD->isIneligibleOrNotSelected()) { if (CD->isTrivial()) CopyCtorIsTrivial = true; if (CD->isTrivialForCall()) CopyCtorIsTrivialForCall = true; } } } if (D->needsImplicitDestructor()) { if (!D->defaultedDestructorIsDeleted() && D->hasTrivialDestructorForCall()) DtorIsTrivialForCall = true; } else if (const auto *DD = D->getDestructor()) { if (!DD->isDeleted() && DD->isTrivialForCall()) DtorIsTrivialForCall = true; } // If the copy ctor and dtor are both trivial-for-calls, pass direct. if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) return true; // If a class has a destructor, we'd really like to pass it indirectly // because it allows us to elide copies. Unfortunately, MSVC makes that // impossible for small types, which it will pass in a single register or // stack slot. Most objects with dtors are large-ish, so handle that early. // We can't call out all large objects as being indirect because there are // multiple x64 calling conventions and the C++ ABI code shouldn't dictate // how we pass large POD types. // Note: This permits small classes with nontrivial destructors to be // passed in registers, which is non-conforming. bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); uint64_t TypeSize = isAArch64 ? 128 : 64; if (CopyCtorIsTrivial && S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) return true; return false; } // Per C++ [class.temporary]p3, the relevant condition is: // each copy constructor, move constructor, and destructor of X is // either trivial or deleted, and X has at least one non-deleted copy // or move constructor bool HasNonDeletedCopyOrMove = false; if (D->needsImplicitCopyConstructor() && !D->defaultedCopyConstructorIsDeleted()) { if (!D->hasTrivialCopyConstructorForCall()) return false; HasNonDeletedCopyOrMove = true; } if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && !D->defaultedMoveConstructorIsDeleted()) { if (!D->hasTrivialMoveConstructorForCall()) return false; HasNonDeletedCopyOrMove = true; } if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && !D->hasTrivialDestructorForCall()) return false; for (const CXXMethodDecl *MD : D->methods()) { if (MD->isDeleted() || MD->isIneligibleOrNotSelected()) continue; auto *CD = dyn_cast(MD); if (CD && CD->isCopyOrMoveConstructor()) HasNonDeletedCopyOrMove = true; else if (!isa(MD)) continue; if (!MD->isTrivialForCall()) return false; } return HasNonDeletedCopyOrMove; } /// Report an error regarding overriding, along with any relevant /// overridden methods. /// /// \param DiagID the primary error to report. /// \param MD the overriding method. static bool ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, llvm::function_ref Report) { bool IssuedDiagnostic = false; for (const CXXMethodDecl *O : MD->overridden_methods()) { if (Report(O)) { if (!IssuedDiagnostic) { S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); IssuedDiagnostic = true; } S.Diag(O->getLocation(), diag::note_overridden_virtual_function); } } return IssuedDiagnostic; } void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { if (!Record) return; if (Record->isAbstract() && !Record->isInvalidDecl()) { AbstractUsageInfo Info(*this, Record); CheckAbstractClassUsage(Info, Record); } // If this is not an aggregate type and has no user-declared constructor, // complain about any non-static data members of reference or const scalar // type, since they will never get initializers. if (!Record->isInvalidDecl() && !Record->isDependentType() && !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && !Record->isLambda()) { bool Complained = false; for (const auto *F : Record->fields()) { if (F->hasInClassInitializer() || F->isUnnamedBitField()) continue; if (F->getType()->isReferenceType() || (F->getType().isConstQualified() && F->getType()->isScalarType())) { if (!Complained) { Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) << llvm::to_underlying(Record->getTagKind()) << Record; Complained = true; } Diag(F->getLocation(), diag::note_refconst_member_not_initialized) << F->getType()->isReferenceType() << F->getDeclName(); } } } if (Record->getIdentifier()) { // C++ [class.mem]p13: // If T is the name of a class, then each of the following shall have a // name different from T: // - every member of every anonymous union that is a member of class T. // // C++ [class.mem]p14: // In addition, if class T has a user-declared constructor (12.1), every // non-static data member of class T shall have a name different from T. DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { NamedDecl *D = (*I)->getUnderlyingDecl(); if (((isa(D) || isa(D)) && Record->hasUserDeclaredConstructor()) || isa(D)) { Diag((*I)->getLocation(), diag::err_member_name_of_class) << D->getDeclName(); break; } } } // Warn if the class has virtual methods but non-virtual public destructor. if (Record->isPolymorphic() && !Record->isDependentType()) { CXXDestructorDecl *dtor = Record->getDestructor(); if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && !Record->hasAttr()) Diag(dtor ? dtor->getLocation() : Record->getLocation(), diag::warn_non_virtual_dtor) << Context.getRecordType(Record); } if (Record->isAbstract()) { if (FinalAttr *FA = Record->getAttr()) { Diag(Record->getLocation(), diag::warn_abstract_final_class) << FA->isSpelledAsSealed(); DiagnoseAbstractType(Record); } } // Warn if the class has a final destructor but is not itself marked final. if (!Record->hasAttr()) { if (const CXXDestructorDecl *dtor = Record->getDestructor()) { if (const FinalAttr *FA = dtor->getAttr()) { Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) << FA->isSpelledAsSealed() << FixItHint::CreateInsertion( getLocForEndOfToken(Record->getLocation()), (FA->isSpelledAsSealed() ? " sealed" : " final")); Diag(Record->getLocation(), diag::note_final_dtor_non_final_class_silence) << Context.getRecordType(Record) << FA->isSpelledAsSealed(); } } } // See if trivial_abi has to be dropped. if (Record->hasAttr()) checkIllFormedTrivialABIStruct(*Record); // Set HasTrivialSpecialMemberForCall if the record has attribute // "trivial_abi". bool HasTrivialABI = Record->hasAttr(); if (HasTrivialABI) Record->setHasTrivialSpecialMemberForCall(); // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). // We check these last because they can depend on the properties of the // primary comparison functions (==, <=>). llvm::SmallVector DefaultedSecondaryComparisons; // Perform checks that can't be done until we know all the properties of a // member function (whether it's defaulted, deleted, virtual, overriding, // ...). auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { // A static function cannot override anything. if (MD->getStorageClass() == SC_Static) { if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, [](const CXXMethodDecl *) { return true; })) return; } // A deleted function cannot override a non-deleted function and vice // versa. if (ReportOverrides(*this, MD->isDeleted() ? diag::err_deleted_override : diag::err_non_deleted_override, MD, [&](const CXXMethodDecl *V) { return MD->isDeleted() != V->isDeleted(); })) { if (MD->isDefaulted() && MD->isDeleted()) // Explain why this defaulted function was deleted. DiagnoseDeletedDefaultedFunction(MD); return; } // A consteval function cannot override a non-consteval function and vice // versa. if (ReportOverrides(*this, MD->isConsteval() ? diag::err_consteval_override : diag::err_non_consteval_override, MD, [&](const CXXMethodDecl *V) { return MD->isConsteval() != V->isConsteval(); })) { if (MD->isDefaulted() && MD->isDeleted()) // Explain why this defaulted function was deleted. DiagnoseDeletedDefaultedFunction(MD); return; } }; auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) return false; DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || DFK.asComparison() == DefaultedComparisonKind::Relational) { DefaultedSecondaryComparisons.push_back(FD); return true; } CheckExplicitlyDefaultedFunction(S, FD); return false; }; if (!Record->isInvalidDecl() && Record->hasAttr()) checkIncorrectVTablePointerAuthenticationAttribute(*Record); auto CompleteMemberFunction = [&](CXXMethodDecl *M) { // Check whether the explicitly-defaulted members are valid. bool Incomplete = CheckForDefaultedFunction(M); // Skip the rest of the checks for a member of a dependent class. if (Record->isDependentType()) return; // For an explicitly defaulted or deleted special member, we defer // determining triviality until the class is complete. That time is now! CXXSpecialMemberKind CSM = getSpecialMember(M); if (!M->isImplicit() && !M->isUserProvided()) { if (CSM != CXXSpecialMemberKind::Invalid) { M->setTrivial(SpecialMemberIsTrivial(M, CSM)); // Inform the class that we've finished declaring this member. Record->finishedDefaultedOrDeletedMember(M); M->setTrivialForCall( HasTrivialABI || SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); Record->setTrivialForCallFlags(M); } } // Set triviality for the purpose of calls if this is a user-provided // copy/move constructor or destructor. if ((CSM == CXXSpecialMemberKind::CopyConstructor || CSM == CXXSpecialMemberKind::MoveConstructor || CSM == CXXSpecialMemberKind::Destructor) && M->isUserProvided()) { M->setTrivialForCall(HasTrivialABI); Record->setTrivialForCallFlags(M); } if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && M->hasAttr()) { if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && M->isTrivial() && (CSM == CXXSpecialMemberKind::DefaultConstructor || CSM == CXXSpecialMemberKind::CopyConstructor || CSM == CXXSpecialMemberKind::Destructor)) M->dropAttr(); if (M->hasAttr()) { // Define after any fields with in-class initializers have been parsed. DelayedDllExportMemberFunctions.push_back(M); } } bool EffectivelyConstexprDestructor = true; // Avoid triggering vtable instantiation due to a dtor that is not // "effectively constexpr" for better compatibility. // See https://github.com/llvm/llvm-project/issues/102293 for more info. if (isa(M)) { auto Check = [](QualType T, auto &&Check) -> bool { const CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); if (!RD || !RD->isCompleteDefinition()) return true; if (!RD->hasConstexprDestructor()) return false; QualType CanUnqualT = T.getCanonicalType().getUnqualifiedType(); for (const CXXBaseSpecifier &B : RD->bases()) if (B.getType().getCanonicalType().getUnqualifiedType() != CanUnqualT && !Check(B.getType(), Check)) return false; for (const FieldDecl *FD : RD->fields()) if (FD->getType().getCanonicalType().getUnqualifiedType() != CanUnqualT && !Check(FD->getType(), Check)) return false; return true; }; EffectivelyConstexprDestructor = Check(QualType(Record->getTypeForDecl(), 0), Check); } // Define defaulted constexpr virtual functions that override a base class // function right away. // FIXME: We can defer doing this until the vtable is marked as used. if (CSM != CXXSpecialMemberKind::Invalid && !M->isDeleted() && M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods() && EffectivelyConstexprDestructor) DefineDefaultedFunction(*this, M, M->getLocation()); if (!Incomplete) CheckCompletedMemberFunction(M); }; // Check the destructor before any other member function. We need to // determine whether it's trivial in order to determine whether the claas // type is a literal type, which is a prerequisite for determining whether // other special member functions are valid and whether they're implicitly // 'constexpr'. if (CXXDestructorDecl *Dtor = Record->getDestructor()) CompleteMemberFunction(Dtor); bool HasMethodWithOverrideControl = false, HasOverridingMethodWithoutOverrideControl = false; for (auto *D : Record->decls()) { if (auto *M = dyn_cast(D)) { // FIXME: We could do this check for dependent types with non-dependent // bases. if (!Record->isDependentType()) { // See if a method overloads virtual methods in a base // class without overriding any. if (!M->isStatic()) DiagnoseHiddenVirtualMethods(M); if (M->hasAttr()) HasMethodWithOverrideControl = true; else if (M->size_overridden_methods() > 0) HasOverridingMethodWithoutOverrideControl = true; } if (!isa(M)) CompleteMemberFunction(M); } else if (auto *F = dyn_cast(D)) { CheckForDefaultedFunction( dyn_cast_or_null(F->getFriendDecl())); } } if (HasOverridingMethodWithoutOverrideControl) { bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; for (auto *M : Record->methods()) DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); } // Check the defaulted secondary comparisons after any other member functions. for (FunctionDecl *FD : DefaultedSecondaryComparisons) { CheckExplicitlyDefaultedFunction(S, FD); // If this is a member function, we deferred checking it until now. if (auto *MD = dyn_cast(FD)) CheckCompletedMemberFunction(MD); } // ms_struct is a request to use the same ABI rules as MSVC. Check // whether this class uses any C++ features that are implemented // completely differently in MSVC, and if so, emit a diagnostic. // That diagnostic defaults to an error, but we allow projects to // map it down to a warning (or ignore it). It's a fairly common // practice among users of the ms_struct pragma to mass-annotate // headers, sweeping up a bunch of types that the project doesn't // really rely on MSVC-compatible layout for. We must therefore // support "ms_struct except for C++ stuff" as a secondary ABI. // Don't emit this diagnostic if the feature was enabled as a // language option (as opposed to via a pragma or attribute), as // the option -mms-bitfields otherwise essentially makes it impossible // to build C++ code, unless this diagnostic is turned off. if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && (Record->isPolymorphic() || Record->getNumBases())) { Diag(Record->getLocation(), diag::warn_cxx_ms_struct); } checkClassLevelDLLAttribute(Record); checkClassLevelCodeSegAttribute(Record); bool ClangABICompat4 = Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; TargetInfo::CallingConvKind CCK = Context.getTargetInfo().getCallingConvKind(ClangABICompat4); bool CanPass = canPassInRegisters(*this, Record, CCK); // Do not change ArgPassingRestrictions if it has already been set to // RecordArgPassingKind::CanNeverPassInRegs. if (Record->getArgPassingRestrictions() != RecordArgPassingKind::CanNeverPassInRegs) Record->setArgPassingRestrictions( CanPass ? RecordArgPassingKind::CanPassInRegs : RecordArgPassingKind::CannotPassInRegs); // If canPassInRegisters returns true despite the record having a non-trivial // destructor, the record is destructed in the callee. This happens only when // the record or one of its subobjects has a field annotated with trivial_abi // or a field qualified with ObjC __strong/__weak. if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) Record->setParamDestroyedInCallee(true); else if (Record->hasNonTrivialDestructor()) Record->setParamDestroyedInCallee(CanPass); if (getLangOpts().ForceEmitVTables) { // If we want to emit all the vtables, we need to mark it as used. This // is especially required for cases like vtable assumption loads. MarkVTableUsed(Record->getInnerLocStart(), Record); } if (getLangOpts().CUDA) { if (Record->hasAttr()) checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); else if (Record->hasAttr()) checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); } } /// Look up the special member function that would be called by a special /// member function for a subobject of class type. /// /// \param Class The class type of the subobject. /// \param CSM The kind of special member function. /// \param FieldQuals If the subobject is a field, its cv-qualifiers. /// \param ConstRHS True if this is a copy operation with a const object /// on its RHS, that is, if the argument to the outer special member /// function is 'const' and this is not a field marked 'mutable'. static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(Sema &S, CXXRecordDecl *Class, CXXSpecialMemberKind CSM, unsigned FieldQuals, bool ConstRHS) { unsigned LHSQuals = 0; if (CSM == CXXSpecialMemberKind::CopyAssignment || CSM == CXXSpecialMemberKind::MoveAssignment) LHSQuals = FieldQuals; unsigned RHSQuals = FieldQuals; if (CSM == CXXSpecialMemberKind::DefaultConstructor || CSM == CXXSpecialMemberKind::Destructor) RHSQuals = 0; else if (ConstRHS) RHSQuals |= Qualifiers::Const; return S.LookupSpecialMember(Class, CSM, RHSQuals & Qualifiers::Const, RHSQuals & Qualifiers::Volatile, false, LHSQuals & Qualifiers::Const, LHSQuals & Qualifiers::Volatile); } class Sema::InheritedConstructorInfo { Sema &S; SourceLocation UseLoc; /// A mapping from the base classes through which the constructor was /// inherited to the using shadow declaration in that base class (or a null /// pointer if the constructor was declared in that base class). llvm::DenseMap InheritedFromBases; public: InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, ConstructorUsingShadowDecl *Shadow) : S(S), UseLoc(UseLoc) { bool DiagnosedMultipleConstructedBases = false; CXXRecordDecl *ConstructedBase = nullptr; BaseUsingDecl *ConstructedBaseIntroducer = nullptr; // Find the set of such base class subobjects and check that there's a // unique constructed subobject. for (auto *D : Shadow->redecls()) { auto *DShadow = cast(D); auto *DNominatedBase = DShadow->getNominatedBaseClass(); auto *DConstructedBase = DShadow->getConstructedBaseClass(); InheritedFromBases.insert( std::make_pair(DNominatedBase->getCanonicalDecl(), DShadow->getNominatedBaseClassShadowDecl())); if (DShadow->constructsVirtualBase()) InheritedFromBases.insert( std::make_pair(DConstructedBase->getCanonicalDecl(), DShadow->getConstructedBaseClassShadowDecl())); else assert(DNominatedBase == DConstructedBase); // [class.inhctor.init]p2: // If the constructor was inherited from multiple base class subobjects // of type B, the program is ill-formed. if (!ConstructedBase) { ConstructedBase = DConstructedBase; ConstructedBaseIntroducer = D->getIntroducer(); } else if (ConstructedBase != DConstructedBase && !Shadow->isInvalidDecl()) { if (!DiagnosedMultipleConstructedBases) { S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) << Shadow->getTargetDecl(); S.Diag(ConstructedBaseIntroducer->getLocation(), diag::note_ambiguous_inherited_constructor_using) << ConstructedBase; DiagnosedMultipleConstructedBases = true; } S.Diag(D->getIntroducer()->getLocation(), diag::note_ambiguous_inherited_constructor_using) << DConstructedBase; } } if (DiagnosedMultipleConstructedBases) Shadow->setInvalidDecl(); } /// Find the constructor to use for inherited construction of a base class, /// and whether that base class constructor inherits the constructor from a /// virtual base class (in which case it won't actually invoke it). std::pair findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { auto It = InheritedFromBases.find(Base->getCanonicalDecl()); if (It == InheritedFromBases.end()) return std::make_pair(nullptr, false); // This is an intermediary class. if (It->second) return std::make_pair( S.findInheritingConstructor(UseLoc, Ctor, It->second), It->second->constructsVirtualBase()); // This is the base class from which the constructor was inherited. return std::make_pair(Ctor, false); } }; /// Is the special member function which would be selected to perform the /// specified operation on the specified class type a constexpr constructor? static bool specialMemberIsConstexpr( Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, unsigned Quals, bool ConstRHS, CXXConstructorDecl *InheritedCtor = nullptr, Sema::InheritedConstructorInfo *Inherited = nullptr) { // Suppress duplicate constraint checking here, in case a constraint check // caused us to decide to do this. Any truely recursive checks will get // caught during these checks anyway. Sema::SatisfactionStackResetRAII SSRAII{S}; // If we're inheriting a constructor, see if we need to call it for this base // class. if (InheritedCtor) { assert(CSM == CXXSpecialMemberKind::DefaultConstructor); auto BaseCtor = Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; if (BaseCtor) return BaseCtor->isConstexpr(); } if (CSM == CXXSpecialMemberKind::DefaultConstructor) return ClassDecl->hasConstexprDefaultConstructor(); if (CSM == CXXSpecialMemberKind::Destructor) return ClassDecl->hasConstexprDestructor(); Sema::SpecialMemberOverloadResult SMOR = lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); if (!SMOR.getMethod()) // A constructor we wouldn't select can't be "involved in initializing" // anything. return true; return SMOR.getMethod()->isConstexpr(); } /// Determine whether the specified special member function would be constexpr /// if it were implicitly defined. static bool defaultedSpecialMemberIsConstexpr( Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, Sema::InheritedConstructorInfo *Inherited = nullptr) { if (!S.getLangOpts().CPlusPlus11) return false; // C++11 [dcl.constexpr]p4: // In the definition of a constexpr constructor [...] bool Ctor = true; switch (CSM) { case CXXSpecialMemberKind::DefaultConstructor: if (Inherited) break; // Since default constructor lookup is essentially trivial (and cannot // involve, for instance, template instantiation), we compute whether a // defaulted default constructor is constexpr directly within CXXRecordDecl. // // This is important for performance; we need to know whether the default // constructor is constexpr to determine whether the type is a literal type. return ClassDecl->defaultedDefaultConstructorIsConstexpr(); case CXXSpecialMemberKind::CopyConstructor: case CXXSpecialMemberKind::MoveConstructor: // For copy or move constructors, we need to perform overload resolution. break; case CXXSpecialMemberKind::CopyAssignment: case CXXSpecialMemberKind::MoveAssignment: if (!S.getLangOpts().CPlusPlus14) return false; // In C++1y, we need to perform overload resolution. Ctor = false; break; case CXXSpecialMemberKind::Destructor: return ClassDecl->defaultedDestructorIsConstexpr(); case CXXSpecialMemberKind::Invalid: return false; } // -- if the class is a non-empty union, or for each non-empty anonymous // union member of a non-union class, exactly one non-static data member // shall be initialized; [DR1359] // // If we squint, this is guaranteed, since exactly one non-static data member // will be initialized (if the constructor isn't deleted), we just don't know // which one. if (Ctor && ClassDecl->isUnion()) return CSM == CXXSpecialMemberKind::DefaultConstructor ? ClassDecl->hasInClassInitializer() || !ClassDecl->hasVariantMembers() : true; // -- the class shall not have any virtual base classes; if (Ctor && ClassDecl->getNumVBases()) return false; // C++1y [class.copy]p26: // -- [the class] is a literal type, and if (!Ctor && !ClassDecl->isLiteral() && !S.getLangOpts().CPlusPlus23) return false; // -- every constructor involved in initializing [...] base class // sub-objects shall be a constexpr constructor; // -- the assignment operator selected to copy/move each direct base // class is a constexpr function, and if (!S.getLangOpts().CPlusPlus23) { for (const auto &B : ClassDecl->bases()) { const RecordType *BaseType = B.getType()->getAs(); if (!BaseType) continue; CXXRecordDecl *BaseClassDecl = cast(BaseType->getDecl()); if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, InheritedCtor, Inherited)) return false; } } // -- every constructor involved in initializing non-static data members // [...] shall be a constexpr constructor; // -- every non-static data member and base class sub-object shall be // initialized // -- for each non-static data member of X that is of class type (or array // thereof), the assignment operator selected to copy/move that member is // a constexpr function if (!S.getLangOpts().CPlusPlus23) { for (const auto *F : ClassDecl->fields()) { if (F->isInvalidDecl()) continue; if (CSM == CXXSpecialMemberKind::DefaultConstructor && F->hasInClassInitializer()) continue; QualType BaseType = S.Context.getBaseElementType(F->getType()); if (const RecordType *RecordTy = BaseType->getAs()) { CXXRecordDecl *FieldRecDecl = cast(RecordTy->getDecl()); if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, BaseType.getCVRQualifiers(), ConstArg && !F->isMutable())) return false; } else if (CSM == CXXSpecialMemberKind::DefaultConstructor) { return false; } } } // All OK, it's constexpr! return true; } namespace { /// RAII object to register a defaulted function as having its exception /// specification computed. struct ComputingExceptionSpec { Sema &S; ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) : S(S) { Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; Ctx.PointOfInstantiation = Loc; Ctx.Entity = FD; S.pushCodeSynthesisContext(Ctx); } ~ComputingExceptionSpec() { S.popCodeSynthesisContext(); } }; } static Sema::ImplicitExceptionSpecification ComputeDefaultedSpecialMemberExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, Sema::InheritedConstructorInfo *ICI); static Sema::ImplicitExceptionSpecification ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD, Sema::DefaultedComparisonKind DCK); static Sema::ImplicitExceptionSpecification computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { auto DFK = S.getDefaultedFunctionKind(FD); if (DFK.isSpecialMember()) return ComputeDefaultedSpecialMemberExceptionSpec( S, Loc, cast(FD), DFK.asSpecialMember(), nullptr); if (DFK.isComparison()) return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, DFK.asComparison()); auto *CD = cast(FD); assert(CD->getInheritedConstructor() && "only defaulted functions and inherited constructors have implicit " "exception specs"); Sema::InheritedConstructorInfo ICI( S, Loc, CD->getInheritedConstructor().getShadowDecl()); return ComputeDefaultedSpecialMemberExceptionSpec( S, Loc, CD, CXXSpecialMemberKind::DefaultConstructor, &ICI); } static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, CXXMethodDecl *MD) { FunctionProtoType::ExtProtoInfo EPI; // Build an exception specification pointing back at this member. EPI.ExceptionSpec.Type = EST_Unevaluated; EPI.ExceptionSpec.SourceDecl = MD; // Set the calling convention to the default for C++ instance methods. EPI.ExtInfo = EPI.ExtInfo.withCallingConv( S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, /*IsCXXMethod=*/true)); return EPI; } void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { const FunctionProtoType *FPT = FD->getType()->castAs(); if (FPT->getExceptionSpecType() != EST_Unevaluated) return; // Evaluate the exception specification. auto IES = computeImplicitExceptionSpec(*this, Loc, FD); auto ESI = IES.getExceptionSpec(); // Update the type of the special member to use it. UpdateExceptionSpec(FD, ESI); } void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); if (!DefKind) { assert(FD->getDeclContext()->isDependentContext()); return; } if (DefKind.isComparison()) UnusedPrivateFields.clear(); if (DefKind.isSpecialMember() ? CheckExplicitlyDefaultedSpecialMember(cast(FD), DefKind.asSpecialMember(), FD->getDefaultLoc()) : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) FD->setInvalidDecl(); } bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, CXXSpecialMemberKind CSM, SourceLocation DefaultLoc) { CXXRecordDecl *RD = MD->getParent(); assert(MD->isExplicitlyDefaulted() && CSM != CXXSpecialMemberKind::Invalid && "not an explicitly-defaulted special member"); // Defer all checking for special members of a dependent type. if (RD->isDependentType()) return false; // Whether this was the first-declared instance of the constructor. // This affects whether we implicitly add an exception spec and constexpr. bool First = MD == MD->getCanonicalDecl(); bool HadError = false; // C++11 [dcl.fct.def.default]p1: // A function that is explicitly defaulted shall // -- be a special member function [...] (checked elsewhere), // -- have the same type (except for ref-qualifiers, and except that a // copy operation can take a non-const reference) as an implicit // declaration, and // -- not have default arguments. // C++2a changes the second bullet to instead delete the function if it's // defaulted on its first declaration, unless it's "an assignment operator, // and its return type differs or its parameter type is not a reference". bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; bool ShouldDeleteForTypeMismatch = false; unsigned ExpectedParams = 1; if (CSM == CXXSpecialMemberKind::DefaultConstructor || CSM == CXXSpecialMemberKind::Destructor) ExpectedParams = 0; if (MD->getNumExplicitParams() != ExpectedParams) { // This checks for default arguments: a copy or move constructor with a // default argument is classified as a default constructor, and assignment // operations and destructors can't have default arguments. Diag(MD->getLocation(), diag::err_defaulted_special_member_params) << llvm::to_underlying(CSM) << MD->getSourceRange(); HadError = true; } else if (MD->isVariadic()) { if (DeleteOnTypeMismatch) ShouldDeleteForTypeMismatch = true; else { Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) << llvm::to_underlying(CSM) << MD->getSourceRange(); HadError = true; } } const FunctionProtoType *Type = MD->getType()->castAs(); bool CanHaveConstParam = false; if (CSM == CXXSpecialMemberKind::CopyConstructor) CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); else if (CSM == CXXSpecialMemberKind::CopyAssignment) CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); QualType ReturnType = Context.VoidTy; if (CSM == CXXSpecialMemberKind::CopyAssignment || CSM == CXXSpecialMemberKind::MoveAssignment) { // Check for return type matching. ReturnType = Type->getReturnType(); QualType ThisType = MD->getFunctionObjectParameterType(); QualType DeclType = Context.getTypeDeclType(RD); DeclType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, DeclType, nullptr); DeclType = Context.getAddrSpaceQualType( DeclType, ThisType.getQualifiers().getAddressSpace()); QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) << (CSM == CXXSpecialMemberKind::MoveAssignment) << ExpectedReturnType; HadError = true; } // A defaulted special member cannot have cv-qualifiers. if (ThisType.isConstQualified() || ThisType.isVolatileQualified()) { if (DeleteOnTypeMismatch) ShouldDeleteForTypeMismatch = true; else { Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) << (CSM == CXXSpecialMemberKind::MoveAssignment) << getLangOpts().CPlusPlus14; HadError = true; } } // [C++23][dcl.fct.def.default]/p2.2 // if F2 has an implicit object parameter of type “reference to C”, // F1 may be an explicit object member function whose explicit object // parameter is of (possibly different) type “reference to C”, // in which case the type of F1 would differ from the type of F2 // in that the type of F1 has an additional parameter; if (!Context.hasSameType( ThisType.getNonReferenceType().getUnqualifiedType(), Context.getRecordType(RD))) { if (DeleteOnTypeMismatch) ShouldDeleteForTypeMismatch = true; else { Diag(MD->getLocation(), diag::err_defaulted_special_member_explicit_object_mismatch) << (CSM == CXXSpecialMemberKind::MoveAssignment) << RD << MD->getSourceRange(); HadError = true; } } } // Check for parameter type matching. QualType ArgType = ExpectedParams ? Type->getParamType(MD->isExplicitObjectMemberFunction() ? 1 : 0) : QualType(); bool HasConstParam = false; if (ExpectedParams && ArgType->isReferenceType()) { // Argument must be reference to possibly-const T. QualType ReferentType = ArgType->getPointeeType(); HasConstParam = ReferentType.isConstQualified(); if (ReferentType.isVolatileQualified()) { if (DeleteOnTypeMismatch) ShouldDeleteForTypeMismatch = true; else { Diag(MD->getLocation(), diag::err_defaulted_special_member_volatile_param) << llvm::to_underlying(CSM); HadError = true; } } if (HasConstParam && !CanHaveConstParam) { if (DeleteOnTypeMismatch) ShouldDeleteForTypeMismatch = true; else if (CSM == CXXSpecialMemberKind::CopyConstructor || CSM == CXXSpecialMemberKind::CopyAssignment) { Diag(MD->getLocation(), diag::err_defaulted_special_member_copy_const_param) << (CSM == CXXSpecialMemberKind::CopyAssignment); // FIXME: Explain why this special member can't be const. HadError = true; } else { Diag(MD->getLocation(), diag::err_defaulted_special_member_move_const_param) << (CSM == CXXSpecialMemberKind::MoveAssignment); HadError = true; } } } else if (ExpectedParams) { // A copy assignment operator can take its argument by value, but a // defaulted one cannot. assert(CSM == CXXSpecialMemberKind::CopyAssignment && "unexpected non-ref argument"); Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); HadError = true; } // C++11 [dcl.fct.def.default]p2: // An explicitly-defaulted function may be declared constexpr only if it // would have been implicitly declared as constexpr, // Do not apply this rule to members of class templates, since core issue 1358 // makes such functions always instantiate to constexpr functions. For // functions which cannot be constexpr (for non-constructors in C++11 and for // destructors in C++14 and C++17), this is checked elsewhere. // // FIXME: This should not apply if the member is deleted. bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, HasConstParam); // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358): // If the instantiated template specialization of a constexpr function // template or member function of a class template would fail to satisfy // the requirements for a constexpr function or constexpr constructor, that // specialization is still a constexpr function or constexpr constructor, // even though a call to such a function cannot appear in a constant // expression. if (MD->isTemplateInstantiation() && MD->isConstexpr()) Constexpr = true; if ((getLangOpts().CPlusPlus20 || (getLangOpts().CPlusPlus14 ? !isa(MD) : isa(MD))) && MD->isConstexpr() && !Constexpr && MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { if (!MD->isConsteval() && RD->getNumVBases()) { Diag(MD->getBeginLoc(), diag::err_incorrect_defaulted_constexpr_with_vb) << llvm::to_underlying(CSM); for (const auto &I : RD->vbases()) Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here); } else { Diag(MD->getBeginLoc(), diag::err_incorrect_defaulted_constexpr) << llvm::to_underlying(CSM) << MD->isConsteval(); } HadError = true; // FIXME: Explain why the special member can't be constexpr. } if (First) { // C++2a [dcl.fct.def.default]p3: // If a function is explicitly defaulted on its first declaration, it is // implicitly considered to be constexpr if the implicit declaration // would be. MD->setConstexprKind(Constexpr ? (MD->isConsteval() ? ConstexprSpecKind::Consteval : ConstexprSpecKind::Constexpr) : ConstexprSpecKind::Unspecified); if (!Type->hasExceptionSpec()) { // C++2a [except.spec]p3: // If a declaration of a function does not have a noexcept-specifier // [and] is defaulted on its first declaration, [...] the exception // specification is as specified below FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); EPI.ExceptionSpec.Type = EST_Unevaluated; EPI.ExceptionSpec.SourceDecl = MD; MD->setType( Context.getFunctionType(ReturnType, Type->getParamTypes(), EPI)); } } if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { if (First) { SetDeclDeleted(MD, MD->getLocation()); if (!inTemplateInstantiation() && !HadError) { Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << llvm::to_underlying(CSM); if (ShouldDeleteForTypeMismatch) { Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << llvm::to_underlying(CSM); } else if (ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/ true) && DefaultLoc.isValid()) { Diag(DefaultLoc, diag::note_replace_equals_default_to_delete) << FixItHint::CreateReplacement(DefaultLoc, "delete"); } } if (ShouldDeleteForTypeMismatch && !HadError) { Diag(MD->getLocation(), diag::warn_cxx17_compat_defaulted_method_type_mismatch) << llvm::to_underlying(CSM); } } else { // C++11 [dcl.fct.def.default]p4: // [For a] user-provided explicitly-defaulted function [...] if such a // function is implicitly defined as deleted, the program is ill-formed. Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << llvm::to_underlying(CSM); assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); HadError = true; } } return HadError; } namespace { /// Helper class for building and checking a defaulted comparison. /// /// Defaulted functions are built in two phases: /// /// * First, the set of operations that the function will perform are /// identified, and some of them are checked. If any of the checked /// operations is invalid in certain ways, the comparison function is /// defined as deleted and no body is built. /// * Then, if the function is not defined as deleted, the body is built. /// /// This is accomplished by performing two visitation steps over the eventual /// body of the function. template class DefaultedComparisonVisitor { public: using DefaultedComparisonKind = Sema::DefaultedComparisonKind; DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, DefaultedComparisonKind DCK) : S(S), RD(RD), FD(FD), DCK(DCK) { if (auto *Info = FD->getDefalutedOrDeletedInfo()) { // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an // UnresolvedSet to avoid this copy. Fns.assign(Info->getUnqualifiedLookups().begin(), Info->getUnqualifiedLookups().end()); } } ResultList visit() { // The type of an lvalue naming a parameter of this function. QualType ParamLvalType = FD->getParamDecl(0)->getType().getNonReferenceType(); ResultList Results; switch (DCK) { case DefaultedComparisonKind::None: llvm_unreachable("not a defaulted comparison"); case DefaultedComparisonKind::Equal: case DefaultedComparisonKind::ThreeWay: getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); return Results; case DefaultedComparisonKind::NotEqual: case DefaultedComparisonKind::Relational: Results.add(getDerived().visitExpandedSubobject( ParamLvalType, getDerived().getCompleteObject())); return Results; } llvm_unreachable(""); } protected: Derived &getDerived() { return static_cast(*this); } /// Visit the expanded list of subobjects of the given type, as specified in /// C++2a [class.compare.default]. /// /// \return \c true if the ResultList object said we're done, \c false if not. bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, Qualifiers Quals) { // C++2a [class.compare.default]p4: // The direct base class subobjects of C for (CXXBaseSpecifier &Base : Record->bases()) if (Results.add(getDerived().visitSubobject( S.Context.getQualifiedType(Base.getType(), Quals), getDerived().getBase(&Base)))) return true; // followed by the non-static data members of C for (FieldDecl *Field : Record->fields()) { // C++23 [class.bit]p2: // Unnamed bit-fields are not members ... if (Field->isUnnamedBitField()) continue; // Recursively expand anonymous structs. if (Field->isAnonymousStructOrUnion()) { if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), Quals)) return true; continue; } // Figure out the type of an lvalue denoting this field. Qualifiers FieldQuals = Quals; if (Field->isMutable()) FieldQuals.removeConst(); QualType FieldType = S.Context.getQualifiedType(Field->getType(), FieldQuals); if (Results.add(getDerived().visitSubobject( FieldType, getDerived().getField(Field)))) return true; } // form a list of subobjects. return false; } Result visitSubobject(QualType Type, Subobject Subobj) { // In that list, any subobject of array type is recursively expanded const ArrayType *AT = S.Context.getAsArrayType(Type); if (auto *CAT = dyn_cast_or_null(AT)) return getDerived().visitSubobjectArray(CAT->getElementType(), CAT->getSize(), Subobj); return getDerived().visitExpandedSubobject(Type, Subobj); } Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, Subobject Subobj) { return getDerived().visitSubobject(Type, Subobj); } protected: Sema &S; CXXRecordDecl *RD; FunctionDecl *FD; DefaultedComparisonKind DCK; UnresolvedSet<16> Fns; }; /// Information about a defaulted comparison, as determined by /// DefaultedComparisonAnalyzer. struct DefaultedComparisonInfo { bool Deleted = false; bool Constexpr = true; ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; static DefaultedComparisonInfo deleted() { DefaultedComparisonInfo Deleted; Deleted.Deleted = true; return Deleted; } bool add(const DefaultedComparisonInfo &R) { Deleted |= R.Deleted; Constexpr &= R.Constexpr; Category = commonComparisonType(Category, R.Category); return Deleted; } }; /// An element in the expanded list of subobjects of a defaulted comparison, as /// specified in C++2a [class.compare.default]p4. struct DefaultedComparisonSubobject { enum { CompleteObject, Member, Base } Kind; NamedDecl *Decl; SourceLocation Loc; }; /// A visitor over the notional body of a defaulted comparison that determines /// whether that body would be deleted or constexpr. class DefaultedComparisonAnalyzer : public DefaultedComparisonVisitor { public: enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; private: DiagnosticKind Diagnose; public: using Base = DefaultedComparisonVisitor; using Result = DefaultedComparisonInfo; using Subobject = DefaultedComparisonSubobject; friend Base; DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, DefaultedComparisonKind DCK, DiagnosticKind Diagnose = NoDiagnostics) : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} Result visit() { if ((DCK == DefaultedComparisonKind::Equal || DCK == DefaultedComparisonKind::ThreeWay) && RD->hasVariantMembers()) { // C++2a [class.compare.default]p2 [P2002R0]: // A defaulted comparison operator function for class C is defined as // deleted if [...] C has variant members. if (Diagnose == ExplainDeleted) { S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) << FD << RD->isUnion() << RD; } return Result::deleted(); } return Base::visit(); } private: Subobject getCompleteObject() { return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; } Subobject getBase(CXXBaseSpecifier *Base) { return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), Base->getBaseTypeLoc()}; } Subobject getField(FieldDecl *Field) { return Subobject{Subobject::Member, Field, Field->getLocation()}; } Result visitExpandedSubobject(QualType Type, Subobject Subobj) { // C++2a [class.compare.default]p2 [P2002R0]: // A defaulted <=> or == operator function for class C is defined as // deleted if any non-static data member of C is of reference type if (Type->isReferenceType()) { if (Diagnose == ExplainDeleted) { S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) << FD << RD; } return Result::deleted(); } // [...] Let xi be an lvalue denoting the ith element [...] OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); Expr *Args[] = {&Xi, &Xi}; // All operators start by trying to apply that same operator recursively. OverloadedOperatorKind OO = FD->getOverloadedOperator(); assert(OO != OO_None && "not an overloaded operator!"); return visitBinaryOperator(OO, Args, Subobj); } Result visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef Args, Subobject Subobj, OverloadCandidateSet *SpaceshipCandidates = nullptr) { // Note that there is no need to consider rewritten candidates here if // we've already found there is no viable 'operator<=>' candidate (and are // considering synthesizing a '<=>' from '==' and '<'). OverloadCandidateSet CandidateSet( FD->getLocation(), OverloadCandidateSet::CSK_Operator, OverloadCandidateSet::OperatorRewriteInfo( OO, FD->getLocation(), /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); /// C++2a [class.compare.default]p1 [P2002R0]: /// [...] the defaulted function itself is never a candidate for overload /// resolution [...] CandidateSet.exclude(FD); if (Args[0]->getType()->isOverloadableType()) S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); else // FIXME: We determine whether this is a valid expression by checking to // see if there's a viable builtin operator candidate for it. That isn't // really what the rules ask us to do, but should give the right results. S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); Result R; OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { case OR_Success: { // C++2a [class.compare.secondary]p2 [P2002R0]: // The operator function [...] is defined as deleted if [...] the // candidate selected by overload resolution is not a rewritten // candidate. if ((DCK == DefaultedComparisonKind::NotEqual || DCK == DefaultedComparisonKind::Relational) && !Best->RewriteKind) { if (Diagnose == ExplainDeleted) { if (Best->Function) { S.Diag(Best->Function->getLocation(), diag::note_defaulted_comparison_not_rewritten_callee) << FD; } else { assert(Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in " "comparison"); S.Diag(Best->Conversions[0] .UserDefined.FoundConversionFunction.getDecl() ->getLocation(), diag::note_defaulted_comparison_not_rewritten_conversion) << FD; } } return Result::deleted(); } // Throughout C++2a [class.compare]: if overload resolution does not // result in a usable function, the candidate function is defined as // deleted. This requires that we selected an accessible function. // // Note that this only considers the access of the function when named // within the type of the subobject, and not the access path for any // derived-to-base conversion. CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); if (ArgClass && Best->FoundDecl.getDecl() && Best->FoundDecl.getDecl()->isCXXClassMember()) { QualType ObjectType = Subobj.Kind == Subobject::Member ? Args[0]->getType() : S.Context.getRecordType(RD); if (!S.isMemberAccessibleForDeletion( ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, Diagnose == ExplainDeleted ? S.PDiag(diag::note_defaulted_comparison_inaccessible) << FD << Subobj.Kind << Subobj.Decl : S.PDiag())) return Result::deleted(); } bool NeedsDeducing = OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); if (FunctionDecl *BestFD = Best->Function) { // C++2a [class.compare.default]p3 [P2002R0]: // A defaulted comparison function is constexpr-compatible if // [...] no overlod resolution performed [...] results in a // non-constexpr function. assert(!BestFD->isDeleted() && "wrong overload resolution result"); // If it's not constexpr, explain why not. if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { if (Subobj.Kind != Subobject::CompleteObject) S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) << Subobj.Kind << Subobj.Decl; S.Diag(BestFD->getLocation(), diag::note_defaulted_comparison_not_constexpr_here); // Bail out after explaining; we don't want any more notes. return Result::deleted(); } R.Constexpr &= BestFD->isConstexpr(); if (NeedsDeducing) { // If any callee has an undeduced return type, deduce it now. // FIXME: It's not clear how a failure here should be handled. For // now, we produce an eager diagnostic, because that is forward // compatible with most (all?) other reasonable options. if (BestFD->getReturnType()->isUndeducedType() && S.DeduceReturnType(BestFD, FD->getLocation(), /*Diagnose=*/false)) { // Don't produce a duplicate error when asked to explain why the // comparison is deleted: we diagnosed that when initially checking // the defaulted operator. if (Diagnose == NoDiagnostics) { S.Diag( FD->getLocation(), diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) << Subobj.Kind << Subobj.Decl; S.Diag( Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) << Subobj.Kind << Subobj.Decl; S.Diag(BestFD->getLocation(), diag::note_defaulted_comparison_cannot_deduce_callee) << Subobj.Kind << Subobj.Decl; } return Result::deleted(); } auto *Info = S.Context.CompCategories.lookupInfoForType( BestFD->getCallResultType()); if (!Info) { if (Diagnose == ExplainDeleted) { S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) << Subobj.Kind << Subobj.Decl << BestFD->getCallResultType().withoutLocalFastQualifiers(); S.Diag(BestFD->getLocation(), diag::note_defaulted_comparison_cannot_deduce_callee) << Subobj.Kind << Subobj.Decl; } return Result::deleted(); } R.Category = Info->Kind; } } else { QualType T = Best->BuiltinParamTypes[0]; assert(T == Best->BuiltinParamTypes[1] && "builtin comparison for different types?"); assert(Best->BuiltinParamTypes[2].isNull() && "invalid builtin comparison"); if (NeedsDeducing) { std::optional Cat = getComparisonCategoryForBuiltinCmp(T); assert(Cat && "no category for builtin comparison?"); R.Category = *Cat; } } // Note that we might be rewriting to a different operator. That call is // not considered until we come to actually build the comparison function. break; } case OR_Ambiguous: if (Diagnose == ExplainDeleted) { unsigned Kind = 0; if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) Kind = OO == OO_EqualEqual ? 1 : 2; CandidateSet.NoteCandidates( PartialDiagnosticAt( Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) << FD << Kind << Subobj.Kind << Subobj.Decl), S, OCD_AmbiguousCandidates, Args); } R = Result::deleted(); break; case OR_Deleted: if (Diagnose == ExplainDeleted) { if ((DCK == DefaultedComparisonKind::NotEqual || DCK == DefaultedComparisonKind::Relational) && !Best->RewriteKind) { S.Diag(Best->Function->getLocation(), diag::note_defaulted_comparison_not_rewritten_callee) << FD; } else { S.Diag(Subobj.Loc, diag::note_defaulted_comparison_calls_deleted) << FD << Subobj.Kind << Subobj.Decl; S.NoteDeletedFunction(Best->Function); } } R = Result::deleted(); break; case OR_No_Viable_Function: // If there's no usable candidate, we're done unless we can rewrite a // '<=>' in terms of '==' and '<'. if (OO == OO_Spaceship && S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { // For any kind of comparison category return type, we need a usable // '==' and a usable '<'. if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, &CandidateSet))) R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); break; } if (Diagnose == ExplainDeleted) { S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) << FD << (OO == OO_EqualEqual || OO == OO_ExclaimEqual) << Subobj.Kind << Subobj.Decl; // For a three-way comparison, list both the candidates for the // original operator and the candidates for the synthesized operator. if (SpaceshipCandidates) { SpaceshipCandidates->NoteCandidates( S, Args, SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, Args, FD->getLocation())); S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function_synthesized) << (OO == OO_EqualEqual ? 0 : 1); } CandidateSet.NoteCandidates( S, Args, CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, FD->getLocation())); } R = Result::deleted(); break; } return R; } }; /// A list of statements. struct StmtListResult { bool IsInvalid = false; llvm::SmallVector Stmts; bool add(const StmtResult &S) { IsInvalid |= S.isInvalid(); if (IsInvalid) return true; Stmts.push_back(S.get()); return false; } }; /// A visitor over the notional body of a defaulted comparison that synthesizes /// the actual body. class DefaultedComparisonSynthesizer : public DefaultedComparisonVisitor> { SourceLocation Loc; unsigned ArrayDepth = 0; public: using Base = DefaultedComparisonVisitor; using ExprPair = std::pair; friend Base; DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, DefaultedComparisonKind DCK, SourceLocation BodyLoc) : Base(S, RD, FD, DCK), Loc(BodyLoc) {} /// Build a suitable function body for this defaulted comparison operator. StmtResult build() { Sema::CompoundScopeRAII CompoundScope(S); StmtListResult Stmts = visit(); if (Stmts.IsInvalid) return StmtError(); ExprResult RetVal; switch (DCK) { case DefaultedComparisonKind::None: llvm_unreachable("not a defaulted comparison"); case DefaultedComparisonKind::Equal: { // C++2a [class.eq]p3: // [...] compar[e] the corresponding elements [...] until the first // index i where xi == yi yields [...] false. If no such index exists, // V is true. Otherwise, V is false. // // Join the comparisons with '&&'s and return the result. Use a right // fold (traversing the conditions right-to-left), because that // short-circuits more naturally. auto OldStmts = std::move(Stmts.Stmts); Stmts.Stmts.clear(); ExprResult CmpSoFar; // Finish a particular comparison chain. auto FinishCmp = [&] { if (Expr *Prior = CmpSoFar.get()) { // Convert the last expression to 'return ...;' if (RetVal.isUnset() && Stmts.Stmts.empty()) RetVal = CmpSoFar; // Convert any prior comparison to 'if (!(...)) return false;' else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) return true; CmpSoFar = ExprResult(); } return false; }; for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { Expr *E = dyn_cast(EAsStmt); if (!E) { // Found an array comparison. if (FinishCmp() || Stmts.add(EAsStmt)) return StmtError(); continue; } if (CmpSoFar.isUnset()) { CmpSoFar = E; continue; } CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); if (CmpSoFar.isInvalid()) return StmtError(); } if (FinishCmp()) return StmtError(); std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); // If no such index exists, V is true. if (RetVal.isUnset()) RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); break; } case DefaultedComparisonKind::ThreeWay: { // Per C++2a [class.spaceship]p3, as a fallback add: // return static_cast(std::strong_ordering::equal); QualType StrongOrdering = S.CheckComparisonCategoryType( ComparisonCategoryType::StrongOrdering, Loc, Sema::ComparisonCategoryUsage::DefaultedOperator); if (StrongOrdering.isNull()) return StmtError(); VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) .getValueInfo(ComparisonCategoryResult::Equal) ->VD; RetVal = getDecl(EqualVD); if (RetVal.isInvalid()) return StmtError(); RetVal = buildStaticCastToR(RetVal.get()); break; } case DefaultedComparisonKind::NotEqual: case DefaultedComparisonKind::Relational: RetVal = cast(Stmts.Stmts.pop_back_val()); break; } // Build the final return statement. if (RetVal.isInvalid()) return StmtError(); StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); if (ReturnStmt.isInvalid()) return StmtError(); Stmts.Stmts.push_back(ReturnStmt.get()); return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); } private: ExprResult getDecl(ValueDecl *VD) { return S.BuildDeclarationNameExpr( CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); } ExprResult getParam(unsigned I) { ParmVarDecl *PD = FD->getParamDecl(I); return getDecl(PD); } ExprPair getCompleteObject() { unsigned Param = 0; ExprResult LHS; if (const auto *MD = dyn_cast(FD); MD && MD->isImplicitObjectMemberFunction()) { // LHS is '*this'. LHS = S.ActOnCXXThis(Loc); if (!LHS.isInvalid()) LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); } else { LHS = getParam(Param++); } ExprResult RHS = getParam(Param++); assert(Param == FD->getNumParams()); return {LHS, RHS}; } ExprPair getBase(CXXBaseSpecifier *Base) { ExprPair Obj = getCompleteObject(); if (Obj.first.isInvalid() || Obj.second.isInvalid()) return {ExprError(), ExprError()}; CXXCastPath Path = {Base}; return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), CK_DerivedToBase, VK_LValue, &Path), S.ImpCastExprToType(Obj.second.get(), Base->getType(), CK_DerivedToBase, VK_LValue, &Path)}; } ExprPair getField(FieldDecl *Field) { ExprPair Obj = getCompleteObject(); if (Obj.first.isInvalid() || Obj.second.isInvalid()) return {ExprError(), ExprError()}; DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, CXXScopeSpec(), Field, Found, NameInfo), S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, CXXScopeSpec(), Field, Found, NameInfo)}; } // FIXME: When expanding a subobject, register a note in the code synthesis // stack to say which subobject we're comparing. StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { if (Cond.isInvalid()) return StmtError(); ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); if (NotCond.isInvalid()) return StmtError(); ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); assert(!False.isInvalid() && "should never fail"); StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); if (ReturnFalse.isInvalid()) return StmtError(); return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr, S.ActOnCondition(nullptr, Loc, NotCond.get(), Sema::ConditionKind::Boolean), Loc, ReturnFalse.get(), SourceLocation(), nullptr); } StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, ExprPair Subobj) { QualType SizeType = S.Context.getSizeType(); Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); // Build 'size_t i$n = 0'. IdentifierInfo *IterationVarName = nullptr; { SmallString<8> Str; llvm::raw_svector_ostream OS(Str); OS << "i" << ArrayDepth; IterationVarName = &S.Context.Idents.get(OS.str()); } VarDecl *IterationVar = VarDecl::Create( S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); IterationVar->setInit( IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); auto IterRef = [&] { ExprResult Ref = S.BuildDeclarationNameExpr( CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), IterationVar); assert(!Ref.isInvalid() && "can't reference our own variable?"); return Ref.get(); }; // Build 'i$n != Size'. ExprResult Cond = S.CreateBuiltinBinOp( Loc, BO_NE, IterRef(), IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); assert(!Cond.isInvalid() && "should never fail"); // Build '++i$n'. ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); assert(!Inc.isInvalid() && "should never fail"); // Build 'a[i$n]' and 'b[i$n]'. auto Index = [&](ExprResult E) { if (E.isInvalid()) return ExprError(); return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); }; Subobj.first = Index(Subobj.first); Subobj.second = Index(Subobj.second); // Compare the array elements. ++ArrayDepth; StmtResult Substmt = visitSubobject(Type, Subobj); --ArrayDepth; if (Substmt.isInvalid()) return StmtError(); // For the inner level of an 'operator==', build 'if (!cmp) return false;'. // For outer levels or for an 'operator<=>' we already have a suitable // statement that returns as necessary. if (Expr *ElemCmp = dyn_cast(Substmt.get())) { assert(DCK == DefaultedComparisonKind::Equal && "should have non-expression statement"); Substmt = buildIfNotCondReturnFalse(ElemCmp); if (Substmt.isInvalid()) return StmtError(); } // Build 'for (...) ...' return S.ActOnForStmt(Loc, Loc, Init, S.ActOnCondition(nullptr, Loc, Cond.get(), Sema::ConditionKind::Boolean), S.MakeFullDiscardedValueExpr(Inc.get()), Loc, Substmt.get()); } StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { if (Obj.first.isInvalid() || Obj.second.isInvalid()) return StmtError(); OverloadedOperatorKind OO = FD->getOverloadedOperator(); BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); ExprResult Op; if (Type->isOverloadableType()) Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), Obj.second.get(), /*PerformADL=*/true, /*AllowRewrittenCandidates=*/true, FD); else Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); if (Op.isInvalid()) return StmtError(); switch (DCK) { case DefaultedComparisonKind::None: llvm_unreachable("not a defaulted comparison"); case DefaultedComparisonKind::Equal: // Per C++2a [class.eq]p2, each comparison is individually contextually // converted to bool. Op = S.PerformContextuallyConvertToBool(Op.get()); if (Op.isInvalid()) return StmtError(); return Op.get(); case DefaultedComparisonKind::ThreeWay: { // Per C++2a [class.spaceship]p3, form: // if (R cmp = static_cast(op); cmp != 0) // return cmp; QualType R = FD->getReturnType(); Op = buildStaticCastToR(Op.get()); if (Op.isInvalid()) return StmtError(); // R cmp = ...; IdentifierInfo *Name = &S.Context.Idents.get("cmp"); VarDecl *VD = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); // cmp != 0 ExprResult VDRef = getDecl(VD); if (VDRef.isInvalid()) return StmtError(); llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); Expr *Zero = IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); ExprResult Comp; if (VDRef.get()->getType()->isOverloadableType()) Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, true, FD); else Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); if (Comp.isInvalid()) return StmtError(); Sema::ConditionResult Cond = S.ActOnCondition( nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); if (Cond.isInvalid()) return StmtError(); // return cmp; VDRef = getDecl(VD); if (VDRef.isInvalid()) return StmtError(); StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); if (ReturnStmt.isInvalid()) return StmtError(); // if (...) return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond, Loc, ReturnStmt.get(), /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); } case DefaultedComparisonKind::NotEqual: case DefaultedComparisonKind::Relational: // C++2a [class.compare.secondary]p2: // Otherwise, the operator function yields x @ y. return Op.get(); } llvm_unreachable(""); } /// Build "static_cast(E)". ExprResult buildStaticCastToR(Expr *E) { QualType R = FD->getReturnType(); assert(!R->isUndeducedType() && "type should have been deduced already"); // Don't bother forming a no-op cast in the common case. if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) return E; return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, S.Context.getTrivialTypeSourceInfo(R, Loc), E, SourceRange(Loc, Loc), SourceRange(Loc, Loc)); } }; } /// Perform the unqualified lookups that might be needed to form a defaulted /// comparison function for the given operator. static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, UnresolvedSetImpl &Operators, OverloadedOperatorKind Op) { auto Lookup = [&](OverloadedOperatorKind OO) { Self.LookupOverloadedOperatorName(OO, S, Operators); }; // Every defaulted operator looks up itself. Lookup(Op); // ... and the rewritten form of itself, if any. if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) Lookup(ExtraOp); // For 'operator<=>', we also form a 'cmp != 0' expression, and might // synthesize a three-way comparison from '<' and '=='. In a dependent // context, we also need to look up '==' in case we implicitly declare a // defaulted 'operator=='. if (Op == OO_Spaceship) { Lookup(OO_ExclaimEqual); Lookup(OO_Less); Lookup(OO_EqualEqual); } } bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, DefaultedComparisonKind DCK) { assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); // Perform any unqualified lookups we're going to need to default this // function. if (S) { UnresolvedSet<32> Operators; lookupOperatorsForDefaultedComparison(*this, S, Operators, FD->getOverloadedOperator()); FD->setDefaultedOrDeletedInfo( FunctionDecl::DefaultedOrDeletedFunctionInfo::Create( Context, Operators.pairs())); } // C++2a [class.compare.default]p1: // A defaulted comparison operator function for some class C shall be a // non-template function declared in the member-specification of C that is // -- a non-static const non-volatile member of C having one parameter of // type const C& and either no ref-qualifier or the ref-qualifier &, or // -- a friend of C having two parameters of type const C& or two // parameters of type C. CXXRecordDecl *RD = dyn_cast(FD->getLexicalDeclContext()); bool IsMethod = isa(FD); if (IsMethod) { auto *MD = cast(FD); assert(!MD->isStatic() && "comparison function cannot be a static member"); if (MD->getRefQualifier() == RQ_RValue) { Diag(MD->getLocation(), diag::err_ref_qualifier_comparison_operator); // Remove the ref qualifier to recover. const auto *FPT = MD->getType()->castAs(); FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); EPI.RefQualifier = RQ_None; MD->setType(Context.getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI)); } // If we're out-of-class, this is the class we're comparing. if (!RD) RD = MD->getParent(); QualType T = MD->getFunctionObjectParameterType(); if (!T.isConstQualified()) { SourceLocation Loc, InsertLoc; if (MD->isExplicitObjectMemberFunction()) { Loc = MD->getParamDecl(0)->getBeginLoc(); InsertLoc = getLocForEndOfToken( MD->getParamDecl(0)->getExplicitObjectParamThisLoc()); } else { Loc = MD->getLocation(); if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) InsertLoc = Loc.getRParenLoc(); } // Don't diagnose an implicit 'operator=='; we will have diagnosed the // corresponding defaulted 'operator<=>' already. if (!MD->isImplicit()) { Diag(Loc, diag::err_defaulted_comparison_non_const) << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); } // Add the 'const' to the type to recover. const auto *FPT = MD->getType()->castAs(); FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); EPI.TypeQuals.addConst(); MD->setType(Context.getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI)); } if (MD->isVolatile()) { Diag(MD->getLocation(), diag::err_volatile_comparison_operator); // Remove the 'volatile' from the type to recover. const auto *FPT = MD->getType()->castAs(); FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); EPI.TypeQuals.removeVolatile(); MD->setType(Context.getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI)); } } if ((FD->getNumParams() - (unsigned)FD->hasCXXExplicitFunctionObjectParameter()) != (IsMethod ? 1 : 2)) { // Let's not worry about using a variadic template pack here -- who would do // such a thing? Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) << int(IsMethod) << int(DCK); return true; } const ParmVarDecl *KnownParm = nullptr; for (const ParmVarDecl *Param : FD->parameters()) { if (Param->isExplicitObjectParameter()) continue; QualType ParmTy = Param->getType(); if (!KnownParm) { auto CTy = ParmTy; // Is it `T const &`? bool Ok = !IsMethod; QualType ExpectedTy; if (RD) ExpectedTy = Context.getRecordType(RD); if (auto *Ref = CTy->getAs()) { CTy = Ref->getPointeeType(); if (RD) ExpectedTy.addConst(); Ok = true; } // Is T a class? if (!Ok) { } else if (RD) { if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy)) Ok = false; } else if (auto *CRD = CTy->getAsRecordDecl()) { RD = cast(CRD); } else { Ok = false; } if (Ok) { KnownParm = Param; } else { // Don't diagnose an implicit 'operator=='; we will have diagnosed the // corresponding defaulted 'operator<=>' already. if (!FD->isImplicit()) { if (RD) { QualType PlainTy = Context.getRecordType(RD); QualType RefTy = Context.getLValueReferenceType(PlainTy.withConst()); Diag(FD->getLocation(), diag::err_defaulted_comparison_param) << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy << Param->getSourceRange(); } else { assert(!IsMethod && "should know expected type for method"); Diag(FD->getLocation(), diag::err_defaulted_comparison_param_unknown) << int(DCK) << ParmTy << Param->getSourceRange(); } } return true; } } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() << ParmTy << Param->getSourceRange(); return true; } } assert(RD && "must have determined class"); if (IsMethod) { } else if (isa(FD->getLexicalDeclContext())) { // In-class, must be a friend decl. assert(FD->getFriendObjectKind() && "expected a friend declaration"); } else { // Out of class, require the defaulted comparison to be a friend (of a // complete type). if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), diag::err_defaulted_comparison_not_friend, int(DCK), int(1))) return true; if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) { return FD->getCanonicalDecl() == F->getFriendDecl()->getCanonicalDecl(); })) { Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) << int(DCK) << int(0) << RD; Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); return true; } } // C++2a [class.eq]p1, [class.rel]p1: // A [defaulted comparison other than <=>] shall have a declared return // type bool. if (DCK != DefaultedComparisonKind::ThreeWay && !FD->getDeclaredReturnType()->isDependentType() && !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy << FD->getReturnTypeSourceRange(); return true; } // C++2a [class.spaceship]p2 [P2002R0]: // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, // R shall not contain a placeholder type. if (QualType RT = FD->getDeclaredReturnType(); DCK == DefaultedComparisonKind::ThreeWay && RT->getContainedDeducedType() && (!Context.hasSameType(RT, Context.getAutoDeductType()) || RT->getContainedAutoType()->isConstrained())) { Diag(FD->getLocation(), diag::err_defaulted_comparison_deduced_return_type_not_auto) << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy << FD->getReturnTypeSourceRange(); return true; } // For a defaulted function in a dependent class, defer all remaining checks // until instantiation. if (RD->isDependentType()) return false; // Determine whether the function should be defined as deleted. DefaultedComparisonInfo Info = DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); bool First = FD == FD->getCanonicalDecl(); if (!First) { if (Info.Deleted) { // C++11 [dcl.fct.def.default]p4: // [For a] user-provided explicitly-defaulted function [...] if such a // function is implicitly defined as deleted, the program is ill-formed. // // This is really just a consequence of the general rule that you can // only delete a function on its first declaration. Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) << FD->isImplicit() << (int)DCK; DefaultedComparisonAnalyzer(*this, RD, FD, DCK, DefaultedComparisonAnalyzer::ExplainDeleted) .visit(); return true; } if (isa(FD->getLexicalDeclContext())) { // C++20 [class.compare.default]p1: // [...] A definition of a comparison operator as defaulted that appears // in a class shall be the first declaration of that function. Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class) << (int)DCK; Diag(FD->getCanonicalDecl()->getLocation(), diag::note_previous_declaration); return true; } } // If we want to delete the function, then do so; there's nothing else to // check in that case. if (Info.Deleted) { SetDeclDeleted(FD, FD->getLocation()); if (!inTemplateInstantiation() && !FD->isImplicit()) { Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) << (int)DCK; DefaultedComparisonAnalyzer(*this, RD, FD, DCK, DefaultedComparisonAnalyzer::ExplainDeleted) .visit(); if (FD->getDefaultLoc().isValid()) Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete) << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete"); } return false; } // C++2a [class.spaceship]p2: // The return type is deduced as the common comparison type of R0, R1, ... if (DCK == DefaultedComparisonKind::ThreeWay && FD->getDeclaredReturnType()->isUndeducedAutoType()) { SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); if (RetLoc.isInvalid()) RetLoc = FD->getBeginLoc(); // FIXME: Should we really care whether we have the complete type and the // 'enumerator' constants here? A forward declaration seems sufficient. QualType Cat = CheckComparisonCategoryType( Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); if (Cat.isNull()) return true; Context.adjustDeducedFunctionResultType( FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); } // C++2a [dcl.fct.def.default]p3 [P2002R0]: // An explicitly-defaulted function that is not defined as deleted may be // declared constexpr or consteval only if it is constexpr-compatible. // C++2a [class.compare.default]p3 [P2002R0]: // A defaulted comparison function is constexpr-compatible if it satisfies // the requirements for a constexpr function [...] // The only relevant requirements are that the parameter and return types are // literal types. The remaining conditions are checked by the analyzer. // // We support P2448R2 in language modes earlier than C++23 as an extension. // The concept of constexpr-compatible was removed. // C++23 [dcl.fct.def.default]p3 [P2448R2] // A function explicitly defaulted on its first declaration is implicitly // inline, and is implicitly constexpr if it is constexpr-suitable. // C++23 [dcl.constexpr]p3 // A function is constexpr-suitable if // - it is not a coroutine, and // - if the function is a constructor or destructor, its class does not // have any virtual base classes. if (FD->isConstexpr()) { if (!getLangOpts().CPlusPlus23 && CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && !Info.Constexpr) { Diag(FD->getBeginLoc(), diag::err_defaulted_comparison_constexpr_mismatch) << FD->isImplicit() << (int)DCK << FD->isConsteval(); DefaultedComparisonAnalyzer(*this, RD, FD, DCK, DefaultedComparisonAnalyzer::ExplainConstexpr) .visit(); } } // C++2a [dcl.fct.def.default]p3 [P2002R0]: // If a constexpr-compatible function is explicitly defaulted on its first // declaration, it is implicitly considered to be constexpr. // FIXME: Only applying this to the first declaration seems problematic, as // simple reorderings can affect the meaning of the program. if (First && !FD->isConstexpr() && Info.Constexpr) FD->setConstexprKind(ConstexprSpecKind::Constexpr); // C++2a [except.spec]p3: // If a declaration of a function does not have a noexcept-specifier // [and] is defaulted on its first declaration, [...] the exception // specification is as specified below if (FD->getExceptionSpecType() == EST_None) { auto *FPT = FD->getType()->castAs(); FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); EPI.ExceptionSpec.Type = EST_Unevaluated; EPI.ExceptionSpec.SourceDecl = FD; FD->setType(Context.getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI)); } return false; } void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, FunctionDecl *Spaceship) { Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; Ctx.PointOfInstantiation = Spaceship->getEndLoc(); Ctx.Entity = Spaceship; pushCodeSynthesisContext(Ctx); if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) EqualEqual->setImplicit(); popCodeSynthesisContext(); } void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, DefaultedComparisonKind DCK) { assert(FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()); if (FD->willHaveBody() || FD->isInvalidDecl()) return; SynthesizedFunctionScope Scope(*this, FD); // Add a context note for diagnostics produced after this point. Scope.addContextNote(UseLoc); { // Build and set up the function body. // The first parameter has type maybe-ref-to maybe-const T, use that to get // the type of the class being compared. auto PT = FD->getParamDecl(0)->getType(); CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); SourceLocation BodyLoc = FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); StmtResult Body = DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); if (Body.isInvalid()) { FD->setInvalidDecl(); return; } FD->setBody(Body.get()); FD->markUsed(Context); } // The exception specification is needed because we are defining the // function. Note that this will reuse the body we just built. ResolveExceptionSpec(UseLoc, FD->getType()->castAs()); if (ASTMutationListener *L = getASTMutationListener()) L->CompletedImplicitDefinition(FD); } static Sema::ImplicitExceptionSpecification ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD, Sema::DefaultedComparisonKind DCK) { ComputingExceptionSpec CES(S, FD, Loc); Sema::ImplicitExceptionSpecification ExceptSpec(S); if (FD->isInvalidDecl()) return ExceptSpec; // The common case is that we just defined the comparison function. In that // case, just look at whether the body can throw. if (FD->hasBody()) { ExceptSpec.CalledStmt(FD->getBody()); } else { // Otherwise, build a body so we can check it. This should ideally only // happen when we're not actually marking the function referenced. (This is // only really important for efficiency: we don't want to build and throw // away bodies for comparison functions more than we strictly need to.) // Pretend to synthesize the function body in an unevaluated context. // Note that we can't actually just go ahead and define the function here: // we are not permitted to mark its callees as referenced. Sema::SynthesizedFunctionScope Scope(S, FD); EnterExpressionEvaluationContext Context( S, Sema::ExpressionEvaluationContext::Unevaluated); CXXRecordDecl *RD = cast(FD->getFriendObjectKind() == Decl::FOK_None ? FD->getDeclContext() : FD->getLexicalDeclContext()); SourceLocation BodyLoc = FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); StmtResult Body = DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); if (!Body.isInvalid()) ExceptSpec.CalledStmt(Body.get()); // FIXME: Can we hold onto this body and just transform it to potentially // evaluated when we're asked to define the function rather than rebuilding // it? Either that, or we should only build the bits of the body that we // need (the expressions, not the statements). } return ExceptSpec; } void Sema::CheckDelayedMemberExceptionSpecs() { decltype(DelayedOverridingExceptionSpecChecks) Overriding; decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; std::swap(Overriding, DelayedOverridingExceptionSpecChecks); std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); // Perform any deferred checking of exception specifications for virtual // destructors. for (auto &Check : Overriding) CheckOverridingFunctionExceptionSpec(Check.first, Check.second); // Perform any deferred checking of exception specifications for befriended // special members. for (auto &Check : Equivalent) CheckEquivalentExceptionSpec(Check.second, Check.first); } namespace { /// CRTP base class for visiting operations performed by a special member /// function (or inherited constructor). template struct SpecialMemberVisitor { Sema &S; CXXMethodDecl *MD; CXXSpecialMemberKind CSM; Sema::InheritedConstructorInfo *ICI; // Properties of the special member, computed for convenience. bool IsConstructor = false, IsAssignment = false, ConstArg = false; SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, Sema::InheritedConstructorInfo *ICI) : S(S), MD(MD), CSM(CSM), ICI(ICI) { switch (CSM) { case CXXSpecialMemberKind::DefaultConstructor: case CXXSpecialMemberKind::CopyConstructor: case CXXSpecialMemberKind::MoveConstructor: IsConstructor = true; break; case CXXSpecialMemberKind::CopyAssignment: case CXXSpecialMemberKind::MoveAssignment: IsAssignment = true; break; case CXXSpecialMemberKind::Destructor: break; case CXXSpecialMemberKind::Invalid: llvm_unreachable("invalid special member kind"); } if (MD->getNumExplicitParams()) { if (const ReferenceType *RT = MD->getNonObjectParameter(0)->getType()->getAs()) ConstArg = RT->getPointeeType().isConstQualified(); } } Derived &getDerived() { return static_cast(*this); } /// Is this a "move" special member? bool isMove() const { return CSM == CXXSpecialMemberKind::MoveConstructor || CSM == CXXSpecialMemberKind::MoveAssignment; } /// Look up the corresponding special member in the given class. Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, unsigned Quals, bool IsMutable) { return lookupCallFromSpecialMember(S, Class, CSM, Quals, ConstArg && !IsMutable); } /// Look up the constructor for the specified base class to see if it's /// overridden due to this being an inherited constructor. Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { if (!ICI) return {}; assert(CSM == CXXSpecialMemberKind::DefaultConstructor); auto *BaseCtor = cast(MD)->getInheritedConstructor().getConstructor(); if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) return MD; return {}; } /// A base or member subobject. typedef llvm::PointerUnion Subobject; /// Get the location to use for a subobject in diagnostics. static SourceLocation getSubobjectLoc(Subobject Subobj) { // FIXME: For an indirect virtual base, the direct base leading to // the indirect virtual base would be a more useful choice. if (auto *B = Subobj.dyn_cast()) return B->getBaseTypeLoc(); else return Subobj.get()->getLocation(); } enum BasesToVisit { /// Visit all non-virtual (direct) bases. VisitNonVirtualBases, /// Visit all direct bases, virtual or not. VisitDirectBases, /// Visit all non-virtual bases, and all virtual bases if the class /// is not abstract. VisitPotentiallyConstructedBases, /// Visit all direct or virtual bases. VisitAllBases }; // Visit the bases and members of the class. bool visit(BasesToVisit Bases) { CXXRecordDecl *RD = MD->getParent(); if (Bases == VisitPotentiallyConstructedBases) Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; for (auto &B : RD->bases()) if ((Bases == VisitDirectBases || !B.isVirtual()) && getDerived().visitBase(&B)) return true; if (Bases == VisitAllBases) for (auto &B : RD->vbases()) if (getDerived().visitBase(&B)) return true; for (auto *F : RD->fields()) if (!F->isInvalidDecl() && !F->isUnnamedBitField() && getDerived().visitField(F)) return true; return false; } }; } namespace { struct SpecialMemberDeletionInfo : SpecialMemberVisitor { bool Diagnose; SourceLocation Loc; bool AllFieldsAreConst; SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, Sema::InheritedConstructorInfo *ICI, bool Diagnose) : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), Loc(MD->getLocation()), AllFieldsAreConst(true) {} bool inUnion() const { return MD->getParent()->isUnion(); } CXXSpecialMemberKind getEffectiveCSM() { return ICI ? CXXSpecialMemberKind::Invalid : CSM; } bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } bool shouldDeleteForBase(CXXBaseSpecifier *Base); bool shouldDeleteForField(FieldDecl *FD); bool shouldDeleteForAllConstMembers(); bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, unsigned Quals); bool shouldDeleteForSubobjectCall(Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, bool IsDtorCallInCtor); bool isAccessible(Subobject Subobj, CXXMethodDecl *D); }; } /// Is the given special member inaccessible when used on the given /// sub-object. bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, CXXMethodDecl *target) { /// If we're operating on a base class, the object type is the /// type of this special member. QualType objectTy; AccessSpecifier access = target->getAccess(); if (CXXBaseSpecifier *base = Subobj.dyn_cast()) { objectTy = S.Context.getTypeDeclType(MD->getParent()); access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); // If we're operating on a field, the object type is the type of the field. } else { objectTy = S.Context.getTypeDeclType(target->getParent()); } return S.isMemberAccessibleForDeletion( target->getParent(), DeclAccessPair::make(target, access), objectTy); } /// Check whether we should delete a special member due to the implicit /// definition containing a call to a special member of a subobject. bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, bool IsDtorCallInCtor) { CXXMethodDecl *Decl = SMOR.getMethod(); FieldDecl *Field = Subobj.dyn_cast(); int DiagKind = -1; if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) DiagKind = !Decl ? 0 : 1; else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) DiagKind = 2; else if (!isAccessible(Subobj, Decl)) DiagKind = 3; else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && !Decl->isTrivial()) { // A member of a union must have a trivial corresponding special member. // As a weird special case, a destructor call from a union's constructor // must be accessible and non-deleted, but need not be trivial. Such a // destructor is never actually called, but is semantically checked as // if it were. if (CSM == CXXSpecialMemberKind::DefaultConstructor) { // [class.default.ctor]p2: // A defaulted default constructor for class X is defined as deleted if // - X is a union that has a variant member with a non-trivial default // constructor and no variant member of X has a default member // initializer const auto *RD = cast(Field->getParent()); if (!RD->hasInClassInitializer()) DiagKind = 4; } else { DiagKind = 4; } } if (DiagKind == -1) return false; if (Diagnose) { if (Field) { S.Diag(Field->getLocation(), diag::note_deleted_special_member_class_subobject) << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() << /*IsField*/ true << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/ false; } else { CXXBaseSpecifier *Base = Subobj.get(); S.Diag(Base->getBeginLoc(), diag::note_deleted_special_member_class_subobject) << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() << /*IsField*/ false << Base->getType() << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/ false; } if (DiagKind == 1) S.NoteDeletedFunction(Decl); // FIXME: Explain inaccessibility if DiagKind == 3. } return true; } /// Check whether we should delete a special member function due to having a /// direct or virtual base class or non-static data member of class type M. bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { FieldDecl *Field = Subobj.dyn_cast(); bool IsMutable = Field && Field->isMutable(); // C++11 [class.ctor]p5: // -- any direct or virtual base class, or non-static data member with no // brace-or-equal-initializer, has class type M (or array thereof) and // either M has no default constructor or overload resolution as applied // to M's default constructor results in an ambiguity or in a function // that is deleted or inaccessible // C++11 [class.copy]p11, C++11 [class.copy]p23: // -- a direct or virtual base class B that cannot be copied/moved because // overload resolution, as applied to B's corresponding special member, // results in an ambiguity or a function that is deleted or inaccessible // from the defaulted special member // C++11 [class.dtor]p5: // -- any direct or virtual base class [...] has a type with a destructor // that is deleted or inaccessible if (!(CSM == CXXSpecialMemberKind::DefaultConstructor && Field && Field->hasInClassInitializer()) && shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), false)) return true; // C++11 [class.ctor]p5, C++11 [class.copy]p11: // -- any direct or virtual base class or non-static data member has a // type with a destructor that is deleted or inaccessible if (IsConstructor) { Sema::SpecialMemberOverloadResult SMOR = S.LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false, false, false, false); if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) return true; } return false; } bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( FieldDecl *FD, QualType FieldType) { // The defaulted special functions are defined as deleted if this is a variant // member with a non-trivial ownership type, e.g., ObjC __strong or __weak // type under ARC. if (!FieldType.hasNonTrivialObjCLifetime()) return false; // Don't make the defaulted default constructor defined as deleted if the // member has an in-class initializer. if (CSM == CXXSpecialMemberKind::DefaultConstructor && FD->hasInClassInitializer()) return false; if (Diagnose) { auto *ParentClass = cast(FD->getParent()); S.Diag(FD->getLocation(), diag::note_deleted_special_member_class_subobject) << llvm::to_underlying(getEffectiveCSM()) << ParentClass << /*IsField*/ true << FD << 4 << /*IsDtorCallInCtor*/ false << /*IsObjCPtr*/ true; } return true; } /// Check whether we should delete a special member function due to the class /// having a particular direct or virtual base class. bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); // If program is correct, BaseClass cannot be null, but if it is, the error // must be reported elsewhere. if (!BaseClass) return false; // If we have an inheriting constructor, check whether we're calling an // inherited constructor instead of a default constructor. Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); if (auto *BaseCtor = SMOR.getMethod()) { // Note that we do not check access along this path; other than that, // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); // FIXME: Check that the base has a usable destructor! Sink this into // shouldDeleteForClassSubobject. if (BaseCtor->isDeleted() && Diagnose) { S.Diag(Base->getBeginLoc(), diag::note_deleted_special_member_class_subobject) << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() << /*IsField*/ false << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false << /*IsObjCPtr*/ false; S.NoteDeletedFunction(BaseCtor); } return BaseCtor->isDeleted(); } return shouldDeleteForClassSubobject(BaseClass, Base, 0); } /// Check whether we should delete a special member function due to the class /// having a particular non-static data member. bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { QualType FieldType = S.Context.getBaseElementType(FD->getType()); CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) return true; if (CSM == CXXSpecialMemberKind::DefaultConstructor) { // For a default constructor, all references must be initialized in-class // and, if a union, it must have a non-const member. if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { if (Diagnose) S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; return true; } // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static // data member of const-qualified type (or array thereof) with no // brace-or-equal-initializer is not const-default-constructible. if (!inUnion() && FieldType.isConstQualified() && !FD->hasInClassInitializer() && (!FieldRecord || !FieldRecord->allowConstDefaultInit())) { if (Diagnose) S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; return true; } if (inUnion() && !FieldType.isConstQualified()) AllFieldsAreConst = false; } else if (CSM == CXXSpecialMemberKind::CopyConstructor) { // For a copy constructor, data members must not be of rvalue reference // type. if (FieldType->isRValueReferenceType()) { if (Diagnose) S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) << MD->getParent() << FD << FieldType; return true; } } else if (IsAssignment) { // For an assignment operator, data members must not be of reference type. if (FieldType->isReferenceType()) { if (Diagnose) S.Diag(FD->getLocation(), diag::note_deleted_assign_field) << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; return true; } if (!FieldRecord && FieldType.isConstQualified()) { // C++11 [class.copy]p23: // -- a non-static data member of const non-class type (or array thereof) if (Diagnose) S.Diag(FD->getLocation(), diag::note_deleted_assign_field) << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; return true; } } if (FieldRecord) { // Some additional restrictions exist on the variant members. if (!inUnion() && FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) { bool AllVariantFieldsAreConst = true; // FIXME: Handle anonymous unions declared within anonymous unions. for (auto *UI : FieldRecord->fields()) { QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) return true; if (!UnionFieldType.isConstQualified()) AllVariantFieldsAreConst = false; CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); if (UnionFieldRecord && shouldDeleteForClassSubobject(UnionFieldRecord, UI, UnionFieldType.getCVRQualifiers())) return true; } // At least one member in each anonymous union must be non-const if (CSM == CXXSpecialMemberKind::DefaultConstructor && AllVariantFieldsAreConst && !FieldRecord->field_empty()) { if (Diagnose) S.Diag(FieldRecord->getLocation(), diag::note_deleted_default_ctor_all_const) << !!ICI << MD->getParent() << /*anonymous union*/1; return true; } // Don't check the implicit member of the anonymous union type. // This is technically non-conformant but supported, and we have a // diagnostic for this elsewhere. return false; } if (shouldDeleteForClassSubobject(FieldRecord, FD, FieldType.getCVRQualifiers())) return true; } return false; } /// C++11 [class.ctor] p5: /// A defaulted default constructor for a class X is defined as deleted if /// X is a union and all of its variant members are of const-qualified type. bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { // This is a silly definition, because it gives an empty union a deleted // default constructor. Don't do that. if (CSM == CXXSpecialMemberKind::DefaultConstructor && inUnion() && AllFieldsAreConst) { bool AnyFields = false; for (auto *F : MD->getParent()->fields()) if ((AnyFields = !F->isUnnamedBitField())) break; if (!AnyFields) return false; if (Diagnose) S.Diag(MD->getParent()->getLocation(), diag::note_deleted_default_ctor_all_const) << !!ICI << MD->getParent() << /*not anonymous union*/0; return true; } return false; } /// Determine whether a defaulted special member function should be defined as /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMemberKind CSM, InheritedConstructorInfo *ICI, bool Diagnose) { if (MD->isInvalidDecl()) return false; CXXRecordDecl *RD = MD->getParent(); assert(!RD->isDependentType() && "do deletion after instantiation"); if (!LangOpts.CPlusPlus || (!LangOpts.CPlusPlus11 && !RD->isLambda()) || RD->isInvalidDecl()) return false; // C++11 [expr.lambda.prim]p19: // The closure type associated with a lambda-expression has a // deleted (8.4.3) default constructor and a deleted copy // assignment operator. // C++2a adds back these operators if the lambda has no lambda-capture. if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && (CSM == CXXSpecialMemberKind::DefaultConstructor || CSM == CXXSpecialMemberKind::CopyAssignment)) { if (Diagnose) Diag(RD->getLocation(), diag::note_lambda_decl); return true; } // For an anonymous struct or union, the copy and assignment special members // will never be used, so skip the check. For an anonymous union declared at // namespace scope, the constructor and destructor are used. if (CSM != CXXSpecialMemberKind::DefaultConstructor && CSM != CXXSpecialMemberKind::Destructor && RD->isAnonymousStructOrUnion()) return false; // C++11 [class.copy]p7, p18: // If the class definition declares a move constructor or move assignment // operator, an implicitly declared copy constructor or copy assignment // operator is defined as deleted. if (MD->isImplicit() && (CSM == CXXSpecialMemberKind::CopyConstructor || CSM == CXXSpecialMemberKind::CopyAssignment)) { CXXMethodDecl *UserDeclaredMove = nullptr; // In Microsoft mode up to MSVC 2013, a user-declared move only causes the // deletion of the corresponding copy operation, not both copy operations. // MSVC 2015 has adopted the standards conforming behavior. bool DeletesOnlyMatchingCopy = getLangOpts().MSVCCompat && !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); if (RD->hasUserDeclaredMoveConstructor() && (!DeletesOnlyMatchingCopy || CSM == CXXSpecialMemberKind::CopyConstructor)) { if (!Diagnose) return true; // Find any user-declared move constructor. for (auto *I : RD->ctors()) { if (I->isMoveConstructor()) { UserDeclaredMove = I; break; } } assert(UserDeclaredMove); } else if (RD->hasUserDeclaredMoveAssignment() && (!DeletesOnlyMatchingCopy || CSM == CXXSpecialMemberKind::CopyAssignment)) { if (!Diagnose) return true; // Find any user-declared move assignment operator. for (auto *I : RD->methods()) { if (I->isMoveAssignmentOperator()) { UserDeclaredMove = I; break; } } assert(UserDeclaredMove); } if (UserDeclaredMove) { Diag(UserDeclaredMove->getLocation(), diag::note_deleted_copy_user_declared_move) << (CSM == CXXSpecialMemberKind::CopyAssignment) << RD << UserDeclaredMove->isMoveAssignmentOperator(); return true; } } // Do access control from the special member function ContextRAII MethodContext(*this, MD); // C++11 [class.dtor]p5: // -- for a virtual destructor, lookup of the non-array deallocation function // results in an ambiguity or in a function that is deleted or inaccessible if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { FunctionDecl *OperatorDelete = nullptr; DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, OperatorDelete, /*Diagnose*/false)) { if (Diagnose) Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); return true; } } SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); // Per DR1611, do not consider virtual bases of constructors of abstract // classes, since we are not going to construct them. // Per DR1658, do not consider virtual bases of destructors of abstract // classes either. // Per DR2180, for assignment operators we only assign (and thus only // consider) direct bases. if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases : SMI.VisitPotentiallyConstructedBases)) return true; if (SMI.shouldDeleteForAllConstMembers()) return true; if (getLangOpts().CUDA) { // We should delete the special member in CUDA mode if target inference // failed. // For inherited constructors (non-null ICI), CSM may be passed so that MD // is treated as certain special member, which may not reflect what special // member MD really is. However inferTargetForImplicitSpecialMember // expects CSM to match MD, therefore recalculate CSM. assert(ICI || CSM == getSpecialMember(MD)); auto RealCSM = CSM; if (ICI) RealCSM = getSpecialMember(MD); return CUDA().inferTargetForImplicitSpecialMember(RD, RealCSM, MD, SMI.ConstArg, Diagnose); } return false; } void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); assert(DFK && "not a defaultable function"); assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); if (DFK.isSpecialMember()) { ShouldDeleteSpecialMember(cast(FD), DFK.asSpecialMember(), nullptr, /*Diagnose=*/true); } else { DefaultedComparisonAnalyzer( *this, cast(FD->getLexicalDeclContext()), FD, DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) .visit(); } } /// Perform lookup for a special member of the specified kind, and determine /// whether it is trivial. If the triviality can be determined without the /// lookup, skip it. This is intended for use when determining whether a /// special member of a containing object is trivial, and thus does not ever /// perform overload resolution for default constructors. /// /// If \p Selected is not \c NULL, \c *Selected will be filled in with the /// member that was most likely to be intended to be trivial, if any. /// /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to /// determine whether the special member is trivial. static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, CXXSpecialMemberKind CSM, unsigned Quals, bool ConstRHS, Sema::TrivialABIHandling TAH, CXXMethodDecl **Selected) { if (Selected) *Selected = nullptr; switch (CSM) { case CXXSpecialMemberKind::Invalid: llvm_unreachable("not a special member"); case CXXSpecialMemberKind::DefaultConstructor: // C++11 [class.ctor]p5: // A default constructor is trivial if: // - all the [direct subobjects] have trivial default constructors // // Note, no overload resolution is performed in this case. if (RD->hasTrivialDefaultConstructor()) return true; if (Selected) { // If there's a default constructor which could have been trivial, dig it // out. Otherwise, if there's any user-provided default constructor, point // to that as an example of why there's not a trivial one. CXXConstructorDecl *DefCtor = nullptr; if (RD->needsImplicitDefaultConstructor()) S.DeclareImplicitDefaultConstructor(RD); for (auto *CI : RD->ctors()) { if (!CI->isDefaultConstructor()) continue; DefCtor = CI; if (!DefCtor->isUserProvided()) break; } *Selected = DefCtor; } return false; case CXXSpecialMemberKind::Destructor: // C++11 [class.dtor]p5: // A destructor is trivial if: // - all the direct [subobjects] have trivial destructors if (RD->hasTrivialDestructor() || (TAH == Sema::TAH_ConsiderTrivialABI && RD->hasTrivialDestructorForCall())) return true; if (Selected) { if (RD->needsImplicitDestructor()) S.DeclareImplicitDestructor(RD); *Selected = RD->getDestructor(); } return false; case CXXSpecialMemberKind::CopyConstructor: // C++11 [class.copy]p12: // A copy constructor is trivial if: // - the constructor selected to copy each direct [subobject] is trivial if (RD->hasTrivialCopyConstructor() || (TAH == Sema::TAH_ConsiderTrivialABI && RD->hasTrivialCopyConstructorForCall())) { if (Quals == Qualifiers::Const) // We must either select the trivial copy constructor or reach an // ambiguity; no need to actually perform overload resolution. return true; } else if (!Selected) { return false; } // In C++98, we are not supposed to perform overload resolution here, but we // treat that as a language defect, as suggested on cxx-abi-dev, to treat // cases like B as having a non-trivial copy constructor: // struct A { template A(T&); }; // struct B { mutable A a; }; goto NeedOverloadResolution; case CXXSpecialMemberKind::CopyAssignment: // C++11 [class.copy]p25: // A copy assignment operator is trivial if: // - the assignment operator selected to copy each direct [subobject] is // trivial if (RD->hasTrivialCopyAssignment()) { if (Quals == Qualifiers::Const) return true; } else if (!Selected) { return false; } // In C++98, we are not supposed to perform overload resolution here, but we // treat that as a language defect. goto NeedOverloadResolution; case CXXSpecialMemberKind::MoveConstructor: case CXXSpecialMemberKind::MoveAssignment: NeedOverloadResolution: Sema::SpecialMemberOverloadResult SMOR = lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); // The standard doesn't describe how to behave if the lookup is ambiguous. // We treat it as not making the member non-trivial, just like the standard // mandates for the default constructor. This should rarely matter, because // the member will also be deleted. if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) return true; if (!SMOR.getMethod()) { assert(SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); return false; } // We deliberately don't check if we found a deleted special member. We're // not supposed to! if (Selected) *Selected = SMOR.getMethod(); if (TAH == Sema::TAH_ConsiderTrivialABI && (CSM == CXXSpecialMemberKind::CopyConstructor || CSM == CXXSpecialMemberKind::MoveConstructor)) return SMOR.getMethod()->isTrivialForCall(); return SMOR.getMethod()->isTrivial(); } llvm_unreachable("unknown special method kind"); } static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { for (auto *CI : RD->ctors()) if (!CI->isImplicit()) return CI; // Look for constructor templates. typedef CXXRecordDecl::specific_decl_iterator tmpl_iter; for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { if (CXXConstructorDecl *CD = dyn_cast(TI->getTemplatedDecl())) return CD; } return nullptr; } /// The kind of subobject we are checking for triviality. The values of this /// enumeration are used in diagnostics. enum TrivialSubobjectKind { /// The subobject is a base class. TSK_BaseClass, /// The subobject is a non-static data member. TSK_Field, /// The object is actually the complete object. TSK_CompleteObject }; /// Check whether the special member selected for a given type would be trivial. static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, QualType SubType, bool ConstRHS, CXXSpecialMemberKind CSM, TrivialSubobjectKind Kind, Sema::TrivialABIHandling TAH, bool Diagnose) { CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); if (!SubRD) return true; CXXMethodDecl *Selected; if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), ConstRHS, TAH, Diagnose ? &Selected : nullptr)) return true; if (Diagnose) { if (ConstRHS) SubType.addConst(); if (!Selected && CSM == CXXSpecialMemberKind::DefaultConstructor) { S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) << Kind << SubType.getUnqualifiedType(); if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) S.Diag(CD->getLocation(), diag::note_user_declared_ctor); } else if (!Selected) S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM) << SubType; else if (Selected->isUserProvided()) { if (Kind == TSK_CompleteObject) S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); else { S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); S.Diag(Selected->getLocation(), diag::note_declared_at); } } else { if (Kind != TSK_CompleteObject) S.Diag(SubobjLoc, diag::note_nontrivial_subobject) << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); // Explain why the defaulted or deleted special member isn't trivial. S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, Diagnose); } } return false; } /// Check whether the members of a class type allow a special member to be /// trivial. static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, CXXSpecialMemberKind CSM, bool ConstArg, Sema::TrivialABIHandling TAH, bool Diagnose) { for (const auto *FI : RD->fields()) { if (FI->isInvalidDecl() || FI->isUnnamedBitField()) continue; QualType FieldType = S.Context.getBaseElementType(FI->getType()); // Pretend anonymous struct or union members are members of this class. if (FI->isAnonymousStructOrUnion()) { if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), CSM, ConstArg, TAH, Diagnose)) return false; continue; } // C++11 [class.ctor]p5: // A default constructor is trivial if [...] // -- no non-static data member of its class has a // brace-or-equal-initializer if (CSM == CXXSpecialMemberKind::DefaultConstructor && FI->hasInClassInitializer()) { if (Diagnose) S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) << FI; return false; } // Objective C ARC 4.3.5: // [...] nontrivally ownership-qualified types are [...] not trivially // default constructible, copy constructible, move constructible, copy // assignable, move assignable, or destructible [...] if (FieldType.hasNonTrivialObjCLifetime()) { if (Diagnose) S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) << RD << FieldType.getObjCLifetime(); return false; } bool ConstRHS = ConstArg && !FI->isMutable(); if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, CSM, TSK_Field, TAH, Diagnose)) return false; } return true; } void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMemberKind CSM) { QualType Ty = Context.getRecordType(RD); bool ConstArg = (CSM == CXXSpecialMemberKind::CopyConstructor || CSM == CXXSpecialMemberKind::CopyAssignment); checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, TSK_CompleteObject, TAH_IgnoreTrivialABI, /*Diagnose*/true); } bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMemberKind CSM, TrivialABIHandling TAH, bool Diagnose) { assert(!MD->isUserProvided() && CSM != CXXSpecialMemberKind::Invalid && "not special enough"); CXXRecordDecl *RD = MD->getParent(); bool ConstArg = false; // C++11 [class.copy]p12, p25: [DR1593] // A [special member] is trivial if [...] its parameter-type-list is // equivalent to the parameter-type-list of an implicit declaration [...] switch (CSM) { case CXXSpecialMemberKind::DefaultConstructor: case CXXSpecialMemberKind::Destructor: // Trivial default constructors and destructors cannot have parameters. break; case CXXSpecialMemberKind::CopyConstructor: case CXXSpecialMemberKind::CopyAssignment: { const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); const ReferenceType *RT = Param0->getType()->getAs(); // When ClangABICompat14 is true, CXX copy constructors will only be trivial // if they are not user-provided and their parameter-type-list is equivalent // to the parameter-type-list of an implicit declaration. This maintains the // behavior before dr2171 was implemented. // // Otherwise, if ClangABICompat14 is false, All copy constructors can be // trivial, if they are not user-provided, regardless of the qualifiers on // the reference type. const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver14; if (!RT || ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) && ClangABICompat14)) { if (Diagnose) Diag(Param0->getLocation(), diag::note_nontrivial_param_type) << Param0->getSourceRange() << Param0->getType() << Context.getLValueReferenceType( Context.getRecordType(RD).withConst()); return false; } ConstArg = RT->getPointeeType().isConstQualified(); break; } case CXXSpecialMemberKind::MoveConstructor: case CXXSpecialMemberKind::MoveAssignment: { // Trivial move operations always have non-cv-qualified parameters. const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); const RValueReferenceType *RT = Param0->getType()->getAs(); if (!RT || RT->getPointeeType().getCVRQualifiers()) { if (Diagnose) Diag(Param0->getLocation(), diag::note_nontrivial_param_type) << Param0->getSourceRange() << Param0->getType() << Context.getRValueReferenceType(Context.getRecordType(RD)); return false; } break; } case CXXSpecialMemberKind::Invalid: llvm_unreachable("not a special member"); } if (MD->getMinRequiredArguments() < MD->getNumParams()) { if (Diagnose) Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), diag::note_nontrivial_default_arg) << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); return false; } if (MD->isVariadic()) { if (Diagnose) Diag(MD->getLocation(), diag::note_nontrivial_variadic); return false; } // C++11 [class.ctor]p5, C++11 [class.dtor]p5: // A copy/move [constructor or assignment operator] is trivial if // -- the [member] selected to copy/move each direct base class subobject // is trivial // // C++11 [class.copy]p12, C++11 [class.copy]p25: // A [default constructor or destructor] is trivial if // -- all the direct base classes have trivial [default constructors or // destructors] for (const auto &BI : RD->bases()) if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) return false; // C++11 [class.ctor]p5, C++11 [class.dtor]p5: // A copy/move [constructor or assignment operator] for a class X is // trivial if // -- for each non-static data member of X that is of class type (or array // thereof), the constructor selected to copy/move that member is // trivial // // C++11 [class.copy]p12, C++11 [class.copy]p25: // A [default constructor or destructor] is trivial if // -- for all of the non-static data members of its class that are of class // type (or array thereof), each such class has a trivial [default // constructor or destructor] if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) return false; // C++11 [class.dtor]p5: // A destructor is trivial if [...] // -- the destructor is not virtual if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { if (Diagnose) Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; return false; } // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: // A [special member] for class X is trivial if [...] // -- class X has no virtual functions and no virtual base classes if (CSM != CXXSpecialMemberKind::Destructor && MD->getParent()->isDynamicClass()) { if (!Diagnose) return false; if (RD->getNumVBases()) { // Check for virtual bases. We already know that the corresponding // member in all bases is trivial, so vbases must all be direct. CXXBaseSpecifier &BS = *RD->vbases_begin(); assert(BS.isVirtual()); Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; return false; } // Must have a virtual method. for (const auto *MI : RD->methods()) { if (MI->isVirtual()) { SourceLocation MLoc = MI->getBeginLoc(); Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; return false; } } llvm_unreachable("dynamic class with no vbases and no virtual functions"); } // Looks like it's trivial! return true; } namespace { struct FindHiddenVirtualMethod { Sema *S; CXXMethodDecl *Method; llvm::SmallPtrSet OverridenAndUsingBaseMethods; SmallVector OverloadedMethods; private: /// Check whether any most overridden method from MD in Methods static bool CheckMostOverridenMethods( const CXXMethodDecl *MD, const llvm::SmallPtrSetImpl &Methods) { if (MD->size_overridden_methods() == 0) return Methods.count(MD->getCanonicalDecl()); for (const CXXMethodDecl *O : MD->overridden_methods()) if (CheckMostOverridenMethods(O, Methods)) return true; return false; } public: /// Member lookup function that determines whether a given C++ /// method overloads virtual methods in a base class without overriding any, /// to be used with CXXRecordDecl::lookupInBases(). bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { RecordDecl *BaseRecord = Specifier->getType()->castAs()->getDecl(); DeclarationName Name = Method->getDeclName(); assert(Name.getNameKind() == DeclarationName::Identifier); bool foundSameNameMethod = false; SmallVector overloadedMethods; for (Path.Decls = BaseRecord->lookup(Name).begin(); Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { NamedDecl *D = *Path.Decls; if (CXXMethodDecl *MD = dyn_cast(D)) { MD = MD->getCanonicalDecl(); foundSameNameMethod = true; // Interested only in hidden virtual methods. if (!MD->isVirtual()) continue; // If the method we are checking overrides a method from its base // don't warn about the other overloaded methods. Clang deviates from // GCC by only diagnosing overloads of inherited virtual functions that // do not override any other virtual functions in the base. GCC's // -Woverloaded-virtual diagnoses any derived function hiding a virtual // function from a base class. These cases may be better served by a // warning (not specific to virtual functions) on call sites when the // call would select a different function from the base class, were it // visible. // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. if (!S->IsOverload(Method, MD, false)) return true; // Collect the overload only if its hidden. if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) overloadedMethods.push_back(MD); } } if (foundSameNameMethod) OverloadedMethods.append(overloadedMethods.begin(), overloadedMethods.end()); return foundSameNameMethod; } }; } // end anonymous namespace /// Add the most overridden methods from MD to Methods static void AddMostOverridenMethods(const CXXMethodDecl *MD, llvm::SmallPtrSetImpl& Methods) { if (MD->size_overridden_methods() == 0) Methods.insert(MD->getCanonicalDecl()); else for (const CXXMethodDecl *O : MD->overridden_methods()) AddMostOverridenMethods(O, Methods); } void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, SmallVectorImpl &OverloadedMethods) { if (!MD->getDeclName().isIdentifier()) return; CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. /*bool RecordPaths=*/false, /*bool DetectVirtual=*/false); FindHiddenVirtualMethod FHVM; FHVM.Method = MD; FHVM.S = this; // Keep the base methods that were overridden or introduced in the subclass // by 'using' in a set. A base method not in this set is hidden. CXXRecordDecl *DC = MD->getParent(); DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { NamedDecl *ND = *I; if (UsingShadowDecl *shad = dyn_cast(*I)) ND = shad->getTargetDecl(); if (CXXMethodDecl *MD = dyn_cast(ND)) AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); } if (DC->lookupInBases(FHVM, Paths)) OverloadedMethods = FHVM.OverloadedMethods; } void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, SmallVectorImpl &OverloadedMethods) { for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { CXXMethodDecl *overloadedMD = OverloadedMethods[i]; PartialDiagnostic PD = PDiag( diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); Diag(overloadedMD->getLocation(), PD); } } void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { if (MD->isInvalidDecl()) return; if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) return; SmallVector OverloadedMethods; FindHiddenVirtualMethods(MD, OverloadedMethods); if (!OverloadedMethods.empty()) { Diag(MD->getLocation(), diag::warn_overloaded_virtual) << MD << (OverloadedMethods.size() > 1); NoteHiddenVirtualMethods(MD, OverloadedMethods); } } void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { auto PrintDiagAndRemoveAttr = [&](unsigned N) { // No diagnostics if this is a template instantiation. if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { Diag(RD.getAttr()->getLocation(), diag::ext_cannot_use_trivial_abi) << &RD; Diag(RD.getAttr()->getLocation(), diag::note_cannot_use_trivial_abi_reason) << &RD << N; } RD.dropAttr(); }; // Ill-formed if the copy and move constructors are deleted. auto HasNonDeletedCopyOrMoveConstructor = [&]() { // If the type is dependent, then assume it might have // implicit copy or move ctor because we won't know yet at this point. if (RD.isDependentType()) return true; if (RD.needsImplicitCopyConstructor() && !RD.defaultedCopyConstructorIsDeleted()) return true; if (RD.needsImplicitMoveConstructor() && !RD.defaultedMoveConstructorIsDeleted()) return true; for (const CXXConstructorDecl *CD : RD.ctors()) if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) return true; return false; }; if (!HasNonDeletedCopyOrMoveConstructor()) { PrintDiagAndRemoveAttr(0); return; } // Ill-formed if the struct has virtual functions. if (RD.isPolymorphic()) { PrintDiagAndRemoveAttr(1); return; } for (const auto &B : RD.bases()) { // Ill-formed if the base class is non-trivial for the purpose of calls or a // virtual base. if (!B.getType()->isDependentType() && !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { PrintDiagAndRemoveAttr(2); return; } if (B.isVirtual()) { PrintDiagAndRemoveAttr(3); return; } } for (const auto *FD : RD.fields()) { // Ill-formed if the field is an ObjectiveC pointer or of a type that is // non-trivial for the purpose of calls. QualType FT = FD->getType(); if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { PrintDiagAndRemoveAttr(4); return; } if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs()) if (!RT->isDependentType() && !cast(RT->getDecl())->canPassInRegisters()) { PrintDiagAndRemoveAttr(5); return; } } } void Sema::checkIncorrectVTablePointerAuthenticationAttribute( CXXRecordDecl &RD) { if (RequireCompleteType(RD.getLocation(), Context.getRecordType(&RD), diag::err_incomplete_type_vtable_pointer_auth)) return; const CXXRecordDecl *PrimaryBase = &RD; if (PrimaryBase->hasAnyDependentBases()) return; while (1) { assert(PrimaryBase); const CXXRecordDecl *Base = nullptr; for (auto BasePtr : PrimaryBase->bases()) { if (!BasePtr.getType()->getAsCXXRecordDecl()->isDynamicClass()) continue; Base = BasePtr.getType()->getAsCXXRecordDecl(); break; } if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) break; Diag(RD.getAttr()->getLocation(), diag::err_non_top_level_vtable_pointer_auth) << &RD << Base; PrimaryBase = Base; } if (!RD.isPolymorphic()) Diag(RD.getAttr()->getLocation(), diag::err_non_polymorphic_vtable_pointer_auth) << &RD; } void Sema::ActOnFinishCXXMemberSpecification( Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList) { if (!TagDecl) return; AdjustDeclIfTemplate(TagDecl); for (const ParsedAttr &AL : AttrList) { if (AL.getKind() != ParsedAttr::AT_Visibility) continue; AL.setInvalid(); Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; } ActOnFields(S, RLoc, TagDecl, llvm::ArrayRef( // strict aliasing violation! reinterpret_cast(FieldCollector->getCurFields()), FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); CheckCompletedCXXClass(S, cast(TagDecl)); } /// Find the equality comparison functions that should be implicitly declared /// in a given class definition, per C++2a [class.compare.default]p3. static void findImplicitlyDeclaredEqualityComparisons( ASTContext &Ctx, CXXRecordDecl *RD, llvm::SmallVectorImpl &Spaceships) { DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); if (!RD->lookup(EqEq).empty()) // Member operator== explicitly declared: no implicit operator==s. return; // Traverse friends looking for an '==' or a '<=>'. for (FriendDecl *Friend : RD->friends()) { FunctionDecl *FD = dyn_cast_or_null(Friend->getFriendDecl()); if (!FD) continue; if (FD->getOverloadedOperator() == OO_EqualEqual) { // Friend operator== explicitly declared: no implicit operator==s. Spaceships.clear(); return; } if (FD->getOverloadedOperator() == OO_Spaceship && FD->isExplicitlyDefaulted()) Spaceships.push_back(FD); } // Look for members named 'operator<=>'. DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); for (NamedDecl *ND : RD->lookup(Cmp)) { // Note that we could find a non-function here (either a function template // or a using-declaration). Neither case results in an implicit // 'operator=='. if (auto *FD = dyn_cast(ND)) if (FD->isExplicitlyDefaulted()) Spaceships.push_back(FD); } } void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { // Don't add implicit special members to templated classes. // FIXME: This means unqualified lookups for 'operator=' within a class // template don't work properly. if (!ClassDecl->isDependentType()) { if (ClassDecl->needsImplicitDefaultConstructor()) { ++getASTContext().NumImplicitDefaultConstructors; if (ClassDecl->hasInheritedConstructor()) DeclareImplicitDefaultConstructor(ClassDecl); } if (ClassDecl->needsImplicitCopyConstructor()) { ++getASTContext().NumImplicitCopyConstructors; // If the properties or semantics of the copy constructor couldn't be // determined while the class was being declared, force a declaration // of it now. if (ClassDecl->needsOverloadResolutionForCopyConstructor() || ClassDecl->hasInheritedConstructor()) DeclareImplicitCopyConstructor(ClassDecl); // For the MS ABI we need to know whether the copy ctor is deleted. A // prerequisite for deleting the implicit copy ctor is that the class has // a move ctor or move assignment that is either user-declared or whose // semantics are inherited from a subobject. FIXME: We should provide a // more direct way for CodeGen to ask whether the constructor was deleted. else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && (ClassDecl->hasUserDeclaredMoveConstructor() || ClassDecl->needsOverloadResolutionForMoveConstructor() || ClassDecl->hasUserDeclaredMoveAssignment() || ClassDecl->needsOverloadResolutionForMoveAssignment())) DeclareImplicitCopyConstructor(ClassDecl); } if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) { ++getASTContext().NumImplicitMoveConstructors; if (ClassDecl->needsOverloadResolutionForMoveConstructor() || ClassDecl->hasInheritedConstructor()) DeclareImplicitMoveConstructor(ClassDecl); } if (ClassDecl->needsImplicitCopyAssignment()) { ++getASTContext().NumImplicitCopyAssignmentOperators; // If we have a dynamic class, then the copy assignment operator may be // virtual, so we have to declare it immediately. This ensures that, e.g., // it shows up in the right place in the vtable and that we diagnose // problems with the implicit exception specification. if (ClassDecl->isDynamicClass() || ClassDecl->needsOverloadResolutionForCopyAssignment() || ClassDecl->hasInheritedAssignment()) DeclareImplicitCopyAssignment(ClassDecl); } if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { ++getASTContext().NumImplicitMoveAssignmentOperators; // Likewise for the move assignment operator. if (ClassDecl->isDynamicClass() || ClassDecl->needsOverloadResolutionForMoveAssignment() || ClassDecl->hasInheritedAssignment()) DeclareImplicitMoveAssignment(ClassDecl); } if (ClassDecl->needsImplicitDestructor()) { ++getASTContext().NumImplicitDestructors; // If we have a dynamic class, then the destructor may be virtual, so we // have to declare the destructor immediately. This ensures that, e.g., it // shows up in the right place in the vtable and that we diagnose problems // with the implicit exception specification. if (ClassDecl->isDynamicClass() || ClassDecl->needsOverloadResolutionForDestructor()) DeclareImplicitDestructor(ClassDecl); } } // C++2a [class.compare.default]p3: // If the member-specification does not explicitly declare any member or // friend named operator==, an == operator function is declared implicitly // for each defaulted three-way comparison operator function defined in // the member-specification // FIXME: Consider doing this lazily. // We do this during the initial parse for a class template, not during // instantiation, so that we can handle unqualified lookups for 'operator==' // when parsing the template. if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { llvm::SmallVector DefaultedSpaceships; findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, DefaultedSpaceships); for (auto *FD : DefaultedSpaceships) DeclareImplicitEqualityComparison(ClassDecl, FD); } } unsigned Sema::ActOnReenterTemplateScope(Decl *D, llvm::function_ref EnterScope) { if (!D) return 0; AdjustDeclIfTemplate(D); // In order to get name lookup right, reenter template scopes in order from // outermost to innermost. SmallVector ParameterLists; DeclContext *LookupDC = dyn_cast(D); if (DeclaratorDecl *DD = dyn_cast(D)) { for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) ParameterLists.push_back(DD->getTemplateParameterList(i)); if (FunctionDecl *FD = dyn_cast(D)) { if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) ParameterLists.push_back(FTD->getTemplateParameters()); } else if (VarDecl *VD = dyn_cast(D)) { LookupDC = VD->getDeclContext(); if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) ParameterLists.push_back(VTD->getTemplateParameters()); else if (auto *PSD = dyn_cast(D)) ParameterLists.push_back(PSD->getTemplateParameters()); } } else if (TagDecl *TD = dyn_cast(D)) { for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) ParameterLists.push_back(TD->getTemplateParameterList(i)); if (CXXRecordDecl *RD = dyn_cast(TD)) { if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) ParameterLists.push_back(CTD->getTemplateParameters()); else if (auto *PSD = dyn_cast(D)) ParameterLists.push_back(PSD->getTemplateParameters()); } } // FIXME: Alias declarations and concepts. unsigned Count = 0; Scope *InnermostTemplateScope = nullptr; for (TemplateParameterList *Params : ParameterLists) { // Ignore explicit specializations; they don't contribute to the template // depth. if (Params->size() == 0) continue; InnermostTemplateScope = EnterScope(); for (NamedDecl *Param : *Params) { if (Param->getDeclName()) { InnermostTemplateScope->AddDecl(Param); IdResolver.AddDecl(Param); } } ++Count; } // Associate the new template scopes with the corresponding entities. if (InnermostTemplateScope) { assert(LookupDC && "no enclosing DeclContext for template lookup"); EnterTemplatedContext(InnermostTemplateScope, LookupDC); } return Count; } void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { if (!RecordD) return; AdjustDeclIfTemplate(RecordD); CXXRecordDecl *Record = cast(RecordD); PushDeclContext(S, Record); } void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { if (!RecordD) return; PopDeclContext(); } void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { if (!Param) return; S->AddDecl(Param); if (Param->getDeclName()) IdResolver.AddDecl(Param); } void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { } /// ActOnDelayedCXXMethodParameter - We've already started a delayed /// C++ method declaration. We're (re-)introducing the given /// function parameter into scope for use in parsing later parts of /// the method declaration. For example, we could see an /// ActOnParamDefaultArgument event for this parameter. void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { if (!ParamD) return; ParmVarDecl *Param = cast(ParamD); S->AddDecl(Param); if (Param->getDeclName()) IdResolver.AddDecl(Param); } void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { if (!MethodD) return; AdjustDeclIfTemplate(MethodD); FunctionDecl *Method = cast(MethodD); // Now that we have our default arguments, check the constructor // again. It could produce additional diagnostics or affect whether // the class has implicitly-declared destructors, among other // things. if (CXXConstructorDecl *Constructor = dyn_cast(Method)) CheckConstructor(Constructor); // Check the default arguments, which we may have added. if (!Method->isInvalidDecl()) CheckCXXDefaultArguments(Method); } // Emit the given diagnostic for each non-address-space qualifier. // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { bool DiagOccured = false; FTI.MethodQualifiers->forEachQualifier( [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, SourceLocation SL) { // This diagnostic should be emitted on any qualifier except an addr // space qualifier. However, forEachQualifier currently doesn't visit // addr space qualifiers, so there's no way to write this condition // right now; we just diagnose on everything. S.Diag(SL, DiagID) << QualName << SourceRange(SL); DiagOccured = true; }); if (DiagOccured) D.setInvalidType(); } } QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, StorageClass &SC) { bool isVirtual = D.getDeclSpec().isVirtualSpecified(); // C++ [class.ctor]p3: // A constructor shall not be virtual (10.3) or static (9.4). A // constructor can be invoked for a const, volatile or const // volatile object. A constructor shall not be declared const, // volatile, or const volatile (9.3.2). if (isVirtual) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); } if (SC == SC_Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); SC = SC_None; } if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { diagnoseIgnoredQualifiers( diag::err_constructor_return_type, TypeQuals, SourceLocation(), D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), D.getDeclSpec().getRestrictSpecLoc(), D.getDeclSpec().getAtomicSpecLoc()); D.setInvalidType(); } checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); // C++0x [class.ctor]p4: // A constructor shall not be declared with a ref-qualifier. DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); if (FTI.hasRefQualifier()) { Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) << FTI.RefQualifierIsLValueRef << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); D.setInvalidType(); } // Rebuild the function type "R" without any type qualifiers (in // case any of the errors above fired) and with "void" as the // return type, since constructors don't have return types. const FunctionProtoType *Proto = R->castAs(); if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) return R; FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); EPI.TypeQuals = Qualifiers(); EPI.RefQualifier = RQ_None; return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); } void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { CXXRecordDecl *ClassDecl = dyn_cast(Constructor->getDeclContext()); if (!ClassDecl) return Constructor->setInvalidDecl(); // C++ [class.copy]p3: // A declaration of a constructor for a class X is ill-formed if // its first parameter is of type (optionally cv-qualified) X and // either there are no other parameters or else all other // parameters have default arguments. if (!Constructor->isInvalidDecl() && Constructor->hasOneParamOrDefaultArgs() && Constructor->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { QualType ParamType = Constructor->getParamDecl(0)->getType(); QualType ClassTy = Context.getTagDeclType(ClassDecl); if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); const char *ConstRef = Constructor->getParamDecl(0)->getIdentifier() ? "const &" : " const &"; Diag(ParamLoc, diag::err_constructor_byvalue_arg) << FixItHint::CreateInsertion(ParamLoc, ConstRef); // FIXME: Rather that making the constructor invalid, we should endeavor // to fix the type. Constructor->setInvalidDecl(); } } } bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { CXXRecordDecl *RD = Destructor->getParent(); if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { SourceLocation Loc; if (!Destructor->isImplicit()) Loc = Destructor->getLocation(); else Loc = RD->getLocation(); // If we have a virtual destructor, look up the deallocation function if (FunctionDecl *OperatorDelete = FindDeallocationFunctionForDestructor(Loc, RD)) { Expr *ThisArg = nullptr; // If the notional 'delete this' expression requires a non-trivial // conversion from 'this' to the type of a destroying operator delete's // first parameter, perform that conversion now. if (OperatorDelete->isDestroyingOperatorDelete()) { QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { // C++ [class.dtor]p13: // ... as if for the expression 'delete this' appearing in a // non-virtual destructor of the destructor's class. ContextRAII SwitchContext(*this, Destructor); ExprResult This = ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); if (This.isInvalid()) { // FIXME: Register this as a context note so that it comes out // in the right order. Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); return true; } ThisArg = This.get(); } } DiagnoseUseOfDecl(OperatorDelete, Loc); MarkFunctionReferenced(Loc, OperatorDelete); Destructor->setOperatorDelete(OperatorDelete, ThisArg); } } return false; } QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, StorageClass& SC) { // C++ [class.dtor]p1: // [...] A typedef-name that names a class is a class-name // (7.1.3); however, a typedef-name that names a class shall not // be used as the identifier in the declarator for a destructor // declaration. QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); if (const TypedefType *TT = DeclaratorType->getAs()) Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) << DeclaratorType << isa(TT->getDecl()); else if (const TemplateSpecializationType *TST = DeclaratorType->getAs()) if (TST->isTypeAlias()) Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) << DeclaratorType << 1; // C++ [class.dtor]p2: // A destructor is used to destroy objects of its class type. A // destructor takes no parameters, and no return type can be // specified for it (not even void). The address of a destructor // shall not be taken. A destructor shall not be static. A // destructor can be invoked for a const, volatile or const // volatile object. A destructor shall not be declared const, // volatile or const volatile (9.3.2). if (SC == SC_Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()) << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); SC = SC_None; } if (!D.isInvalidType()) { // Destructors don't have return types, but the parser will // happily parse something like: // // class X { // float ~X(); // }; // // The return type will be eliminated later. if (D.getDeclSpec().hasTypeSpecifier()) Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, SourceLocation(), D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), D.getDeclSpec().getRestrictSpecLoc(), D.getDeclSpec().getAtomicSpecLoc()); D.setInvalidType(); } } checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); // C++0x [class.dtor]p2: // A destructor shall not be declared with a ref-qualifier. DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); if (FTI.hasRefQualifier()) { Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) << FTI.RefQualifierIsLValueRef << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); D.setInvalidType(); } // Make sure we don't have any parameters. if (FTIHasNonVoidParameters(FTI)) { Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); // Delete the parameters. FTI.freeParams(); D.setInvalidType(); } // Make sure the destructor isn't variadic. if (FTI.isVariadic) { Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); D.setInvalidType(); } // Rebuild the function type "R" without any type qualifiers or // parameters (in case any of the errors above fired) and with // "void" as the return type, since destructors don't have return // types. if (!D.isInvalidType()) return R; const FunctionProtoType *Proto = R->castAs(); FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); EPI.Variadic = false; EPI.TypeQuals = Qualifiers(); EPI.RefQualifier = RQ_None; return Context.getFunctionType(Context.VoidTy, std::nullopt, EPI); } static void extendLeft(SourceRange &R, SourceRange Before) { if (Before.isInvalid()) return; R.setBegin(Before.getBegin()); if (R.getEnd().isInvalid()) R.setEnd(Before.getEnd()); } static void extendRight(SourceRange &R, SourceRange After) { if (After.isInvalid()) return; if (R.getBegin().isInvalid()) R.setBegin(After.getBegin()); R.setEnd(After.getEnd()); } void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass& SC) { // C++ [class.conv.fct]p1: // Neither parameter types nor return type can be specified. The // type of a conversion function (8.3.5) is "function taking no // parameter returning conversion-type-id." if (SC == SC_Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << D.getName().getSourceRange(); D.setInvalidType(); SC = SC_None; } TypeSourceInfo *ConvTSI = nullptr; QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); const DeclSpec &DS = D.getDeclSpec(); if (DS.hasTypeSpecifier() && !D.isInvalidType()) { // Conversion functions don't have return types, but the parser will // happily parse something like: // // class X { // float operator bool(); // }; // // The return type will be changed later anyway. Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) << SourceRange(DS.getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { // It's also plausible that the user writes type qualifiers in the wrong // place, such as: // struct S { const operator int(); }; // FIXME: we could provide a fixit to move the qualifiers onto the // conversion type. Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) << SourceRange(D.getIdentifierLoc()) << 0; D.setInvalidType(); } const auto *Proto = R->castAs(); // Make sure we don't have any parameters. DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); unsigned NumParam = Proto->getNumParams(); // [C++2b] // A conversion function shall have no non-object parameters. if (NumParam == 1) { DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); if (const auto *First = dyn_cast_if_present(FTI.Params[0].Param); First && First->isExplicitObjectParameter()) NumParam--; } if (NumParam != 0) { Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); // Delete the parameters. FTI.freeParams(); D.setInvalidType(); } else if (Proto->isVariadic()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); D.setInvalidType(); } // Diagnose "&operator bool()" and other such nonsense. This // is actually a gcc extension which we don't support. if (Proto->getReturnType() != ConvType) { bool NeedsTypedef = false; SourceRange Before, After; // Walk the chunks and extract information on them for our diagnostic. bool PastFunctionChunk = false; for (auto &Chunk : D.type_objects()) { switch (Chunk.Kind) { case DeclaratorChunk::Function: if (!PastFunctionChunk) { if (Chunk.Fun.HasTrailingReturnType) { TypeSourceInfo *TRT = nullptr; GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); } PastFunctionChunk = true; break; } [[fallthrough]]; case DeclaratorChunk::Array: NeedsTypedef = true; extendRight(After, Chunk.getSourceRange()); break; case DeclaratorChunk::Pointer: case DeclaratorChunk::BlockPointer: case DeclaratorChunk::Reference: case DeclaratorChunk::MemberPointer: case DeclaratorChunk::Pipe: extendLeft(Before, Chunk.getSourceRange()); break; case DeclaratorChunk::Paren: extendLeft(Before, Chunk.Loc); extendRight(After, Chunk.EndLoc); break; } } SourceLocation Loc = Before.isValid() ? Before.getBegin() : After.isValid() ? After.getBegin() : D.getIdentifierLoc(); auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); DB << Before << After; if (!NeedsTypedef) { DB << /*don't need a typedef*/0; // If we can provide a correct fix-it hint, do so. if (After.isInvalid() && ConvTSI) { SourceLocation InsertLoc = getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); DB << FixItHint::CreateInsertion(InsertLoc, " ") << FixItHint::CreateInsertionFromRange( InsertLoc, CharSourceRange::getTokenRange(Before)) << FixItHint::CreateRemoval(Before); } } else if (!Proto->getReturnType()->isDependentType()) { DB << /*typedef*/1 << Proto->getReturnType(); } else if (getLangOpts().CPlusPlus11) { DB << /*alias template*/2 << Proto->getReturnType(); } else { DB << /*might not be fixable*/3; } // Recover by incorporating the other type chunks into the result type. // Note, this does *not* change the name of the function. This is compatible // with the GCC extension: // struct S { &operator int(); } s; // int &r = s.operator int(); // ok in GCC // S::operator int&() {} // error in GCC, function name is 'operator int'. ConvType = Proto->getReturnType(); } // C++ [class.conv.fct]p4: // The conversion-type-id shall not represent a function type nor // an array type. if (ConvType->isArrayType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); ConvType = Context.getPointerType(ConvType); D.setInvalidType(); } else if (ConvType->isFunctionType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); ConvType = Context.getPointerType(ConvType); D.setInvalidType(); } // Rebuild the function type "R" without any parameters (in case any // of the errors above fired) and with the conversion type as the // return type. if (D.isInvalidType()) R = Context.getFunctionType(ConvType, std::nullopt, Proto->getExtProtoInfo()); // C++0x explicit conversion operators. if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) Diag(DS.getExplicitSpecLoc(), getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_explicit_conversion_functions : diag::ext_explicit_conversion_functions) << SourceRange(DS.getExplicitSpecRange()); } Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { assert(Conversion && "Expected to receive a conversion function declaration"); CXXRecordDecl *ClassDecl = cast(Conversion->getDeclContext()); // Make sure we aren't redeclaring the conversion function. QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); // C++ [class.conv.fct]p1: // [...] A conversion function is never used to convert a // (possibly cv-qualified) object to the (possibly cv-qualified) // same object type (or a reference to it), to a (possibly // cv-qualified) base class of that type (or a reference to it), // or to (possibly cv-qualified) void. QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); if (const ReferenceType *ConvTypeRef = ConvType->getAs()) ConvType = ConvTypeRef->getPointeeType(); if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) /* Suppress diagnostics for instantiations. */; else if (Conversion->size_overridden_methods() != 0) /* Suppress diagnostics for overriding virtual function in a base class. */; else if (ConvType->isRecordType()) { ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); if (ConvType == ClassType) Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) << ClassType; else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) << ClassType << ConvType; } else if (ConvType->isVoidType()) { Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) << ClassType << ConvType; } if (FunctionTemplateDecl *ConversionTemplate = Conversion->getDescribedFunctionTemplate()) { if (const auto *ConvTypePtr = ConvType->getAs()) { ConvType = ConvTypePtr->getPointeeType(); } if (ConvType->isUndeducedAutoType()) { Diag(Conversion->getTypeSpecStartLoc(), diag::err_auto_not_allowed) << getReturnTypeLoc(Conversion).getSourceRange() << llvm::to_underlying(ConvType->castAs()->getKeyword()) << /* in declaration of conversion function template= */ 24; } return ConversionTemplate; } return Conversion; } void Sema::CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D, DeclarationName Name, QualType R) { CheckExplicitObjectMemberFunction(D, Name, R, false, DC); } void Sema::CheckExplicitObjectLambda(Declarator &D) { CheckExplicitObjectMemberFunction(D, {}, {}, true); } void Sema::CheckExplicitObjectMemberFunction(Declarator &D, DeclarationName Name, QualType R, bool IsLambda, DeclContext *DC) { if (!D.isFunctionDeclarator()) return; DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); if (FTI.NumParams == 0) return; ParmVarDecl *ExplicitObjectParam = nullptr; for (unsigned Idx = 0; Idx < FTI.NumParams; Idx++) { const auto &ParamInfo = FTI.Params[Idx]; if (!ParamInfo.Param) continue; ParmVarDecl *Param = cast(ParamInfo.Param); if (!Param->isExplicitObjectParameter()) continue; if (Idx == 0) { ExplicitObjectParam = Param; continue; } else { Diag(Param->getLocation(), diag::err_explicit_object_parameter_must_be_first) << IsLambda << Param->getSourceRange(); } } if (!ExplicitObjectParam) return; if (ExplicitObjectParam->hasDefaultArg()) { Diag(ExplicitObjectParam->getLocation(), diag::err_explicit_object_default_arg) << ExplicitObjectParam->getSourceRange(); } if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || (D.getContext() == clang::DeclaratorContext::Member && D.isStaticMember())) { Diag(ExplicitObjectParam->getBeginLoc(), diag::err_explicit_object_parameter_nonmember) << D.getSourceRange() << /*static=*/0 << IsLambda; D.setInvalidType(); } if (D.getDeclSpec().isVirtualSpecified()) { Diag(ExplicitObjectParam->getBeginLoc(), diag::err_explicit_object_parameter_nonmember) << D.getSourceRange() << /*virtual=*/1 << IsLambda; D.setInvalidType(); } // Friend declarations require some care. Consider: // // namespace N { // struct A{}; // int f(A); // } // // struct S { // struct T { // int f(this T); // }; // // friend int T::f(this T); // Allow this. // friend int f(this S); // But disallow this. // friend int N::f(this A); // And disallow this. // }; // // Here, it seems to suffice to check whether the scope // specifier designates a class type. if (D.getDeclSpec().isFriendSpecified() && !isa_and_present( computeDeclContext(D.getCXXScopeSpec()))) { Diag(ExplicitObjectParam->getBeginLoc(), diag::err_explicit_object_parameter_nonmember) << D.getSourceRange() << /*non-member=*/2 << IsLambda; D.setInvalidType(); } if (IsLambda && FTI.hasMutableQualifier()) { Diag(ExplicitObjectParam->getBeginLoc(), diag::err_explicit_object_parameter_mutable) << D.getSourceRange(); } if (IsLambda) return; if (!DC || !DC->isRecord()) { assert(D.isInvalidType() && "Explicit object parameter in non-member " "should have been diagnosed already"); return; } // CWG2674: constructors and destructors cannot have explicit parameters. if (Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName) { Diag(ExplicitObjectParam->getBeginLoc(), diag::err_explicit_object_parameter_constructor) << (Name.getNameKind() == DeclarationName::CXXDestructorName) << D.getSourceRange(); D.setInvalidType(); } } namespace { /// Utility class to accumulate and print a diagnostic listing the invalid /// specifier(s) on a declaration. struct BadSpecifierDiagnoser { BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} ~BadSpecifierDiagnoser() { Diagnostic << Specifiers; } template void check(SourceLocation SpecLoc, T Spec) { return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); } void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { return check(SpecLoc, DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); } void check(SourceLocation SpecLoc, const char *Spec) { if (SpecLoc.isInvalid()) return; Diagnostic << SourceRange(SpecLoc, SpecLoc); if (!Specifiers.empty()) Specifiers += " "; Specifiers += Spec; } Sema &S; Sema::SemaDiagnosticBuilder Diagnostic; std::string Specifiers; }; } bool Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, StorageClass &SC) { TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); assert(GuidedTemplateDecl && "missing template decl for deduction guide"); // C++ [temp.deduct.guide]p3: // A deduction-gide shall be declared in the same scope as the // corresponding class template. if (!CurContext->getRedeclContext()->Equals( GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) << GuidedTemplateDecl; NoteTemplateLocation(*GuidedTemplateDecl); } auto &DS = D.getMutableDeclSpec(); // We leave 'friend' and 'virtual' to be rejected in the normal way. if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { BadSpecifierDiagnoser Diagnoser( *this, D.getIdentifierLoc(), diag::err_deduction_guide_invalid_specifier); Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); DS.ClearStorageClassSpecs(); SC = SC_None; // 'explicit' is permitted. Diagnoser.check(DS.getInlineSpecLoc(), "inline"); Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); DS.ClearConstexprSpec(); Diagnoser.check(DS.getConstSpecLoc(), "const"); Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); DS.ClearTypeQualifiers(); Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); DS.ClearTypeSpecType(); } if (D.isInvalidType()) return true; // Check the declarator is simple enough. bool FoundFunction = false; for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { if (Chunk.Kind == DeclaratorChunk::Paren) continue; if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_with_complex_decl) << D.getSourceRange(); break; } if (!Chunk.Fun.hasTrailingReturnType()) return Diag(D.getName().getBeginLoc(), diag::err_deduction_guide_no_trailing_return_type); // Check that the return type is written as a specialization of // the template specified as the deduction-guide's name. // The template name may not be qualified. [temp.deduct.guide] ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); TypeSourceInfo *TSI = nullptr; QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); assert(TSI && "deduction guide has valid type but invalid return type?"); bool AcceptableReturnType = false; bool MightInstantiateToSpecialization = false; if (auto RetTST = TSI->getTypeLoc().getAsAdjusted()) { TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); bool TemplateMatches = Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); const QualifiedTemplateName *Qualifiers = SpecifiedName.getAsQualifiedTemplateName(); assert(Qualifiers && "expected QualifiedTemplate"); bool SimplyWritten = !Qualifiers->hasTemplateKeyword() && Qualifiers->getQualifier() == nullptr; if (SimplyWritten && TemplateMatches) AcceptableReturnType = true; else { // This could still instantiate to the right type, unless we know it // names the wrong class template. auto *TD = SpecifiedName.getAsTemplateDecl(); MightInstantiateToSpecialization = !(TD && isa(TD) && !TemplateMatches); } } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { MightInstantiateToSpecialization = true; } if (!AcceptableReturnType) return Diag(TSI->getTypeLoc().getBeginLoc(), diag::err_deduction_guide_bad_trailing_return_type) << GuidedTemplate << TSI->getType() << MightInstantiateToSpecialization << TSI->getTypeLoc().getSourceRange(); // Keep going to check that we don't have any inner declarator pieces (we // could still have a function returning a pointer to a function). FoundFunction = true; } if (D.isFunctionDefinition()) // we can still create a valid deduction guide here. Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); return false; } //===----------------------------------------------------------------------===// // Namespace Handling //===----------------------------------------------------------------------===// /// Diagnose a mismatch in 'inline' qualifiers when a namespace is /// reopened. static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, SourceLocation Loc, IdentifierInfo *II, bool *IsInline, NamespaceDecl *PrevNS) { assert(*IsInline != PrevNS->isInline()); // 'inline' must appear on the original definition, but not necessarily // on all extension definitions, so the note should point to the first // definition to avoid confusion. PrevNS = PrevNS->getFirstDecl(); if (PrevNS->isInline()) // The user probably just forgot the 'inline', so suggest that it // be added back. S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) << FixItHint::CreateInsertion(KeywordLoc, "inline "); else S.Diag(Loc, diag::err_inline_namespace_mismatch); S.Diag(PrevNS->getLocation(), diag::note_previous_definition); *IsInline = PrevNS->isInline(); } /// ActOnStartNamespaceDef - This is called at the start of a namespace /// definition. Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD, bool IsNested) { SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; // For anonymous namespace, take the location of the left brace. SourceLocation Loc = II ? IdentLoc : LBrace; bool IsInline = InlineLoc.isValid(); bool IsInvalid = false; bool IsStd = false; bool AddToKnown = false; Scope *DeclRegionScope = NamespcScope->getParent(); NamespaceDecl *PrevNS = nullptr; if (II) { // C++ [namespace.std]p7: // A translation unit shall not declare namespace std to be an inline // namespace (9.8.2). // // Precondition: the std namespace is in the file scope and is declared to // be inline auto DiagnoseInlineStdNS = [&]() { assert(IsInline && II->isStr("std") && CurContext->getRedeclContext()->isTranslationUnit() && "Precondition of DiagnoseInlineStdNS not met"); Diag(InlineLoc, diag::err_inline_namespace_std) << SourceRange(InlineLoc, InlineLoc.getLocWithOffset(6)); IsInline = false; }; // C++ [namespace.def]p2: // The identifier in an original-namespace-definition shall not // have been previously defined in the declarative region in // which the original-namespace-definition appears. The // identifier in an original-namespace-definition is the name of // the namespace. Subsequently in that declarative region, it is // treated as an original-namespace-name. // // Since namespace names are unique in their scope, and we don't // look through using directives, just look for any ordinary names // as if by qualified name lookup. LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, RedeclarationKind::ForExternalRedeclaration); LookupQualifiedName(R, CurContext->getRedeclContext()); NamedDecl *PrevDecl = R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; PrevNS = dyn_cast_or_null(PrevDecl); if (PrevNS) { // This is an extended namespace definition. if (IsInline && II->isStr("std") && CurContext->getRedeclContext()->isTranslationUnit()) DiagnoseInlineStdNS(); else if (IsInline != PrevNS->isInline()) DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, &IsInline, PrevNS); } else if (PrevDecl) { // This is an invalid name redefinition. Diag(Loc, diag::err_redefinition_different_kind) << II; Diag(PrevDecl->getLocation(), diag::note_previous_definition); IsInvalid = true; // Continue on to push Namespc as current DeclContext and return it. } else if (II->isStr("std") && CurContext->getRedeclContext()->isTranslationUnit()) { if (IsInline) DiagnoseInlineStdNS(); // This is the first "real" definition of the namespace "std", so update // our cache of the "std" namespace to point at this definition. PrevNS = getStdNamespace(); IsStd = true; AddToKnown = !IsInline; } else { // We've seen this namespace for the first time. AddToKnown = !IsInline; } } else { // Anonymous namespaces. // Determine whether the parent already has an anonymous namespace. DeclContext *Parent = CurContext->getRedeclContext(); if (TranslationUnitDecl *TU = dyn_cast(Parent)) { PrevNS = TU->getAnonymousNamespace(); } else { NamespaceDecl *ND = cast(Parent); PrevNS = ND->getAnonymousNamespace(); } if (PrevNS && IsInline != PrevNS->isInline()) DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, &IsInline, PrevNS); } NamespaceDecl *Namespc = NamespaceDecl::Create( Context, CurContext, IsInline, StartLoc, Loc, II, PrevNS, IsNested); if (IsInvalid) Namespc->setInvalidDecl(); ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); AddPragmaAttributes(DeclRegionScope, Namespc); ProcessAPINotes(Namespc); // FIXME: Should we be merging attributes? if (const VisibilityAttr *Attr = Namespc->getAttr()) PushNamespaceVisibilityAttr(Attr, Loc); if (IsStd) StdNamespace = Namespc; if (AddToKnown) KnownNamespaces[Namespc] = false; if (II) { PushOnScopeChains(Namespc, DeclRegionScope); } else { // Link the anonymous namespace into its parent. DeclContext *Parent = CurContext->getRedeclContext(); if (TranslationUnitDecl *TU = dyn_cast(Parent)) { TU->setAnonymousNamespace(Namespc); } else { cast(Parent)->setAnonymousNamespace(Namespc); } CurContext->addDecl(Namespc); // C++ [namespace.unnamed]p1. An unnamed-namespace-definition // behaves as if it were replaced by // namespace unique { /* empty body */ } // using namespace unique; // namespace unique { namespace-body } // where all occurrences of 'unique' in a translation unit are // replaced by the same identifier and this identifier differs // from all other identifiers in the entire program. // We just create the namespace with an empty name and then add an // implicit using declaration, just like the standard suggests. // // CodeGen enforces the "universally unique" aspect by giving all // declarations semantically contained within an anonymous // namespace internal linkage. if (!PrevNS) { UD = UsingDirectiveDecl::Create(Context, Parent, /* 'using' */ LBrace, /* 'namespace' */ SourceLocation(), /* qualifier */ NestedNameSpecifierLoc(), /* identifier */ SourceLocation(), Namespc, /* Ancestor */ Parent); UD->setImplicit(); Parent->addDecl(UD); } } ActOnDocumentableDecl(Namespc); // Although we could have an invalid decl (i.e. the namespace name is a // redefinition), push it as current DeclContext and try to continue parsing. // FIXME: We should be able to push Namespc here, so that the each DeclContext // for the namespace has the declarations that showed up in that particular // namespace definition. PushDeclContext(NamespcScope, Namespc); return Namespc; } /// getNamespaceDecl - Returns the namespace a decl represents. If the decl /// is a namespace alias, returns the namespace it points to. static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { if (NamespaceAliasDecl *AD = dyn_cast_or_null(D)) return AD->getNamespace(); return dyn_cast_or_null(D); } void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { NamespaceDecl *Namespc = dyn_cast_or_null(Dcl); assert(Namespc && "Invalid parameter, expected NamespaceDecl"); Namespc->setRBraceLoc(RBrace); PopDeclContext(); if (Namespc->hasAttr()) PopPragmaVisibility(true, RBrace); // If this namespace contains an export-declaration, export it now. if (DeferredExportedNamespaces.erase(Namespc)) Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); } CXXRecordDecl *Sema::getStdBadAlloc() const { return cast_or_null( StdBadAlloc.get(Context.getExternalSource())); } EnumDecl *Sema::getStdAlignValT() const { return cast_or_null(StdAlignValT.get(Context.getExternalSource())); } NamespaceDecl *Sema::getStdNamespace() const { return cast_or_null( StdNamespace.get(Context.getExternalSource())); } namespace { enum UnsupportedSTLSelect { USS_InvalidMember, USS_MissingMember, USS_NonTrivial, USS_Other }; struct InvalidSTLDiagnoser { Sema &S; SourceLocation Loc; QualType TyForDiags; QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", const VarDecl *VD = nullptr) { { auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) << TyForDiags << ((int)Sel); if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { assert(!Name.empty()); D << Name; } } if (Sel == USS_InvalidMember) { S.Diag(VD->getLocation(), diag::note_var_declared_here) << VD << VD->getSourceRange(); } return QualType(); } }; } // namespace QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, SourceLocation Loc, ComparisonCategoryUsage Usage) { assert(getLangOpts().CPlusPlus && "Looking for comparison category type outside of C++."); // Use an elaborated type for diagnostics which has a name containing the // prepended 'std' namespace but not any inline namespace names. auto TyForDiags = [&](ComparisonCategoryInfo *Info) { auto *NNS = NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); return Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS, Info->getType()); }; // Check if we've already successfully checked the comparison category type // before. If so, skip checking it again. ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); if (Info && FullyCheckedComparisonCategories[static_cast(Kind)]) { // The only thing we need to check is that the type has a reachable // definition in the current context. if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) return QualType(); return Info->getType(); } // If lookup failed if (!Info) { std::string NameForDiags = "std::"; NameForDiags += ComparisonCategories::getCategoryString(Kind); Diag(Loc, diag::err_implied_comparison_category_type_not_found) << NameForDiags << (int)Usage; return QualType(); } assert(Info->Kind == Kind); assert(Info->Record); // Update the Record decl in case we encountered a forward declaration on our // first pass. FIXME: This is a bit of a hack. if (Info->Record->hasDefinition()) Info->Record = Info->Record->getDefinition(); if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) return QualType(); InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; if (!Info->Record->isTriviallyCopyable()) return UnsupportedSTLError(USS_NonTrivial); for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); // Tolerate empty base classes. if (Base->isEmpty()) continue; // Reject STL implementations which have at least one non-empty base. return UnsupportedSTLError(); } // Check that the STL has implemented the types using a single integer field. // This expectation allows better codegen for builtin operators. We require: // (1) The class has exactly one field. // (2) The field is an integral or enumeration type. auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); if (std::distance(FIt, FEnd) != 1 || !FIt->getType()->isIntegralOrEnumerationType()) { return UnsupportedSTLError(); } // Build each of the require values and store them in Info. for (ComparisonCategoryResult CCR : ComparisonCategories::getPossibleResultsForType(Kind)) { StringRef MemName = ComparisonCategories::getResultString(CCR); ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); if (!ValInfo) return UnsupportedSTLError(USS_MissingMember, MemName); VarDecl *VD = ValInfo->VD; assert(VD && "should not be null!"); // Attempt to diagnose reasons why the STL definition of this type // might be foobar, including it failing to be a constant expression. // TODO Handle more ways the lookup or result can be invalid. if (!VD->isStaticDataMember() || !VD->isUsableInConstantExpressions(Context)) return UnsupportedSTLError(USS_InvalidMember, MemName, VD); // Attempt to evaluate the var decl as a constant expression and extract // the value of its first field as a ICE. If this fails, the STL // implementation is not supported. if (!ValInfo->hasValidIntValue()) return UnsupportedSTLError(); MarkVariableReferenced(Loc, VD); } // We've successfully built the required types and expressions. Update // the cache and return the newly cached value. FullyCheckedComparisonCategories[static_cast(Kind)] = true; return Info->getType(); } NamespaceDecl *Sema::getOrCreateStdNamespace() { if (!StdNamespace) { // The "std" namespace has not yet been defined, so build one implicitly. StdNamespace = NamespaceDecl::Create( Context, Context.getTranslationUnitDecl(), /*Inline=*/false, SourceLocation(), SourceLocation(), &PP.getIdentifierTable().get("std"), /*PrevDecl=*/nullptr, /*Nested=*/false); getStdNamespace()->setImplicit(true); // We want the created NamespaceDecl to be available for redeclaration // lookups, but not for regular name lookups. Context.getTranslationUnitDecl()->addDecl(getStdNamespace()); getStdNamespace()->clearIdentifierNamespace(); } return getStdNamespace(); } bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { assert(getLangOpts().CPlusPlus && "Looking for std::initializer_list outside of C++."); // We're looking for implicit instantiations of // template class std::initializer_list. if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. return false; ClassTemplateDecl *Template = nullptr; const TemplateArgument *Arguments = nullptr; if (const RecordType *RT = Ty->getAs()) { ClassTemplateSpecializationDecl *Specialization = dyn_cast(RT->getDecl()); if (!Specialization) return false; Template = Specialization->getSpecializedTemplate(); Arguments = Specialization->getTemplateArgs().data(); } else { const TemplateSpecializationType *TST = nullptr; if (auto *ICN = Ty->getAs()) TST = ICN->getInjectedTST(); else TST = Ty->getAs(); if (TST) { Template = dyn_cast_or_null( TST->getTemplateName().getAsTemplateDecl()); Arguments = TST->template_arguments().begin(); } } if (!Template) return false; if (!StdInitializerList) { // Haven't recognized std::initializer_list yet, maybe this is it. CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); if (TemplateClass->getIdentifier() != &PP.getIdentifierTable().get("initializer_list") || !getStdNamespace()->InEnclosingNamespaceSetOf( TemplateClass->getDeclContext())) return false; // This is a template called std::initializer_list, but is it the right // template? TemplateParameterList *Params = Template->getTemplateParameters(); if (Params->getMinRequiredArguments() != 1) return false; if (!isa(Params->getParam(0))) return false; // It's the right template. StdInitializerList = Template; } if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) return false; // This is an instance of std::initializer_list. Find the argument type. if (Element) *Element = Arguments[0].getAsType(); return true; } static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ NamespaceDecl *Std = S.getStdNamespace(); if (!Std) { S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); return nullptr; } LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), Loc, Sema::LookupOrdinaryName); if (!S.LookupQualifiedName(Result, Std)) { S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); return nullptr; } ClassTemplateDecl *Template = Result.getAsSingle(); if (!Template) { Result.suppressDiagnostics(); // We found something weird. Complain about the first thing we found. NamedDecl *Found = *Result.begin(); S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); return nullptr; } // We found some template called std::initializer_list. Now verify that it's // correct. TemplateParameterList *Params = Template->getTemplateParameters(); if (Params->getMinRequiredArguments() != 1 || !isa(Params->getParam(0))) { S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); return nullptr; } return Template; } QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { if (!StdInitializerList) { StdInitializerList = LookupStdInitializerList(*this, Loc); if (!StdInitializerList) return QualType(); } TemplateArgumentListInfo Args(Loc, Loc); Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), Context.getTrivialTypeSourceInfo(Element, Loc))); return Context.getElaboratedType( ElaboratedTypeKeyword::None, NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()), CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); } bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { // C++ [dcl.init.list]p2: // A constructor is an initializer-list constructor if its first parameter // is of type std::initializer_list or reference to possibly cv-qualified // std::initializer_list for some type E, and either there are no other // parameters or else all other parameters have default arguments. if (!Ctor->hasOneParamOrDefaultArgs()) return false; QualType ArgType = Ctor->getParamDecl(0)->getType(); if (const ReferenceType *RT = ArgType->getAs()) ArgType = RT->getPointeeType().getUnqualifiedType(); return isStdInitializerList(ArgType, nullptr); } /// Determine whether a using statement is in a context where it will be /// apply in all contexts. static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { switch (CurContext->getDeclKind()) { case Decl::TranslationUnit: return true; case Decl::LinkageSpec: return IsUsingDirectiveInToplevelContext(CurContext->getParent()); default: return false; } } namespace { // Callback to only accept typo corrections that are namespaces. class NamespaceValidatorCCC final : public CorrectionCandidateCallback { public: bool ValidateCandidate(const TypoCorrection &candidate) override { if (NamedDecl *ND = candidate.getCorrectionDecl()) return isa(ND) || isa(ND); return false; } std::unique_ptr clone() override { return std::make_unique(*this); } }; } static void DiagnoseInvisibleNamespace(const TypoCorrection &Corrected, Sema &S) { auto *ND = cast(Corrected.getFoundDecl()); Module *M = ND->getOwningModule(); assert(M && "hidden namespace definition not in a module?"); if (M->isExplicitGlobalModule()) S.Diag(Corrected.getCorrectionRange().getBegin(), diag::err_module_unimported_use_header) << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() << /*Header Name*/ false; else S.Diag(Corrected.getCorrectionRange().getBegin(), diag::err_module_unimported_use) << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() << M->getTopLevelModuleName(); } static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident) { R.clear(); NamespaceValidatorCCC CCC{}; if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, Sema::CTK_ErrorRecovery)) { // Generally we find it is confusing more than helpful to diagnose the // invisible namespace. // See https://github.com/llvm/llvm-project/issues/73893. // // However, we should diagnose when the users are trying to using an // invisible namespace. So we handle the case specially here. if (isa_and_nonnull(Corrected.getFoundDecl()) && Corrected.requiresImport()) { DiagnoseInvisibleNamespace(Corrected, S); } else if (DeclContext *DC = S.computeDeclContext(SS, false)) { std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && Ident->getName() == CorrectedStr; S.diagnoseTypo(Corrected, S.PDiag(diag::err_using_directive_member_suggest) << Ident << DC << DroppedSpecifier << SS.getRange(), S.PDiag(diag::note_namespace_defined_here)); } else { S.diagnoseTypo(Corrected, S.PDiag(diag::err_using_directive_suggest) << Ident, S.PDiag(diag::note_namespace_defined_here)); } R.addDecl(Corrected.getFoundDecl()); return true; } return false; } Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, SourceLocation NamespcLoc, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, const ParsedAttributesView &AttrList) { assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); assert(NamespcName && "Invalid NamespcName."); assert(IdentLoc.isValid() && "Invalid NamespceName location."); // Get the innermost enclosing declaration scope. S = S->getDeclParent(); UsingDirectiveDecl *UDir = nullptr; NestedNameSpecifier *Qualifier = nullptr; if (SS.isSet()) Qualifier = SS.getScopeRep(); // Lookup namespace name. LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); if (R.isAmbiguous()) return nullptr; if (R.empty()) { R.clear(); // Allow "using namespace std;" or "using namespace ::std;" even if // "std" hasn't been defined yet, for GCC compatibility. if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && NamespcName->isStr("std")) { Diag(IdentLoc, diag::ext_using_undefined_std); R.addDecl(getOrCreateStdNamespace()); R.resolveKind(); } // Otherwise, attempt typo correction. else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); } if (!R.empty()) { NamedDecl *Named = R.getRepresentativeDecl(); NamespaceDecl *NS = R.getAsSingle(); assert(NS && "expected namespace decl"); // The use of a nested name specifier may trigger deprecation warnings. DiagnoseUseOfDecl(Named, IdentLoc); // C++ [namespace.udir]p1: // A using-directive specifies that the names in the nominated // namespace can be used in the scope in which the // using-directive appears after the using-directive. During // unqualified name lookup (3.4.1), the names appear as if they // were declared in the nearest enclosing namespace which // contains both the using-directive and the nominated // namespace. [Note: in this context, "contains" means "contains // directly or indirectly". ] // Find enclosing context containing both using-directive and // nominated namespace. DeclContext *CommonAncestor = NS; while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) CommonAncestor = CommonAncestor->getParent(); UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, SS.getWithLocInContext(Context), IdentLoc, Named, CommonAncestor); if (IsUsingDirectiveInToplevelContext(CurContext) && !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { Diag(IdentLoc, diag::warn_using_directive_in_header); } PushUsingDirective(S, UDir); } else { Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); } if (UDir) { ProcessDeclAttributeList(S, UDir, AttrList); ProcessAPINotes(UDir); } return UDir; } void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { // If the scope has an associated entity and the using directive is at // namespace or translation unit scope, add the UsingDirectiveDecl into // its lookup structure so qualified name lookup can find it. DeclContext *Ctx = S->getEntity(); if (Ctx && !Ctx->isFunctionOrMethod()) Ctx->addDecl(UDir); else // Otherwise, it is at block scope. The using-directives will affect lookup // only to the end of the scope. S->PushUsingDirective(UDir); } Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, SourceLocation TypenameLoc, CXXScopeSpec &SS, UnqualifiedId &Name, SourceLocation EllipsisLoc, const ParsedAttributesView &AttrList) { assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); if (SS.isEmpty()) { Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); return nullptr; } switch (Name.getKind()) { case UnqualifiedIdKind::IK_ImplicitSelfParam: case UnqualifiedIdKind::IK_Identifier: case UnqualifiedIdKind::IK_OperatorFunctionId: case UnqualifiedIdKind::IK_LiteralOperatorId: case UnqualifiedIdKind::IK_ConversionFunctionId: break; case UnqualifiedIdKind::IK_ConstructorName: case UnqualifiedIdKind::IK_ConstructorTemplateId: // C++11 inheriting constructors. Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_using_decl_constructor : diag::err_using_decl_constructor) << SS.getRange(); if (getLangOpts().CPlusPlus11) break; return nullptr; case UnqualifiedIdKind::IK_DestructorName: Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); return nullptr; case UnqualifiedIdKind::IK_TemplateId: Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); return nullptr; case UnqualifiedIdKind::IK_DeductionGuideName: llvm_unreachable("cannot parse qualified deduction guide name"); } DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); DeclarationName TargetName = TargetNameInfo.getName(); if (!TargetName) return nullptr; // Warn about access declarations. if (UsingLoc.isInvalid()) { Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 ? diag::err_access_decl : diag::warn_access_decl_deprecated) << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); } if (EllipsisLoc.isInvalid()) { if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) return nullptr; } else { if (!SS.getScopeRep()->containsUnexpandedParameterPack() && !TargetNameInfo.containsUnexpandedParameterPack()) { Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); EllipsisLoc = SourceLocation(); } } NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, SS, TargetNameInfo, EllipsisLoc, AttrList, /*IsInstantiation*/ false, AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); if (UD) PushOnScopeChains(UD, S, /*AddToContext*/ false); return UD; } Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, SourceLocation EnumLoc, SourceRange TyLoc, const IdentifierInfo &II, ParsedType Ty, CXXScopeSpec *SS) { assert(!SS->isInvalid() && "ScopeSpec is invalid"); TypeSourceInfo *TSI = nullptr; SourceLocation IdentLoc = TyLoc.getBegin(); QualType EnumTy = GetTypeFromParser(Ty, &TSI); if (EnumTy.isNull()) { Diag(IdentLoc, SS && isDependentScopeSpecifier(*SS) ? diag::err_using_enum_is_dependent : diag::err_unknown_typename) << II.getName() << SourceRange(SS ? SS->getBeginLoc() : IdentLoc, TyLoc.getEnd()); return nullptr; } if (EnumTy->isDependentType()) { Diag(IdentLoc, diag::err_using_enum_is_dependent); return nullptr; } auto *Enum = dyn_cast_if_present(EnumTy->getAsTagDecl()); if (!Enum) { Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy; return nullptr; } if (auto *Def = Enum->getDefinition()) Enum = Def; if (TSI == nullptr) TSI = Context.getTrivialTypeSourceInfo(EnumTy, IdentLoc); auto *UD = BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, IdentLoc, TSI, Enum); if (UD) PushOnScopeChains(UD, S, /*AddToContext*/ false); return UD; } /// Determine whether a using declaration considers the given /// declarations as "equivalent", e.g., if they are redeclarations of /// the same entity or are both typedefs of the same type. static bool IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) return true; if (TypedefNameDecl *TD1 = dyn_cast(D1)) if (TypedefNameDecl *TD2 = dyn_cast(D2)) return Context.hasSameType(TD1->getUnderlyingType(), TD2->getUnderlyingType()); // Two using_if_exists using-declarations are equivalent if both are // unresolved. if (isa(D1) && isa(D2)) return true; return false; } bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, const LookupResult &Previous, UsingShadowDecl *&PrevShadow) { // Diagnose finding a decl which is not from a base class of the // current class. We do this now because there are cases where this // function will silently decide not to build a shadow decl, which // will pre-empt further diagnostics. // // We don't need to do this in C++11 because we do the check once on // the qualifier. // // FIXME: diagnose the following if we care enough: // struct A { int foo; }; // struct B : A { using A::foo; }; // template struct C : A {}; // template struct D : C { using B::foo; } // <--- // This is invalid (during instantiation) in C++03 because B::foo // resolves to the using decl in B, which is not a base class of D. // We can't diagnose it immediately because C is an unknown // specialization. The UsingShadowDecl in D then points directly // to A::foo, which will look well-formed when we instantiate. // The right solution is to not collapse the shadow-decl chain. if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) if (auto *Using = dyn_cast(BUD)) { DeclContext *OrigDC = Orig->getDeclContext(); // Handle enums and anonymous structs. if (isa(OrigDC)) OrigDC = OrigDC->getParent(); CXXRecordDecl *OrigRec = cast(OrigDC); while (OrigRec->isAnonymousStructOrUnion()) OrigRec = cast(OrigRec->getDeclContext()); if (cast(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { if (OrigDC == CurContext) { Diag(Using->getLocation(), diag::err_using_decl_nested_name_specifier_is_current_class) << Using->getQualifierLoc().getSourceRange(); Diag(Orig->getLocation(), diag::note_using_decl_target); Using->setInvalidDecl(); return true; } Diag(Using->getQualifierLoc().getBeginLoc(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << Using->getQualifier() << cast(CurContext) << Using->getQualifierLoc().getSourceRange(); Diag(Orig->getLocation(), diag::note_using_decl_target); Using->setInvalidDecl(); return true; } } if (Previous.empty()) return false; NamedDecl *Target = Orig; if (isa(Target)) Target = cast(Target)->getTargetDecl(); // If the target happens to be one of the previous declarations, we // don't have a conflict. // // FIXME: but we might be increasing its access, in which case we // should redeclare it. NamedDecl *NonTag = nullptr, *Tag = nullptr; bool FoundEquivalentDecl = false; for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); I != E; ++I) { NamedDecl *D = (*I)->getUnderlyingDecl(); // We can have UsingDecls in our Previous results because we use the same // LookupResult for checking whether the UsingDecl itself is a valid // redeclaration. if (isa(D) || isa(D) || isa(D)) continue; if (auto *RD = dyn_cast(D)) { // C++ [class.mem]p19: // If T is the name of a class, then [every named member other than // a non-static data member] shall have a name different from T if (RD->isInjectedClassName() && !isa(Target) && !isa(Target) && !isa(Target) && DiagnoseClassNameShadow( CurContext, DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) return true; } if (IsEquivalentForUsingDecl(Context, D, Target)) { if (UsingShadowDecl *Shadow = dyn_cast(*I)) PrevShadow = Shadow; FoundEquivalentDecl = true; } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { // We don't conflict with an existing using shadow decl of an equivalent // declaration, but we're not a redeclaration of it. FoundEquivalentDecl = true; } if (isVisible(D)) (isa(D) ? Tag : NonTag) = D; } if (FoundEquivalentDecl) return false; // Always emit a diagnostic for a mismatch between an unresolved // using_if_exists and a resolved using declaration in either direction. if (isa(Target) != (isa_and_nonnull(NonTag))) { if (!NonTag && !Tag) return false; Diag(BUD->getLocation(), diag::err_using_decl_conflict); Diag(Target->getLocation(), diag::note_using_decl_target); Diag((NonTag ? NonTag : Tag)->getLocation(), diag::note_using_decl_conflict); BUD->setInvalidDecl(); return true; } if (FunctionDecl *FD = Target->getAsFunction()) { NamedDecl *OldDecl = nullptr; switch (CheckOverload(nullptr, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) { case Ovl_Overload: return false; case Ovl_NonFunction: Diag(BUD->getLocation(), diag::err_using_decl_conflict); break; // We found a decl with the exact signature. case Ovl_Match: // If we're in a record, we want to hide the target, so we // return true (without a diagnostic) to tell the caller not to // build a shadow decl. if (CurContext->isRecord()) return true; // If we're not in a record, this is an error. Diag(BUD->getLocation(), diag::err_using_decl_conflict); break; } Diag(Target->getLocation(), diag::note_using_decl_target); Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); BUD->setInvalidDecl(); return true; } // Target is not a function. if (isa(Target)) { // No conflict between a tag and a non-tag. if (!Tag) return false; Diag(BUD->getLocation(), diag::err_using_decl_conflict); Diag(Target->getLocation(), diag::note_using_decl_target); Diag(Tag->getLocation(), diag::note_using_decl_conflict); BUD->setInvalidDecl(); return true; } // No conflict between a tag and a non-tag. if (!NonTag) return false; Diag(BUD->getLocation(), diag::err_using_decl_conflict); Diag(Target->getLocation(), diag::note_using_decl_target); Diag(NonTag->getLocation(), diag::note_using_decl_conflict); BUD->setInvalidDecl(); return true; } /// Determine whether a direct base class is a virtual base class. static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { if (!Derived->getNumVBases()) return false; for (auto &B : Derived->bases()) if (B.getType()->getAsCXXRecordDecl() == Base) return B.isVirtual(); llvm_unreachable("not a direct base class"); } UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, NamedDecl *Orig, UsingShadowDecl *PrevDecl) { // If we resolved to another shadow declaration, just coalesce them. NamedDecl *Target = Orig; if (isa(Target)) { Target = cast(Target)->getTargetDecl(); assert(!isa(Target) && "nested shadow declaration"); } NamedDecl *NonTemplateTarget = Target; if (auto *TargetTD = dyn_cast(Target)) NonTemplateTarget = TargetTD->getTemplatedDecl(); UsingShadowDecl *Shadow; if (NonTemplateTarget && isa(NonTemplateTarget)) { UsingDecl *Using = cast(BUD); bool IsVirtualBase = isVirtualDirectBase(cast(CurContext), Using->getQualifier()->getAsRecordDecl()); Shadow = ConstructorUsingShadowDecl::Create( Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); } else { Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), Target->getDeclName(), BUD, Target); } BUD->addShadowDecl(Shadow); Shadow->setAccess(BUD->getAccess()); if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) Shadow->setInvalidDecl(); Shadow->setPreviousDecl(PrevDecl); if (S) PushOnScopeChains(Shadow, S); else CurContext->addDecl(Shadow); return Shadow; } void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { if (Shadow->getDeclName().getNameKind() == DeclarationName::CXXConversionFunctionName) cast(Shadow->getDeclContext())->removeConversion(Shadow); // Remove it from the DeclContext... Shadow->getDeclContext()->removeDecl(Shadow); // ...and the scope, if applicable... if (S) { S->RemoveDecl(Shadow); IdResolver.RemoveDecl(Shadow); } // ...and the using decl. Shadow->getIntroducer()->removeShadowDecl(Shadow); // TODO: complain somehow if Shadow was used. It shouldn't // be possible for this to happen, because...? } /// Find the base specifier for a base class with the given type. static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, QualType DesiredBase, bool &AnyDependentBases) { // Check whether the named type is a direct base class. CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() .getUnqualifiedType(); for (auto &Base : Derived->bases()) { CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); if (CanonicalDesiredBase == BaseType) return &Base; if (BaseType->isDependentType()) AnyDependentBases = true; } return nullptr; } namespace { class UsingValidatorCCC final : public CorrectionCandidateCallback { public: UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) : HasTypenameKeyword(HasTypenameKeyword), IsInstantiation(IsInstantiation), OldNNS(NNS), RequireMemberOf(RequireMemberOf) {} bool ValidateCandidate(const TypoCorrection &Candidate) override { NamedDecl *ND = Candidate.getCorrectionDecl(); // Keywords are not valid here. if (!ND || isa(ND)) return false; // Completely unqualified names are invalid for a 'using' declaration. if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) return false; // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would // reject. if (RequireMemberOf) { auto *FoundRecord = dyn_cast(ND); if (FoundRecord && FoundRecord->isInjectedClassName()) { // No-one ever wants a using-declaration to name an injected-class-name // of a base class, unless they're declaring an inheriting constructor. ASTContext &Ctx = ND->getASTContext(); if (!Ctx.getLangOpts().CPlusPlus11) return false; QualType FoundType = Ctx.getRecordType(FoundRecord); // Check that the injected-class-name is named as a member of its own // type; we don't want to suggest 'using Derived::Base;', since that // means something else. NestedNameSpecifier *Specifier = Candidate.WillReplaceSpecifier() ? Candidate.getCorrectionSpecifier() : OldNNS; if (!Specifier->getAsType() || !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) return false; // Check that this inheriting constructor declaration actually names a // direct base class of the current class. bool AnyDependentBases = false; if (!findDirectBaseWithType(RequireMemberOf, Ctx.getRecordType(FoundRecord), AnyDependentBases) && !AnyDependentBases) return false; } else { auto *RD = dyn_cast(ND->getDeclContext()); if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) return false; // FIXME: Check that the base class member is accessible? } } else { auto *FoundRecord = dyn_cast(ND); if (FoundRecord && FoundRecord->isInjectedClassName()) return false; } if (isa(ND)) return HasTypenameKeyword || !IsInstantiation; return !HasTypenameKeyword; } std::unique_ptr clone() override { return std::make_unique(*this); } private: bool HasTypenameKeyword; bool IsInstantiation; NestedNameSpecifier *OldNNS; CXXRecordDecl *RequireMemberOf; }; } // end anonymous namespace void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { // It is really dumb that we have to do this. LookupResult::Filter F = Previous.makeFilter(); while (F.hasNext()) { NamedDecl *D = F.next(); if (!isDeclInScope(D, CurContext, S)) F.erase(); // If we found a local extern declaration that's not ordinarily visible, // and this declaration is being added to a non-block scope, ignore it. // We're only checking for scope conflicts here, not also for violations // of the linkage rules. else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) F.erase(); } F.done(); } NamedDecl *Sema::BuildUsingDeclaration( Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, const ParsedAttributesView &AttrList, bool IsInstantiation, bool IsUsingIfExists) { assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); SourceLocation IdentLoc = NameInfo.getLoc(); assert(IdentLoc.isValid() && "Invalid TargetName location."); // FIXME: We ignore attributes for now. // For an inheriting constructor declaration, the name of the using // declaration is the name of a constructor in this class, not in the // base class. DeclarationNameInfo UsingName = NameInfo; if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) if (auto *RD = dyn_cast(CurContext)) UsingName.setName(Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(Context.getRecordType(RD)))); // Do the redeclaration lookup in the current scope. LookupResult Previous(*this, UsingName, LookupUsingDeclName, RedeclarationKind::ForVisibleRedeclaration); Previous.setHideTags(false); if (S) { LookupName(Previous, S); FilterUsingLookup(S, Previous); } else { assert(IsInstantiation && "no scope in non-instantiation"); if (CurContext->isRecord()) LookupQualifiedName(Previous, CurContext); else { // No redeclaration check is needed here; in non-member contexts we // diagnosed all possible conflicts with other using-declarations when // building the template: // // For a dependent non-type using declaration, the only valid case is // if we instantiate to a single enumerator. We check for conflicts // between shadow declarations we introduce, and we check in the template // definition for conflicts between a non-type using declaration and any // other declaration, which together covers all cases. // // A dependent typename using declaration will never successfully // instantiate, since it will always name a class member, so we reject // that in the template definition. } } // Check for invalid redeclarations. if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, SS, IdentLoc, Previous)) return nullptr; // 'using_if_exists' doesn't make sense on an inherited constructor. if (IsUsingIfExists && UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) { Diag(UsingLoc, diag::err_using_if_exists_on_ctor); return nullptr; } DeclContext *LookupContext = computeDeclContext(SS); NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); if (!LookupContext || EllipsisLoc.isValid()) { NamedDecl *D; // Dependent scope, or an unexpanded pack if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, IdentLoc)) return nullptr; if (HasTypenameKeyword) { // FIXME: not all declaration name kinds are legal here D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, UsingLoc, TypenameLoc, QualifierLoc, IdentLoc, NameInfo.getName(), EllipsisLoc); } else { D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo, EllipsisLoc); } D->setAccess(AS); CurContext->addDecl(D); ProcessDeclAttributeList(S, D, AttrList); return D; } auto Build = [&](bool Invalid) { UsingDecl *UD = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, UsingName, HasTypenameKeyword); UD->setAccess(AS); CurContext->addDecl(UD); ProcessDeclAttributeList(S, UD, AttrList); UD->setInvalidDecl(Invalid); return UD; }; auto BuildInvalid = [&]{ return Build(true); }; auto BuildValid = [&]{ return Build(false); }; if (RequireCompleteDeclContext(SS, LookupContext)) return BuildInvalid(); // Look up the target name. LookupResult R(*this, NameInfo, LookupOrdinaryName); // Unlike most lookups, we don't always want to hide tag // declarations: tag names are visible through the using declaration // even if hidden by ordinary names, *except* in a dependent context // where they may be used by two-phase lookup. if (!IsInstantiation) R.setHideTags(false); // For the purposes of this lookup, we have a base object type // equal to that of the current context. if (CurContext->isRecord()) { R.setBaseObjectType( Context.getTypeDeclType(cast(CurContext))); } LookupQualifiedName(R, LookupContext); // Validate the context, now we have a lookup if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, IdentLoc, &R)) return nullptr; if (R.empty() && IsUsingIfExists) R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, UsingName.getName()), AS_public); // Try to correct typos if possible. If constructor name lookup finds no // results, that means the named class has no explicit constructors, and we // suppressed declaring implicit ones (probably because it's dependent or // invalid). if (R.empty() && NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { // HACK 2017-01-08: Work around an issue with libstdc++'s detection of // ::gets. Sometimes it believes that glibc provides a ::gets in cases where // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. auto *II = NameInfo.getName().getAsIdentifierInfo(); if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && CurContext->isStdNamespace() && isa(LookupContext) && getSourceManager().isInSystemHeader(UsingLoc)) return nullptr; UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), dyn_cast(CurContext)); if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, CTK_ErrorRecovery)) { // We reject candidates where DroppedSpecifier == true, hence the // literal '0' below. diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) << NameInfo.getName() << LookupContext << 0 << SS.getRange()); // If we picked a correction with no attached Decl we can't do anything // useful with it, bail out. NamedDecl *ND = Corrected.getCorrectionDecl(); if (!ND) return BuildInvalid(); // If we corrected to an inheriting constructor, handle it as one. auto *RD = dyn_cast(ND); if (RD && RD->isInjectedClassName()) { // The parent of the injected class name is the class itself. RD = cast(RD->getParent()); // Fix up the information we'll use to build the using declaration. if (Corrected.WillReplaceSpecifier()) { NestedNameSpecifierLocBuilder Builder; Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), QualifierLoc.getSourceRange()); QualifierLoc = Builder.getWithLocInContext(Context); } // In this case, the name we introduce is the name of a derived class // constructor. auto *CurClass = cast(CurContext); UsingName.setName(Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(Context.getRecordType(CurClass)))); UsingName.setNamedTypeInfo(nullptr); for (auto *Ctor : LookupConstructors(RD)) R.addDecl(Ctor); R.resolveKind(); } else { // FIXME: Pick up all the declarations if we found an overloaded // function. UsingName.setName(ND->getDeclName()); R.addDecl(ND); } } else { Diag(IdentLoc, diag::err_no_member) << NameInfo.getName() << LookupContext << SS.getRange(); return BuildInvalid(); } } if (R.isAmbiguous()) return BuildInvalid(); if (HasTypenameKeyword) { // If we asked for a typename and got a non-type decl, error out. if (!R.getAsSingle() && !R.getAsSingle()) { Diag(IdentLoc, diag::err_using_typename_non_type); for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) Diag((*I)->getUnderlyingDecl()->getLocation(), diag::note_using_decl_target); return BuildInvalid(); } } else { // If we asked for a non-typename and we got a type, error out, // but only if this is an instantiation of an unresolved using // decl. Otherwise just silently find the type name. if (IsInstantiation && R.getAsSingle()) { Diag(IdentLoc, diag::err_using_dependent_value_is_type); Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); return BuildInvalid(); } } // C++14 [namespace.udecl]p6: // A using-declaration shall not name a namespace. if (R.getAsSingle()) { Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) << SS.getRange(); // Suggest using 'using namespace ...' instead. Diag(SS.getBeginLoc(), diag::note_namespace_using_decl) << FixItHint::CreateInsertion(SS.getBeginLoc(), "namespace "); return BuildInvalid(); } UsingDecl *UD = BuildValid(); // Some additional rules apply to inheriting constructors. if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) { // Suppress access diagnostics; the access check is instead performed at the // point of use for an inheriting constructor. R.suppressDiagnostics(); if (CheckInheritingConstructorUsingDecl(UD)) return UD; } for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { UsingShadowDecl *PrevDecl = nullptr; if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) BuildUsingShadowDecl(S, UD, *I, PrevDecl); } return UD; } NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, SourceLocation EnumLoc, SourceLocation NameLoc, TypeSourceInfo *EnumType, EnumDecl *ED) { bool Invalid = false; if (CurContext->getRedeclContext()->isRecord()) { /// In class scope, check if this is a duplicate, for better a diagnostic. DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, RedeclarationKind::ForVisibleRedeclaration); LookupName(Previous, S); for (NamedDecl *D : Previous) if (UsingEnumDecl *UED = dyn_cast(D)) if (UED->getEnumDecl() == ED) { Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) << SourceRange(EnumLoc, NameLoc); Diag(D->getLocation(), diag::note_using_enum_decl) << 1; Invalid = true; break; } } if (RequireCompleteEnumDecl(ED, NameLoc)) Invalid = true; UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, EnumLoc, NameLoc, EnumType); UD->setAccess(AS); CurContext->addDecl(UD); if (Invalid) { UD->setInvalidDecl(); return UD; } // Create the shadow decls for each enumerator for (EnumConstantDecl *EC : ED->enumerators()) { UsingShadowDecl *PrevDecl = nullptr; DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); LookupResult Previous(*this, DNI, LookupOrdinaryName, RedeclarationKind::ForVisibleRedeclaration); LookupName(Previous, S); FilterUsingLookup(S, Previous); if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) BuildUsingShadowDecl(S, UD, EC, PrevDecl); } return UD; } NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, ArrayRef Expansions) { assert(isa(InstantiatedFrom) || isa(InstantiatedFrom) || isa(InstantiatedFrom)); auto *UPD = UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); UPD->setAccess(InstantiatedFrom->getAccess()); CurContext->addDecl(UPD); return UPD; } bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { assert(!UD->hasTypename() && "expecting a constructor name"); const Type *SourceType = UD->getQualifier()->getAsType(); assert(SourceType && "Using decl naming constructor doesn't have type in scope spec."); CXXRecordDecl *TargetClass = cast(CurContext); // Check whether the named type is a direct base class. bool AnyDependentBases = false; auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), AnyDependentBases); if (!Base && !AnyDependentBases) { Diag(UD->getUsingLoc(), diag::err_using_decl_constructor_not_in_direct_base) << UD->getNameInfo().getSourceRange() << QualType(SourceType, 0) << TargetClass; UD->setInvalidDecl(); return true; } if (Base) Base->setInheritConstructors(); return false; } bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, bool HasTypenameKeyword, const CXXScopeSpec &SS, SourceLocation NameLoc, const LookupResult &Prev) { NestedNameSpecifier *Qual = SS.getScopeRep(); // C++03 [namespace.udecl]p8: // C++0x [namespace.udecl]p10: // A using-declaration is a declaration and can therefore be used // repeatedly where (and only where) multiple declarations are // allowed. // // That's in non-member contexts. if (!CurContext->getRedeclContext()->isRecord()) { // A dependent qualifier outside a class can only ever resolve to an // enumeration type. Therefore it conflicts with any other non-type // declaration in the same scope. // FIXME: How should we check for dependent type-type conflicts at block // scope? if (Qual->isDependent() && !HasTypenameKeyword) { for (auto *D : Prev) { if (!isa(D) && !isa(D) && !isa(D)) { bool OldCouldBeEnumerator = isa(D) || isa(D); Diag(NameLoc, OldCouldBeEnumerator ? diag::err_redefinition : diag::err_redefinition_different_kind) << Prev.getLookupName(); Diag(D->getLocation(), diag::note_previous_definition); return true; } } } return false; } const NestedNameSpecifier *CNNS = Context.getCanonicalNestedNameSpecifier(Qual); for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { NamedDecl *D = *I; bool DTypename; NestedNameSpecifier *DQual; if (UsingDecl *UD = dyn_cast(D)) { DTypename = UD->hasTypename(); DQual = UD->getQualifier(); } else if (UnresolvedUsingValueDecl *UD = dyn_cast(D)) { DTypename = false; DQual = UD->getQualifier(); } else if (UnresolvedUsingTypenameDecl *UD = dyn_cast(D)) { DTypename = true; DQual = UD->getQualifier(); } else continue; // using decls differ if one says 'typename' and the other doesn't. // FIXME: non-dependent using decls? if (HasTypenameKeyword != DTypename) continue; // using decls differ if they name different scopes (but note that // template instantiation can cause this check to trigger when it // didn't before instantiation). if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) continue; Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); Diag(D->getLocation(), diag::note_using_decl) << 1; return true; } return false; } bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, SourceLocation NameLoc, const LookupResult *R, const UsingDecl *UD) { DeclContext *NamedContext = computeDeclContext(SS); assert(bool(NamedContext) == (R || UD) && !(R && UD) && "resolvable context must have exactly one set of decls"); // C++ 20 permits using an enumerator that does not have a class-hierarchy // relationship. bool Cxx20Enumerator = false; if (NamedContext) { EnumConstantDecl *EC = nullptr; if (R) EC = R->getAsSingle(); else if (UD && UD->shadow_size() == 1) EC = dyn_cast(UD->shadow_begin()->getTargetDecl()); if (EC) Cxx20Enumerator = getLangOpts().CPlusPlus20; if (auto *ED = dyn_cast(NamedContext)) { // C++14 [namespace.udecl]p7: // A using-declaration shall not name a scoped enumerator. // C++20 p1099 permits enumerators. if (EC && R && ED->isScoped()) Diag(SS.getBeginLoc(), getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator : diag::ext_using_decl_scoped_enumerator) << SS.getRange(); // We want to consider the scope of the enumerator NamedContext = ED->getDeclContext(); } } if (!CurContext->isRecord()) { // C++03 [namespace.udecl]p3: // C++0x [namespace.udecl]p8: // A using-declaration for a class member shall be a member-declaration. // C++20 [namespace.udecl]p7 // ... other than an enumerator ... // If we weren't able to compute a valid scope, it might validly be a // dependent class or enumeration scope. If we have a 'typename' keyword, // the scope must resolve to a class type. if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() : !HasTypename) return false; // OK Diag(NameLoc, Cxx20Enumerator ? diag::warn_cxx17_compat_using_decl_class_member_enumerator : diag::err_using_decl_can_not_refer_to_class_member) << SS.getRange(); if (Cxx20Enumerator) return false; // OK auto *RD = NamedContext ? cast(NamedContext->getRedeclContext()) : nullptr; if (RD && !RequireCompleteDeclContext(const_cast(SS), RD)) { // See if there's a helpful fixit if (!R) { // We will have already diagnosed the problem on the template // definition, Maybe we should do so again? } else if (R->getAsSingle()) { if (getLangOpts().CPlusPlus11) { // Convert 'using X::Y;' to 'using Y = X::Y;'. Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) << 0 // alias declaration << FixItHint::CreateInsertion(SS.getBeginLoc(), NameInfo.getName().getAsString() + " = "); } else { // Convert 'using X::Y;' to 'typedef X::Y Y;'. SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); Diag(InsertLoc, diag::note_using_decl_class_member_workaround) << 1 // typedef declaration << FixItHint::CreateReplacement(UsingLoc, "typedef") << FixItHint::CreateInsertion( InsertLoc, " " + NameInfo.getName().getAsString()); } } else if (R->getAsSingle()) { // Don't provide a fixit outside C++11 mode; we don't want to suggest // repeating the type of the static data member here. FixItHint FixIt; if (getLangOpts().CPlusPlus11) { // Convert 'using X::Y;' to 'auto &Y = X::Y;'. FixIt = FixItHint::CreateReplacement( UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); } Diag(UsingLoc, diag::note_using_decl_class_member_workaround) << 2 // reference declaration << FixIt; } else if (R->getAsSingle()) { // Don't provide a fixit outside C++11 mode; we don't want to suggest // repeating the type of the enumeration here, and we can't do so if // the type is anonymous. FixItHint FixIt; if (getLangOpts().CPlusPlus11) { // Convert 'using X::Y;' to 'auto &Y = X::Y;'. FixIt = FixItHint::CreateReplacement( UsingLoc, "constexpr auto " + NameInfo.getName().getAsString() + " = "); } Diag(UsingLoc, diag::note_using_decl_class_member_workaround) << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable << FixIt; } } return true; // Fail } // If the named context is dependent, we can't decide much. if (!NamedContext) { // FIXME: in C++0x, we can diagnose if we can prove that the // nested-name-specifier does not refer to a base class, which is // still possible in some cases. // Otherwise we have to conservatively report that things might be // okay. return false; } // The current scope is a record. if (!NamedContext->isRecord()) { // Ideally this would point at the last name in the specifier, // but we don't have that level of source info. Diag(SS.getBeginLoc(), Cxx20Enumerator ? diag::warn_cxx17_compat_using_decl_non_member_enumerator : diag::err_using_decl_nested_name_specifier_is_not_class) << SS.getScopeRep() << SS.getRange(); if (Cxx20Enumerator) return false; // OK return true; } if (!NamedContext->isDependentContext() && RequireCompleteDeclContext(const_cast(SS), NamedContext)) return true; if (getLangOpts().CPlusPlus11) { // C++11 [namespace.udecl]p3: // In a using-declaration used as a member-declaration, the // nested-name-specifier shall name a base class of the class // being defined. if (cast(CurContext)->isProvablyNotDerivedFrom( cast(NamedContext))) { if (Cxx20Enumerator) { Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) << SS.getRange(); return false; } if (CurContext == NamedContext) { Diag(SS.getBeginLoc(), diag::err_using_decl_nested_name_specifier_is_current_class) << SS.getRange(); return !getLangOpts().CPlusPlus20; } if (!cast(NamedContext)->isInvalidDecl()) { Diag(SS.getBeginLoc(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << SS.getScopeRep() << cast(CurContext) << SS.getRange(); } return true; } return false; } // C++03 [namespace.udecl]p4: // A using-declaration used as a member-declaration shall refer // to a member of a base class of the class being defined [etc.]. // Salient point: SS doesn't have to name a base class as long as // lookup only finds members from base classes. Therefore we can // diagnose here only if we can prove that can't happen, // i.e. if the class hierarchies provably don't intersect. // TODO: it would be nice if "definitely valid" results were cached // in the UsingDecl and UsingShadowDecl so that these checks didn't // need to be repeated. llvm::SmallPtrSet Bases; auto Collect = [&Bases](const CXXRecordDecl *Base) { Bases.insert(Base); return true; }; // Collect all bases. Return false if we find a dependent base. if (!cast(CurContext)->forallBases(Collect)) return false; // Returns true if the base is dependent or is one of the accumulated base // classes. auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { return !Bases.count(Base); }; // Return false if the class has a dependent base or if it or one // of its bases is present in the base set of the current context. if (Bases.count(cast(NamedContext)) || !cast(NamedContext)->forallBases(IsNotBase)) return false; Diag(SS.getRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << SS.getScopeRep() << cast(CurContext) << SS.getRange(); return true; } Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, MultiTemplateParamsArg TemplateParamLists, SourceLocation UsingLoc, UnqualifiedId &Name, const ParsedAttributesView &AttrList, TypeResult Type, Decl *DeclFromDeclSpec) { // Get the innermost enclosing declaration scope. S = S->getDeclParent(); if (Type.isInvalid()) return nullptr; bool Invalid = false; DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); TypeSourceInfo *TInfo = nullptr; GetTypeFromParser(Type.get(), &TInfo); if (DiagnoseClassNameShadow(CurContext, NameInfo)) return nullptr; if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, UPPC_DeclarationType)) { Invalid = true; TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, TInfo->getTypeLoc().getBeginLoc()); } LookupResult Previous(*this, NameInfo, LookupOrdinaryName, TemplateParamLists.size() ? forRedeclarationInCurContext() : RedeclarationKind::ForVisibleRedeclaration); LookupName(Previous, S); // Warn about shadowing the name of a template parameter. if (Previous.isSingleResult() && Previous.getFoundDecl()->isTemplateParameter()) { DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); Previous.clear(); } assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier && "name in alias declaration must be an identifier"); TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, Name.StartLocation, Name.Identifier, TInfo); NewTD->setAccess(AS); if (Invalid) NewTD->setInvalidDecl(); ProcessDeclAttributeList(S, NewTD, AttrList); AddPragmaAttributes(S, NewTD); ProcessAPINotes(NewTD); CheckTypedefForVariablyModifiedType(S, NewTD); Invalid |= NewTD->isInvalidDecl(); bool Redeclaration = false; NamedDecl *NewND; if (TemplateParamLists.size()) { TypeAliasTemplateDecl *OldDecl = nullptr; TemplateParameterList *OldTemplateParams = nullptr; if (TemplateParamLists.size() != 1) { Diag(UsingLoc, diag::err_alias_template_extra_headers) << SourceRange(TemplateParamLists[1]->getTemplateLoc(), TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); Invalid = true; } TemplateParameterList *TemplateParams = TemplateParamLists[0]; // Check that we can declare a template here. if (CheckTemplateDeclScope(S, TemplateParams)) return nullptr; // Only consider previous declarations in the same scope. FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, /*ExplicitInstantiationOrSpecialization*/false); if (!Previous.empty()) { Redeclaration = true; OldDecl = Previous.getAsSingle(); if (!OldDecl && !Invalid) { Diag(UsingLoc, diag::err_redefinition_different_kind) << Name.Identifier; NamedDecl *OldD = Previous.getRepresentativeDecl(); if (OldD->getLocation().isValid()) Diag(OldD->getLocation(), diag::note_previous_definition); Invalid = true; } if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { if (TemplateParameterListsAreEqual(TemplateParams, OldDecl->getTemplateParameters(), /*Complain=*/true, TPL_TemplateMatch)) OldTemplateParams = OldDecl->getMostRecentDecl()->getTemplateParameters(); else Invalid = true; TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); if (!Invalid && !Context.hasSameType(OldTD->getUnderlyingType(), NewTD->getUnderlyingType())) { // FIXME: The C++0x standard does not clearly say this is ill-formed, // but we can't reasonably accept it. Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); if (OldTD->getLocation().isValid()) Diag(OldTD->getLocation(), diag::note_previous_definition); Invalid = true; } } } // Merge any previous default template arguments into our parameters, // and check the parameter list. if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, TPC_TypeAliasTemplate)) return nullptr; TypeAliasTemplateDecl *NewDecl = TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, Name.Identifier, TemplateParams, NewTD); NewTD->setDescribedAliasTemplate(NewDecl); NewDecl->setAccess(AS); if (Invalid) NewDecl->setInvalidDecl(); else if (OldDecl) { NewDecl->setPreviousDecl(OldDecl); CheckRedeclarationInModule(NewDecl, OldDecl); } NewND = NewDecl; } else { if (auto *TD = dyn_cast_or_null(DeclFromDeclSpec)) { setTagNameForLinkagePurposes(TD, NewTD); handleTagNumbering(TD, S); } ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); NewND = NewTD; } PushOnScopeChains(NewND, S); ActOnDocumentableDecl(NewND); return NewND; } Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident) { // Lookup the namespace name. LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); if (R.isAmbiguous()) return nullptr; if (R.empty()) { if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); return nullptr; } } assert(!R.isAmbiguous() && !R.empty()); NamedDecl *ND = R.getRepresentativeDecl(); // Check if we have a previous declaration with the same name. LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, RedeclarationKind::ForVisibleRedeclaration); LookupName(PrevR, S); // Check we're not shadowing a template parameter. if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); PrevR.clear(); } // Filter out any other lookup result from an enclosing scope. FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, /*AllowInlineNamespace*/false); // Find the previous declaration and check that we can redeclare it. NamespaceAliasDecl *Prev = nullptr; if (PrevR.isSingleResult()) { NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); if (NamespaceAliasDecl *AD = dyn_cast(PrevDecl)) { // We already have an alias with the same name that points to the same // namespace; check that it matches. if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { Prev = AD; } else if (isVisible(PrevDecl)) { Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) << Alias; Diag(AD->getLocation(), diag::note_previous_namespace_alias) << AD->getNamespace(); return nullptr; } } else if (isVisible(PrevDecl)) { unsigned DiagID = isa(PrevDecl->getUnderlyingDecl()) ? diag::err_redefinition : diag::err_redefinition_different_kind; Diag(AliasLoc, DiagID) << Alias; Diag(PrevDecl->getLocation(), diag::note_previous_definition); return nullptr; } } // The use of a nested name specifier may trigger deprecation warnings. DiagnoseUseOfDecl(ND, IdentLoc); NamespaceAliasDecl *AliasDecl = NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias, SS.getWithLocInContext(Context), IdentLoc, ND); if (Prev) AliasDecl->setPreviousDecl(Prev); PushOnScopeChains(AliasDecl, S); return AliasDecl; } namespace { struct SpecialMemberExceptionSpecInfo : SpecialMemberVisitor { SourceLocation Loc; Sema::ImplicitExceptionSpecification ExceptSpec; SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, Sema::InheritedConstructorInfo *ICI, SourceLocation Loc) : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} bool visitBase(CXXBaseSpecifier *Base); bool visitField(FieldDecl *FD); void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, unsigned Quals); void visitSubobjectCall(Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR); }; } bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { auto *RT = Base->getType()->getAs(); if (!RT) return false; auto *BaseClass = cast(RT->getDecl()); Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); if (auto *BaseCtor = SMOR.getMethod()) { visitSubobjectCall(Base, BaseCtor); return false; } visitClassSubobject(BaseClass, Base, 0); return false; } bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { if (CSM == CXXSpecialMemberKind::DefaultConstructor && FD->hasInClassInitializer()) { Expr *E = FD->getInClassInitializer(); if (!E) // FIXME: It's a little wasteful to build and throw away a // CXXDefaultInitExpr here. // FIXME: We should have a single context note pointing at Loc, and // this location should be MD->getLocation() instead, since that's // the location where we actually use the default init expression. E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); if (E) ExceptSpec.CalledExpr(E); } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) ->getAs()) { visitClassSubobject(cast(RT->getDecl()), FD, FD->getType().getCVRQualifiers()); } return false; } void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { FieldDecl *Field = Subobj.dyn_cast(); bool IsMutable = Field && Field->isMutable(); visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); } void SpecialMemberExceptionSpecInfo::visitSubobjectCall( Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { // Note, if lookup fails, it doesn't matter what exception specification we // choose because the special member will be deleted. if (CXXMethodDecl *MD = SMOR.getMethod()) ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); } bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { llvm::APSInt Result; ExprResult Converted = CheckConvertedConstantExpression( ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); ExplicitSpec.setExpr(Converted.get()); if (Converted.isUsable() && !Converted.get()->isValueDependent()) { ExplicitSpec.setKind(Result.getBoolValue() ? ExplicitSpecKind::ResolvedTrue : ExplicitSpecKind::ResolvedFalse); return true; } ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); return false; } ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); if (!ExplicitExpr->isTypeDependent()) tryResolveExplicitSpecifier(ES); return ES; } static Sema::ImplicitExceptionSpecification ComputeDefaultedSpecialMemberExceptionSpec( Sema &S, SourceLocation Loc, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, Sema::InheritedConstructorInfo *ICI) { ComputingExceptionSpec CES(S, MD, Loc); CXXRecordDecl *ClassDecl = MD->getParent(); // C++ [except.spec]p14: // An implicitly declared special member function (Clause 12) shall have an // exception-specification. [...] SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); if (ClassDecl->isInvalidDecl()) return Info.ExceptSpec; // FIXME: If this diagnostic fires, we're probably missing a check for // attempting to resolve an exception specification before it's known // at a higher level. if (S.RequireCompleteType(MD->getLocation(), S.Context.getRecordType(ClassDecl), diag::err_exception_spec_incomplete_type)) return Info.ExceptSpec; // C++1z [except.spec]p7: // [Look for exceptions thrown by] a constructor selected [...] to // initialize a potentially constructed subobject, // C++1z [except.spec]p8: // The exception specification for an implicitly-declared destructor, or a // destructor without a noexcept-specifier, is potentially-throwing if and // only if any of the destructors for any of its potentially constructed // subojects is potentially throwing. // FIXME: We respect the first rule but ignore the "potentially constructed" // in the second rule to resolve a core issue (no number yet) that would have // us reject: // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; // struct B : A {}; // struct C : B { void f(); }; // ... due to giving B::~B() a non-throwing exception specification. Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases : Info.VisitAllBases); return Info.ExceptSpec; } namespace { /// RAII object to register a special member as being currently declared. struct DeclaringSpecialMember { Sema &S; Sema::SpecialMemberDecl D; Sema::ContextRAII SavedContext; bool WasAlreadyBeingDeclared; DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, CXXSpecialMemberKind CSM) : S(S), D(RD, CSM), SavedContext(S, RD) { WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; if (WasAlreadyBeingDeclared) // This almost never happens, but if it does, ensure that our cache // doesn't contain a stale result. S.SpecialMemberCache.clear(); else { // Register a note to be produced if we encounter an error while // declaring the special member. Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; // FIXME: We don't have a location to use here. Using the class's // location maintains the fiction that we declare all special members // with the class, but (1) it's not clear that lying about that helps our // users understand what's going on, and (2) there may be outer contexts // on the stack (some of which are relevant) and printing them exposes // our lies. Ctx.PointOfInstantiation = RD->getLocation(); Ctx.Entity = RD; Ctx.SpecialMember = CSM; S.pushCodeSynthesisContext(Ctx); } } ~DeclaringSpecialMember() { if (!WasAlreadyBeingDeclared) { S.SpecialMembersBeingDeclared.erase(D); S.popCodeSynthesisContext(); } } /// Are we already trying to declare this special member? bool isAlreadyBeingDeclared() const { return WasAlreadyBeingDeclared; } }; } void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { // Look up any existing declarations, but don't trigger declaration of all // implicit special members with this name. DeclarationName Name = FD->getDeclName(); LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, RedeclarationKind::ForExternalRedeclaration); for (auto *D : FD->getParent()->lookup(Name)) if (auto *Acceptable = R.getAcceptableDecl(D)) R.addDecl(Acceptable); R.resolveKind(); R.suppressDiagnostics(); CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false, FD->isThisDeclarationADefinition()); } void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, QualType ResultTy, ArrayRef Args) { // Build an exception specification pointing back at this constructor. FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); LangAS AS = getDefaultCXXMethodAddrSpace(); if (AS != LangAS::Default) { EPI.TypeQuals.addAddressSpace(AS); } auto QT = Context.getFunctionType(ResultTy, Args, EPI); SpecialMem->setType(QT); // During template instantiation of implicit special member functions we need // a reliable TypeSourceInfo for the function prototype in order to allow // functions to be substituted. if (inTemplateInstantiation() && cast(SpecialMem->getParent())->isLambda()) { TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(SpecialMem->getType()); SpecialMem->setTypeSourceInfo(TSI); } } CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( CXXRecordDecl *ClassDecl) { // C++ [class.ctor]p5: // A default constructor for a class X is a constructor of class X // that can be called without an argument. If there is no // user-declared constructor for class X, a default constructor is // implicitly declared. An implicitly-declared default constructor // is an inline public member of its class. assert(ClassDecl->needsImplicitDefaultConstructor() && "Should not build implicit default constructor!"); DeclaringSpecialMember DSM(*this, ClassDecl, CXXSpecialMemberKind::DefaultConstructor); if (DSM.isAlreadyBeingDeclared()) return nullptr; bool Constexpr = defaultedSpecialMemberIsConstexpr( *this, ClassDecl, CXXSpecialMemberKind::DefaultConstructor, false); // Create the actual constructor declaration. CanQualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); SourceLocation ClassLoc = ClassDecl->getLocation(); DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(ClassType); DeclarationNameInfo NameInfo(Name, ClassLoc); CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), /*TInfo=*/nullptr, ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), /*isInline=*/true, /*isImplicitlyDeclared=*/true, Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified); DefaultCon->setAccess(AS_public); DefaultCon->setDefaulted(); setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, std::nullopt); if (getLangOpts().CUDA) CUDA().inferTargetForImplicitSpecialMember( ClassDecl, CXXSpecialMemberKind::DefaultConstructor, DefaultCon, /* ConstRHS */ false, /* Diagnose */ false); // We don't need to use SpecialMemberIsTrivial here; triviality for default // constructors is easy to compute. DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); // Note that we have declared this constructor. ++getASTContext().NumImplicitDefaultConstructorsDeclared; Scope *S = getScopeForContext(ClassDecl); CheckImplicitSpecialMemberDeclaration(S, DefaultCon); if (ShouldDeleteSpecialMember(DefaultCon, CXXSpecialMemberKind::DefaultConstructor)) SetDeclDeleted(DefaultCon, ClassLoc); if (S) PushOnScopeChains(DefaultCon, S, false); ClassDecl->addDecl(DefaultCon); return DefaultCon; } void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor) { assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"); if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) return; CXXRecordDecl *ClassDecl = Constructor->getParent(); assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); if (ClassDecl->isInvalidDecl()) { return; } SynthesizedFunctionScope Scope(*this, Constructor); // The exception specification is needed because we are defining the // function. ResolveExceptionSpec(CurrentLocation, Constructor->getType()->castAs()); MarkVTableUsed(CurrentLocation, ClassDecl); // Add a context note for diagnostics produced after this point. Scope.addContextNote(CurrentLocation); if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { Constructor->setInvalidDecl(); return; } SourceLocation Loc = Constructor->getEndLoc().isValid() ? Constructor->getEndLoc() : Constructor->getLocation(); Constructor->setBody(new (Context) CompoundStmt(Loc)); Constructor->markUsed(Context); if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(Constructor); } DiagnoseUninitializedFields(*this, Constructor); } void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { // Perform any delayed checks on exception specifications. CheckDelayedMemberExceptionSpecs(); } /// Find or create the fake constructor we synthesize to model constructing an /// object of a derived class via a constructor of a base class. CXXConstructorDecl * Sema::findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor, ConstructorUsingShadowDecl *Shadow) { CXXRecordDecl *Derived = Shadow->getParent(); SourceLocation UsingLoc = Shadow->getLocation(); // FIXME: Add a new kind of DeclarationName for an inherited constructor. // For now we use the name of the base class constructor as a member of the // derived class to indicate a (fake) inherited constructor name. DeclarationName Name = BaseCtor->getDeclName(); // Check to see if we already have a fake constructor for this inherited // constructor call. for (NamedDecl *Ctor : Derived->lookup(Name)) if (declaresSameEntity(cast(Ctor) ->getInheritedConstructor() .getConstructor(), BaseCtor)) return cast(Ctor); DeclarationNameInfo NameInfo(Name, UsingLoc); TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); FunctionProtoTypeLoc ProtoLoc = TInfo->getTypeLoc().IgnoreParens().castAs(); // Check the inherited constructor is valid and find the list of base classes // from which it was inherited. InheritedConstructorInfo ICI(*this, Loc, Shadow); bool Constexpr = BaseCtor->isConstexpr() && defaultedSpecialMemberIsConstexpr( *this, Derived, CXXSpecialMemberKind::DefaultConstructor, false, BaseCtor, &ICI); CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), /*isInline=*/true, /*isImplicitlyDeclared=*/true, Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, InheritedConstructor(Shadow, BaseCtor), BaseCtor->getTrailingRequiresClause()); if (Shadow->isInvalidDecl()) DerivedCtor->setInvalidDecl(); // Build an unevaluated exception specification for this fake constructor. const FunctionProtoType *FPT = TInfo->getType()->castAs(); FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); EPI.ExceptionSpec.Type = EST_Unevaluated; EPI.ExceptionSpec.SourceDecl = DerivedCtor; DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI)); // Build the parameter declarations. SmallVector ParamDecls; for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); ParmVarDecl *PD = ParmVarDecl::Create( Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); PD->setScopeInfo(0, I); PD->setImplicit(); // Ensure attributes are propagated onto parameters (this matters for // format, pass_object_size, ...). mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); ParamDecls.push_back(PD); ProtoLoc.setParam(I, PD); } // Set up the new constructor. assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); DerivedCtor->setAccess(BaseCtor->getAccess()); DerivedCtor->setParams(ParamDecls); Derived->addDecl(DerivedCtor); if (ShouldDeleteSpecialMember(DerivedCtor, CXXSpecialMemberKind::DefaultConstructor, &ICI)) SetDeclDeleted(DerivedCtor, UsingLoc); return DerivedCtor; } void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { InheritedConstructorInfo ICI(*this, Ctor->getLocation(), Ctor->getInheritedConstructor().getShadowDecl()); ShouldDeleteSpecialMember(Ctor, CXXSpecialMemberKind::DefaultConstructor, &ICI, /*Diagnose*/ true); } void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor) { CXXRecordDecl *ClassDecl = Constructor->getParent(); assert(Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()); if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) return; // Initializations are performed "as if by a defaulted default constructor", // so enter the appropriate scope. SynthesizedFunctionScope Scope(*this, Constructor); // The exception specification is needed because we are defining the // function. ResolveExceptionSpec(CurrentLocation, Constructor->getType()->castAs()); MarkVTableUsed(CurrentLocation, ClassDecl); // Add a context note for diagnostics produced after this point. Scope.addContextNote(CurrentLocation); ConstructorUsingShadowDecl *Shadow = Constructor->getInheritedConstructor().getShadowDecl(); CXXConstructorDecl *InheritedCtor = Constructor->getInheritedConstructor().getConstructor(); // [class.inhctor.init]p1: // initialization proceeds as if a defaulted default constructor is used to // initialize the D object and each base class subobject from which the // constructor was inherited InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); CXXRecordDecl *RD = Shadow->getParent(); SourceLocation InitLoc = Shadow->getLocation(); // Build explicit initializers for all base classes from which the // constructor was inherited. SmallVector Inits; for (bool VBase : {false, true}) { for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { if (B.isVirtual() != VBase) continue; auto *BaseRD = B.getType()->getAsCXXRecordDecl(); if (!BaseRD) continue; auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); if (!BaseCtor.first) continue; MarkFunctionReferenced(CurrentLocation, BaseCtor.first); ExprResult Init = new (Context) CXXInheritedCtorInitExpr( InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); Inits.push_back(new (Context) CXXCtorInitializer( Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, SourceLocation())); } } // We now proceed as if for a defaulted default constructor, with the relevant // initializers replaced. if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { Constructor->setInvalidDecl(); return; } Constructor->setBody(new (Context) CompoundStmt(InitLoc)); Constructor->markUsed(Context); if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(Constructor); } DiagnoseUninitializedFields(*this, Constructor); } CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { // C++ [class.dtor]p2: // If a class has no user-declared destructor, a destructor is // declared implicitly. An implicitly-declared destructor is an // inline public member of its class. assert(ClassDecl->needsImplicitDestructor()); DeclaringSpecialMember DSM(*this, ClassDecl, CXXSpecialMemberKind::Destructor); if (DSM.isAlreadyBeingDeclared()) return nullptr; bool Constexpr = defaultedSpecialMemberIsConstexpr( *this, ClassDecl, CXXSpecialMemberKind::Destructor, false); // Create the actual destructor declaration. CanQualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); SourceLocation ClassLoc = ClassDecl->getLocation(); DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(ClassType); DeclarationNameInfo NameInfo(Name, ClassLoc); CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr, getCurFPFeatures().isFPConstrained(), /*isInline=*/true, /*isImplicitlyDeclared=*/true, Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified); Destructor->setAccess(AS_public); Destructor->setDefaulted(); setupImplicitSpecialMemberType(Destructor, Context.VoidTy, std::nullopt); if (getLangOpts().CUDA) CUDA().inferTargetForImplicitSpecialMember( ClassDecl, CXXSpecialMemberKind::Destructor, Destructor, /* ConstRHS */ false, /* Diagnose */ false); // We don't need to use SpecialMemberIsTrivial here; triviality for // destructors is easy to compute. Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); Destructor->setTrivialForCall(ClassDecl->hasAttr() || ClassDecl->hasTrivialDestructorForCall()); // Note that we have declared this destructor. ++getASTContext().NumImplicitDestructorsDeclared; Scope *S = getScopeForContext(ClassDecl); CheckImplicitSpecialMemberDeclaration(S, Destructor); // We can't check whether an implicit destructor is deleted before we complete // the definition of the class, because its validity depends on the alignment // of the class. We'll check this from ActOnFields once the class is complete. if (ClassDecl->isCompleteDefinition() && ShouldDeleteSpecialMember(Destructor, CXXSpecialMemberKind::Destructor)) SetDeclDeleted(Destructor, ClassLoc); // Introduce this destructor into its scope. if (S) PushOnScopeChains(Destructor, S, false); ClassDecl->addDecl(Destructor); return Destructor; } void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor) { assert((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"); if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) return; CXXRecordDecl *ClassDecl = Destructor->getParent(); assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); SynthesizedFunctionScope Scope(*this, Destructor); // The exception specification is needed because we are defining the // function. ResolveExceptionSpec(CurrentLocation, Destructor->getType()->castAs()); MarkVTableUsed(CurrentLocation, ClassDecl); // Add a context note for diagnostics produced after this point. Scope.addContextNote(CurrentLocation); MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), Destructor->getParent()); if (CheckDestructor(Destructor)) { Destructor->setInvalidDecl(); return; } SourceLocation Loc = Destructor->getEndLoc().isValid() ? Destructor->getEndLoc() : Destructor->getLocation(); Destructor->setBody(new (Context) CompoundStmt(Loc)); Destructor->markUsed(Context); if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(Destructor); } } void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor) { if (Destructor->isInvalidDecl()) return; CXXRecordDecl *ClassDecl = Destructor->getParent(); assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && "implicit complete dtors unneeded outside MS ABI"); assert(ClassDecl->getNumVBases() > 0 && "complete dtor only exists for classes with vbases"); SynthesizedFunctionScope Scope(*this, Destructor); // Add a context note for diagnostics produced after this point. Scope.addContextNote(CurrentLocation); MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); } void Sema::ActOnFinishCXXMemberDecls() { // If the context is an invalid C++ class, just suppress these checks. if (CXXRecordDecl *Record = dyn_cast(CurContext)) { if (Record->isInvalidDecl()) { DelayedOverridingExceptionSpecChecks.clear(); DelayedEquivalentExceptionSpecChecks.clear(); return; } checkForMultipleExportedDefaultConstructors(*this, Record); } } void Sema::ActOnFinishCXXNonNestedClass() { referenceDLLExportedClassMethods(); if (!DelayedDllExportMemberFunctions.empty()) { SmallVector WorkList; std::swap(DelayedDllExportMemberFunctions, WorkList); for (CXXMethodDecl *M : WorkList) { DefineDefaultedFunction(*this, M, M->getLocation()); // Pass the method to the consumer to get emitted. This is not necessary // for explicit instantiation definitions, as they will get emitted // anyway. if (M->getParent()->getTemplateSpecializationKind() != TSK_ExplicitInstantiationDefinition) ActOnFinishInlineFunctionDef(M); } } } void Sema::referenceDLLExportedClassMethods() { if (!DelayedDllExportClasses.empty()) { // Calling ReferenceDllExportedMembers might cause the current function to // be called again, so use a local copy of DelayedDllExportClasses. SmallVector WorkList; std::swap(DelayedDllExportClasses, WorkList); for (CXXRecordDecl *Class : WorkList) ReferenceDllExportedMembers(*this, Class); } } void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { assert(getLangOpts().CPlusPlus11 && "adjusting dtor exception specs was introduced in c++11"); if (Destructor->isDependentContext()) return; // C++11 [class.dtor]p3: // A declaration of a destructor that does not have an exception- // specification is implicitly considered to have the same exception- // specification as an implicit declaration. const auto *DtorType = Destructor->getType()->castAs(); if (DtorType->hasExceptionSpec()) return; // Replace the destructor's type, building off the existing one. Fortunately, // the only thing of interest in the destructor type is its extended info. // The return and arguments are fixed. FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); EPI.ExceptionSpec.Type = EST_Unevaluated; EPI.ExceptionSpec.SourceDecl = Destructor; Destructor->setType( Context.getFunctionType(Context.VoidTy, std::nullopt, EPI)); // FIXME: If the destructor has a body that could throw, and the newly created // spec doesn't allow exceptions, we should emit a warning, because this // change in behavior can break conforming C++03 programs at runtime. // However, we don't have a body or an exception specification yet, so it // needs to be done somewhere else. } namespace { /// An abstract base class for all helper classes used in building the // copy/move operators. These classes serve as factory functions and help us // avoid using the same Expr* in the AST twice. class ExprBuilder { ExprBuilder(const ExprBuilder&) = delete; ExprBuilder &operator=(const ExprBuilder&) = delete; protected: static Expr *assertNotNull(Expr *E) { assert(E && "Expression construction must not fail."); return E; } public: ExprBuilder() {} virtual ~ExprBuilder() {} virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; }; class RefBuilder: public ExprBuilder { VarDecl *Var; QualType VarType; public: Expr *build(Sema &S, SourceLocation Loc) const override { return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); } RefBuilder(VarDecl *Var, QualType VarType) : Var(Var), VarType(VarType) {} }; class ThisBuilder: public ExprBuilder { public: Expr *build(Sema &S, SourceLocation Loc) const override { return assertNotNull(S.ActOnCXXThis(Loc).getAs()); } }; class CastBuilder: public ExprBuilder { const ExprBuilder &Builder; QualType Type; ExprValueKind Kind; const CXXCastPath &Path; public: Expr *build(Sema &S, SourceLocation Loc) const override { return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, CK_UncheckedDerivedToBase, Kind, &Path).get()); } CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, const CXXCastPath &Path) : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} }; class DerefBuilder: public ExprBuilder { const ExprBuilder &Builder; public: Expr *build(Sema &S, SourceLocation Loc) const override { return assertNotNull( S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); } DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} }; class MemberBuilder: public ExprBuilder { const ExprBuilder &Builder; QualType Type; CXXScopeSpec SS; bool IsArrow; LookupResult &MemberLookup; public: Expr *build(Sema &S, SourceLocation Loc) const override { return assertNotNull(S.BuildMemberReferenceExpr( Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), nullptr, MemberLookup, nullptr, nullptr).get()); } MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, LookupResult &MemberLookup) : Builder(Builder), Type(Type), IsArrow(IsArrow), MemberLookup(MemberLookup) {} }; class MoveCastBuilder: public ExprBuilder { const ExprBuilder &Builder; public: Expr *build(Sema &S, SourceLocation Loc) const override { return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); } MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} }; class LvalueConvBuilder: public ExprBuilder { const ExprBuilder &Builder; public: Expr *build(Sema &S, SourceLocation Loc) const override { return assertNotNull( S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); } LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} }; class SubscriptBuilder: public ExprBuilder { const ExprBuilder &Base; const ExprBuilder &Index; public: Expr *build(Sema &S, SourceLocation Loc) const override { return assertNotNull(S.CreateBuiltinArraySubscriptExpr( Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); } SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) : Base(Base), Index(Index) {} }; } // end anonymous namespace /// When generating a defaulted copy or move assignment operator, if a field /// should be copied with __builtin_memcpy rather than via explicit assignments, /// do so. This optimization only applies for arrays of scalars, and for arrays /// of class type where the selected copy/move-assignment operator is trivial. static StmtResult buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, const ExprBuilder &ToB, const ExprBuilder &FromB) { // Compute the size of the memory buffer to be copied. QualType SizeType = S.Context.getSizeType(); llvm::APInt Size(S.Context.getTypeSize(SizeType), S.Context.getTypeSizeInChars(T).getQuantity()); // Take the address of the field references for "from" and "to". We // directly construct UnaryOperators here because semantic analysis // does not permit us to take the address of an xvalue. Expr *From = FromB.build(S, Loc); From = UnaryOperator::Create( S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); Expr *To = ToB.build(S, Loc); To = UnaryOperator::Create( S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); const Type *E = T->getBaseElementTypeUnsafe(); bool NeedsCollectableMemCpy = E->isRecordType() && E->castAs()->getDecl()->hasObjectMember(); // Create a reference to the __builtin_objc_memmove_collectable function StringRef MemCpyName = NeedsCollectableMemCpy ? "__builtin_objc_memmove_collectable" : "__builtin_memcpy"; LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, Sema::LookupOrdinaryName); S.LookupName(R, S.TUScope, true); FunctionDecl *MemCpy = R.getAsSingle(); if (!MemCpy) // Something went horribly wrong earlier, and we will have complained // about it. return StmtError(); ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, VK_PRValue, Loc, nullptr); assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); Expr *CallArgs[] = { To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) }; ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), Loc, CallArgs, Loc); assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); return Call.getAs(); } /// Builds a statement that copies/moves the given entity from \p From to /// \c To. /// /// This routine is used to copy/move the members of a class with an /// implicitly-declared copy/move assignment operator. When the entities being /// copied are arrays, this routine builds for loops to copy them. /// /// \param S The Sema object used for type-checking. /// /// \param Loc The location where the implicit copy/move is being generated. /// /// \param T The type of the expressions being copied/moved. Both expressions /// must have this type. /// /// \param To The expression we are copying/moving to. /// /// \param From The expression we are copying/moving from. /// /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. /// Otherwise, it's a non-static member subobject. /// /// \param Copying Whether we're copying or moving. /// /// \param Depth Internal parameter recording the depth of the recursion. /// /// \returns A statement or a loop that copies the expressions, or StmtResult(0) /// if a memcpy should be used instead. static StmtResult buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, const ExprBuilder &To, const ExprBuilder &From, bool CopyingBaseSubobject, bool Copying, unsigned Depth = 0) { // C++11 [class.copy]p28: // Each subobject is assigned in the manner appropriate to its type: // // - if the subobject is of class type, as if by a call to operator= with // the subobject as the object expression and the corresponding // subobject of x as a single function argument (as if by explicit // qualification; that is, ignoring any possible virtual overriding // functions in more derived classes); // // C++03 [class.copy]p13: // - if the subobject is of class type, the copy assignment operator for // the class is used (as if by explicit qualification; that is, // ignoring any possible virtual overriding functions in more derived // classes); if (const RecordType *RecordTy = T->getAs()) { CXXRecordDecl *ClassDecl = cast(RecordTy->getDecl()); // Look for operator=. DeclarationName Name = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); S.LookupQualifiedName(OpLookup, ClassDecl, false); // Prior to C++11, filter out any result that isn't a copy/move-assignment // operator. if (!S.getLangOpts().CPlusPlus11) { LookupResult::Filter F = OpLookup.makeFilter(); while (F.hasNext()) { NamedDecl *D = F.next(); if (CXXMethodDecl *Method = dyn_cast(D)) if (Method->isCopyAssignmentOperator() || (!Copying && Method->isMoveAssignmentOperator())) continue; F.erase(); } F.done(); } // Suppress the protected check (C++ [class.protected]) for each of the // assignment operators we found. This strange dance is required when // we're assigning via a base classes's copy-assignment operator. To // ensure that we're getting the right base class subobject (without // ambiguities), we need to cast "this" to that subobject type; to // ensure that we don't go through the virtual call mechanism, we need // to qualify the operator= name with the base class (see below). However, // this means that if the base class has a protected copy assignment // operator, the protected member access check will fail. So, we // rewrite "protected" access to "public" access in this case, since we // know by construction that we're calling from a derived class. if (CopyingBaseSubobject) { for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); L != LEnd; ++L) { if (L.getAccess() == AS_protected) L.setAccess(AS_public); } } // Create the nested-name-specifier that will be used to qualify the // reference to operator=; this is required to suppress the virtual // call mechanism. CXXScopeSpec SS; const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); SS.MakeTrivial(S.Context, NestedNameSpecifier::Create(S.Context, nullptr, false, CanonicalT), Loc); // Create the reference to operator=. ExprResult OpEqualRef = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, SS, /*TemplateKWLoc=*/SourceLocation(), /*FirstQualifierInScope=*/nullptr, OpLookup, /*TemplateArgs=*/nullptr, /*S*/nullptr, /*SuppressQualifierCheck=*/true); if (OpEqualRef.isInvalid()) return StmtError(); // Build the call to the assignment operator. Expr *FromInst = From.build(S, Loc); ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, OpEqualRef.getAs(), Loc, FromInst, Loc); if (Call.isInvalid()) return StmtError(); // If we built a call to a trivial 'operator=' while copying an array, // bail out. We'll replace the whole shebang with a memcpy. CXXMemberCallExpr *CE = dyn_cast(Call.get()); if (CE && CE->getMethodDecl()->isTrivial() && Depth) return StmtResult((Stmt*)nullptr); // Convert to an expression-statement, and clean up any produced // temporaries. return S.ActOnExprStmt(Call); } // - if the subobject is of scalar type, the built-in assignment // operator is used. const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); if (!ArrayTy) { ExprResult Assignment = S.CreateBuiltinBinOp( Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); if (Assignment.isInvalid()) return StmtError(); return S.ActOnExprStmt(Assignment); } // - if the subobject is an array, each element is assigned, in the // manner appropriate to the element type; // Construct a loop over the array bounds, e.g., // // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) // // that will copy each of the array elements. QualType SizeType = S.Context.getSizeType(); // Create the iteration variable. IdentifierInfo *IterationVarName = nullptr; { SmallString<8> Str; llvm::raw_svector_ostream OS(Str); OS << "__i" << Depth; IterationVarName = &S.Context.Idents.get(OS.str()); } VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); // Initialize the iteration variable to zero. llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); // Creates a reference to the iteration variable. RefBuilder IterationVarRef(IterationVar, SizeType); LvalueConvBuilder IterationVarRefRVal(IterationVarRef); // Create the DeclStmt that holds the iteration variable. Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); // Subscript the "from" and "to" expressions with the iteration variable. SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); MoveCastBuilder FromIndexMove(FromIndexCopy); const ExprBuilder *FromIndex; if (Copying) FromIndex = &FromIndexCopy; else FromIndex = &FromIndexMove; SubscriptBuilder ToIndex(To, IterationVarRefRVal); // Build the copy/move for an individual element of the array. StmtResult Copy = buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), ToIndex, *FromIndex, CopyingBaseSubobject, Copying, Depth + 1); // Bail out if copying fails or if we determined that we should use memcpy. if (Copy.isInvalid() || !Copy.get()) return Copy; // Create the comparison against the array bound. llvm::APInt Upper = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); Expr *Comparison = BinaryOperator::Create( S.Context, IterationVarRefRVal.build(S, Loc), IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, S.CurFPFeatureOverrides()); // Create the pre-increment of the iteration variable. We can determine // whether the increment will overflow based on the value of the array // bound. Expr *Increment = UnaryOperator::Create( S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); // Construct the loop that copies all elements of this array. return S.ActOnForStmt( Loc, Loc, InitStmt, S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); } static StmtResult buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, const ExprBuilder &To, const ExprBuilder &From, bool CopyingBaseSubobject, bool Copying) { // Maybe we should use a memcpy? if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && T.isTriviallyCopyableType(S.Context)) return buildMemcpyForAssignmentOp(S, Loc, T, To, From); StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, CopyingBaseSubobject, Copying, 0)); // If we ended up picking a trivial assignment operator for an array of a // non-trivially-copyable class type, just emit a memcpy. if (!Result.isInvalid() && !Result.get()) return buildMemcpyForAssignmentOp(S, Loc, T, To, From); return Result; } CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { // Note: The following rules are largely analoguous to the copy // constructor rules. Note that virtual bases are not taken into account // for determining the argument type of the operator. Note also that // operators taking an object instead of a reference are allowed. assert(ClassDecl->needsImplicitCopyAssignment()); DeclaringSpecialMember DSM(*this, ClassDecl, CXXSpecialMemberKind::CopyAssignment); if (DSM.isAlreadyBeingDeclared()) return nullptr; QualType ArgType = Context.getTypeDeclType(ClassDecl); ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, ArgType, nullptr); LangAS AS = getDefaultCXXMethodAddrSpace(); if (AS != LangAS::Default) ArgType = Context.getAddrSpaceQualType(ArgType, AS); QualType RetType = Context.getLValueReferenceType(ArgType); bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); if (Const) ArgType = ArgType.withConst(); ArgType = Context.getLValueReferenceType(ArgType); bool Constexpr = defaultedSpecialMemberIsConstexpr( *this, ClassDecl, CXXSpecialMemberKind::CopyAssignment, Const); // An implicitly-declared copy assignment operator is an inline public // member of its class. DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); SourceLocation ClassLoc = ClassDecl->getLocation(); DeclarationNameInfo NameInfo(Name, ClassLoc); CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, /*StorageClass=*/SC_None, getCurFPFeatures().isFPConstrained(), /*isInline=*/true, Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, SourceLocation()); CopyAssignment->setAccess(AS_public); CopyAssignment->setDefaulted(); CopyAssignment->setImplicit(); setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); if (getLangOpts().CUDA) CUDA().inferTargetForImplicitSpecialMember( ClassDecl, CXXSpecialMemberKind::CopyAssignment, CopyAssignment, /* ConstRHS */ Const, /* Diagnose */ false); // Add the parameter to the operator. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, ClassLoc, ClassLoc, /*Id=*/nullptr, ArgType, /*TInfo=*/nullptr, SC_None, nullptr); CopyAssignment->setParams(FromParam); CopyAssignment->setTrivial( ClassDecl->needsOverloadResolutionForCopyAssignment() ? SpecialMemberIsTrivial(CopyAssignment, CXXSpecialMemberKind::CopyAssignment) : ClassDecl->hasTrivialCopyAssignment()); // Note that we have added this copy-assignment operator. ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; Scope *S = getScopeForContext(ClassDecl); CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); if (ShouldDeleteSpecialMember(CopyAssignment, CXXSpecialMemberKind::CopyAssignment)) { ClassDecl->setImplicitCopyAssignmentIsDeleted(); SetDeclDeleted(CopyAssignment, ClassLoc); } if (S) PushOnScopeChains(CopyAssignment, S, false); ClassDecl->addDecl(CopyAssignment); return CopyAssignment; } /// Diagnose an implicit copy operation for a class which is odr-used, but /// which is deprecated because the class has a user-declared copy constructor, /// copy assignment operator, or destructor. static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { assert(CopyOp->isImplicit()); CXXRecordDecl *RD = CopyOp->getParent(); CXXMethodDecl *UserDeclaredOperation = nullptr; if (RD->hasUserDeclaredDestructor()) { UserDeclaredOperation = RD->getDestructor(); } else if (!isa(CopyOp) && RD->hasUserDeclaredCopyConstructor()) { // Find any user-declared copy constructor. for (auto *I : RD->ctors()) { if (I->isCopyConstructor()) { UserDeclaredOperation = I; break; } } assert(UserDeclaredOperation); } else if (isa(CopyOp) && RD->hasUserDeclaredCopyAssignment()) { // Find any user-declared move assignment operator. for (auto *I : RD->methods()) { if (I->isCopyAssignmentOperator()) { UserDeclaredOperation = I; break; } } assert(UserDeclaredOperation); } if (UserDeclaredOperation) { bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); bool UDOIsDestructor = isa(UserDeclaredOperation); bool IsCopyAssignment = !isa(CopyOp); unsigned DiagID = (UDOIsUserProvided && UDOIsDestructor) ? diag::warn_deprecated_copy_with_user_provided_dtor : (UDOIsUserProvided && !UDOIsDestructor) ? diag::warn_deprecated_copy_with_user_provided_copy : (!UDOIsUserProvided && UDOIsDestructor) ? diag::warn_deprecated_copy_with_dtor : diag::warn_deprecated_copy; S.Diag(UserDeclaredOperation->getLocation(), DiagID) << RD << IsCopyAssignment; } } void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, CXXMethodDecl *CopyAssignOperator) { assert((CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"); if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) return; CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); if (ClassDecl->isInvalidDecl()) { CopyAssignOperator->setInvalidDecl(); return; } SynthesizedFunctionScope Scope(*this, CopyAssignOperator); // The exception specification is needed because we are defining the // function. ResolveExceptionSpec(CurrentLocation, CopyAssignOperator->getType()->castAs()); // Add a context note for diagnostics produced after this point. Scope.addContextNote(CurrentLocation); // C++11 [class.copy]p18: // The [definition of an implicitly declared copy assignment operator] is // deprecated if the class has a user-declared copy constructor or a // user-declared destructor. if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); // C++0x [class.copy]p30: // The implicitly-defined or explicitly-defaulted copy assignment operator // for a non-union class X performs memberwise copy assignment of its // subobjects. The direct base classes of X are assigned first, in the // order of their declaration in the base-specifier-list, and then the // immediate non-static data members of X are assigned, in the order in // which they were declared in the class definition. // The statements that form the synthesized function body. SmallVector Statements; // The parameter for the "other" object, which we are copying from. ParmVarDecl *Other = CopyAssignOperator->getNonObjectParameter(0); Qualifiers OtherQuals = Other->getType().getQualifiers(); QualType OtherRefType = Other->getType(); if (OtherRefType->isLValueReferenceType()) { OtherRefType = OtherRefType->getPointeeType(); OtherQuals = OtherRefType.getQualifiers(); } // Our location for everything implicitly-generated. SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() ? CopyAssignOperator->getEndLoc() : CopyAssignOperator->getLocation(); // Builds a DeclRefExpr for the "other" object. RefBuilder OtherRef(Other, OtherRefType); // Builds the function object parameter. std::optional This; std::optional DerefThis; std::optional ExplicitObject; bool IsArrow = false; QualType ObjectType; if (CopyAssignOperator->isExplicitObjectMemberFunction()) { ObjectType = CopyAssignOperator->getParamDecl(0)->getType(); if (ObjectType->isReferenceType()) ObjectType = ObjectType->getPointeeType(); ExplicitObject.emplace(CopyAssignOperator->getParamDecl(0), ObjectType); } else { ObjectType = getCurrentThisType(); This.emplace(); DerefThis.emplace(*This); IsArrow = !LangOpts.HLSL; } ExprBuilder &ObjectParameter = ExplicitObject ? static_cast(*ExplicitObject) : static_cast(*This); // Assign base classes. bool Invalid = false; for (auto &Base : ClassDecl->bases()) { // Form the assignment: // static_cast(this)->Base::operator=(static_cast(other)); QualType BaseType = Base.getType().getUnqualifiedType(); if (!BaseType->isRecordType()) { Invalid = true; continue; } CXXCastPath BasePath; BasePath.push_back(&Base); // Construct the "from" expression, which is an implicit cast to the // appropriately-qualified base type. CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), VK_LValue, BasePath); // Dereference "this". CastBuilder To( ExplicitObject ? static_cast(*ExplicitObject) : static_cast(*DerefThis), Context.getQualifiedType(BaseType, ObjectType.getQualifiers()), VK_LValue, BasePath); // Build the copy. StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, To, From, /*CopyingBaseSubobject=*/true, /*Copying=*/true); if (Copy.isInvalid()) { CopyAssignOperator->setInvalidDecl(); return; } // Success! Record the copy. Statements.push_back(Copy.getAs()); } // Assign non-static members. for (auto *Field : ClassDecl->fields()) { // FIXME: We should form some kind of AST representation for the implied // memcpy in a union copy operation. if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) continue; if (Field->isInvalidDecl()) { Invalid = true; continue; } // Check for members of reference type; we can't copy those. if (Field->getType()->isReferenceType()) { Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); Diag(Field->getLocation(), diag::note_declared_at); Invalid = true; continue; } // Check for members of const-qualified, non-class type. QualType BaseType = Context.getBaseElementType(Field->getType()); if (!BaseType->getAs() && BaseType.isConstQualified()) { Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); Diag(Field->getLocation(), diag::note_declared_at); Invalid = true; continue; } // Suppress assigning zero-width bitfields. if (Field->isZeroLengthBitField(Context)) continue; QualType FieldType = Field->getType().getNonReferenceType(); if (FieldType->isIncompleteArrayType()) { assert(ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"); continue; } // Build references to the field in the object we're copying from and to. CXXScopeSpec SS; // Intentionally empty LookupResult MemberLookup(*this, Field->getDeclName(), Loc, LookupMemberName); MemberLookup.addDecl(Field); MemberLookup.resolveKind(); MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup); // Build the copy of this field. StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, To, From, /*CopyingBaseSubobject=*/false, /*Copying=*/true); if (Copy.isInvalid()) { CopyAssignOperator->setInvalidDecl(); return; } // Success! Record the copy. Statements.push_back(Copy.getAs()); } if (!Invalid) { // Add a "return *this;" Expr *ThisExpr = (ExplicitObject ? static_cast(*ExplicitObject) : LangOpts.HLSL ? static_cast(*This) : static_cast(*DerefThis)) .build(*this, Loc); StmtResult Return = BuildReturnStmt(Loc, ThisExpr); if (Return.isInvalid()) Invalid = true; else Statements.push_back(Return.getAs()); } if (Invalid) { CopyAssignOperator->setInvalidDecl(); return; } StmtResult Body; { CompoundScopeRAII CompoundScope(*this); Body = ActOnCompoundStmt(Loc, Loc, Statements, /*isStmtExpr=*/false); assert(!Body.isInvalid() && "Compound statement creation cannot fail"); } CopyAssignOperator->setBody(Body.getAs()); CopyAssignOperator->markUsed(Context); if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(CopyAssignOperator); } } CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { assert(ClassDecl->needsImplicitMoveAssignment()); DeclaringSpecialMember DSM(*this, ClassDecl, CXXSpecialMemberKind::MoveAssignment); if (DSM.isAlreadyBeingDeclared()) return nullptr; // Note: The following rules are largely analoguous to the move // constructor rules. QualType ArgType = Context.getTypeDeclType(ClassDecl); ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, ArgType, nullptr); LangAS AS = getDefaultCXXMethodAddrSpace(); if (AS != LangAS::Default) ArgType = Context.getAddrSpaceQualType(ArgType, AS); QualType RetType = Context.getLValueReferenceType(ArgType); ArgType = Context.getRValueReferenceType(ArgType); bool Constexpr = defaultedSpecialMemberIsConstexpr( *this, ClassDecl, CXXSpecialMemberKind::MoveAssignment, false); // An implicitly-declared move assignment operator is an inline public // member of its class. DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); SourceLocation ClassLoc = ClassDecl->getLocation(); DeclarationNameInfo NameInfo(Name, ClassLoc); CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, /*StorageClass=*/SC_None, getCurFPFeatures().isFPConstrained(), /*isInline=*/true, Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, SourceLocation()); MoveAssignment->setAccess(AS_public); MoveAssignment->setDefaulted(); MoveAssignment->setImplicit(); setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); if (getLangOpts().CUDA) CUDA().inferTargetForImplicitSpecialMember( ClassDecl, CXXSpecialMemberKind::MoveAssignment, MoveAssignment, /* ConstRHS */ false, /* Diagnose */ false); // Add the parameter to the operator. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, ClassLoc, ClassLoc, /*Id=*/nullptr, ArgType, /*TInfo=*/nullptr, SC_None, nullptr); MoveAssignment->setParams(FromParam); MoveAssignment->setTrivial( ClassDecl->needsOverloadResolutionForMoveAssignment() ? SpecialMemberIsTrivial(MoveAssignment, CXXSpecialMemberKind::MoveAssignment) : ClassDecl->hasTrivialMoveAssignment()); // Note that we have added this copy-assignment operator. ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; Scope *S = getScopeForContext(ClassDecl); CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); if (ShouldDeleteSpecialMember(MoveAssignment, CXXSpecialMemberKind::MoveAssignment)) { ClassDecl->setImplicitMoveAssignmentIsDeleted(); SetDeclDeleted(MoveAssignment, ClassLoc); } if (S) PushOnScopeChains(MoveAssignment, S, false); ClassDecl->addDecl(MoveAssignment); return MoveAssignment; } /// Check if we're implicitly defining a move assignment operator for a class /// with virtual bases. Such a move assignment might move-assign the virtual /// base multiple times. static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, SourceLocation CurrentLocation) { assert(!Class->isDependentContext() && "should not define dependent move"); // Only a virtual base could get implicitly move-assigned multiple times. // Only a non-trivial move assignment can observe this. We only want to // diagnose if we implicitly define an assignment operator that assigns // two base classes, both of which move-assign the same virtual base. if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || Class->getNumBases() < 2) return; llvm::SmallVector Worklist; typedef llvm::DenseMap VBaseMap; VBaseMap VBases; for (auto &BI : Class->bases()) { Worklist.push_back(&BI); while (!Worklist.empty()) { CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); // If the base has no non-trivial move assignment operators, // we don't care about moves from it. if (!Base->hasNonTrivialMoveAssignment()) continue; // If there's nothing virtual here, skip it. if (!BaseSpec->isVirtual() && !Base->getNumVBases()) continue; // If we're not actually going to call a move assignment for this base, // or the selected move assignment is trivial, skip it. Sema::SpecialMemberOverloadResult SMOR = S.LookupSpecialMember(Base, CXXSpecialMemberKind::MoveAssignment, /*ConstArg*/ false, /*VolatileArg*/ false, /*RValueThis*/ true, /*ConstThis*/ false, /*VolatileThis*/ false); if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || !SMOR.getMethod()->isMoveAssignmentOperator()) continue; if (BaseSpec->isVirtual()) { // We're going to move-assign this virtual base, and its move // assignment operator is not trivial. If this can happen for // multiple distinct direct bases of Class, diagnose it. (If it // only happens in one base, we'll diagnose it when synthesizing // that base class's move assignment operator.) CXXBaseSpecifier *&Existing = VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) .first->second; if (Existing && Existing != &BI) { S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) << Class << Base; S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) << (Base->getCanonicalDecl() == Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) << Base << Existing->getType() << Existing->getSourceRange(); S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) << (Base->getCanonicalDecl() == BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) << Base << BI.getType() << BaseSpec->getSourceRange(); // Only diagnose each vbase once. Existing = nullptr; } } else { // Only walk over bases that have defaulted move assignment operators. // We assume that any user-provided move assignment operator handles // the multiple-moves-of-vbase case itself somehow. if (!SMOR.getMethod()->isDefaulted()) continue; // We're going to move the base classes of Base. Add them to the list. llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases())); } } } } void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MoveAssignOperator) { assert((MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"); if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) return; CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); if (ClassDecl->isInvalidDecl()) { MoveAssignOperator->setInvalidDecl(); return; } // C++0x [class.copy]p28: // The implicitly-defined or move assignment operator for a non-union class // X performs memberwise move assignment of its subobjects. The direct base // classes of X are assigned first, in the order of their declaration in the // base-specifier-list, and then the immediate non-static data members of X // are assigned, in the order in which they were declared in the class // definition. // Issue a warning if our implicit move assignment operator will move // from a virtual base more than once. checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); SynthesizedFunctionScope Scope(*this, MoveAssignOperator); // The exception specification is needed because we are defining the // function. ResolveExceptionSpec(CurrentLocation, MoveAssignOperator->getType()->castAs()); // Add a context note for diagnostics produced after this point. Scope.addContextNote(CurrentLocation); // The statements that form the synthesized function body. SmallVector Statements; // The parameter for the "other" object, which we are move from. ParmVarDecl *Other = MoveAssignOperator->getNonObjectParameter(0); QualType OtherRefType = Other->getType()->castAs()->getPointeeType(); // Our location for everything implicitly-generated. SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() ? MoveAssignOperator->getEndLoc() : MoveAssignOperator->getLocation(); // Builds a reference to the "other" object. RefBuilder OtherRef(Other, OtherRefType); // Cast to rvalue. MoveCastBuilder MoveOther(OtherRef); // Builds the function object parameter. std::optional This; std::optional DerefThis; std::optional ExplicitObject; QualType ObjectType; if (MoveAssignOperator->isExplicitObjectMemberFunction()) { ObjectType = MoveAssignOperator->getParamDecl(0)->getType(); if (ObjectType->isReferenceType()) ObjectType = ObjectType->getPointeeType(); ExplicitObject.emplace(MoveAssignOperator->getParamDecl(0), ObjectType); } else { ObjectType = getCurrentThisType(); This.emplace(); DerefThis.emplace(*This); } ExprBuilder &ObjectParameter = ExplicitObject ? *ExplicitObject : static_cast(*This); // Assign base classes. bool Invalid = false; for (auto &Base : ClassDecl->bases()) { // C++11 [class.copy]p28: // It is unspecified whether subobjects representing virtual base classes // are assigned more than once by the implicitly-defined copy assignment // operator. // FIXME: Do not assign to a vbase that will be assigned by some other base // class. For a move-assignment, this can result in the vbase being moved // multiple times. // Form the assignment: // static_cast(this)->Base::operator=(static_cast(other)); QualType BaseType = Base.getType().getUnqualifiedType(); if (!BaseType->isRecordType()) { Invalid = true; continue; } CXXCastPath BasePath; BasePath.push_back(&Base); // Construct the "from" expression, which is an implicit cast to the // appropriately-qualified base type. CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); // Implicitly cast "this" to the appropriately-qualified base type. // Dereference "this". CastBuilder To( ExplicitObject ? static_cast(*ExplicitObject) : static_cast(*DerefThis), Context.getQualifiedType(BaseType, ObjectType.getQualifiers()), VK_LValue, BasePath); // Build the move. StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, To, From, /*CopyingBaseSubobject=*/true, /*Copying=*/false); if (Move.isInvalid()) { MoveAssignOperator->setInvalidDecl(); return; } // Success! Record the move. Statements.push_back(Move.getAs()); } // Assign non-static members. for (auto *Field : ClassDecl->fields()) { // FIXME: We should form some kind of AST representation for the implied // memcpy in a union copy operation. if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) continue; if (Field->isInvalidDecl()) { Invalid = true; continue; } // Check for members of reference type; we can't move those. if (Field->getType()->isReferenceType()) { Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); Diag(Field->getLocation(), diag::note_declared_at); Invalid = true; continue; } // Check for members of const-qualified, non-class type. QualType BaseType = Context.getBaseElementType(Field->getType()); if (!BaseType->getAs() && BaseType.isConstQualified()) { Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); Diag(Field->getLocation(), diag::note_declared_at); Invalid = true; continue; } // Suppress assigning zero-width bitfields. if (Field->isZeroLengthBitField(Context)) continue; QualType FieldType = Field->getType().getNonReferenceType(); if (FieldType->isIncompleteArrayType()) { assert(ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"); continue; } // Build references to the field in the object we're copying from and to. LookupResult MemberLookup(*this, Field->getDeclName(), Loc, LookupMemberName); MemberLookup.addDecl(Field); MemberLookup.resolveKind(); MemberBuilder From(MoveOther, OtherRefType, /*IsArrow=*/false, MemberLookup); MemberBuilder To(ObjectParameter, ObjectType, /*IsArrow=*/!ExplicitObject, MemberLookup); assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue "Member reference with rvalue base must be rvalue except for reference " "members, which aren't allowed for move assignment."); // Build the move of this field. StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, To, From, /*CopyingBaseSubobject=*/false, /*Copying=*/false); if (Move.isInvalid()) { MoveAssignOperator->setInvalidDecl(); return; } // Success! Record the copy. Statements.push_back(Move.getAs()); } if (!Invalid) { // Add a "return *this;" Expr *ThisExpr = (ExplicitObject ? static_cast(*ExplicitObject) : static_cast(*DerefThis)) .build(*this, Loc); StmtResult Return = BuildReturnStmt(Loc, ThisExpr); if (Return.isInvalid()) Invalid = true; else Statements.push_back(Return.getAs()); } if (Invalid) { MoveAssignOperator->setInvalidDecl(); return; } StmtResult Body; { CompoundScopeRAII CompoundScope(*this); Body = ActOnCompoundStmt(Loc, Loc, Statements, /*isStmtExpr=*/false); assert(!Body.isInvalid() && "Compound statement creation cannot fail"); } MoveAssignOperator->setBody(Body.getAs()); MoveAssignOperator->markUsed(Context); if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(MoveAssignOperator); } } CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( CXXRecordDecl *ClassDecl) { // C++ [class.copy]p4: // If the class definition does not explicitly declare a copy // constructor, one is declared implicitly. assert(ClassDecl->needsImplicitCopyConstructor()); DeclaringSpecialMember DSM(*this, ClassDecl, CXXSpecialMemberKind::CopyConstructor); if (DSM.isAlreadyBeingDeclared()) return nullptr; QualType ClassType = Context.getTypeDeclType(ClassDecl); QualType ArgType = ClassType; ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, ArgType, nullptr); bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); if (Const) ArgType = ArgType.withConst(); LangAS AS = getDefaultCXXMethodAddrSpace(); if (AS != LangAS::Default) ArgType = Context.getAddrSpaceQualType(ArgType, AS); ArgType = Context.getLValueReferenceType(ArgType); bool Constexpr = defaultedSpecialMemberIsConstexpr( *this, ClassDecl, CXXSpecialMemberKind::CopyConstructor, Const); DeclarationName Name = Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(ClassType)); SourceLocation ClassLoc = ClassDecl->getLocation(); DeclarationNameInfo NameInfo(Name, ClassLoc); // An implicitly-declared copy constructor is an inline public // member of its class. CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), /*isInline=*/true, /*isImplicitlyDeclared=*/true, Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified); CopyConstructor->setAccess(AS_public); CopyConstructor->setDefaulted(); setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); if (getLangOpts().CUDA) CUDA().inferTargetForImplicitSpecialMember( ClassDecl, CXXSpecialMemberKind::CopyConstructor, CopyConstructor, /* ConstRHS */ Const, /* Diagnose */ false); // During template instantiation of special member functions we need a // reliable TypeSourceInfo for the parameter types in order to allow functions // to be substituted. TypeSourceInfo *TSI = nullptr; if (inTemplateInstantiation() && ClassDecl->isLambda()) TSI = Context.getTrivialTypeSourceInfo(ArgType); // Add the parameter to the constructor. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, /*IdentifierInfo=*/nullptr, ArgType, /*TInfo=*/TSI, SC_None, nullptr); CopyConstructor->setParams(FromParam); CopyConstructor->setTrivial( ClassDecl->needsOverloadResolutionForCopyConstructor() ? SpecialMemberIsTrivial(CopyConstructor, CXXSpecialMemberKind::CopyConstructor) : ClassDecl->hasTrivialCopyConstructor()); CopyConstructor->setTrivialForCall( ClassDecl->hasAttr() || (ClassDecl->needsOverloadResolutionForCopyConstructor() ? SpecialMemberIsTrivial(CopyConstructor, CXXSpecialMemberKind::CopyConstructor, TAH_ConsiderTrivialABI) : ClassDecl->hasTrivialCopyConstructorForCall())); // Note that we have declared this constructor. ++getASTContext().NumImplicitCopyConstructorsDeclared; Scope *S = getScopeForContext(ClassDecl); CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); if (ShouldDeleteSpecialMember(CopyConstructor, CXXSpecialMemberKind::CopyConstructor)) { ClassDecl->setImplicitCopyConstructorIsDeleted(); SetDeclDeleted(CopyConstructor, ClassLoc); } if (S) PushOnScopeChains(CopyConstructor, S, false); ClassDecl->addDecl(CopyConstructor); return CopyConstructor; } void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *CopyConstructor) { assert((CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"); if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) return; CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); SynthesizedFunctionScope Scope(*this, CopyConstructor); // The exception specification is needed because we are defining the // function. ResolveExceptionSpec(CurrentLocation, CopyConstructor->getType()->castAs()); MarkVTableUsed(CurrentLocation, ClassDecl); // Add a context note for diagnostics produced after this point. Scope.addContextNote(CurrentLocation); // C++11 [class.copy]p7: // The [definition of an implicitly declared copy constructor] is // deprecated if the class has a user-declared copy assignment operator // or a user-declared destructor. if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) diagnoseDeprecatedCopyOperation(*this, CopyConstructor); if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { CopyConstructor->setInvalidDecl(); } else { SourceLocation Loc = CopyConstructor->getEndLoc().isValid() ? CopyConstructor->getEndLoc() : CopyConstructor->getLocation(); Sema::CompoundScopeRAII CompoundScope(*this); CopyConstructor->setBody( ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false) .getAs()); CopyConstructor->markUsed(Context); } if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(CopyConstructor); } } CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( CXXRecordDecl *ClassDecl) { assert(ClassDecl->needsImplicitMoveConstructor()); DeclaringSpecialMember DSM(*this, ClassDecl, CXXSpecialMemberKind::MoveConstructor); if (DSM.isAlreadyBeingDeclared()) return nullptr; QualType ClassType = Context.getTypeDeclType(ClassDecl); QualType ArgType = ClassType; ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, ArgType, nullptr); LangAS AS = getDefaultCXXMethodAddrSpace(); if (AS != LangAS::Default) ArgType = Context.getAddrSpaceQualType(ClassType, AS); ArgType = Context.getRValueReferenceType(ArgType); bool Constexpr = defaultedSpecialMemberIsConstexpr( *this, ClassDecl, CXXSpecialMemberKind::MoveConstructor, false); DeclarationName Name = Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(ClassType)); SourceLocation ClassLoc = ClassDecl->getLocation(); DeclarationNameInfo NameInfo(Name, ClassLoc); // C++11 [class.copy]p11: // An implicitly-declared copy/move constructor is an inline public // member of its class. CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), /*isInline=*/true, /*isImplicitlyDeclared=*/true, Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified); MoveConstructor->setAccess(AS_public); MoveConstructor->setDefaulted(); setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); if (getLangOpts().CUDA) CUDA().inferTargetForImplicitSpecialMember( ClassDecl, CXXSpecialMemberKind::MoveConstructor, MoveConstructor, /* ConstRHS */ false, /* Diagnose */ false); // Add the parameter to the constructor. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, ClassLoc, ClassLoc, /*IdentifierInfo=*/nullptr, ArgType, /*TInfo=*/nullptr, SC_None, nullptr); MoveConstructor->setParams(FromParam); MoveConstructor->setTrivial( ClassDecl->needsOverloadResolutionForMoveConstructor() ? SpecialMemberIsTrivial(MoveConstructor, CXXSpecialMemberKind::MoveConstructor) : ClassDecl->hasTrivialMoveConstructor()); MoveConstructor->setTrivialForCall( ClassDecl->hasAttr() || (ClassDecl->needsOverloadResolutionForMoveConstructor() ? SpecialMemberIsTrivial(MoveConstructor, CXXSpecialMemberKind::MoveConstructor, TAH_ConsiderTrivialABI) : ClassDecl->hasTrivialMoveConstructorForCall())); // Note that we have declared this constructor. ++getASTContext().NumImplicitMoveConstructorsDeclared; Scope *S = getScopeForContext(ClassDecl); CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); if (ShouldDeleteSpecialMember(MoveConstructor, CXXSpecialMemberKind::MoveConstructor)) { ClassDecl->setImplicitMoveConstructorIsDeleted(); SetDeclDeleted(MoveConstructor, ClassLoc); } if (S) PushOnScopeChains(MoveConstructor, S, false); ClassDecl->addDecl(MoveConstructor); return MoveConstructor; } void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *MoveConstructor) { assert((MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"); if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) return; CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); SynthesizedFunctionScope Scope(*this, MoveConstructor); // The exception specification is needed because we are defining the // function. ResolveExceptionSpec(CurrentLocation, MoveConstructor->getType()->castAs()); MarkVTableUsed(CurrentLocation, ClassDecl); // Add a context note for diagnostics produced after this point. Scope.addContextNote(CurrentLocation); if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { MoveConstructor->setInvalidDecl(); } else { SourceLocation Loc = MoveConstructor->getEndLoc().isValid() ? MoveConstructor->getEndLoc() : MoveConstructor->getLocation(); Sema::CompoundScopeRAII CompoundScope(*this); MoveConstructor->setBody( ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false) .getAs()); MoveConstructor->markUsed(Context); } if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(MoveConstructor); } } bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { return FD->isDeleted() && FD->isDefaulted() && isa(FD); } void Sema::DefineImplicitLambdaToFunctionPointerConversion( SourceLocation CurrentLocation, CXXConversionDecl *Conv) { SynthesizedFunctionScope Scope(*this, Conv); assert(!Conv->getReturnType()->isUndeducedType()); QualType ConvRT = Conv->getType()->castAs()->getReturnType(); CallingConv CC = ConvRT->getPointeeType()->castAs()->getCallConv(); CXXRecordDecl *Lambda = Conv->getParent(); FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); FunctionDecl *Invoker = CallOp->hasCXXExplicitFunctionObjectParameter() || CallOp->isStatic() ? CallOp : Lambda->getLambdaStaticInvoker(CC); if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { CallOp = InstantiateFunctionDeclaration( CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); if (!CallOp) return; if (CallOp != Invoker) { Invoker = InstantiateFunctionDeclaration( Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); if (!Invoker) return; } } if (CallOp->isInvalidDecl()) return; // Mark the call operator referenced (and add to pending instantiations // if necessary). // For both the conversion and static-invoker template specializations // we construct their body's in this function, so no need to add them // to the PendingInstantiations. MarkFunctionReferenced(CurrentLocation, CallOp); if (Invoker != CallOp) { // Fill in the __invoke function with a dummy implementation. IR generation // will fill in the actual details. Update its type in case it contained // an 'auto'. Invoker->markUsed(Context); Invoker->setReferenced(); Invoker->setType(Conv->getReturnType()->getPointeeType()); Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); } // Construct the body of the conversion function { return __invoke; }. Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue, Conv->getLocation()); assert(FunctionRef && "Can't refer to __invoke function?"); Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(), Conv->getLocation(), Conv->getLocation())); Conv->markUsed(Context); Conv->setReferenced(); if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(Conv); if (Invoker != CallOp) L->CompletedImplicitDefinition(Invoker); } } void Sema::DefineImplicitLambdaToBlockPointerConversion( SourceLocation CurrentLocation, CXXConversionDecl *Conv) { assert(!Conv->getParent()->isGenericLambda()); SynthesizedFunctionScope Scope(*this, Conv); // Copy-initialize the lambda object as needed to capture it. Expr *This = ActOnCXXThis(CurrentLocation).get(); Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, Conv->getLocation(), Conv, DerefThis); // If we're not under ARC, make sure we still get the _Block_copy/autorelease // behavior. Note that only the general conversion function does this // (since it's unusable otherwise); in the case where we inline the // block literal, it has block literal lifetime semantics. if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) BuildBlock = ImplicitCastExpr::Create( Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); if (BuildBlock.isInvalid()) { Diag(CurrentLocation, diag::note_lambda_to_block_conv); Conv->setInvalidDecl(); return; } // Create the return statement that returns the block from the conversion // function. StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); if (Return.isInvalid()) { Diag(CurrentLocation, diag::note_lambda_to_block_conv); Conv->setInvalidDecl(); return; } // Set the body of the conversion function. Stmt *ReturnS = Return.get(); Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(), Conv->getLocation(), Conv->getLocation())); Conv->markUsed(Context); // We're done; notify the mutation listener, if any. if (ASTMutationListener *L = getASTMutationListener()) { L->CompletedImplicitDefinition(Conv); } } /// Determine whether the given list arguments contains exactly one /// "real" (non-default) argument. static bool hasOneRealArgument(MultiExprArg Args) { switch (Args.size()) { case 0: return false; default: if (!Args[1]->isDefaultArgument()) return false; [[fallthrough]]; case 1: return !Args[0]->isDefaultArgument(); } return false; } ExprResult Sema::BuildCXXConstructExpr( SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, CXXConstructorDecl *Constructor, MultiExprArg ExprArgs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, CXXConstructionKind ConstructKind, SourceRange ParenRange) { bool Elidable = false; // C++0x [class.copy]p34: // When certain criteria are met, an implementation is allowed to // omit the copy/move construction of a class object, even if the // copy/move constructor and/or destructor for the object have // side effects. [...] // - when a temporary class object that has not been bound to a // reference (12.2) would be copied/moved to a class object // with the same cv-unqualified type, the copy/move operation // can be omitted by constructing the temporary object // directly into the target of the omitted copy/move if (ConstructKind == CXXConstructionKind::Complete && Constructor && // FIXME: Converting constructors should also be accepted. // But to fix this, the logic that digs down into a CXXConstructExpr // to find the source object needs to handle it. // Right now it assumes the source object is passed directly as the // first argument. Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { Expr *SubExpr = ExprArgs[0]; // FIXME: Per above, this is also incorrect if we want to accept // converting constructors, as isTemporaryObject will // reject temporaries with different type from the // CXXRecord itself. Elidable = SubExpr->isTemporaryObject( Context, cast(FoundDecl->getDeclContext())); } return BuildCXXConstructExpr(ConstructLoc, DeclInitType, FoundDecl, Constructor, Elidable, ExprArgs, HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, RequiresZeroInit, ConstructKind, ParenRange); } ExprResult Sema::BuildCXXConstructExpr( SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, CXXConstructionKind ConstructKind, SourceRange ParenRange) { if (auto *Shadow = dyn_cast(FoundDecl)) { Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); // The only way to get here is if we did overload resolution to find the // shadow decl, so we don't need to worry about re-checking the trailing // requires clause. if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc)) return ExprError(); } return BuildCXXConstructExpr( ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, RequiresZeroInit, ConstructKind, ParenRange); } /// BuildCXXConstructExpr - Creates a complete call to a constructor, /// including handling of its default argument expressions. ExprResult Sema::BuildCXXConstructExpr( SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, CXXConstructionKind ConstructKind, SourceRange ParenRange) { assert(declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && "given constructor for wrong type"); MarkFunctionReferenced(ConstructLoc, Constructor); if (getLangOpts().CUDA && !CUDA().CheckCall(ConstructLoc, Constructor)) return ExprError(); return CheckForImmediateInvocation( CXXConstructExpr::Create( Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, RequiresZeroInit, static_cast(ConstructKind), ParenRange), Constructor); } void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { if (VD->isInvalidDecl()) return; // If initializing the variable failed, don't also diagnose problems with // the destructor, they're likely related. if (VD->getInit() && VD->getInit()->containsErrors()) return; CXXRecordDecl *ClassDecl = cast(Record->getDecl()); if (ClassDecl->isInvalidDecl()) return; if (ClassDecl->hasIrrelevantDestructor()) return; if (ClassDecl->isDependentContext()) return; if (VD->isNoDestroy(getASTContext())) return; CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); // The result of `LookupDestructor` might be nullptr if the destructor is // invalid, in which case it is marked as `IneligibleOrNotSelected` and // will not be selected by `CXXRecordDecl::getDestructor()`. if (!Destructor) return; // If this is an array, we'll require the destructor during initialization, so // we can skip over this. We still want to emit exit-time destructor warnings // though. if (!VD->getType()->isArrayType()) { MarkFunctionReferenced(VD->getLocation(), Destructor); CheckDestructorAccess(VD->getLocation(), Destructor, PDiag(diag::err_access_dtor_var) << VD->getDeclName() << VD->getType()); DiagnoseUseOfDecl(Destructor, VD->getLocation()); } if (Destructor->isTrivial()) return; // If the destructor is constexpr, check whether the variable has constant // destruction now. if (Destructor->isConstexpr()) { bool HasConstantInit = false; if (VD->getInit() && !VD->getInit()->isValueDependent()) HasConstantInit = VD->evaluateValue(); SmallVector Notes; if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && HasConstantInit) { Diag(VD->getLocation(), diag::err_constexpr_var_requires_const_destruction) << VD; for (unsigned I = 0, N = Notes.size(); I != N; ++I) Diag(Notes[I].first, Notes[I].second); } } if (!VD->hasGlobalStorage() || !VD->needsDestruction(Context)) return; // Emit warning for non-trivial dtor in global scope (a real global, // class-static, function-static). if (!VD->hasAttr()) Diag(VD->getLocation(), diag::warn_exit_time_destructor); // TODO: this should be re-enabled for static locals by !CXAAtExit if (!VD->isStaticLocal()) Diag(VD->getLocation(), diag::warn_global_destructor); } bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, QualType DeclInitType, MultiExprArg ArgsPtr, SourceLocation Loc, SmallVectorImpl &ConvertedArgs, bool AllowExplicit, bool IsListInitialization) { // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. unsigned NumArgs = ArgsPtr.size(); Expr **Args = ArgsPtr.data(); const auto *Proto = Constructor->getType()->castAs(); unsigned NumParams = Proto->getNumParams(); // If too few arguments are available, we'll fill in the rest with defaults. if (NumArgs < NumParams) ConvertedArgs.reserve(NumParams); else ConvertedArgs.reserve(NumArgs); VariadicCallType CallType = Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; SmallVector AllArgs; bool Invalid = GatherArgumentsForCall( Loc, Constructor, Proto, 0, llvm::ArrayRef(Args, NumArgs), AllArgs, CallType, AllowExplicit, IsListInitialization); ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); DiagnoseSentinelCalls(Constructor, Loc, AllArgs); CheckConstructorCall(Constructor, DeclInitType, llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto, Loc); return Invalid; } static inline bool CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, const FunctionDecl *FnDecl) { const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); if (isa(DC)) { return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_declared_in_namespace) << FnDecl->getDeclName(); } if (isa(DC) && FnDecl->getStorageClass() == SC_Static) { return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_declared_static) << FnDecl->getDeclName(); } return false; } static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) { auto &Ctx = SemaRef.Context; Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); PtrQuals.removeAddressSpace(); return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); } static inline bool CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, CanQualType ExpectedResultType, CanQualType ExpectedFirstParamType, unsigned DependentParamTypeDiag, unsigned InvalidParamTypeDiag) { QualType ResultType = FnDecl->getType()->castAs()->getReturnType(); if (SemaRef.getLangOpts().OpenCLCPlusPlus) { // The operator is valid on any address space for OpenCL. // Drop address space from actual and expected result types. if (const auto *PtrTy = ResultType->getAs()) ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); if (auto ExpectedPtrTy = ExpectedResultType->getAs()) ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); } // Check that the result type is what we expect. if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { // Reject even if the type is dependent; an operator delete function is // required to have a non-dependent result type. return SemaRef.Diag( FnDecl->getLocation(), ResultType->isDependentType() ? diag::err_operator_new_delete_dependent_result_type : diag::err_operator_new_delete_invalid_result_type) << FnDecl->getDeclName() << ExpectedResultType; } // A function template must have at least 2 parameters. if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_template_too_few_parameters) << FnDecl->getDeclName(); // The function decl must have at least 1 parameter. if (FnDecl->getNumParams() == 0) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_too_few_parameters) << FnDecl->getDeclName(); QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); if (SemaRef.getLangOpts().OpenCLCPlusPlus) { // The operator is valid on any address space for OpenCL. // Drop address space from actual and expected first parameter types. if (const auto *PtrTy = FnDecl->getParamDecl(0)->getType()->getAs()) FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs()) ExpectedFirstParamType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); } // Check that the first parameter type is what we expect. if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != ExpectedFirstParamType) { // The first parameter type is not allowed to be dependent. As a tentative // DR resolution, we allow a dependent parameter type if it is the right // type anyway, to allow destroying operator delete in class templates. return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() ? DependentParamTypeDiag : InvalidParamTypeDiag) << FnDecl->getDeclName() << ExpectedFirstParamType; } return false; } static bool CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { // C++ [basic.stc.dynamic.allocation]p1: // A program is ill-formed if an allocation function is declared in a // namespace scope other than global scope or declared static in global // scope. if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) return true; CanQualType SizeTy = SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); // C++ [basic.stc.dynamic.allocation]p1: // The return type shall be void*. The first parameter shall have type // std::size_t. if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, SizeTy, diag::err_operator_new_dependent_param_type, diag::err_operator_new_param_type)) return true; // C++ [basic.stc.dynamic.allocation]p1: // The first parameter shall not have an associated default argument. if (FnDecl->getParamDecl(0)->hasDefaultArg()) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_default_arg) << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); return false; } static bool CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { // C++ [basic.stc.dynamic.deallocation]p1: // A program is ill-formed if deallocation functions are declared in a // namespace scope other than global scope or declared static in global // scope. if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) return true; auto *MD = dyn_cast(FnDecl); // C++ P0722: // Within a class C, the first parameter of a destroying operator delete // shall be of type C *. The first parameter of any other deallocation // function shall be of type void *. CanQualType ExpectedFirstParamType = MD && MD->isDestroyingOperatorDelete() ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( SemaRef.Context.getRecordType(MD->getParent()))) : SemaRef.Context.VoidPtrTy; // C++ [basic.stc.dynamic.deallocation]p2: // Each deallocation function shall return void if (CheckOperatorNewDeleteTypes( SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, diag::err_operator_delete_dependent_param_type, diag::err_operator_delete_param_type)) return true; // C++ P0722: // A destroying operator delete shall be a usual deallocation function. if (MD && !MD->getParent()->isDependentContext() && MD->isDestroyingOperatorDelete() && !SemaRef.isUsualDeallocationFunction(MD)) { SemaRef.Diag(MD->getLocation(), diag::err_destroying_operator_delete_not_usual); return true; } return false; } bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { assert(FnDecl && FnDecl->isOverloadedOperator() && "Expected an overloaded operator declaration"); OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); // C++ [over.oper]p5: // The allocation and deallocation functions, operator new, // operator new[], operator delete and operator delete[], are // described completely in 3.7.3. The attributes and restrictions // found in the rest of this subclause do not apply to them unless // explicitly stated in 3.7.3. if (Op == OO_Delete || Op == OO_Array_Delete) return CheckOperatorDeleteDeclaration(*this, FnDecl); if (Op == OO_New || Op == OO_Array_New) return CheckOperatorNewDeclaration(*this, FnDecl); // C++ [over.oper]p7: // An operator function shall either be a member function or // be a non-member function and have at least one parameter // whose type is a class, a reference to a class, an enumeration, // or a reference to an enumeration. // Note: Before C++23, a member function could not be static. The only member // function allowed to be static is the call operator function. if (CXXMethodDecl *MethodDecl = dyn_cast(FnDecl)) { if (MethodDecl->isStatic()) { if (Op == OO_Call || Op == OO_Subscript) Diag(FnDecl->getLocation(), (LangOpts.CPlusPlus23 ? diag::warn_cxx20_compat_operator_overload_static : diag::ext_operator_overload_static)) << FnDecl; else return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) << FnDecl; } } else { bool ClassOrEnumParam = false; for (auto *Param : FnDecl->parameters()) { QualType ParamType = Param->getType().getNonReferenceType(); if (ParamType->isDependentType() || ParamType->isRecordType() || ParamType->isEnumeralType()) { ClassOrEnumParam = true; break; } } if (!ClassOrEnumParam) return Diag(FnDecl->getLocation(), diag::err_operator_overload_needs_class_or_enum) << FnDecl->getDeclName(); } // C++ [over.oper]p8: // An operator function cannot have default arguments (8.3.6), // except where explicitly stated below. // // Only the function-call operator (C++ [over.call]p1) and the subscript // operator (CWG2507) allow default arguments. if (Op != OO_Call) { ParmVarDecl *FirstDefaultedParam = nullptr; for (auto *Param : FnDecl->parameters()) { if (Param->hasDefaultArg()) { FirstDefaultedParam = Param; break; } } if (FirstDefaultedParam) { if (Op == OO_Subscript) { Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 ? diag::ext_subscript_overload : diag::error_subscript_overload) << FnDecl->getDeclName() << 1 << FirstDefaultedParam->getDefaultArgRange(); } else { return Diag(FirstDefaultedParam->getLocation(), diag::err_operator_overload_default_arg) << FnDecl->getDeclName() << FirstDefaultedParam->getDefaultArgRange(); } } } static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { { false, false, false } #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ , { Unary, Binary, MemberOnly } #include "clang/Basic/OperatorKinds.def" }; bool CanBeUnaryOperator = OperatorUses[Op][0]; bool CanBeBinaryOperator = OperatorUses[Op][1]; bool MustBeMemberOperator = OperatorUses[Op][2]; // C++ [over.oper]p8: // [...] Operator functions cannot have more or fewer parameters // than the number required for the corresponding operator, as // described in the rest of this subclause. unsigned NumParams = FnDecl->getNumParams() + (isa(FnDecl) && !FnDecl->hasCXXExplicitFunctionObjectParameter() ? 1 : 0); if (Op != OO_Call && Op != OO_Subscript && ((NumParams == 1 && !CanBeUnaryOperator) || (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || (NumParams > 2))) { // We have the wrong number of parameters. unsigned ErrorKind; if (CanBeUnaryOperator && CanBeBinaryOperator) { ErrorKind = 2; // 2 -> unary or binary. } else if (CanBeUnaryOperator) { ErrorKind = 0; // 0 -> unary } else { assert(CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"); ErrorKind = 1; // 1 -> binary } return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) << FnDecl->getDeclName() << NumParams << ErrorKind; } if (Op == OO_Subscript && NumParams != 2) { Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 ? diag::ext_subscript_overload : diag::error_subscript_overload) << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2); } // Overloaded operators other than operator() and operator[] cannot be // variadic. if (Op != OO_Call && FnDecl->getType()->castAs()->isVariadic()) { return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) << FnDecl->getDeclName(); } // Some operators must be member functions. if (MustBeMemberOperator && !isa(FnDecl)) { return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be_member) << FnDecl->getDeclName(); } // C++ [over.inc]p1: // The user-defined function called operator++ implements the // prefix and postfix ++ operator. If this function is a member // function with no parameters, or a non-member function with one // parameter of class or enumeration type, it defines the prefix // increment operator ++ for objects of that type. If the function // is a member function with one parameter (which shall be of type // int) or a non-member function with two parameters (the second // of which shall be of type int), it defines the postfix // increment operator ++ for objects of that type. if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); QualType ParamType = LastParam->getType(); if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && !ParamType->isDependentType()) return Diag(LastParam->getLocation(), diag::err_operator_overload_post_incdec_must_be_int) << LastParam->getType() << (Op == OO_MinusMinus); } return false; } static bool checkLiteralOperatorTemplateParameterList(Sema &SemaRef, FunctionTemplateDecl *TpDecl) { TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); // Must have one or two template parameters. if (TemplateParams->size() == 1) { NonTypeTemplateParmDecl *PmDecl = dyn_cast(TemplateParams->getParam(0)); // The template parameter must be a char parameter pack. if (PmDecl && PmDecl->isTemplateParameterPack() && SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) return false; // C++20 [over.literal]p5: // A string literal operator template is a literal operator template // whose template-parameter-list comprises a single non-type // template-parameter of class type. // // As a DR resolution, we also allow placeholders for deduced class // template specializations. if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl && !PmDecl->isTemplateParameterPack() && (PmDecl->getType()->isRecordType() || PmDecl->getType()->getAs())) return false; } else if (TemplateParams->size() == 2) { TemplateTypeParmDecl *PmType = dyn_cast(TemplateParams->getParam(0)); NonTypeTemplateParmDecl *PmArgs = dyn_cast(TemplateParams->getParam(1)); // The second template parameter must be a parameter pack with the // first template parameter as its type. if (PmType && PmArgs && !PmType->isTemplateParameterPack() && PmArgs->isTemplateParameterPack()) { const TemplateTypeParmType *TArgs = PmArgs->getType()->getAs(); if (TArgs && TArgs->getDepth() == PmType->getDepth() && TArgs->getIndex() == PmType->getIndex()) { if (!SemaRef.inTemplateInstantiation()) SemaRef.Diag(TpDecl->getLocation(), diag::ext_string_literal_operator_template); return false; } } } SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), diag::err_literal_operator_template) << TpDecl->getTemplateParameters()->getSourceRange(); return true; } bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { if (isa(FnDecl)) { Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) << FnDecl->getDeclName(); return true; } if (FnDecl->isExternC()) { Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); if (const LinkageSpecDecl *LSD = FnDecl->getDeclContext()->getExternCContext()) Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); return true; } // This might be the definition of a literal operator template. FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); // This might be a specialization of a literal operator template. if (!TpDecl) TpDecl = FnDecl->getPrimaryTemplate(); // template type operator "" name() and // template type operator "" name() are the only valid // template signatures, and the only valid signatures with no parameters. // // C++20 also allows template type operator "" name(). if (TpDecl) { if (FnDecl->param_size() != 0) { Diag(FnDecl->getLocation(), diag::err_literal_operator_template_with_params); return true; } if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) return true; } else if (FnDecl->param_size() == 1) { const ParmVarDecl *Param = FnDecl->getParamDecl(0); QualType ParamType = Param->getType().getUnqualifiedType(); // Only unsigned long long int, long double, any character type, and const // char * are allowed as the only parameters. if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || Context.hasSameType(ParamType, Context.CharTy) || Context.hasSameType(ParamType, Context.WideCharTy) || Context.hasSameType(ParamType, Context.Char8Ty) || Context.hasSameType(ParamType, Context.Char16Ty) || Context.hasSameType(ParamType, Context.Char32Ty)) { } else if (const PointerType *Ptr = ParamType->getAs()) { QualType InnerType = Ptr->getPointeeType(); // Pointer parameter must be a const char *. if (!(Context.hasSameType(InnerType.getUnqualifiedType(), Context.CharTy) && InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) << ParamType << "'const char *'" << Param->getSourceRange(); return true; } } else if (ParamType->isRealFloatingType()) { Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) << ParamType << Context.LongDoubleTy << Param->getSourceRange(); return true; } else if (ParamType->isIntegerType()) { Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); return true; } else { Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_invalid_param) << ParamType << Param->getSourceRange(); return true; } } else if (FnDecl->param_size() == 2) { FunctionDecl::param_iterator Param = FnDecl->param_begin(); // First, verify that the first parameter is correct. QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); // Two parameter function must have a pointer to const as a // first parameter; let's strip those qualifiers. const PointerType *PT = FirstParamType->getAs(); if (!PT) { Diag((*Param)->getSourceRange().getBegin(), diag::err_literal_operator_param) << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); return true; } QualType PointeeType = PT->getPointeeType(); // First parameter must be const if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { Diag((*Param)->getSourceRange().getBegin(), diag::err_literal_operator_param) << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); return true; } QualType InnerType = PointeeType.getUnqualifiedType(); // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and // const char32_t* are allowed as the first parameter to a two-parameter // function if (!(Context.hasSameType(InnerType, Context.CharTy) || Context.hasSameType(InnerType, Context.WideCharTy) || Context.hasSameType(InnerType, Context.Char8Ty) || Context.hasSameType(InnerType, Context.Char16Ty) || Context.hasSameType(InnerType, Context.Char32Ty))) { Diag((*Param)->getSourceRange().getBegin(), diag::err_literal_operator_param) << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); return true; } // Move on to the second and final parameter. ++Param; // The second parameter must be a std::size_t. QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { Diag((*Param)->getSourceRange().getBegin(), diag::err_literal_operator_param) << SecondParamType << Context.getSizeType() << (*Param)->getSourceRange(); return true; } } else { Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); return true; } // Parameters are good. // A parameter-declaration-clause containing a default argument is not // equivalent to any of the permitted forms. for (auto *Param : FnDecl->parameters()) { if (Param->hasDefaultArg()) { Diag(Param->getDefaultArgRange().getBegin(), diag::err_literal_operator_default_argument) << Param->getDefaultArgRange(); break; } } const IdentifierInfo *II = FnDecl->getDeclName().getCXXLiteralIdentifier(); ReservedLiteralSuffixIdStatus Status = II->isReservedLiteralSuffixId(); if (Status != ReservedLiteralSuffixIdStatus::NotReserved && !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { // C++23 [usrlit.suffix]p1: // Literal suffix identifiers that do not start with an underscore are // reserved for future standardization. Literal suffix identifiers that // contain a double underscore __ are reserved for use by C++ // implementations. Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) << static_cast(Status) << StringLiteralParser::isValidUDSuffix(getLangOpts(), II->getName()); } return false; } Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, Expr *LangStr, SourceLocation LBraceLoc) { StringLiteral *Lit = cast(LangStr); assert(Lit->isUnevaluated() && "Unexpected string literal kind"); StringRef Lang = Lit->getString(); LinkageSpecLanguageIDs Language; if (Lang == "C") Language = LinkageSpecLanguageIDs::C; else if (Lang == "C++") Language = LinkageSpecLanguageIDs::CXX; else { Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) << LangStr->getSourceRange(); return nullptr; } // FIXME: Add all the various semantics of linkage specifications LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, LangStr->getExprLoc(), Language, LBraceLoc.isValid()); /// C++ [module.unit]p7.2.3 /// - Otherwise, if the declaration /// - ... /// - ... /// - appears within a linkage-specification, /// it is attached to the global module. /// /// If the declaration is already in global module fragment, we don't /// need to attach it again. if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) { Module *GlobalModule = PushImplicitGlobalModuleFragment(ExternLoc); D->setLocalOwningModule(GlobalModule); } CurContext->addDecl(D); PushDeclContext(S, D); return D; } Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, Decl *LinkageSpec, SourceLocation RBraceLoc) { if (RBraceLoc.isValid()) { LinkageSpecDecl* LSDecl = cast(LinkageSpec); LSDecl->setRBraceLoc(RBraceLoc); } // If the current module doesn't has Parent, it implies that the // LinkageSpec isn't in the module created by itself. So we don't // need to pop it. if (getLangOpts().CPlusPlusModules && getCurrentModule() && getCurrentModule()->isImplicitGlobalModule() && getCurrentModule()->Parent) PopImplicitGlobalModuleFragment(); PopDeclContext(); return LinkageSpec; } Decl *Sema::ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList, SourceLocation SemiLoc) { Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); // Attribute declarations appertain to empty declaration so we handle // them here. ProcessDeclAttributeList(S, ED, AttrList); CurContext->addDecl(ED); return ED; } VarDecl *Sema::BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, SourceLocation StartLoc, SourceLocation Loc, const IdentifierInfo *Name) { bool Invalid = false; QualType ExDeclType = TInfo->getType(); // Arrays and functions decay. if (ExDeclType->isArrayType()) ExDeclType = Context.getArrayDecayedType(ExDeclType); else if (ExDeclType->isFunctionType()) ExDeclType = Context.getPointerType(ExDeclType); // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. // The exception-declaration shall not denote a pointer or reference to an // incomplete type, other than [cv] void*. // N2844 forbids rvalue references. if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { Diag(Loc, diag::err_catch_rvalue_ref); Invalid = true; } if (ExDeclType->isVariablyModifiedType()) { Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; Invalid = true; } QualType BaseType = ExDeclType; int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference unsigned DK = diag::err_catch_incomplete; if (const PointerType *Ptr = BaseType->getAs()) { BaseType = Ptr->getPointeeType(); Mode = 1; DK = diag::err_catch_incomplete_ptr; } else if (const ReferenceType *Ref = BaseType->getAs()) { // For the purpose of error recovery, we treat rvalue refs like lvalue refs. BaseType = Ref->getPointeeType(); Mode = 2; DK = diag::err_catch_incomplete_ref; } if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) Invalid = true; if (!Invalid && BaseType.isWebAssemblyReferenceType()) { Diag(Loc, diag::err_wasm_reftype_tc) << 1; Invalid = true; } if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; Invalid = true; } if (!Invalid && !ExDeclType->isDependentType() && RequireNonAbstractType(Loc, ExDeclType, diag::err_abstract_type_in_decl, AbstractVariableType)) Invalid = true; // Only the non-fragile NeXT runtime currently supports C++ catches // of ObjC types, and no runtime supports catching ObjC types by value. if (!Invalid && getLangOpts().ObjC) { QualType T = ExDeclType; if (const ReferenceType *RT = T->getAs()) T = RT->getPointeeType(); if (T->isObjCObjectType()) { Diag(Loc, diag::err_objc_object_catch); Invalid = true; } else if (T->isObjCObjectPointerType()) { // FIXME: should this be a test for macosx-fragile specifically? if (getLangOpts().ObjCRuntime.isFragile()) Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); } } VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, ExDeclType, TInfo, SC_None); ExDecl->setExceptionVariable(true); // In ARC, infer 'retaining' for variables of retainable type. if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(ExDecl)) Invalid = true; if (!Invalid && !ExDeclType->isDependentType()) { if (const RecordType *recordType = ExDeclType->getAs()) { // Insulate this from anything else we might currently be parsing. EnterExpressionEvaluationContext scope( *this, ExpressionEvaluationContext::PotentiallyEvaluated); // C++ [except.handle]p16: // The object declared in an exception-declaration or, if the // exception-declaration does not specify a name, a temporary (12.2) is // copy-initialized (8.5) from the exception object. [...] // The object is destroyed when the handler exits, after the destruction // of any automatic objects initialized within the handler. // // We just pretend to initialize the object with itself, then make sure // it can be destroyed later. QualType initType = Context.getExceptionObjectType(ExDeclType); InitializedEntity entity = InitializedEntity::InitializeVariable(ExDecl); InitializationKind initKind = InitializationKind::CreateCopy(Loc, SourceLocation()); Expr *opaqueValue = new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); InitializationSequence sequence(*this, entity, initKind, opaqueValue); ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); if (result.isInvalid()) Invalid = true; else { // If the constructor used was non-trivial, set this as the // "initializer". CXXConstructExpr *construct = result.getAs(); if (!construct->getConstructor()->isTrivial()) { Expr *init = MaybeCreateExprWithCleanups(construct); ExDecl->setInit(init); } // And make sure it's destructable. FinalizeVarWithDestructor(ExDecl, recordType); } } } if (Invalid) ExDecl->setInvalidDecl(); return ExDecl; } Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { TypeSourceInfo *TInfo = GetTypeForDeclarator(D); bool Invalid = D.isInvalidType(); // Check for unexpanded parameter packs. if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, UPPC_ExceptionType)) { TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, D.getIdentifierLoc()); Invalid = true; } const IdentifierInfo *II = D.getIdentifier(); if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), LookupOrdinaryName, RedeclarationKind::ForVisibleRedeclaration)) { // The scope should be freshly made just for us. There is just no way // it contains any previous declaration, except for function parameters in // a function-try-block's catch statement. assert(!S->isDeclScope(PrevDecl)); if (isDeclInScope(PrevDecl, CurContext, S)) { Diag(D.getIdentifierLoc(), diag::err_redefinition) << D.getIdentifier(); Diag(PrevDecl->getLocation(), diag::note_previous_definition); Invalid = true; } else if (PrevDecl->isTemplateParameter()) // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); } if (D.getCXXScopeSpec().isSet() && !Invalid) { Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) << D.getCXXScopeSpec().getRange(); Invalid = true; } VarDecl *ExDecl = BuildExceptionDeclaration( S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); if (Invalid) ExDecl->setInvalidDecl(); // Add the exception declaration into this scope. if (II) PushOnScopeChains(ExDecl, S); else CurContext->addDecl(ExDecl); ProcessDeclAttributes(S, ExDecl, D); return ExDecl; } Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, Expr *AssertMessageExpr, SourceLocation RParenLoc) { if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) return nullptr; return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, AssertMessageExpr, RParenLoc, false); } static void WriteCharTypePrefix(BuiltinType::Kind BTK, llvm::raw_ostream &OS) { switch (BTK) { case BuiltinType::Char_S: case BuiltinType::Char_U: break; case BuiltinType::Char8: OS << "u8"; break; case BuiltinType::Char16: OS << 'u'; break; case BuiltinType::Char32: OS << 'U'; break; case BuiltinType::WChar_S: case BuiltinType::WChar_U: OS << 'L'; break; default: llvm_unreachable("Non-character type"); } } /// Convert character's value, interpreted as a code unit, to a string. /// The value needs to be zero-extended to 32-bits. /// FIXME: This assumes Unicode literal encodings static void WriteCharValueForDiagnostic(uint32_t Value, const BuiltinType *BTy, unsigned TyWidth, SmallVectorImpl &Str) { char Arr[UNI_MAX_UTF8_BYTES_PER_CODE_POINT]; char *Ptr = Arr; BuiltinType::Kind K = BTy->getKind(); llvm::raw_svector_ostream OS(Str); // This should catch Char_S, Char_U, Char8, and use of escaped characters in // other types. if (K == BuiltinType::Char_S || K == BuiltinType::Char_U || K == BuiltinType::Char8 || Value <= 0x7F) { StringRef Escaped = escapeCStyle(Value); if (!Escaped.empty()) EscapeStringForDiagnostic(Escaped, Str); else OS << static_cast(Value); return; } switch (K) { case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::WChar_S: case BuiltinType::WChar_U: { if (llvm::ConvertCodePointToUTF8(Value, Ptr)) EscapeStringForDiagnostic(StringRef(Arr, Ptr - Arr), Str); else OS << "\\x" << llvm::format_hex_no_prefix(Value, TyWidth / 4, /*Upper=*/true); break; } default: llvm_unreachable("Non-character type is passed"); } } /// Convert \V to a string we can present to the user in a diagnostic /// \T is the type of the expression that has been evaluated into \V static bool ConvertAPValueToString(const APValue &V, QualType T, SmallVectorImpl &Str, ASTContext &Context) { if (!V.hasValue()) return false; switch (V.getKind()) { case APValue::ValueKind::Int: if (T->isBooleanType()) { // Bools are reduced to ints during evaluation, but for // diagnostic purposes we want to print them as // true or false. int64_t BoolValue = V.getInt().getExtValue(); assert((BoolValue == 0 || BoolValue == 1) && "Bool type, but value is not 0 or 1"); llvm::raw_svector_ostream OS(Str); OS << (BoolValue ? "true" : "false"); } else { llvm::raw_svector_ostream OS(Str); // Same is true for chars. // We want to print the character representation for textual types const auto *BTy = T->getAs(); if (BTy) { switch (BTy->getKind()) { case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::Char8: case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::WChar_S: case BuiltinType::WChar_U: { unsigned TyWidth = Context.getIntWidth(T); assert(8 <= TyWidth && TyWidth <= 32 && "Unexpected integer width"); uint32_t CodeUnit = static_cast(V.getInt().getZExtValue()); WriteCharTypePrefix(BTy->getKind(), OS); OS << '\''; WriteCharValueForDiagnostic(CodeUnit, BTy, TyWidth, Str); OS << "' (0x" << llvm::format_hex_no_prefix(CodeUnit, /*Width=*/2, /*Upper=*/true) << ", " << V.getInt() << ')'; return true; } default: break; } } V.getInt().toString(Str); } break; case APValue::ValueKind::Float: V.getFloat().toString(Str); break; case APValue::ValueKind::LValue: if (V.isNullPointer()) { llvm::raw_svector_ostream OS(Str); OS << "nullptr"; } else return false; break; case APValue::ValueKind::ComplexFloat: { llvm::raw_svector_ostream OS(Str); OS << '('; V.getComplexFloatReal().toString(Str); OS << " + "; V.getComplexFloatImag().toString(Str); OS << "i)"; } break; case APValue::ValueKind::ComplexInt: { llvm::raw_svector_ostream OS(Str); OS << '('; V.getComplexIntReal().toString(Str); OS << " + "; V.getComplexIntImag().toString(Str); OS << "i)"; } break; default: return false; } return true; } /// Some Expression types are not useful to print notes about, /// e.g. literals and values that have already been expanded /// before such as int-valued template parameters. static bool UsefulToPrintExpr(const Expr *E) { E = E->IgnoreParenImpCasts(); // Literals are pretty easy for humans to understand. if (isa(E)) return false; // These have been substituted from template parameters // and appear as literals in the static assert error. if (isa(E)) return false; // -5 is also simple to understand. if (const auto *UnaryOp = dyn_cast(E)) return UsefulToPrintExpr(UnaryOp->getSubExpr()); // Only print nested arithmetic operators. if (const auto *BO = dyn_cast(E)) return (BO->isShiftOp() || BO->isAdditiveOp() || BO->isMultiplicativeOp() || BO->isBitwiseOp()); return true; } void Sema::DiagnoseStaticAssertDetails(const Expr *E) { if (const auto *Op = dyn_cast(E); Op && Op->getOpcode() != BO_LOr) { const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts(); const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts(); // Ignore comparisons of boolean expressions with a boolean literal. if ((isa(LHS) && RHS->getType()->isBooleanType()) || (isa(RHS) && LHS->getType()->isBooleanType())) return; // Don't print obvious expressions. if (!UsefulToPrintExpr(LHS) && !UsefulToPrintExpr(RHS)) return; struct { const clang::Expr *Cond; Expr::EvalResult Result; SmallString<12> ValueString; bool Print; } DiagSide[2] = {{LHS, Expr::EvalResult(), {}, false}, {RHS, Expr::EvalResult(), {}, false}}; for (unsigned I = 0; I < 2; I++) { const Expr *Side = DiagSide[I].Cond; Side->EvaluateAsRValue(DiagSide[I].Result, Context, true); DiagSide[I].Print = ConvertAPValueToString(DiagSide[I].Result.Val, Side->getType(), DiagSide[I].ValueString, Context); } if (DiagSide[0].Print && DiagSide[1].Print) { Diag(Op->getExprLoc(), diag::note_expr_evaluates_to) << DiagSide[0].ValueString << Op->getOpcodeStr() << DiagSide[1].ValueString << Op->getSourceRange(); } } } bool Sema::EvaluateStaticAssertMessageAsString(Expr *Message, std::string &Result, ASTContext &Ctx, bool ErrorOnInvalidMessage) { assert(Message); assert(!Message->isTypeDependent() && !Message->isValueDependent() && "can't evaluate a dependant static assert message"); if (const auto *SL = dyn_cast(Message)) { assert(SL->isUnevaluated() && "expected an unevaluated string"); Result.assign(SL->getString().begin(), SL->getString().end()); return true; } SourceLocation Loc = Message->getBeginLoc(); QualType T = Message->getType().getNonReferenceType(); auto *RD = T->getAsCXXRecordDecl(); if (!RD) { Diag(Loc, diag::err_static_assert_invalid_message); return false; } auto FindMember = [&](StringRef Member, bool &Empty, bool Diag = false) -> std::optional { DeclarationName DN = PP.getIdentifierInfo(Member); LookupResult MemberLookup(*this, DN, Loc, Sema::LookupMemberName); LookupQualifiedName(MemberLookup, RD); Empty = MemberLookup.empty(); OverloadCandidateSet Candidates(MemberLookup.getNameLoc(), OverloadCandidateSet::CSK_Normal); if (MemberLookup.empty()) return std::nullopt; return std::move(MemberLookup); }; bool SizeNotFound, DataNotFound; std::optional SizeMember = FindMember("size", SizeNotFound); std::optional DataMember = FindMember("data", DataNotFound); if (SizeNotFound || DataNotFound) { Diag(Loc, diag::err_static_assert_missing_member_function) << ((SizeNotFound && DataNotFound) ? 2 : SizeNotFound ? 0 : 1); return false; } if (!SizeMember || !DataMember) { if (!SizeMember) FindMember("size", SizeNotFound, /*Diag=*/true); if (!DataMember) FindMember("data", DataNotFound, /*Diag=*/true); return false; } auto BuildExpr = [&](LookupResult &LR) { ExprResult Res = BuildMemberReferenceExpr( Message, Message->getType(), Message->getBeginLoc(), false, CXXScopeSpec(), SourceLocation(), nullptr, LR, nullptr, nullptr); if (Res.isInvalid()) return ExprError(); Res = BuildCallExpr(nullptr, Res.get(), Loc, std::nullopt, Loc, nullptr, false, true); if (Res.isInvalid()) return ExprError(); if (Res.get()->isTypeDependent() || Res.get()->isValueDependent()) return ExprError(); return TemporaryMaterializationConversion(Res.get()); }; ExprResult SizeE = BuildExpr(*SizeMember); ExprResult DataE = BuildExpr(*DataMember); QualType SizeT = Context.getSizeType(); QualType ConstCharPtr = Context.getPointerType(Context.getConstType(Context.CharTy)); ExprResult EvaluatedSize = SizeE.isInvalid() ? ExprError() : BuildConvertedConstantExpression( SizeE.get(), SizeT, CCEK_StaticAssertMessageSize); if (EvaluatedSize.isInvalid()) { Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*size*/ 0; return false; } ExprResult EvaluatedData = DataE.isInvalid() ? ExprError() : BuildConvertedConstantExpression(DataE.get(), ConstCharPtr, CCEK_StaticAssertMessageData); if (EvaluatedData.isInvalid()) { Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*data*/ 1; return false; } if (!ErrorOnInvalidMessage && Diags.isIgnored(diag::warn_static_assert_message_constexpr, Loc)) return true; Expr::EvalResult Status; SmallVector Notes; Status.Diag = &Notes; if (!Message->EvaluateCharRangeAsString(Result, EvaluatedSize.get(), EvaluatedData.get(), Ctx, Status) || !Notes.empty()) { Diag(Message->getBeginLoc(), ErrorOnInvalidMessage ? diag::err_static_assert_message_constexpr : diag::warn_static_assert_message_constexpr); for (const auto &Note : Notes) Diag(Note.first, Note.second); return !ErrorOnInvalidMessage; } return true; } Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, Expr *AssertMessage, SourceLocation RParenLoc, bool Failed) { assert(AssertExpr != nullptr && "Expected non-null condition"); if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && (!AssertMessage || (!AssertMessage->isTypeDependent() && !AssertMessage->isValueDependent())) && !Failed) { // In a static_assert-declaration, the constant-expression shall be a // constant expression that can be contextually converted to bool. ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); if (Converted.isInvalid()) Failed = true; ExprResult FullAssertExpr = ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, /*DiscardedValue*/ false, /*IsConstexpr*/ true); if (FullAssertExpr.isInvalid()) Failed = true; else AssertExpr = FullAssertExpr.get(); llvm::APSInt Cond; Expr *BaseExpr = AssertExpr; AllowFoldKind FoldKind = NoFold; if (!getLangOpts().CPlusPlus) { // In C mode, allow folding as an extension for better compatibility with // C++ in terms of expressions like static_assert("test") or // static_assert(nullptr). FoldKind = AllowFold; } if (!Failed && VerifyIntegerConstantExpression( BaseExpr, &Cond, diag::err_static_assert_expression_is_not_constant, FoldKind).isInvalid()) Failed = true; // If the static_assert passes, only verify that // the message is grammatically valid without evaluating it. if (!Failed && AssertMessage && Cond.getBoolValue()) { std::string Str; EvaluateStaticAssertMessageAsString(AssertMessage, Str, Context, /*ErrorOnInvalidMessage=*/false); } // CWG2518 // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a // template definition, the declaration has no effect. bool InTemplateDefinition = getLangOpts().CPlusPlus && CurContext->isDependentContext(); if (!Failed && !Cond && !InTemplateDefinition) { SmallString<256> MsgBuffer; llvm::raw_svector_ostream Msg(MsgBuffer); bool HasMessage = AssertMessage; if (AssertMessage) { std::string Str; HasMessage = EvaluateStaticAssertMessageAsString( AssertMessage, Str, Context, /*ErrorOnInvalidMessage=*/true) || !Str.empty(); Msg << Str; } Expr *InnerCond = nullptr; std::string InnerCondDescription; std::tie(InnerCond, InnerCondDescription) = findFailedBooleanCondition(Converted.get()); if (InnerCond && isa(InnerCond)) { // Drill down into concept specialization expressions to see why they // weren't satisfied. Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); ConstraintSatisfaction Satisfaction; if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) DiagnoseUnsatisfiedConstraint(Satisfaction); } else if (InnerCond && !isa(InnerCond) && !isa(InnerCond)) { Diag(InnerCond->getBeginLoc(), diag::err_static_assert_requirement_failed) << InnerCondDescription << !HasMessage << Msg.str() << InnerCond->getSourceRange(); DiagnoseStaticAssertDetails(InnerCond); } else { Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); PrintContextStack(); } Failed = true; } } else { ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, /*DiscardedValue*/false, /*IsConstexpr*/true); if (FullAssertExpr.isInvalid()) Failed = true; else AssertExpr = FullAssertExpr.get(); } Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, AssertExpr, AssertMessage, RParenLoc, Failed); CurContext->addDecl(Decl); return Decl; } DeclResult Sema::ActOnTemplatedFriendTag( Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists) { TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); bool IsMemberSpecialization = false; bool Invalid = false; if (TemplateParameterList *TemplateParams = MatchTemplateParametersToScopeSpecifier( TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, IsMemberSpecialization, Invalid)) { if (TemplateParams->size() > 0) { // This is a declaration of a class template. if (Invalid) return true; return CheckClassTemplate(S, TagSpec, TagUseKind::Friend, TagLoc, SS, Name, NameLoc, Attr, TemplateParams, AS_public, /*ModulePrivateLoc=*/SourceLocation(), FriendLoc, TempParamLists.size() - 1, TempParamLists.data()) .get(); } else { // The "template<>" header is extraneous. Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) << TypeWithKeyword::getTagTypeKindName(Kind) << Name; IsMemberSpecialization = true; } } if (Invalid) return true; bool isAllExplicitSpecializations = true; for (unsigned I = TempParamLists.size(); I-- > 0; ) { if (TempParamLists[I]->size()) { isAllExplicitSpecializations = false; break; } } // FIXME: don't ignore attributes. // If it's explicit specializations all the way down, just forget // about the template header and build an appropriate non-templated // friend. TODO: for source fidelity, remember the headers. if (isAllExplicitSpecializations) { if (SS.isEmpty()) { bool Owned = false; bool IsDependent = false; return ActOnTag(S, TagSpec, TagUseKind::Friend, TagLoc, SS, Name, NameLoc, Attr, AS_public, /*ModulePrivateLoc=*/SourceLocation(), MultiTemplateParamsArg(), Owned, IsDependent, /*ScopedEnumKWLoc=*/SourceLocation(), /*ScopedEnumUsesClassTag=*/false, /*UnderlyingType=*/TypeResult(), /*IsTypeSpecifier=*/false, /*IsTemplateParamOrArg=*/false, /*OOK=*/OOK_Outside); } NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); ElaboratedTypeKeyword Keyword = TypeWithKeyword::getKeywordForTagTypeKind(Kind); QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, *Name, NameLoc); if (T.isNull()) return true; TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); if (isa(T)) { DependentNameTypeLoc TL = TSI->getTypeLoc().castAs(); TL.setElaboratedKeywordLoc(TagLoc); TL.setQualifierLoc(QualifierLoc); TL.setNameLoc(NameLoc); } else { ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs(); TL.setElaboratedKeywordLoc(TagLoc); TL.setQualifierLoc(QualifierLoc); TL.getNamedTypeLoc().castAs().setNameLoc(NameLoc); } FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, TSI, FriendLoc, TempParamLists); Friend->setAccess(AS_public); CurContext->addDecl(Friend); return Friend; } assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); // Handle the case of a templated-scope friend class. e.g. // template class A::B; // FIXME: we don't support these right now. Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) << SS.getScopeRep() << SS.getRange() << cast(CurContext); ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); DependentNameTypeLoc TL = TSI->getTypeLoc().castAs(); TL.setElaboratedKeywordLoc(TagLoc); TL.setQualifierLoc(SS.getWithLocInContext(Context)); TL.setNameLoc(NameLoc); FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, TSI, FriendLoc, TempParamLists); Friend->setAccess(AS_public); Friend->setUnsupportedFriend(true); CurContext->addDecl(Friend); return Friend; } Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, MultiTemplateParamsArg TempParams) { SourceLocation Loc = DS.getBeginLoc(); SourceLocation FriendLoc = DS.getFriendSpecLoc(); assert(DS.isFriendSpecified()); assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); // C++ [class.friend]p3: // A friend declaration that does not declare a function shall have one of // the following forms: // friend elaborated-type-specifier ; // friend simple-type-specifier ; // friend typename-specifier ; // // If the friend keyword isn't first, or if the declarations has any type // qualifiers, then the declaration doesn't have that form. if (getLangOpts().CPlusPlus11 && !DS.isFriendSpecifiedFirst()) Diag(FriendLoc, diag::err_friend_not_first_in_declaration); if (DS.getTypeQualifiers()) { if (DS.getTypeQualifiers() & DeclSpec::TQ_const) Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; } // Try to convert the decl specifier to a type. This works for // friend templates because ActOnTag never produces a ClassTemplateDecl // for a TagUseKind::Friend. Declarator TheDeclarator(DS, ParsedAttributesView::none(), DeclaratorContext::Member); TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator); QualType T = TSI->getType(); if (TheDeclarator.isInvalidType()) return nullptr; if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) return nullptr; if (!T->isElaboratedTypeSpecifier()) { if (TempParams.size()) { // C++23 [dcl.pre]p5: // In a simple-declaration, the optional init-declarator-list can be // omitted only when declaring a class or enumeration, that is, when // the decl-specifier-seq contains either a class-specifier, an // elaborated-type-specifier with a class-key, or an enum-specifier. // // The declaration of a template-declaration or explicit-specialization // is never a member-declaration, so this must be a simple-declaration // with no init-declarator-list. Therefore, this is ill-formed. Diag(Loc, diag::err_tagless_friend_type_template) << DS.getSourceRange(); return nullptr; } else if (const RecordDecl *RD = T->getAsRecordDecl()) { SmallString<16> InsertionText(" "); InsertionText += RD->getKindName(); Diag(Loc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_unelaborated_friend_type : diag::ext_unelaborated_friend_type) << (unsigned)RD->getTagKind() << T << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), InsertionText); } else { Diag(FriendLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_nonclass_type_friend : diag::ext_nonclass_type_friend) << T << DS.getSourceRange(); } } // C++98 [class.friend]p1: A friend of a class is a function // or class that is not a member of the class . . . // This is fixed in DR77, which just barely didn't make the C++03 // deadline. It's also a very silly restriction that seriously // affects inner classes and which nobody else seems to implement; // thus we never diagnose it, not even in -pedantic. // // But note that we could warn about it: it's always useless to // friend one of your own members (it's not, however, worthless to // friend a member of an arbitrary specialization of your template). Decl *D; if (!TempParams.empty()) D = FriendTemplateDecl::Create(Context, CurContext, Loc, TempParams, TSI, FriendLoc); else D = FriendDecl::Create(Context, CurContext, TSI->getTypeLoc().getBeginLoc(), TSI, FriendLoc); if (!D) return nullptr; D->setAccess(AS_public); CurContext->addDecl(D); return D; } NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParams) { const DeclSpec &DS = D.getDeclSpec(); assert(DS.isFriendSpecified()); assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); SourceLocation Loc = D.getIdentifierLoc(); TypeSourceInfo *TInfo = GetTypeForDeclarator(D); // C++ [class.friend]p1 // A friend of a class is a function or class.... // Note that this sees through typedefs, which is intended. // It *doesn't* see through dependent types, which is correct // according to [temp.arg.type]p3: // If a declaration acquires a function type through a // type dependent on a template-parameter and this causes // a declaration that does not use the syntactic form of a // function declarator to have a function type, the program // is ill-formed. if (!TInfo->getType()->isFunctionType()) { Diag(Loc, diag::err_unexpected_friend); // It might be worthwhile to try to recover by creating an // appropriate declaration. return nullptr; } // C++ [namespace.memdef]p3 // - If a friend declaration in a non-local class first declares a // class or function, the friend class or function is a member // of the innermost enclosing namespace. // - The name of the friend is not found by simple name lookup // until a matching declaration is provided in that namespace // scope (either before or after the class declaration granting // friendship). // - If a friend function is called, its name may be found by the // name lookup that considers functions from namespaces and // classes associated with the types of the function arguments. // - When looking for a prior declaration of a class or a function // declared as a friend, scopes outside the innermost enclosing // namespace scope are not considered. CXXScopeSpec &SS = D.getCXXScopeSpec(); DeclarationNameInfo NameInfo = GetNameForDeclarator(D); assert(NameInfo.getName()); // Check for unexpanded parameter packs. if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) return nullptr; // The context we found the declaration in, or in which we should // create the declaration. DeclContext *DC; Scope *DCScope = S; LookupResult Previous(*this, NameInfo, LookupOrdinaryName, RedeclarationKind::ForExternalRedeclaration); bool isTemplateId = D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; // There are five cases here. // - There's no scope specifier and we're in a local class. Only look // for functions declared in the immediately-enclosing block scope. // We recover from invalid scope qualifiers as if they just weren't there. FunctionDecl *FunctionContainingLocalClass = nullptr; if ((SS.isInvalid() || !SS.isSet()) && (FunctionContainingLocalClass = cast(CurContext)->isLocalClass())) { // C++11 [class.friend]p11: // If a friend declaration appears in a local class and the name // specified is an unqualified name, a prior declaration is // looked up without considering scopes that are outside the // innermost enclosing non-class scope. For a friend function // declaration, if there is no prior declaration, the program is // ill-formed. // Find the innermost enclosing non-class scope. This is the block // scope containing the local class definition (or for a nested class, // the outer local class). DCScope = S->getFnParent(); // Look up the function name in the scope. Previous.clear(LookupLocalFriendName); LookupName(Previous, S, /*AllowBuiltinCreation*/false); if (!Previous.empty()) { // All possible previous declarations must have the same context: // either they were declared at block scope or they are members of // one of the enclosing local classes. DC = Previous.getRepresentativeDecl()->getDeclContext(); } else { // This is ill-formed, but provide the context that we would have // declared the function in, if we were permitted to, for error recovery. DC = FunctionContainingLocalClass; } adjustContextForLocalExternDecl(DC); // - There's no scope specifier, in which case we just go to the // appropriate scope and look for a function or function template // there as appropriate. } else if (SS.isInvalid() || !SS.isSet()) { // C++11 [namespace.memdef]p3: // If the name in a friend declaration is neither qualified nor // a template-id and the declaration is a function or an // elaborated-type-specifier, the lookup to determine whether // the entity has been previously declared shall not consider // any scopes outside the innermost enclosing namespace. // Find the appropriate context according to the above. DC = CurContext; // Skip class contexts. If someone can cite chapter and verse // for this behavior, that would be nice --- it's what GCC and // EDG do, and it seems like a reasonable intent, but the spec // really only says that checks for unqualified existing // declarations should stop at the nearest enclosing namespace, // not that they should only consider the nearest enclosing // namespace. while (DC->isRecord()) DC = DC->getParent(); DeclContext *LookupDC = DC->getNonTransparentContext(); while (true) { LookupQualifiedName(Previous, LookupDC); if (!Previous.empty()) { DC = LookupDC; break; } if (isTemplateId) { if (isa(LookupDC)) break; } else { if (LookupDC->isFileContext()) break; } LookupDC = LookupDC->getParent(); } DCScope = getScopeForDeclContext(S, DC); // - There's a non-dependent scope specifier, in which case we // compute it and do a previous lookup there for a function // or function template. } else if (!SS.getScopeRep()->isDependent()) { DC = computeDeclContext(SS); if (!DC) return nullptr; if (RequireCompleteDeclContext(SS, DC)) return nullptr; LookupQualifiedName(Previous, DC); // C++ [class.friend]p1: A friend of a class is a function or // class that is not a member of the class . . . if (DC->Equals(CurContext)) Diag(DS.getFriendSpecLoc(), getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_friend_is_member : diag::err_friend_is_member); // - There's a scope specifier that does not match any template // parameter lists, in which case we use some arbitrary context, // create a method or method template, and wait for instantiation. // - There's a scope specifier that does match some template // parameter lists, which we don't handle right now. } else { DC = CurContext; assert(isa(DC) && "friend declaration not in class?"); } if (!DC->isRecord()) { int DiagArg = -1; switch (D.getName().getKind()) { case UnqualifiedIdKind::IK_ConstructorTemplateId: case UnqualifiedIdKind::IK_ConstructorName: DiagArg = 0; break; case UnqualifiedIdKind::IK_DestructorName: DiagArg = 1; break; case UnqualifiedIdKind::IK_ConversionFunctionId: DiagArg = 2; break; case UnqualifiedIdKind::IK_DeductionGuideName: DiagArg = 3; break; case UnqualifiedIdKind::IK_Identifier: case UnqualifiedIdKind::IK_ImplicitSelfParam: case UnqualifiedIdKind::IK_LiteralOperatorId: case UnqualifiedIdKind::IK_OperatorFunctionId: case UnqualifiedIdKind::IK_TemplateId: break; } // This implies that it has to be an operator or function. if (DiagArg >= 0) { Diag(Loc, diag::err_introducing_special_friend) << DiagArg; return nullptr; } } // FIXME: This is an egregious hack to cope with cases where the scope stack // does not contain the declaration context, i.e., in an out-of-line // definition of a class. Scope FakeDCScope(S, Scope::DeclScope, Diags); if (!DCScope) { FakeDCScope.setEntity(DC); DCScope = &FakeDCScope; } bool AddToScope = true; NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, TemplateParams, AddToScope); if (!ND) return nullptr; assert(ND->getLexicalDeclContext() == CurContext); // If we performed typo correction, we might have added a scope specifier // and changed the decl context. DC = ND->getDeclContext(); // Add the function declaration to the appropriate lookup tables, // adjusting the redeclarations list as necessary. We don't // want to do this yet if the friending class is dependent. // // Also update the scope-based lookup if the target context's // lookup context is in lexical scope. if (!CurContext->isDependentContext()) { DC = DC->getRedeclContext(); DC->makeDeclVisibleInContext(ND); if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); } FriendDecl *FrD = FriendDecl::Create(Context, CurContext, D.getIdentifierLoc(), ND, DS.getFriendSpecLoc()); FrD->setAccess(AS_public); CurContext->addDecl(FrD); if (ND->isInvalidDecl()) { FrD->setInvalidDecl(); } else { if (DC->isRecord()) CheckFriendAccess(ND); FunctionDecl *FD; if (FunctionTemplateDecl *FTD = dyn_cast(ND)) FD = FTD->getTemplatedDecl(); else FD = cast(ND); // C++ [class.friend]p6: // A function may be defined in a friend declaration of a class if and // only if the class is a non-local class, and the function name is // unqualified. if (D.isFunctionDefinition()) { // Qualified friend function definition. if (SS.isNotEmpty()) { // FIXME: We should only do this if the scope specifier names the // innermost enclosing namespace; otherwise the fixit changes the // meaning of the code. SemaDiagnosticBuilder DB = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); DB << SS.getScopeRep(); if (DC->isFileContext()) DB << FixItHint::CreateRemoval(SS.getRange()); // Friend function defined in a local class. } else if (FunctionContainingLocalClass) { Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); // Per [basic.pre]p4, a template-id is not a name. Therefore, if we have // a template-id, the function name is not unqualified because these is // no name. While the wording requires some reading in-between the // lines, GCC, MSVC, and EDG all consider a friend function // specialization definitions // to be de facto explicit specialization // and diagnose them as such. } else if (isTemplateId) { Diag(NameInfo.getBeginLoc(), diag::err_friend_specialization_def); } } // C++11 [dcl.fct.default]p4: If a friend declaration specifies a // default argument expression, that declaration shall be a definition // and shall be the only declaration of the function or function // template in the translation unit. if (functionDeclHasDefaultArgument(FD)) { // We can't look at FD->getPreviousDecl() because it may not have been set // if we're in a dependent context. If the function is known to be a // redeclaration, we will have narrowed Previous down to the right decl. if (D.isRedeclaration()) { Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); Diag(Previous.getRepresentativeDecl()->getLocation(), diag::note_previous_declaration); } else if (!D.isFunctionDefinition()) Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); } // Mark templated-scope function declarations as unsupported. if (FD->getNumTemplateParameterLists() && SS.isValid()) { Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) << SS.getScopeRep() << SS.getRange() << cast(CurContext); FrD->setUnsupportedFriend(true); } } warnOnReservedIdentifier(ND); return ND; } void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc, StringLiteral *Message) { AdjustDeclIfTemplate(Dcl); FunctionDecl *Fn = dyn_cast_or_null(Dcl); if (!Fn) { Diag(DelLoc, diag::err_deleted_non_function); return; } // Deleted function does not have a body. Fn->setWillHaveBody(false); if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { // Don't consider the implicit declaration we generate for explicit // specializations. FIXME: Do not generate these implicit declarations. if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || Prev->getPreviousDecl()) && !Prev->isDefined()) { Diag(DelLoc, diag::err_deleted_decl_not_first); Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), Prev->isImplicit() ? diag::note_previous_implicit_declaration : diag::note_previous_declaration); // We can't recover from this; the declaration might have already // been used. Fn->setInvalidDecl(); return; } // To maintain the invariant that functions are only deleted on their first // declaration, mark the implicitly-instantiated declaration of the // explicitly-specialized function as deleted instead of marking the // instantiated redeclaration. Fn = Fn->getCanonicalDecl(); } // dllimport/dllexport cannot be deleted. if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; Fn->setInvalidDecl(); } // C++11 [basic.start.main]p3: // A program that defines main as deleted [...] is ill-formed. if (Fn->isMain()) Diag(DelLoc, diag::err_deleted_main); // C++11 [dcl.fct.def.delete]p4: // A deleted function is implicitly inline. Fn->setImplicitlyInline(); Fn->setDeletedAsWritten(true, Message); } void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { if (!Dcl || Dcl->isInvalidDecl()) return; auto *FD = dyn_cast(Dcl); if (!FD) { if (auto *FTD = dyn_cast(Dcl)) { if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { Diag(DefaultLoc, diag::err_defaulted_comparison_template); return; } } Diag(DefaultLoc, diag::err_default_special_members) << getLangOpts().CPlusPlus20; return; } // Reject if this can't possibly be a defaultable function. DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); if (!DefKind && // A dependent function that doesn't locally look defaultable can // still instantiate to a defaultable function if it's a constructor // or assignment operator. (!FD->isDependentContext() || (!isa(FD) && FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { Diag(DefaultLoc, diag::err_default_special_members) << getLangOpts().CPlusPlus20; return; } // Issue compatibility warning. We already warned if the operator is // 'operator<=>' when parsing the '<=>' token. if (DefKind.isComparison() && DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { Diag(DefaultLoc, getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_defaulted_comparison : diag::ext_defaulted_comparison); } FD->setDefaulted(); FD->setExplicitlyDefaulted(); FD->setDefaultLoc(DefaultLoc); // Defer checking functions that are defaulted in a dependent context. if (FD->isDependentContext()) return; // Unset that we will have a body for this function. We might not, // if it turns out to be trivial, and we don't need this marking now // that we've marked it as defaulted. FD->setWillHaveBody(false); if (DefKind.isComparison()) { // If this comparison's defaulting occurs within the definition of its // lexical class context, we have to do the checking when complete. if (auto const *RD = dyn_cast(FD->getLexicalDeclContext())) if (!RD->isCompleteDefinition()) return; } // If this member fn was defaulted on its first declaration, we will have // already performed the checking in CheckCompletedCXXClass. Such a // declaration doesn't trigger an implicit definition. if (isa(FD)) { const FunctionDecl *Primary = FD; if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) // Ask the template instantiation pattern that actually had the // '= default' on it. Primary = Pattern; if (Primary->getCanonicalDecl()->isDefaulted()) return; } if (DefKind.isComparison()) { if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison())) FD->setInvalidDecl(); else DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison()); } else { auto *MD = cast(FD); if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember(), DefaultLoc)) MD->setInvalidDecl(); else DefineDefaultedFunction(*this, MD, DefaultLoc); } } static void SearchForReturnInStmt(Sema &Self, Stmt *S) { for (Stmt *SubStmt : S->children()) { if (!SubStmt) continue; if (isa(SubStmt)) Self.Diag(SubStmt->getBeginLoc(), diag::err_return_in_constructor_handler); if (!isa(SubStmt)) SearchForReturnInStmt(Self, SubStmt); } } void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { CXXCatchStmt *Handler = TryBlock->getHandler(I); SearchForReturnInStmt(*this, Handler); } } void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind, StringLiteral *DeletedMessage) { switch (BodyKind) { case FnBodyKind::Delete: SetDeclDeleted(D, Loc, DeletedMessage); break; case FnBodyKind::Default: SetDeclDefaulted(D, Loc); break; case FnBodyKind::Other: llvm_unreachable( "Parsed function body should be '= delete;' or '= default;'"); } } bool Sema::CheckOverridingFunctionAttributes(CXXMethodDecl *New, const CXXMethodDecl *Old) { const auto *NewFT = New->getType()->castAs(); const auto *OldFT = Old->getType()->castAs(); if (OldFT->hasExtParameterInfos()) { for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) // A parameter of the overriding method should be annotated with noescape // if the corresponding parameter of the overridden method is annotated. if (OldFT->getExtParameterInfo(I).isNoEscape() && !NewFT->getExtParameterInfo(I).isNoEscape()) { Diag(New->getParamDecl(I)->getLocation(), diag::warn_overriding_method_missing_noescape); Diag(Old->getParamDecl(I)->getLocation(), diag::note_overridden_marked_noescape); } } // SME attributes must match when overriding a function declaration. if (IsInvalidSMECallConversion(Old->getType(), New->getType())) { Diag(New->getLocation(), diag::err_conflicting_overriding_attributes) << New << New->getType() << Old->getType(); Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } // Virtual overrides must have the same code_seg. const auto *OldCSA = Old->getAttr(); const auto *NewCSA = New->getAttr(); if ((NewCSA || OldCSA) && (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { Diag(New->getLocation(), diag::err_mismatched_code_seg_override); Diag(Old->getLocation(), diag::note_previous_declaration); return true; } // Virtual overrides: check for matching effects. if (Context.hasAnyFunctionEffects()) { const auto OldFX = Old->getFunctionEffects(); const auto NewFXOrig = New->getFunctionEffects(); if (OldFX != NewFXOrig) { FunctionEffectSet NewFX(NewFXOrig); const auto Diffs = FunctionEffectDifferences(OldFX, NewFX); FunctionEffectSet::Conflicts Errs; for (const auto &Diff : Diffs) { switch (Diff.shouldDiagnoseMethodOverride(*Old, OldFX, *New, NewFX)) { case FunctionEffectDiff::OverrideResult::NoAction: break; case FunctionEffectDiff::OverrideResult::Warn: Diag(New->getLocation(), diag::warn_mismatched_func_effect_override) << Diff.effectName(); Diag(Old->getLocation(), diag::note_overridden_virtual_function) << Old->getReturnTypeSourceRange(); break; case FunctionEffectDiff::OverrideResult::Merge: { NewFX.insert(Diff.Old, Errs); const auto *NewFT = New->getType()->castAs(); FunctionProtoType::ExtProtoInfo EPI = NewFT->getExtProtoInfo(); EPI.FunctionEffects = FunctionEffectsRef(NewFX); QualType ModQT = Context.getFunctionType(NewFT->getReturnType(), NewFT->getParamTypes(), EPI); New->setType(ModQT); break; } } } if (!Errs.empty()) diagnoseFunctionEffectMergeConflicts(Errs, New->getLocation(), Old->getLocation()); } } CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); // If the calling conventions match, everything is fine if (NewCC == OldCC) return false; // If the calling conventions mismatch because the new function is static, // suppress the calling convention mismatch error; the error about static // function override (err_static_overrides_virtual from // Sema::CheckFunctionDeclaration) is more clear. if (New->getStorageClass() == SC_Static) return false; Diag(New->getLocation(), diag::err_conflicting_overriding_cc_attributes) << New->getDeclName() << New->getType() << Old->getType(); Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } bool Sema::CheckExplicitObjectOverride(CXXMethodDecl *New, const CXXMethodDecl *Old) { // CWG2553 // A virtual function shall not be an explicit object member function. if (!New->isExplicitObjectMemberFunction()) return true; Diag(New->getParamDecl(0)->getBeginLoc(), diag::err_explicit_object_parameter_nonmember) << New->getSourceRange() << /*virtual*/ 1 << /*IsLambda*/ false; Diag(Old->getLocation(), diag::note_overridden_virtual_function); New->setInvalidDecl(); return false; } bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, const CXXMethodDecl *Old) { QualType NewTy = New->getType()->castAs()->getReturnType(); QualType OldTy = Old->getType()->castAs()->getReturnType(); if (Context.hasSameType(NewTy, OldTy) || NewTy->isDependentType() || OldTy->isDependentType()) return false; // Check if the return types are covariant QualType NewClassTy, OldClassTy; /// Both types must be pointers or references to classes. if (const PointerType *NewPT = NewTy->getAs()) { if (const PointerType *OldPT = OldTy->getAs()) { NewClassTy = NewPT->getPointeeType(); OldClassTy = OldPT->getPointeeType(); } } else if (const ReferenceType *NewRT = NewTy->getAs()) { if (const ReferenceType *OldRT = OldTy->getAs()) { if (NewRT->getTypeClass() == OldRT->getTypeClass()) { NewClassTy = NewRT->getPointeeType(); OldClassTy = OldRT->getPointeeType(); } } } // The return types aren't either both pointers or references to a class type. if (NewClassTy.isNull()) { Diag(New->getLocation(), diag::err_different_return_type_for_overriding_virtual_function) << New->getDeclName() << NewTy << OldTy << New->getReturnTypeSourceRange(); Diag(Old->getLocation(), diag::note_overridden_virtual_function) << Old->getReturnTypeSourceRange(); return true; } if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { // C++14 [class.virtual]p8: // If the class type in the covariant return type of D::f differs from // that of B::f, the class type in the return type of D::f shall be // complete at the point of declaration of D::f or shall be the class // type D. if (const RecordType *RT = NewClassTy->getAs()) { if (!RT->isBeingDefined() && RequireCompleteType(New->getLocation(), NewClassTy, diag::err_covariant_return_incomplete, New->getDeclName())) return true; } // Check if the new class derives from the old class. if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { Diag(New->getLocation(), diag::err_covariant_return_not_derived) << New->getDeclName() << NewTy << OldTy << New->getReturnTypeSourceRange(); Diag(Old->getLocation(), diag::note_overridden_virtual_function) << Old->getReturnTypeSourceRange(); return true; } // Check if we the conversion from derived to base is valid. if (CheckDerivedToBaseConversion( NewClassTy, OldClassTy, diag::err_covariant_return_inaccessible_base, diag::err_covariant_return_ambiguous_derived_to_base_conv, New->getLocation(), New->getReturnTypeSourceRange(), New->getDeclName(), nullptr)) { // FIXME: this note won't trigger for delayed access control // diagnostics, and it's impossible to get an undelayed error // here from access control during the original parse because // the ParsingDeclSpec/ParsingDeclarator are still in scope. Diag(Old->getLocation(), diag::note_overridden_virtual_function) << Old->getReturnTypeSourceRange(); return true; } } // The qualifiers of the return types must be the same. if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { Diag(New->getLocation(), diag::err_covariant_return_type_different_qualifications) << New->getDeclName() << NewTy << OldTy << New->getReturnTypeSourceRange(); Diag(Old->getLocation(), diag::note_overridden_virtual_function) << Old->getReturnTypeSourceRange(); return true; } // The new class type must have the same or less qualifiers as the old type. if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { Diag(New->getLocation(), diag::err_covariant_return_type_class_type_more_qualified) << New->getDeclName() << NewTy << OldTy << New->getReturnTypeSourceRange(); Diag(Old->getLocation(), diag::note_overridden_virtual_function) << Old->getReturnTypeSourceRange(); return true; } return false; } bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { SourceLocation EndLoc = InitRange.getEnd(); if (EndLoc.isValid()) Method->setRangeEnd(EndLoc); if (Method->isVirtual() || Method->getParent()->isDependentContext()) { Method->setIsPureVirtual(); return false; } if (!Method->isInvalidDecl()) Diag(Method->getLocation(), diag::err_non_virtual_pure) << Method->getDeclName() << InitRange; return true; } void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { if (D->getFriendObjectKind()) Diag(D->getLocation(), diag::err_pure_friend); else if (auto *M = dyn_cast(D)) CheckPureMethod(M, ZeroLoc); else Diag(D->getLocation(), diag::err_illegal_initializer); } /// Invoked when we are about to parse an initializer for the declaration /// 'Dcl'. /// /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a /// static data member of class X, names should be looked up in the scope of /// class X. If the declaration had a scope specifier, a scope will have /// been created and passed in for this purpose. Otherwise, S will be null. void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { assert(D && !D->isInvalidDecl()); // We will always have a nested name specifier here, but this declaration // might not be out of line if the specifier names the current namespace: // extern int n; // int ::n = 0; if (S && D->isOutOfLine()) EnterDeclaratorContext(S, D->getDeclContext()); PushExpressionEvaluationContext( ExpressionEvaluationContext::PotentiallyEvaluated, D); } void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { assert(D); if (S && D->isOutOfLine()) ExitDeclaratorContext(S); if (getLangOpts().CPlusPlus23) { // An expression or conversion is 'manifestly constant-evaluated' if it is: // [...] // - the initializer of a variable that is usable in constant expressions or // has constant initialization. if (auto *VD = dyn_cast(D); VD && (VD->isUsableInConstantExpressions(Context) || VD->hasConstantInitialization())) { // An expression or conversion is in an 'immediate function context' if it // is potentially evaluated and either: // [...] // - it is a subexpression of a manifestly constant-evaluated expression // or conversion. ExprEvalContexts.back().InImmediateFunctionContext = true; } } // Unless the initializer is in an immediate function context (as determined // above), this will evaluate all contained immediate function calls as // constant expressions. If the initializer IS an immediate function context, // the initializer has been determined to be a constant expression, and all // such evaluations will be elided (i.e., as if we "knew the whole time" that // it was a constant expression). PopExpressionEvaluationContext(); } DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { // C++ 6.4p2: // The declarator shall not specify a function or an array. // The type-specifier-seq shall not contain typedef and shall not declare a // new class or enumeration. assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."); Decl *Dcl = ActOnDeclarator(S, D); if (!Dcl) return true; if (isa(Dcl)) { // The declarator shall not specify a function. Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) << D.getSourceRange(); return true; } if (auto *VD = dyn_cast(Dcl)) VD->setCXXCondDecl(); return Dcl; } void Sema::LoadExternalVTableUses() { if (!ExternalSource) return; SmallVector VTables; ExternalSource->ReadUsedVTables(VTables); SmallVector NewUses; for (unsigned I = 0, N = VTables.size(); I != N; ++I) { llvm::DenseMap::iterator Pos = VTablesUsed.find(VTables[I].Record); // Even if a definition wasn't required before, it may be required now. if (Pos != VTablesUsed.end()) { if (!Pos->second && VTables[I].DefinitionRequired) Pos->second = true; continue; } VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); } VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); } void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, bool DefinitionRequired) { // Ignore any vtable uses in unevaluated operands or for classes that do // not have a vtable. if (!Class->isDynamicClass() || Class->isDependentContext() || CurContext->isDependentContext() || isUnevaluatedContext()) return; // Do not mark as used if compiling for the device outside of the target // region. if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice && !OpenMP().isInOpenMPDeclareTargetContext() && !OpenMP().isInOpenMPTargetExecutionDirective()) { if (!DefinitionRequired) MarkVirtualMembersReferenced(Loc, Class); return; } // Try to insert this class into the map. LoadExternalVTableUses(); Class = Class->getCanonicalDecl(); std::pair::iterator, bool> Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); if (!Pos.second) { // If we already had an entry, check to see if we are promoting this vtable // to require a definition. If so, we need to reappend to the VTableUses // list, since we may have already processed the first entry. if (DefinitionRequired && !Pos.first->second) { Pos.first->second = true; } else { // Otherwise, we can early exit. return; } } else { // The Microsoft ABI requires that we perform the destructor body // checks (i.e. operator delete() lookup) when the vtable is marked used, as // the deleting destructor is emitted with the vtable, not with the // destructor definition as in the Itanium ABI. if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { CXXDestructorDecl *DD = Class->getDestructor(); if (DD && DD->isVirtual() && !DD->isDeleted()) { if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { // If this is an out-of-line declaration, marking it referenced will // not do anything. Manually call CheckDestructor to look up operator // delete(). ContextRAII SavedContext(*this, DD); CheckDestructor(DD); } else { MarkFunctionReferenced(Loc, Class->getDestructor()); } } } } // Local classes need to have their virtual members marked // immediately. For all other classes, we mark their virtual members // at the end of the translation unit. if (Class->isLocalClass()) MarkVirtualMembersReferenced(Loc, Class->getDefinition()); else VTableUses.push_back(std::make_pair(Class, Loc)); } bool Sema::DefineUsedVTables() { LoadExternalVTableUses(); if (VTableUses.empty()) return false; // Note: The VTableUses vector could grow as a result of marking // the members of a class as "used", so we check the size each // time through the loop and prefer indices (which are stable) to // iterators (which are not). bool DefinedAnything = false; for (unsigned I = 0; I != VTableUses.size(); ++I) { CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); if (!Class) continue; TemplateSpecializationKind ClassTSK = Class->getTemplateSpecializationKind(); SourceLocation Loc = VTableUses[I].second; bool DefineVTable = true; const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); // V-tables for non-template classes with an owning module are always // uniquely emitted in that module. if (Class->isInCurrentModuleUnit()) { DefineVTable = true; } else if (KeyFunction && !KeyFunction->hasBody()) { // If this class has a key function, but that key function is // defined in another translation unit, we don't need to emit the // vtable even though we're using it. // The key function is in another translation unit. DefineVTable = false; TemplateSpecializationKind TSK = KeyFunction->getTemplateSpecializationKind(); assert(TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"); (void)TSK; } else if (!KeyFunction) { // If we have a class with no key function that is the subject // of an explicit instantiation declaration, suppress the // vtable; it will live with the explicit instantiation // definition. bool IsExplicitInstantiationDeclaration = ClassTSK == TSK_ExplicitInstantiationDeclaration; for (auto *R : Class->redecls()) { TemplateSpecializationKind TSK = cast(R)->getTemplateSpecializationKind(); if (TSK == TSK_ExplicitInstantiationDeclaration) IsExplicitInstantiationDeclaration = true; else if (TSK == TSK_ExplicitInstantiationDefinition) { IsExplicitInstantiationDeclaration = false; break; } } if (IsExplicitInstantiationDeclaration) DefineVTable = false; } // The exception specifications for all virtual members may be needed even // if we are not providing an authoritative form of the vtable in this TU. // We may choose to emit it available_externally anyway. if (!DefineVTable) { MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); continue; } // Mark all of the virtual members of this class as referenced, so // that we can build a vtable. Then, tell the AST consumer that a // vtable for this class is required. DefinedAnything = true; MarkVirtualMembersReferenced(Loc, Class); CXXRecordDecl *Canonical = Class->getCanonicalDecl(); if (VTablesUsed[Canonical] && !Class->shouldEmitInExternalSource()) Consumer.HandleVTable(Class); // Warn if we're emitting a weak vtable. The vtable will be weak if there is // no key function or the key function is inlined. Don't warn in C++ ABIs // that lack key functions, since the user won't be able to make one. if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation && ClassTSK != TSK_ExplicitInstantiationDefinition) { const FunctionDecl *KeyFunctionDef = nullptr; if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && KeyFunctionDef->isInlined())) Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; } } VTableUses.clear(); return DefinedAnything; } void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, const CXXRecordDecl *RD) { for (const auto *I : RD->methods()) if (I->isVirtual() && !I->isPureVirtual()) ResolveExceptionSpec(Loc, I->getType()->castAs()); } void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD, bool ConstexprOnly) { // Mark all functions which will appear in RD's vtable as used. CXXFinalOverriderMap FinalOverriders; RD->getFinalOverriders(FinalOverriders); for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), E = FinalOverriders.end(); I != E; ++I) { for (OverridingMethods::const_iterator OI = I->second.begin(), OE = I->second.end(); OI != OE; ++OI) { assert(OI->second.size() > 0 && "no final overrider"); CXXMethodDecl *Overrider = OI->second.front().Method; // C++ [basic.def.odr]p2: // [...] A virtual member function is used if it is not pure. [...] if (!Overrider->isPureVirtual() && (!ConstexprOnly || Overrider->isConstexpr())) MarkFunctionReferenced(Loc, Overrider); } } // Only classes that have virtual bases need a VTT. if (RD->getNumVBases() == 0) return; for (const auto &I : RD->bases()) { const auto *Base = cast(I.getType()->castAs()->getDecl()); if (Base->getNumVBases() == 0) continue; MarkVirtualMembersReferenced(Loc, Base); } } static void DelegatingCycleHelper(CXXConstructorDecl* Ctor, llvm::SmallPtrSet &Valid, llvm::SmallPtrSet &Invalid, llvm::SmallPtrSet &Current, Sema &S) { if (Ctor->isInvalidDecl()) return; CXXConstructorDecl *Target = Ctor->getTargetConstructor(); // Target may not be determinable yet, for instance if this is a dependent // call in an uninstantiated template. if (Target) { const FunctionDecl *FNTarget = nullptr; (void)Target->hasBody(FNTarget); Target = const_cast( cast_or_null(FNTarget)); } CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), // Avoid dereferencing a null pointer here. *TCanonical = Target? Target->getCanonicalDecl() : nullptr; if (!Current.insert(Canonical).second) return; // We know that beyond here, we aren't chaining into a cycle. if (!Target || !Target->isDelegatingConstructor() || Target->isInvalidDecl() || Valid.count(TCanonical)) { Valid.insert(Current.begin(), Current.end()); Current.clear(); // We've hit a cycle. } else if (TCanonical == Canonical || Invalid.count(TCanonical) || Current.count(TCanonical)) { // If we haven't diagnosed this cycle yet, do so now. if (!Invalid.count(TCanonical)) { S.Diag((*Ctor->init_begin())->getSourceLocation(), diag::warn_delegating_ctor_cycle) << Ctor; // Don't add a note for a function delegating directly to itself. if (TCanonical != Canonical) S.Diag(Target->getLocation(), diag::note_it_delegates_to); CXXConstructorDecl *C = Target; while (C->getCanonicalDecl() != Canonical) { const FunctionDecl *FNTarget = nullptr; (void)C->getTargetConstructor()->hasBody(FNTarget); assert(FNTarget && "Ctor cycle through bodiless function"); C = const_cast( cast(FNTarget)); S.Diag(C->getLocation(), diag::note_which_delegates_to); } } Invalid.insert(Current.begin(), Current.end()); Current.clear(); } else { DelegatingCycleHelper(Target, Valid, Invalid, Current, S); } } void Sema::CheckDelegatingCtorCycles() { llvm::SmallPtrSet Valid, Invalid, Current; for (DelegatingCtorDeclsType::iterator I = DelegatingCtorDecls.begin(ExternalSource.get()), E = DelegatingCtorDecls.end(); I != E; ++I) DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) (*CI)->setInvalidDecl(); } namespace { /// AST visitor that finds references to the 'this' expression. class FindCXXThisExpr : public RecursiveASTVisitor { Sema &S; public: explicit FindCXXThisExpr(Sema &S) : S(S) { } bool VisitCXXThisExpr(CXXThisExpr *E) { S.Diag(E->getLocation(), diag::err_this_static_member_func) << E->isImplicit(); return false; } }; } bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); if (!TSInfo) return false; TypeLoc TL = TSInfo->getTypeLoc(); FunctionProtoTypeLoc ProtoTL = TL.getAs(); if (!ProtoTL) return false; // C++11 [expr.prim.general]p3: // [The expression this] shall not appear before the optional // cv-qualifier-seq and it shall not appear within the declaration of a // static member function (although its type and value category are defined // within a static member function as they are within a non-static member // function). [ Note: this is because declaration matching does not occur // until the complete declarator is known. - end note ] const FunctionProtoType *Proto = ProtoTL.getTypePtr(); FindCXXThisExpr Finder(*this); // If the return type came after the cv-qualifier-seq, check it now. if (Proto->hasTrailingReturn() && !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) return true; // Check the exception specification. if (checkThisInStaticMemberFunctionExceptionSpec(Method)) return true; // Check the trailing requires clause if (Expr *E = Method->getTrailingRequiresClause()) if (!Finder.TraverseStmt(E)) return true; return checkThisInStaticMemberFunctionAttributes(Method); } bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); if (!TSInfo) return false; TypeLoc TL = TSInfo->getTypeLoc(); FunctionProtoTypeLoc ProtoTL = TL.getAs(); if (!ProtoTL) return false; const FunctionProtoType *Proto = ProtoTL.getTypePtr(); FindCXXThisExpr Finder(*this); switch (Proto->getExceptionSpecType()) { case EST_Unparsed: case EST_Uninstantiated: case EST_Unevaluated: case EST_BasicNoexcept: case EST_NoThrow: case EST_DynamicNone: case EST_MSAny: case EST_None: break; case EST_DependentNoexcept: case EST_NoexceptFalse: case EST_NoexceptTrue: if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) return true; [[fallthrough]]; case EST_Dynamic: for (const auto &E : Proto->exceptions()) { if (!Finder.TraverseType(E)) return true; } break; } return false; } bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { FindCXXThisExpr Finder(*this); // Check attributes. for (const auto *A : Method->attrs()) { // FIXME: This should be emitted by tblgen. Expr *Arg = nullptr; ArrayRef Args; if (const auto *G = dyn_cast(A)) Arg = G->getArg(); else if (const auto *G = dyn_cast(A)) Arg = G->getArg(); else if (const auto *AA = dyn_cast(A)) Args = llvm::ArrayRef(AA->args_begin(), AA->args_size()); else if (const auto *AB = dyn_cast(A)) Args = llvm::ArrayRef(AB->args_begin(), AB->args_size()); else if (const auto *ETLF = dyn_cast(A)) { Arg = ETLF->getSuccessValue(); Args = llvm::ArrayRef(ETLF->args_begin(), ETLF->args_size()); } else if (const auto *STLF = dyn_cast(A)) { Arg = STLF->getSuccessValue(); Args = llvm::ArrayRef(STLF->args_begin(), STLF->args_size()); } else if (const auto *LR = dyn_cast(A)) Arg = LR->getArg(); else if (const auto *LE = dyn_cast(A)) Args = llvm::ArrayRef(LE->args_begin(), LE->args_size()); else if (const auto *RC = dyn_cast(A)) Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); else if (const auto *AC = dyn_cast(A)) Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); else if (const auto *AC = dyn_cast(A)) Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); else if (const auto *RC = dyn_cast(A)) Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); if (Arg && !Finder.TraverseStmt(Arg)) return true; for (unsigned I = 0, N = Args.size(); I != N; ++I) { if (!Finder.TraverseStmt(Args[I])) return true; } } return false; } void Sema::checkExceptionSpecification( bool IsTopLevel, ExceptionSpecificationType EST, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr, SmallVectorImpl &Exceptions, FunctionProtoType::ExceptionSpecInfo &ESI) { Exceptions.clear(); ESI.Type = EST; if (EST == EST_Dynamic) { Exceptions.reserve(DynamicExceptions.size()); for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { // FIXME: Preserve type source info. QualType ET = GetTypeFromParser(DynamicExceptions[ei]); if (IsTopLevel) { SmallVector Unexpanded; collectUnexpandedParameterPacks(ET, Unexpanded); if (!Unexpanded.empty()) { DiagnoseUnexpandedParameterPacks( DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, Unexpanded); continue; } } // Check that the type is valid for an exception spec, and // drop it if not. if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) Exceptions.push_back(ET); } ESI.Exceptions = Exceptions; return; } if (isComputedNoexcept(EST)) { assert((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"); if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { ESI.Type = EST_BasicNoexcept; return; } ESI.NoexceptExpr = NoexceptExpr; return; } } void Sema::actOnDelayedExceptionSpecification( Decl *D, ExceptionSpecificationType EST, SourceRange SpecificationRange, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr) { if (!D) return; // Dig out the function we're referring to. if (FunctionTemplateDecl *FTD = dyn_cast(D)) D = FTD->getTemplatedDecl(); FunctionDecl *FD = dyn_cast(D); if (!FD) return; // Check the exception specification. llvm::SmallVector Exceptions; FunctionProtoType::ExceptionSpecInfo ESI; checkExceptionSpecification(/*IsTopLevel=*/true, EST, DynamicExceptions, DynamicExceptionRanges, NoexceptExpr, Exceptions, ESI); // Update the exception specification on the function type. Context.adjustExceptionSpec(FD, ESI, /*AsWritten=*/true); if (CXXMethodDecl *MD = dyn_cast(D)) { if (MD->isStatic()) checkThisInStaticMemberFunctionExceptionSpec(MD); if (MD->isVirtual()) { // Check overrides, which we previously had to delay. for (const CXXMethodDecl *O : MD->overridden_methods()) CheckOverridingFunctionExceptionSpec(MD, O); } } } /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. /// MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, SourceLocation DeclStart, Declarator &D, Expr *BitWidth, InClassInitStyle InitStyle, AccessSpecifier AS, const ParsedAttr &MSPropertyAttr) { const IdentifierInfo *II = D.getIdentifier(); if (!II) { Diag(DeclStart, diag::err_anonymous_property); return nullptr; } SourceLocation Loc = D.getIdentifierLoc(); TypeSourceInfo *TInfo = GetTypeForDeclarator(D); QualType T = TInfo->getType(); if (getLangOpts().CPlusPlus) { CheckExtraCXXDefaultArguments(D); if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, UPPC_DataMemberType)) { D.setInvalidType(); T = Context.IntTy; TInfo = Context.getTrivialTypeSourceInfo(T, Loc); } } DiagnoseFunctionSpecifiers(D.getDeclSpec()); if (D.getDeclSpec().isInlineSpecified()) Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) << getLangOpts().CPlusPlus17; if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), diag::err_invalid_thread) << DeclSpec::getSpecifierName(TSCS); // Check to see if this name was declared as a member previously NamedDecl *PrevDecl = nullptr; LookupResult Previous(*this, II, Loc, LookupMemberName, RedeclarationKind::ForVisibleRedeclaration); LookupName(Previous, S); switch (Previous.getResultKind()) { case LookupResult::Found: case LookupResult::FoundUnresolvedValue: PrevDecl = Previous.getAsSingle(); break; case LookupResult::FoundOverloaded: PrevDecl = Previous.getRepresentativeDecl(); break; case LookupResult::NotFound: case LookupResult::NotFoundInCurrentInstantiation: case LookupResult::Ambiguous: break; } if (PrevDecl && PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); // Just pretend that we didn't see the previous declaration. PrevDecl = nullptr; } if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) PrevDecl = nullptr; SourceLocation TSSL = D.getBeginLoc(); MSPropertyDecl *NewPD = MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, MSPropertyAttr.getPropertyDataGetter(), MSPropertyAttr.getPropertyDataSetter()); ProcessDeclAttributes(TUScope, NewPD, D); NewPD->setAccess(AS); if (NewPD->isInvalidDecl()) Record->setInvalidDecl(); if (D.getDeclSpec().isModulePrivateSpecified()) NewPD->setModulePrivate(); if (NewPD->isInvalidDecl() && PrevDecl) { // Don't introduce NewFD into scope; there's already something // with the same name in the same scope. } else if (II) { PushOnScopeChains(NewPD, S); } else Record->addDecl(NewPD); return NewPD; } void Sema::ActOnStartFunctionDeclarationDeclarator( Declarator &Declarator, unsigned TemplateParameterDepth) { auto &Info = InventedParameterInfos.emplace_back(); TemplateParameterList *ExplicitParams = nullptr; ArrayRef ExplicitLists = Declarator.getTemplateParameterLists(); if (!ExplicitLists.empty()) { bool IsMemberSpecialization, IsInvalid; ExplicitParams = MatchTemplateParametersToScopeSpecifier( Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, /*SuppressDiagnostic=*/true); } // C++23 [dcl.fct]p23: // An abbreviated function template can have a template-head. The invented // template-parameters are appended to the template-parameter-list after // the explicitly declared template-parameters. // // A template-head must have one or more template-parameters (read: // 'template<>' is *not* a template-head). Only append the invented // template parameters if we matched the nested-name-specifier to a non-empty // TemplateParameterList. if (ExplicitParams && !ExplicitParams->empty()) { Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); llvm::append_range(Info.TemplateParams, *ExplicitParams); Info.NumExplicitTemplateParams = ExplicitParams->size(); } else { Info.AutoTemplateParameterDepth = TemplateParameterDepth; Info.NumExplicitTemplateParams = 0; } } void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { auto &FSI = InventedParameterInfos.back(); if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { if (FSI.NumExplicitTemplateParams != 0) { TemplateParameterList *ExplicitParams = Declarator.getTemplateParameterLists().back(); Declarator.setInventedTemplateParameterList( TemplateParameterList::Create( Context, ExplicitParams->getTemplateLoc(), ExplicitParams->getLAngleLoc(), FSI.TemplateParams, ExplicitParams->getRAngleLoc(), ExplicitParams->getRequiresClause())); } else { Declarator.setInventedTemplateParameterList( TemplateParameterList::Create( Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, SourceLocation(), /*RequiresClause=*/nullptr)); } } InventedParameterInfos.pop_back(); }